WO2018214958A1 - Ido1抑制剂的晶型及其制备方法 - Google Patents

Ido1抑制剂的晶型及其制备方法 Download PDF

Info

Publication number
WO2018214958A1
WO2018214958A1 PCT/CN2018/088392 CN2018088392W WO2018214958A1 WO 2018214958 A1 WO2018214958 A1 WO 2018214958A1 CN 2018088392 W CN2018088392 W CN 2018088392W WO 2018214958 A1 WO2018214958 A1 WO 2018214958A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
crystal form
sample
pattern
test
Prior art date
Application number
PCT/CN2018/088392
Other languages
English (en)
French (fr)
Inventor
张杨
付志飞
罗妙荣
黎健
陈曙辉
Original Assignee
山东绿叶制药有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东绿叶制药有限公司 filed Critical 山东绿叶制药有限公司
Publication of WO2018214958A1 publication Critical patent/WO2018214958A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D271/00Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms
    • C07D271/02Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms not condensed with other rings
    • C07D271/081,2,5-Oxadiazoles; Hydrogenated 1,2,5-oxadiazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4245Oxadiazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/12Ophthalmic agents for cataracts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders

Definitions

  • the present invention relates to a crystalline form of a guanamine-2,3-dioxygenase 1 (IDO1) inhibitor and a process for the preparation thereof.
  • IDO1 guanamine-2,3-dioxygenase 1
  • Indoleamine-2,3-dioxygenase is a monomeric enzyme containing heme found in the cell for the first time in 1967 by the Hayaishi group.
  • the cDNA encodes a protein. 403 amino acid composition with a molecular weight of 455 kDa, which is the rate-limiting enzyme of the leucine-kynurenine pathway catabolism and is widely expressed in various mammalian tissues (Hayaishi O.eta l Science, 1969, 164, 389-396).
  • IDO In tumor cells, IDO often plays an important physiological role in inducing tumor microenvironmental immune tolerance. Its mediated tryptophan (Trp) kynurenine (Kyn) metabolic pathway is involved in tumor immunity. Escape, and IDO also plays an important role as an immune tolerance to induce tumor microenvironment.
  • Trp Tryptophan
  • niacin niacin
  • serotonin neurotransmitter serotonin
  • IDO degrades the purines of tryptophan, serotonin and melatonin, triggering the production of neuroactive and immunomodulatory metabolites collectively known as kynurenine.
  • Dendritic cell (DC)-expressed IDO can greatly affect T cell proliferation and survival by local consumption of tryptophan and increased proapoptotic kynurenine. Induction of IDO in DCs may be a common mechanism of regulatory T cell driven consumption tolerance.
  • tryptophan metabolism and kynurenine production may represent a critical interface between the immune and nervous systems.
  • available free serum Trp is reduced, and serotonergic function may also be affected due to reduced serotonin production.
  • IDO inhibitors for the treatment or prevention of IDO related diseases are being developed. Faced with a huge unmet market, there is still a need for more active IDO inhibitors in the field to meet treatment needs.
  • the present invention provides a crystalline form A of the compound of formula (I) having an X-ray powder diffraction pattern having characteristic diffraction peaks at the following 2 theta angles: 9.36 ⁇ 0.2 °, 16.56 ⁇ 0.2 °, 23.40 ⁇ 0.2 °.
  • the X-ray powder diffraction pattern of the above Form A has characteristic diffraction peaks at the following 2 theta angles: 4.75 ⁇ 0.2 °, 9.36 ⁇ 0.2 °, 15.83 ⁇ 0.2 °, 16.56 ⁇ 0.2 °, 21. 11 ⁇ 0.2 °, 21.67 ⁇ 0.2 °, 23.40 ⁇ 0.2 °, 28.13 ⁇ 0.2 °.
  • the XRPD pattern analysis data of the above A crystal form is shown in Table 1.
  • Table 1 XRPD pattern analysis data of Form A
  • the differential scanning calorimetry curve of the above A crystal form has an end point of an endothermic peak at 50.51 ⁇ 3° C., and an exothermic peak at 159.98 ⁇ 3° C. and 215.46 ⁇ 3° C. respectively. The starting point.
  • the DSC pattern of the above Form A is shown in Figure 2.
  • the present invention also provides a crystalline form B of the compound of formula (I) having an X-ray powder diffraction pattern having characteristic diffraction peaks at the following 2 theta angles: 14.01 ⁇ 0.2 °, 16.35 ⁇ 0.2 °, 24.20 ⁇ 0.2 °.
  • the X-ray powder diffraction pattern of the above B crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 14.01 ⁇ 0.2°, 15.52 ⁇ 0.2°, 16.35 ⁇ 0.2°, 18.11 ⁇ 0.2°, 20.73 ⁇ 0.2 °, 21.58 ⁇ 0.2 °, 24.20 ⁇ 0.2 °, 25.44 ⁇ 0.2 °.
  • the XRPD pattern of the above B crystal form is shown in FIG.
  • the XRPD pattern analysis data of the above B crystal form is as shown in Table 2:
  • the differential scanning calorimetry curve of the above B crystal form has an end point of an endothermic peak at 105.08 ⁇ 3 ° C, and an exothermic peak at 172.77 ⁇ 3° C. and 213.91 ⁇ 3° C. respectively. The starting point.
  • the DSC pattern of the above B crystal form is shown in FIG.
  • thermogravimetric analysis curve of the above B crystal form has a weight loss of 0.1098% at 146.24 ⁇ 3° C. and a weight loss of 1.5018% at 182.16 ⁇ 3° C.
  • the TGA pattern of the above B crystal form is shown in FIG.
  • the present invention also provides a crystalline form C of the compound of formula (I) having an X-ray powder diffraction pattern having characteristic diffraction peaks at the following 2 theta angles: 6.53 ⁇ 0.2 °, 11.35 ⁇ 0.2 °, 22.41 ⁇ 0.2 °.
  • the X-ray powder diffraction pattern of the above C crystal form has characteristic diffraction peaks at the following 2 theta angles: 6.53 ⁇ 0.2 °, 11.35 ⁇ 0.2 °, 14.92 ⁇ 0.2 °, 17.14 ⁇ 0.2 °, 19.94 ⁇ 0.2 °, 22.41 ⁇ 0.2 °, 23.46 ⁇ 0.2 °, 26.22 ⁇ 0.2 °, 28.34 ⁇ 0.2 °.
  • the XRPD pattern of the above C crystal form is shown in FIG.
  • the XRPD pattern analysis data of the above C crystal form is as shown in Table 3:
  • the differential scanning calorimetry curve of the above C crystal form has an end point of an endothermic peak at 80.51 ⁇ 3° C. and 96.24 ⁇ 3° C., respectively, at 162.66 ⁇ 3° C. and 216.45 ⁇ 3° C. There is a starting point for each exothermic peak.
  • the DSC pattern of the above C crystal form is shown in FIG.
  • the compound of the formula (I) of the invention has remarkable activity, good solubility and permeability, good pharmacokinetics and efficacy, and its crystal form is stable and has little influence by photothermal humidity.
  • intermediate compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, combinations thereof with other chemical synthesis methods, and those skilled in the art.
  • Well-known equivalents, preferred embodiments include, but are not limited to, embodiments of the invention.
  • the solvent used in the present invention is commercially available.
  • the present invention employs the following abbreviations: DCM stands for dichloromethane; DMF stands for N,N-dimethylformamide; DMSO stands for dimethyl sulfoxide; EtOH stands for ethanol; MeOH stands for methanol; TFA stands for trifluoroacetic acid; TsOH stands for P-toluenesulfonic acid; mp represents melting point; EtSO 3 H represents ethanesulfonic acid; MeSO 3 H stands for methanesulfonic acid; ATP stands for adenosine triphosphate; HEPES stands for 4-hydroxyethylpiperazineethanesulfonic acid; EGTA stands for ethylene glycol double (2 -Aminoethyl ether)tetraacetic acid; MgCl 2 represents magnesium dichloride; MnCl 2 represents manganese dichloride; DTT represents dithiothreitol; t-BuOH represents
  • XRPD X-ray powder diffractometer
  • Test method Approximately 10-20 mg samples were used for XRPD detection.
  • DSC Differential Scanning Calorimeter
  • Test method Take the sample ( ⁇ 1mg) and put it into the DSC aluminum pot for testing. Heat the sample from 30 °C (room temperature) to 300 °C (or 350) at a heating rate of 10 °C/min under 50 mL/min N 2 . °C).
  • TGA Thermal Gravimetric Analyzer
  • Test method The sample (2-5 mg) was placed in a TGA platinum pot for testing, and the sample was heated from room temperature to 350 ° C or 20% weight loss at a heating rate of 10 ° C / min under 25 mL / min N 2 .
  • Test conditions Samples (10-15 mg) were placed in a DVS sample pan for testing.
  • ⁇ W% indicates the wet weight gain of the test article at 25 ⁇ 1°C and 80 ⁇ 2%RH.
  • Figure 1 is an XRPD spectrum of Form A.
  • Figure 2 is a DSC spectrum of Form A.
  • Figure 3 is an XRPD spectrum of Form B.
  • Figure 4 is a DSC spectrum of Form B.
  • Figure 5 is a TGA spectrum of Form B.
  • Figure 6 is an XRPD spectrum of Form C.
  • Figure 7 is a DSC spectrum of the C crystal form.
  • Figure 8 is a DVS spectrum of Form B.
  • the crystal form of Compound B of formula (I) had a wetting gain of 0.1238% (less than 0.2%) at 25 ⁇ 1 ° C and 80 ⁇ 2% RH with little or no hygroscopicity.
  • sample B two 5mg for correlation analysis, one 10mg for crystal stability test
  • Samples placed under high temperature and high humidity conditions are sealed with aluminum foil paper, and small holes are placed on the aluminum foil paper to ensure that the sample can be in full contact with ambient air.
  • Samples are taken on the 10th day; sample openings placed under strong light conditions
  • the sample is exposed to a light source, and after sufficient energy is irradiated, the sample is detected.
  • the light control (open, the entire sample vial covered with aluminum foil) is placed with the intense light sample to eliminate the effects of environmental factors on the sample.
  • the test results are compared with the initial test results of 0 days, and the analysis methods are shown in Table 5:
  • the NFK green TM fluorescent molecule was used to detect the change in the NFK production of the IDO1 enzyme metabolite, and the inhibitory effect of the compound on the recombinant human IDO1 enzyme was evaluated based on the IC50 value of the compound.
  • the compound was diluted to 1 mM with dimethyl sulfoxide (DMSO), diluted 3 fold, 10 gradients, double duplicate wells.
  • DMSO dimethyl sulfoxide
  • 48 ⁇ L of 50 mM phosphate buffer pH 6.5 was transferred to the compound plate via a Bravo automated liquid handling platform.
  • 2 ⁇ L of the diluted compound DMSO solution was added, and after mixing, 10 ⁇ L was transferred to the enzyme reaction plate.
  • reaction buffer 50 mM phosphate buffer pH 6.5, 0.1% Tween-20, 2% glycerol, 20 mM ascorbic acid, 20 ⁇ g/ml catalase and 20 ⁇ M methylene blue
  • reaction buffer 50 mM phosphate buffer pH 6.5, 0.1% Tween-20, 2% glycerol, 20 mM ascorbic acid, 20 ⁇ g/ml catalase and 20 ⁇ M methylene blue
  • the reaction was started by adding 10 ⁇ L of 400 ⁇ M L-type tryptophan substrate and incubated at 23 ° C for 90 minutes.
  • 10 ⁇ L of NFK green TM fluorescent dye was added, sealed with a sealing plate, and placed at 37 ° C for 4 hours, and then read on an Envision multi-function plate reader (Ex 400 nm / Em 510 nm).
  • the reference well to which the IDO1 enzyme was added but no compound was added was determined to have a 0% inhibition rate, and the reference well to which the IDO1 enzyme was not added was determined to be 100% inhibition rate, and the IC50 value of the compound was calculated by analyzing the data with XLFit 5.
  • the change of kynurenine in Hela cells was detected by LCMS method, and the inhibitory effect of the compound on IDO1 enzyme was evaluated by the IC50 value of the compound.
  • Precipitant 4 ⁇ M L-kynurenine-d4 dissolved in 100% acetonitrile, CacheSyn#CSTK008002
  • Pre-heated medium trypsin, DPBS in a 37 ° C water bath. Aspirate the culture medium and wash it with 10 mL of DPBS; add pre-warmed trypsin to the flask, rotate the flask to cover the flask evenly, and place it in a 37 ° C, 5% CO 2 incubator for digestion 1 - 2 minutes; each T150 was suspended with 10-15 mL of medium, centrifuged at 800 rpm for 5 minutes, resuspended in 10 mL of medium, pipet 1 mL of cell suspension, counted with Vi-cell; diluted Hela cells with medium 5 ⁇ 10 5 /mL, 80 ⁇ L was added to a 96-cell plate, and cultured at 37 ° C for 5-6 hours in a 5% CO 2 incubator.
  • the compound was diluted to 1 mM with DMSO, diluted 3 fold, 9 gradients, double duplicate wells. 5 ⁇ L of the diluted compound DMSO solution was added to a compound plate containing 95 ⁇ L of the medium. After mixing, transfer 10 ⁇ L to the cell plate.
  • a 50% acetonitrile solution and a 50% buffer solution (A, B) were mixed to obtain a diluted solution.
  • a 10 mM (20 ⁇ L/compound) stock solution was added to acetonitrile (480 ⁇ L/compound) and mixed with buffer (A, B) (500 ⁇ L/compound) to a 200 ⁇ M UV detection standard.
  • the 200 ⁇ M ultraviolet detection standard solution was diluted with a 10-fold or 200-fold dilution to obtain a 20 ⁇ M, 1 ⁇ M UV standard solution; 1 ⁇ M, 20 ⁇ M, and 200 ⁇ M UV standard solutions were used as standard samples for the thermodynamic solubility test.
  • the Whatman miniuniprep filter cap is mounted and pressed above the liquid level so that the filter is in contact with the buffer solution (A, B) during shaking.
  • the solubility sample was vortexed for 1 minute. And record the phenomenon of the solution.
  • the buffer (A, B) was diluted 50 times to obtain a sample dilution.
  • test substance is dissolved in dimethyl sulfoxide (DMSO) or other suitable solvent to prepare a 10 mM stock solution.
  • DMSO dimethyl sulfoxide
  • IS internal standard
  • ACN acetonitrile
  • Fenoterol, propranolol and digoxin were used as hypotonic controls, hypertonic controls and P-gp substrates, respectively, in this study.
  • Stock solutions of these compounds were prepared in DMSO, stored at 2-8, and effectively used within 3 months. Preparation of drug solution and receiving solution
  • This project used Hank's balanced salt buffer containing 10 mM HEPES as a transport buffer.
  • the preparation method of the administration liquid and the reception liquid is shown in Table 10.
  • ND means “not detected”.
  • MDR1-MDCK II cells were cultured in ⁇ -MEM medium ( ⁇ -Minimum Essential Media) under the conditions of 37 ⁇ 1 ° C, 5% CO 2 and saturated relative humidity. The cells were then seeded in BD Transwell-96 well plates (BD Gentest) at a seeding density of 2.3 x 105 cells/cm 2 , and then the cells were cultured for 4-7 days in a carbon dioxide incubator for transport experiments.
  • BD Transwell-96 well plates BD Gentest
  • test article and digoxin were administered at a concentration of 2 ⁇ M in two-way (A-B and B-A directions), and two duplicate wells were used.
  • Fenoterol and propranolol were tested at a concentration of 2 ⁇ M and administered in one-way (A-B direction) with two replicate wells.
  • the solution to be used was pre-incubated for 30 minutes in a 37 ⁇ 1 ° C water bath.
  • the dosing solution and the receiving solution were separately added to the corresponding cell plate wells (75 and 250 ⁇ L, respectively, for each of the apical and basal end wells), and a two-way transport experiment was initiated. After loading, the cell plates were incubated for 150 minutes in an incubator at 37 ⁇ 1 ° C, 5% CO 2 and saturated relative humidity. Sample collection information is shown in Table 11.
  • test substance is dissolved in dimethyl sulfoxide (DMSO) or other suitable solvent to prepare a 10 mM stock solution.
  • DMSO dimethyl sulfoxide
  • IS internal standard
  • ACN acetonitrile
  • Fenoterol, propranolol and digoxin were used as hypotonic controls, hypertonic controls and P-glycoprotein substrates, respectively, in this study.
  • Stock solutions of these compounds were prepared in DMSO and stored at 2-8 ° C for 3 months.
  • This project used Hank's balanced salt buffer containing 10 mM HEPES as a transport buffer.
  • the preparation method of the administration liquid and the reception liquid is shown in Table 10.
  • HEPES 2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid, supplier: gibco, article number: 15630-080
  • Hank's balanced salt buffer Hank's balanced salt solution, referred to as HBSS, purchased from gibco, article number: 14025-076
  • ND means “not detected”.
  • Caco-2 cells were cultured in MEM medium (Minimum Essential Media) under the conditions of 37 ⁇ 1 ° C, 5% CO 2 and saturated relative humidity. The cells were then seeded in BD Transwell-96 well plates at a seeding density of 1 x 10 5 cells/cm 2 , and then the cells were cultured for 21-28 days in a carbon dioxide incubator for transport experiments.
  • MEM medium Minimum Essential Media
  • test article and digoxin were administered at a concentration of 2 ⁇ M in two-way (A-B and B-A directions), and two duplicate wells were used.
  • Fenoterol and propranolol were tested at a concentration of 2 ⁇ M and administered in one-way (A-B direction) with two replicate wells.
  • the solution to be used was pre-incubated for 30 minutes in a 37 ⁇ 1 ° C water bath.
  • the dosing solution and the receiving solution were separately added to the corresponding cell plate wells (75 and 250 ⁇ L, respectively, for each of the apical and basal end wells), and a two-way transport experiment was initiated. After loading, the cell plates were incubated for 120 minutes in an incubator at 37 ⁇ 1 ° C, 5% CO 2 and saturated relative humidity. Sample collection information is shown in Table 14.
  • the compound of formula (I) has good permeability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种吲哚胺-2,3-双加氧酶1(IDO1)抑制剂的晶型及其制备方法。

Description

IDO1抑制剂的晶型及其制备方法
相关申请的交叉引用
本申请主张2017年05月25日提交的中国专利申请CN201710380130.6的优先权,其内容在此并入本申请。
技术领域
本发明涉及一种吲哚胺-2,3-双加氧酶1(IDO1)抑制剂的晶型及其制备方法。
背景技术
吲哚胺-2,3-双加氧酶(Indoleamine-2,3-dioxygenase,IDO)是1967年Hayaishi小组首次在细胞内发现的一种含有亚铁血红素的单体酶,cDNA编码蛋白由403氨基酸组成,分子量为455kDa,它是延着色氨酸-犬尿氨酸途径分解代谢的限速酶,并且在多种哺乳动物的组织中具有广泛的表达(Hayaishi O.eta l Science,1969,164,389-396)。在肿瘤患者的细胞中,IDO常作为诱导肿瘤微环境免疫耐受产生重要的生理作用,其介导的色氨酸(Tryptophan,Trp)犬尿氨酸(Kynurenine,Kyn)代谢途径参与了肿瘤免疫逃逸,而IDO作为诱导肿瘤微环境免疫耐受也产生重要的作用。
色氨酸(Trp)是生物合成蛋白、烟酸和神经递质5-羟色胺(血清素)所需要的一种必要氨基酸。近来,Trp耗竭的免疫调节作用受到很多关注。IDO将色氨酸、5-羟色胺和褪黑素的吲哚部分降解,引发产生统称为犬尿氨酸的神经活性和免疫调节代谢物。通过局部消耗色氨酸和增加促凋亡的犬尿氨酸,树突细胞(DC)表达的IDO可极大影响T细胞增殖和存活。在DC中诱发IDO可能是调节性T细胞驱动的消耗耐受性的普通机制。因为,可预计此类耐受原性反应在多种生理病理病症中起作用,色氨酸代谢和犬尿氨酸产生可代表免疫和神经系统之间的关键介面。在持续免疫激活的状态中,可利用的游离血清Trp减少,并且由于5-羟色胺生成减少,5-羟色胺能功能可能也受影响。
正在开发治疗或预防IDO相关疾病的IDO抑制剂。面对巨大的未满足市场,该领域仍然需要活性更好的IDO抑制剂,以满足治疗需求。
发明内容
本发明提供了式(Ⅰ)化合物的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.36±0.2°,16.56±0.2°,23.40±0.2°。
Figure PCTCN2018088392-appb-000001
本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.75±0.2°,9.36±0.2°,15.83±0.2°,16.56±0.2°,21.11±0.2°,21.67±0.2°,23.40±0.2°,28.13±0.2°。
本发明的一些方案中,上述A晶型的XRPD图谱如图1所示。
本发明的一些方案中,上述A晶型的XRPD图谱解析数据如表1所示。
表1:A晶型的XRPD图谱解析数据
Figure PCTCN2018088392-appb-000002
本发明的一些方案中,上述A晶型的差示扫描量热曲线在50.51±3℃处有一个吸热峰的起始点,在159.98±3℃和215.46±3℃处分别有一个放热峰的起始点。
本发明的一些方案中,上述A晶型的DSC图谱如图2所示。
本发明还提供了式(Ⅰ)化合物的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:14.01±0.2°,16.35±0.2°,24.20±0.2°。
本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:14.01±0.2°,15.52±0.2°,16.35±0.2°,18.11±0.2°,20.73±0.2°,21.58±0.2°,24.20±0.2°,25.44±0.2°。
本发明的一些方案中,上述B晶型的XRPD图谱如图3所示。
本发明的一些方案中,上述B晶型的XRPD图谱解析数据如表2所示:
表2:B晶型的XRPD图谱解析数据
Figure PCTCN2018088392-appb-000003
Figure PCTCN2018088392-appb-000004
本发明的一些方案中,上述B晶型的差示扫描量热曲线在105.08±3℃处有一个吸热峰的起始点,在172.07±3℃和213.91±3℃处分别有一个放热峰的起始点。
本发明的一些方案中,上述B晶型的DSC图谱如图4所示。
本发明的一些方案中,上述B晶型的热重分析曲线在146.24±3℃处失重达0.1098%,在182.16±3℃处失重达1.5018%。
本发明的一些方案中,上述B晶型的TGA图谱如图5所示。
本发明还提供了式(Ⅰ)化合物的C晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.53±0.2°,11.35±0.2°,22.41±0.2°。
本发明的一些方案中,上述C晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.53±0.2°,11.35±0.2°,14.92±0.2°,17.14±0.2°,19.94±0.2°,22.41±0.2°,23.46±0.2°,26.22±0.2°,28.34±0.2°。
本发明的一些方案中,上述C晶型的XRPD图谱如图6所示。
本发明的一些方案中,上述C晶型的XRPD图谱解析数据如表3所示:
表3:C晶型的XRPD图谱解析数据
Figure PCTCN2018088392-appb-000005
Figure PCTCN2018088392-appb-000006
本发明的一些方案中,上述C晶型的差示扫描量热曲线在80.51±3℃和96.24±3℃处分别有一个吸热峰的起始点,在162.96±3℃和216.45±3℃处分别有一个放热峰的起始点。
本发明的一些方案中,上述C晶型的DSC图谱如图7所示。
技术效果
本发明的式(Ⅰ)化合物活性显著、溶解度以及渗透性良好,药代动力学及效药良好;其晶型稳定、受光热湿度影响小。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在含有下列含义。一个特定的短语或术语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文出现商品名时,旨在指代其对应的商品或其活性成分。
本发明的中间体化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明具体实施方式的化学反应是在合适的溶剂中完成的,所述的溶剂须适合于本发明的化学变化及其所需的试剂和物料。为了获得本发明的化合物,有时需要本领域技术人员在已有实施方式的基础上对合成步骤或者反应流程进行修改或选择。
下面会通过实施例具体描述本发明,这些实施例并不意味着对本发明的任何限制。
本发明所使用的所有溶剂是市售的,无需进一步纯化即可使用。
本发明所使用的溶剂可经市售获得。本发明采用下述缩略词:DCM代表二氯甲烷;DMF代表N,N-二甲基甲酰胺;DMSO代表二甲亚砜;EtOH代表乙醇;MeOH代表甲醇;TFA代表三氟乙酸;TsOH代表对甲苯磺酸;mp代表熔点;EtSO 3H代表乙磺酸;MeSO 3H代表甲磺酸;ATP代表三磷酸腺苷;HEPES代表4-羟乙基哌嗪乙磺酸;EGTA代表乙二醇双(2-氨基乙基醚)四乙酸;MgCl 2代表二氯化镁;MnCl 2代表二氯化锰;DTT代表二硫苏糖醇;t-BuOH代表叔丁醇。
化合物经手工或者
Figure PCTCN2018088392-appb-000007
软件命名,市售化合物采用供应商目录名称。
本发明粉末X-射线衍射(X-ray powder diffractometer,XRPD)
仪器型号:布鲁克D8advance X-射线衍射仪
测试方法:大约10~20mg样品用于XRPD检测。
详细的XRPD参数如下:
光管:Cu,kα,
Figure PCTCN2018088392-appb-000008
光管电压:40kV,光管电流:40mA
发散狭缝:0.60mm
探测器狭缝:10.50mm
防散射狭缝:7.10mm
扫描范围:4-40deg
步径:0.02deg
步长:0.12秒
样品盘转速:15rpm
本发明差热分析(Differential Scanning Calorimeter,DSC)
仪器型号:TA Q2000差示扫描量热仪
测试方法:取样品(~1mg)置于DSC铝锅内进行测试,在50mL/min N 2条件下,以10℃/min的升温速率,加热样品从30℃(室温)到300℃(或350℃)。
本发明热重分析(Thermal Gravimetric Analyzer,TGA)
仪器型号:TA Q5000热重分析仪
测试方法:取样品(2~5mg)置于TGA铂金锅内进行测试,在25mL/min N 2条件下,以10℃/min的升温速率,加热样品从室温到350℃或失重20%。
本发明动态蒸汽吸附分析(Dynamic Vapor Sorption,DVS)方法
仪器型号:SMS DVS Advantage动态蒸汽吸附仪
测试条件:取样品(10~15mg)置于DVS样品盘内进行测试。
详细的DVS参数如下:
温度:25℃
平衡:dm/dt=0.01%/min(最短:10min,最长:180min)
干燥:0%RH下干燥120min
RH(%)测试梯级:10%
RH(%)测试梯级范围:0%-90%-0%
引湿性评价分类如表4所示:
表4:引湿性评价分类
引湿性分类 ΔW%
潮解 吸收足量水分形成液体
极具引湿性 ΔW%≥15%
有引湿性 15%>ΔW%≥2%
略有引湿性 2%>ΔW%≥0.2%
无或几乎无引湿性 ΔW%<0.2%
注:ΔW%表示受试品在25±1℃和80±2%RH下的引湿增重。
附图说明
图1为A晶型的XRPD谱图。
图2为A晶型的DSC谱图。
图3为B晶型的XRPD谱图。
图4为B晶型的DSC谱图。
图5为B晶型的TGA谱图。
图6为C晶型的XRPD谱图。
图7为C晶型的DSC谱图。
图8为B晶型的DVS谱图。
具体实施方式
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本文已经详细地描述了本发明,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
实施例1:式(Ⅰ)化合物的制备
Figure PCTCN2018088392-appb-000009
合成路线:
Figure PCTCN2018088392-appb-000010
步骤1:化合物1-11的合成
将化合物1-11-1(1.13g,8.00mmol,694.63μL,1.00eq)溶于10ml二氯甲烷,0℃下滴加t-BuOH(622.61mg,8.40mmol,798.22μL,1.05eq)的二氯甲烷溶液(10ml),该反应液于0℃下反应1小时。得到化合物1-11(1.73g,crude)的二氯甲烷溶液(20ml)。
Figure PCTCN2018088392-appb-000011
步骤2:化合物1-2的合成
将化合物1-1(20.00g,302.76mmol,19.05mL,1.00eq)溶于水(436.00mL)中,搅拌5分钟,此反应液冰浴冷却至0℃,加入亚硝酸钠(22.98g,333.04mmol,18.09mL,1.10eq),然后加入盐酸(6M,3.53mL,0.07eq),15分钟后撤走冰浴,该反应液于25℃搅拌1.5小时后,一次性加入50%羟胺水溶液(60.00g,908.28mmol,3.00eq),25℃下继续搅拌1小时后,慢慢加热至回流,回流反应2小时,慢慢冷却至25℃,继续反应16小时。0℃下用6N盐酸(70mL慢慢滴加约30分钟)调pH=7.0,0℃下继续搅拌1小时,将析出的固体抽滤,水洗,收集抽滤得到的浅黄色固体。将得到的固体晾干,无需纯化。最终得到浅黄色固体产物,即化合物1-2(38.08g,收率:87.89%,纯度:100%)。MS(ESI)m/z:144[M+H] +
步骤3:化合物1-3的合成
将化合物1-2(38.08g,266.11mmol,1.00eq)溶于水(532.00mL)和醋酸(270.00mL)以及盐酸(6M,133.06mL,3.00eq)的混合液中,加热至45℃搅拌直至溶液完全澄清(约0.5小时),加入氯化钠(46.65g,798.33mmol,3.00eq),反应混和液冷却至0℃,亚硝酸钠(17.99g,260.79mmol,14.17mL, 0.98eq)(溶于63mL水中)慢慢滴加至反应液中(超过0.5小时),期间保持温度在0℃,加完后于0℃下继续搅拌2小时。LCMS监测显示原料反应完全,将析出来的固体抽滤,水洗(6*60mL),抽滤所得的固体溶于乙酸乙酯(400mL),无水硫酸钠干燥,过滤,滤液于减压蒸馏下旋干,无需纯化。最终得到浅黄色固体产物,即化合物1-3(18.83g,收率:40.63%,纯度:93.33%)。MS(ESI)m/z:163[M+H] +
步骤4:化合物1-5的合成
将化合物1-3(2.00g,12.30mmol,1.00eq)溶于乙醇(25.00mL),加入化合物1-4(4.67g,24.60mmol,2.00eq),此反应混和液于85℃下反应16小时,加热后反应液逐渐变为褐色。LCMS监测显示原料反应完全,有所需的化合物生成,将反应液于减压蒸馏下旋干,粗品使用快速硅胶柱层析法进行分离纯化(石油醚:乙酸乙酯=2:1)。得到浅灰色固体产物,即化合物1-5(3.60g,收率:88.39%,纯度:95.46%)MS(ESI)m/z:316,318[M+H] +
步骤5:化合物1-6的合成
将化合物1-5(3.60g,11.39mmol,1.00eq)溶于四氢呋喃(30.00mL),加入羰基二咪唑(2.03g,12.53mmol,1.10eq),此反应混和液于65℃下反应1小时。LCMS监测显示原料反应完全。加入20mL水,乙酸乙酯萃取(25mL*3),合并有机相,1M盐酸洗(20mL*2),盐水洗,无水硫酸钠干燥,过滤,于减压蒸馏下旋干,没有进一步纯化。得到土灰色固体产物,即化合物1-6(3.55g,收率:91.11%,纯度:100%)MS(ESI)m/z:342,344[M+H] +
步骤6:化合物1-7的合成
在0℃下将硫酸(35.00mL)缓慢加入到双氧水(41.30g,364.30mmol,35.00mL,30%纯度,41.97eq),然后加入钨酸钠(2.55g,8.68mmol,1.00eq),再加入化合物1-6(2.97g,8.68mmol,1.00eq),再升温至25℃下搅拌16小时。LCMS监测显示约有一半的原料剩余。加入250mL水稀释,抽滤,所得白色固体用水冲洗(25mL*3),将此固体用乙酸乙酯(200mL)溶解,无水硫酸钠干燥,过滤,滤液于减压蒸馏下旋干。使用快速硅胶柱层析法进行纯化(石油醚:乙酸乙酯=10:1),得到浅黄色固体产物化合物1-7(1.29g,收率:39.20%,纯度:98.14%)MS(ESI)m/z:372,374[M+H] +
步骤7:化合物1-9的合成
将化合物1-7(2.50g,6.72mmol,1.00eq)溶于THF(20.00mL)和H 2O(1.00mL),加入NaHCO 3(846.74mg,10.08mmol,392.01uL,1.50eq),化合物1-8(1.31g,7.39mmol,1.1eq),该混和液于14℃下反应16hr。LCMS监测显示原料反应完全,有一个主要的新产物峰生成。向反应加入20ml水,乙酸乙酯萃取(30ml*3),合并有机相,无水硫酸钠干燥,过滤,滤液于减压蒸馏下旋干。使用快速硅胶柱层析法进行纯化(石油醚:乙酸乙酯=4:1)。反应成功,得到白色固体,即化合物1-9(3.29g,6.55mmol,97.47%产率)。
步骤8:化合物1-10的合成
将化合物1-9(4.09g,8.14mmol,1.00eq)溶于DCM(30.00mL),加入HCl/二氧六环(4M,30.00mL,14.74eq),该反应液于14℃下反应1小时。LCMS监测显示反应完全,有目标化合物生成。反应液直接于减压蒸馏下旋干得粗品。反应成功,得到白色固体,即化合物1-10(3.57g,粗品,HCl)。
步骤9:化合物1-12的合成
将化合物1-10(1.44g,3.28mmol,1.00eq,HCl)溶于DCM(10ml),加入DIEA(1.70g,13.12mmol,2.29mL,4.00eq),再加入化合物11(778.71mg,3.61mmol,1.10eq)的DCM溶液(10ml),该反应液于14℃下反应16小时。LCMS监测显示原料反应完全,有目标化合物生成。反应液直接于减压蒸馏下旋干。反应成功,得到黄色液体,即化合物1-12(1.91g,粗品)。
步骤10:化合物1-13的合成
将化合物1-12(1.91g,3.29mmol,1.00eq)溶于DCM(10.00mL),加入HCl/二氧六环(4M,18.00mL,21.88eq),该反应液于14℃反应2小时。LCMS监测显示有2.4%的原料剩余。反应液直接于减压蒸馏下旋干得粗品。反应成功,得到黄色液体,即化合物1-13(1.58g,粗品)
步骤11:化合物1的合成
将化合物1-13(1.58g,3.28mmol,1.00eq)溶于THF(15.00mL)和H 2O(8.00mL),加入NaOH(1.05g,26.24mmol,8.00eq),该反应液于14℃下反应16h。LCMS监测显示原料反应完全,有目标化合物生成。向反应液中加入15ml水,乙酸乙酯萃取(20ml*3),合并有机相,无水硫酸钠干燥,过滤,滤液于减压蒸馏下旋干。使用快速硅胶柱层析法进行纯化(石油醚:乙酸乙酯=1:1)。与另一批470mg合并送LCMS分析、1H NMR。反应成功,得到白色固体,即化合物1(1.24g,2.63mmol,61.71%产率,96.61%纯度)。MS(ESI)m/z:456.9[M+H]+. 1H NMR(400MHz,METHANOL-d4)δ7.11(dd,J=5.9,2.6Hz,1H)7.05(t,J=8.7Hz,1H)6.69-6.86(m,1H)3.40-3.46(m,2H)3.38(br d,J=6.0Hz,2H)。
实施例2:式(Ⅰ)化合物A晶型的制备
称取约30mg的式(Ⅰ)化合物,加入0.3mL二氧六环,样品其完全溶解。将样品离心,取上清液于玻璃小瓶中,用铝箔纸盖住瓶口,并扎些小孔,室温条件下置于通风橱中挥发。溶剂挥发干后将样品置于25~35℃真空干燥箱中进行干燥,直至样品变为干燥固体。XRPD检测其晶型状态,得到终产物晶型为A晶型。
实施例3:式(Ⅰ)化合物B晶型的制备
取50mg的式(Ⅰ)化合物,加入0.5mL纯水。40℃条件下搅拌两天,离心后将残留固体样品置于真空干燥箱中(25℃)干燥过夜。XRPD检测其晶型状态,得到终产物晶型为B晶型。
实施例4:式(Ⅰ)化合物C晶型的制备
称取约30mg的式(Ⅰ)化合物,加入0.3mL丙酮,样品其完全溶解。将样品离心,取上清液于玻璃小瓶中,用铝箔纸盖住瓶口,并扎些小孔,室温条件下置于通风橱中挥发。溶剂挥发干后将样品置于25℃真空干燥箱中进行干燥两天。XRPD检测其晶型状态,得到终产物晶型为C晶型。
实施例5:式(Ⅰ)化合物B晶型的引湿性试验
实验材料:
SMS DVS Advantage动态蒸汽吸附仪
实验方法:
取式(Ⅰ)化合物B晶型10~15mg置于DVS样品盘内进行测试。
实验结果:
式(Ⅰ)化合物B晶型的DVS谱图如图8所示,△W=0.1238%。
实验结论:
式(Ⅰ)化合物B晶型在25±1℃和80±2%RH下的引湿增重为0.1238%(小于0.2%),无或几乎无引湿性。
实施例6:式(Ⅰ)化合物B晶型的固体稳定性试验
考察式(Ⅰ)化合物B晶型在高温(60℃,敞口),高湿(室温/相对湿度92.5%,敞口)及强光照(1ICH,总照度=1.2×10 6Lux·hr/近紫外=200w·hr/m 2,敞口)条件下的稳定性。
称取B晶型样品适量(两份5mg用于相关物质分析,一份10mg用于晶型稳定性检测),置于玻璃样品瓶的底部,摊成薄薄一层。高温及高湿条件下放置的样品用铝箔纸封瓶口,并在铝箔纸上扎些小孔,保证样品能与环境空气充分接触,第10天取样检测;强光照条件下放置的样品敞口,将样品暴露在光源下,照射足够的能量后取样检测。光照对照品(敞口,整个样品瓶用铝箔纸覆盖避光)与强光照样品一同放置,排除环境因素对样品的影响。检测结果与0天的初始检测结果进行比较,分析方法如表5所示:
表5:HPLC分析方法
Figure PCTCN2018088392-appb-000012
Figure PCTCN2018088392-appb-000013
其试验结果见下表6、表7所示:
表6:式(Ⅰ)化合物B晶型的固体稳定性试验
Figure PCTCN2018088392-appb-000014
表7:式(Ⅰ)化合物B晶型的固体稳定性试验HPLC分析结果
Figure PCTCN2018088392-appb-000015
结论:式(Ⅰ)化合物B晶型在高温、高湿及强光照下具有良好的稳定性。
式(Ⅰ)化合物的生物活性测试
实验例1:hIDO1体外活性测试
hIDO1体外酶活性测试
实验目的:
通过NFK green TM荧光分子检测IDO1酶代谢产物NFK生成的变化,以化合物的IC50值为指标, 来评价化合物对重组人源IDO1酶的抑制作用。
实验材料:
NFK green TM试剂,Netherlands Translational research center
IDO1酶活力检测试剂盒,NTRC#NTRC-hIDO-10K
384孔酶反应板,PerkinElmer#6007279
384孔化合物板,Greiner#781280
封板膜,PerkinElmer#6050185
Envision多功能读板仪,PerkinElmer
Bravo自动液体处理平台,Agilent
实验步骤和方法:
1.化合物加样:
用二甲基亚砜(DMSO)将化合物稀释成1mM,3倍稀释,10个梯度,双复孔。通过Bravo自动液体处理平台转移48μL 50mM磷酸盐缓冲液pH6.5加到化合物板中。然后再加入2μL稀释好的化合物DMSO溶液,混匀后转移10μL到酶反应板中。
2.IDO1酶活性检测实验:
于反应缓冲液(50mM磷酸盐缓冲液pH6.5,0.1%Tween-20,2%甘油,20mM抗坏血酸,20μg/ml过氧化氢酶和20μM亚甲蓝)中稀释IDO1酶至20nM,转移20μL到酶反应板中,23℃孵育30分钟。加入10μL 400μM L型色氨酸底物开始反应,23℃孵育90分钟。加入10μL NFK green TM荧光染料,用封板膜封好,放置于37℃孵育4小时后,在Envision多功能读板仪上读数(Ex 400nm/Em 510nm)。
3.分析数据:
将加入IDO1酶但未加化合物的参照孔定为0%抑制率,未加IDO1酶的参照孔定为100%抑制率,用XLFit 5分析数据,计算化合物的IC50值。
hIDO1细胞学活性测试
实验目的:
通过LCMS方法检测Hela细胞犬尿氨酸的变化,以化合物的IC50值为指标,来评价化合物对IDO1酶的抑制作用。
实验材料:
细胞系:Hela细胞
培养基:RPMI 1640phenol red free,Invitrogen#11835030
10%胎牛血清,Gibco#10099141
1X青链霉素,Gibco#15140-122
沉淀剂:4μM L-犬尿氨酸-d4溶于100%乙腈,CacheSyn#CSTK008002
胰酶,Invitrogen#25200-072
DPBS,Hyclone#SH30028.01B
重组人源γ型干扰素,Invitrogen#PHC4033
5%(w/v)三氯乙酸,Alfa Aesar#A11156
96孔细胞板,Corning#3357
96孔化合物板,Greiner#781280
96孔V底板,Axygen#WIPP02280
CO 2培养箱,Thermo#371
离心机,Eppendorf#5810R
Vi-cell细胞计数仪,Beckman Coulter
实验步骤和方法:
1.Hela细胞接种:
37℃水浴预热培养基、胰酶、DPBS。吸掉细胞培养的培养基,用10mL DPBS清洗;加入预热过的胰酶到培养瓶中,旋转培养瓶使胰酶均匀覆盖培养瓶,放到37℃、5%CO 2培养箱中消化1-2分钟;每个T150用10-15mL培养基垂悬细胞,800rpm离心5分钟,用10mL培养基重悬细胞,吸取1mL细胞重悬液,用Vi-cell计数;用培养基稀释Hela细胞到5×10 5/mL,取80μL加入到96细胞板中,5%CO 2培养箱37℃培养5-6小时。
2.化合物加样:
用DMSO将化合物稀释成1mM,3倍稀释,9个梯度,双复孔。取5μL稀释好的化合物DMSO溶液加到含有95μL培养基的化合物板中。混匀后转移10μL到细胞板中。
3.细胞学活性测试:
加入10μL重组人源γ型干扰素至终浓度100ng/ml,诱导IDO1的表达。放置于5%CO 2培养箱37℃培养20小时。加入4μL 5%(w/v)三氯乙酸,混匀后于50℃孵育30分钟。2400rpm离心10分钟,取40μL上清到96孔V底板中,加入沉淀剂。混匀后4000rpm离心10分钟。转移100μL上清到新的96孔V底板中。LCMS检测犬尿氨酸的含量。
4.分析数据:
将加入γ型干扰素但未加化合物的参照孔定为0%抑制率,未加Hela细胞的参照孔定为100%抑制率,用XLFit 5分析数据,计算化合物的IC50值。其测试结果如表8所示:
表8:本发明化合物体外筛选试验结果
化合物 酶IC50(nM) Hela细胞IC50(nM)
式(Ⅰ)化合物 26.19 5.85
结论:式(Ⅰ)化合物的体外活性良好。
实验例2:测定热力学溶解度
热力学溶解度溶液
缓冲液A(pH 2.0)
50mM磷酸盐缓冲液,pH值2.0。
缓冲液B(pH 7.4)
50mM磷酸盐缓冲液,pH值7.4
标准溶液的制备
将50%的乙腈溶液和50%的缓冲溶液(A,B)混合,得到的稀释液。
10mM(20μL/化合物)储备液加入至乙腈(480μL/化合物)中,与缓冲液(A,B)(500μL/化合物)混合为200μM的的紫外检测标准液。
以10倍或200倍量的稀释液稀释200μM的紫外检测标准液,以获取20μM,1μM的紫外标准溶液;1μM,20μM和200μM的的紫外标准溶液作为热力学溶解性试验的标准样品。
方法
样品制备,震摇和过滤
称量不少于2毫克的样品粉末于Whatman miniuniprep的小瓶中。如果要求测试在多个缓冲溶液(A,B)中测试样品热力学溶解度,则每个测试都需要一个单独的小瓶。
分别添加450μL缓冲液(A,B)到每个Whatman miniuniprep小瓶中。
加入缓冲液后,将Whatman miniuniprep带过滤的活塞盖装上并压至液面上方,使在震摇过程中过滤网与缓冲溶液(A,B)接触。
涡旋摇动溶解度样品1分钟。并记录溶液现象。
以600转每分钟的速度室温(约22~25℃)震摇24小时。
按压Whatman Miniunipreps过滤瓶盖至底部,获得样品溶解度溶液的滤液。所有样品小瓶都应进行过滤前后不溶物质及其渗漏现象。
缓冲液(A,B)稀释50倍得到样品稀释液。
分析检测
从低浓度到高浓度注入3个紫外标准液至HPLC中,然后注入待测化合物的稀释液和上清。待测样品一式两份。
对紫外色谱峰进行积分。模拟标准曲线并计算样品的热力学学溶解度。
HPLC条件
试验方法:HPLC-UV检测
仪器:Agilent 1200
流动相:
A:水+0.69%TFA
B:乙腈+0.62%TFA
色谱柱:Agilent TC C18(2.1×50mm,4.6μm)
比例:
Figure PCTCN2018088392-appb-000016
表9:本发明化合物的溶解度
Figure PCTCN2018088392-appb-000017
结论:式(Ⅰ)化合物的水溶解度较好。
实验例3:渗透性测试
渗透性MDR1测试
实验步骤
储备液的配制
将供试品溶解于二甲基亚砜(DMSO)或其他适宜的溶剂,配制成10mM储备液。
合适的内标(internal standard,IS),可为甲苯磺丁脲,溶解于乙腈(acetonitrile,ACN)或其它有机溶剂作为终止液;
非诺特罗(fenoterol),普萘洛尔(propranolol)和地高辛(digoxin)在本研究中分别作为低渗对照品,高渗对照品和P-gp底物。这些化合物的储备液用DMSO配制,储存于2-8存于,3个月内使用有效。给药液和接收液的配制
本项目采用含10mM HEPES的Hank’s平衡盐缓冲液作为转运缓冲液。给药液以及接收液的配制方法 如表10所示。
表10:给药液以及接收液的配制方法
Figure PCTCN2018088392-appb-000018
备注:ND表示“未检测”。
细胞培养
MDR1-MDCK II细胞用α-MEM培养基(α-Minimum Essential Media)培养,培养条件为37±1℃,5%CO 2和饱和相对湿度。之后将细胞接种于BD Transwell-96孔板(BD Gentest)里,接种密度为2.3×105个细胞/cm 2,然后将细胞置于二氧化碳培养箱中培养4-7天后用于转运实验。
转运实验
供试品和digoxin给药浓度为2μM,双向(A-B和B-A方向)给药,均做二个复孔。fenoterol和propranolol测试浓度均为2μM,单向(A-B方向)给药,均做二个复孔。
将待使用的溶液置37±1℃水浴锅预孵育30分钟。将给药液和接收液分别加入到对应的细胞板孔位(每个顶端和基底端孔分别加样75和250μL),启动双向转运实验。加样后,将细胞板置于37±1℃,5%CO 2和饱和相对湿度的培养箱中孵育150分钟。样品收集信息如表11所示。
表11:样品收集信息
Figure PCTCN2018088392-appb-000019
所有的样品漩涡震荡后于3220g离心10分钟,转移适量体积的上清液到样品分析板,封板后样品若不立即分析则储存于2-8℃,采用LC/MS/MS的方法进行分析。
细胞膜完整性测试
转运实验结束后,采用荧光黄检测实验(Lucifer Yellow Rejection Assay)测试MDR1-MDCK II细胞的 完整性。荧光黄溶液孵育30分钟后,收取荧光黄样品,2 e读板仪在425/528nm(激发/发射)波谱处检测样品中荧光黄的相对荧光强度(RFU)。
样品分析
采用半定量分析供试品、对照品fenoterol、propranolol以及digoxin,用被分析物与内标的峰面积比值作为对照品的浓度。
表12:本发明化合物的渗透性MDR1:
化合物 A to B(10 -6cm/s) B to A(10 -6cm/s)
fenoterol 0.39 ND
propranolol 24.23 ND
digoxin 0.09 5.92
式(Ⅰ)化合物 3.2 11.3
“ND”表示没有检测到。
渗透性Caco2测试
实验步骤
储备液的配制
将供试品溶解于二甲基亚砜(DMSO)或其他适宜的溶剂,配制成10mM储备液。
合适的内标(internal standard,IS),可为甲苯磺丁脲,溶解于乙腈(acetonitrile,ACN)或其它有机溶剂作为终止液;
非诺特罗(fenoterol),普萘洛尔(propranolol)和地高辛(digoxin)在本研究中分别作为低渗对照品,高渗对照品和P-gp(P-glycoprotein)底物。这些化合物的储备液用DMSO配制,储存于2-8℃,3个月内使用有效。
给药液和接收液的配制
本项目采用含10mM HEPES的Hank’s平衡盐缓冲液作为转运缓冲液。给药液以及接收液的配制方法如表10所示。
HEPES:2-[4-(2-羟乙基)-1-哌嗪基]乙磺酸,供应商:gibco,货号:15630-080
Hank’s平衡盐缓冲液:Hank’s balanced salt solution,简称HBSS,购买于gibco,货号:14025-076
表13:给药液以及接收液的配制方法
Figure PCTCN2018088392-appb-000020
Figure PCTCN2018088392-appb-000021
备注:ND表示“未检测”。
细胞培养
Caco-2细胞用MEM培养基(Minimum Essential Media)培养,培养条件为37±1℃,5%CO 2和饱和相对湿度。之后将细胞接种于BD Transwell-96孔板里,接种密度为1×10 5个细胞/cm 2,然后将细胞置于二氧化碳培养箱中培养21-28天后用于转运实验。
转运实验
供试品和digoxin给药浓度为2μM,双向(A-B和B-A方向)给药,均做二个复孔。Fenoterol和propranolol测试浓度均为2μM,单向(A-B方向)给药,均做二个复孔。
将待使用的溶液置37±1℃水浴锅预孵育30分钟。将给药液和接收液分别加入到对应的细胞板孔位(每个顶端和基底端孔分别加样75和250μL),启动双向转运实验。加样后,将细胞板置于37±1℃,5%CO 2和饱和相对湿度的培养箱中孵育120分钟。样品收集信息如表14所示。
表14:样品收集信息
Figure PCTCN2018088392-appb-000022
所有的样品漩涡震荡后于3220g离心10分钟,转移适量体积的上清液到样品分析板,封板后样品若不立即分析则储存于2-8℃,采用LC/MS/MS的方法进行分析。
细胞膜完整性测试
转运实验结束后,采用荧光黄检测实验(Lucifer Yellow Rejection Assay)测试Caco-2细胞的完整性。荧光黄溶液孵育30分钟后,收取荧光黄样品,2 e读板仪在425/528nm(激发/发射)波谱处检测样品中荧光黄的相对荧光强度(the relative fluorescence unit,RFU)。
样品分析
采用半定量分析供试品、对照品fenoterol、propranolol以及digoxin,用被分析物与内标的峰面积比值作为对照品的浓度。
表15:本发明化合物的渗透性Caco2:
化合物 A to B(10 -6cm/s) B to A(10 -6cm/s)
fenoterol 0.25 ND
propranolol 22.89 ND
digoxin 0.14 10.73
式(Ⅰ)化合物 2.97 12.19
“ND”表示没有检测到。
结论:式(Ⅰ)化合物的渗透性良好。

Claims (17)

  1. 式(Ⅰ)化合物的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.36±0.2°,16.56±0.2°,23.40±0.2°。
    Figure PCTCN2018088392-appb-100001
  2. 根据权利要求1所述的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.75±0.2°,9.36±0.2°,15.83±0.2°,16.56±0.2°,21.11±0.2°,21.67±0.2°,23.40±0.2°,28.13±0.2°。
  3. 根据权利要求2所述的A晶型,其中XRPD图谱如图1所示。
  4. 根据权利要求1~3任意一项所述的A晶型,其差示扫描量热曲线在50.51±3℃处有一个吸热峰的起始点,在159.98±3℃和215.46±3℃处分别有一个放热峰的起始点。
  5. 根据权利要求4所述的A晶型,其中DSC图谱如图2所示。
  6. 式(Ⅰ)化合物的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:14.01±0.2°,16.35±0.2°,24.20±0.2°。
  7. 根据权利要求6所述的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:14.01±0.2°,15.52±0.2°,16.35±0.2°,18.11±0.2°,20.73±0.2°,21.58±0.2°,24.20±0.2°,25.44±0.2°。
  8. 根据权利要求7所述的B晶型,其XRPD图谱如图3所示。
  9. 根据权利要求6~8任意一项所述的B晶型,其差示扫描量热曲线在105.08±3℃处有一个吸热峰的起始点,在172.07±3℃和213.91±3℃处分别有一个放热峰的起始点。
  10. 根据权利要求9所述的B晶型,其中DSC图谱如图4所示。
  11. 根据权利要求6~8任意一项所述的B晶型,其热重分析曲线在146.24±3℃处失重达0.1098%,在182.16±3℃处失重达1.5018%。
  12. 根据权利要求11所述的B晶型,其中TGA图谱如图5所示。
  13. 式(Ⅰ)化合物的C晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.53±0.2°,11.35±0.2°,22.41±0.2°。
  14. 根据权利要求13所述的C晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.53±0.2°,11.35±0.2°,14.92±0.2°,17.14±0.2°,19.94±0.2°,22.41±0.2°,23.46±0.2°,26.22±0.2°,28.34±0.2°。
  15. 根据权利要求14所述的C晶型,其XRPD图谱如图6所示。
  16. 根据权利要求13~15任意一项所述的C晶型,其差示扫描量热曲线在80.51±3℃和96.24±3℃处分 别有一个吸热峰的起始点,在162.96±3℃和216.45±3℃处分别有一个放热峰的起始点。
  17. 根据权利要求16所述的C晶型,其中DSC图谱如图7所示。
PCT/CN2018/088392 2017-05-25 2018-05-25 Ido1抑制剂的晶型及其制备方法 WO2018214958A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710380130.6 2017-05-25
CN201710380130 2017-05-25

Publications (1)

Publication Number Publication Date
WO2018214958A1 true WO2018214958A1 (zh) 2018-11-29

Family

ID=64396246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088392 WO2018214958A1 (zh) 2017-05-25 2018-05-25 Ido1抑制剂的晶型及其制备方法

Country Status (1)

Country Link
WO (1) WO2018214958A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190169140A1 (en) * 2016-08-02 2019-06-06 Shandong Luye Pharmaceutical Co., Ltd. Ido1 inhibitor and preparation method and application thereof
CN112315954A (zh) * 2020-11-24 2021-02-05 烟台大学 紫杉醇和ido1小分子抑制剂复方药物组合物及其用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2889182A1 (en) * 2012-10-26 2014-05-01 The University Of Chicago Synergistic combination of immunologic inhibitors for the treatment of cancer
CN106565696A (zh) * 2015-10-09 2017-04-19 江苏恒瑞医药股份有限公司 噁二唑类衍生物、其制备方法及其在医药上的应用
WO2017106062A1 (en) * 2015-12-15 2017-06-22 Merck Sharp & Dohme Corp. Novel compounds as indoleamine 2,3-dioxygenase inhibitors
WO2018024208A1 (zh) * 2016-08-02 2018-02-08 南京明德新药研发股份有限公司 Ido1抑制剂及其制备方法和应用
WO2018083241A1 (en) * 2016-11-03 2018-05-11 Phenex Discovery Verwaltungs-GmbH Substituted n-hydroxyamidinoheterocycles as modulators of indoleamine 2,3- dioxygenase

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2889182A1 (en) * 2012-10-26 2014-05-01 The University Of Chicago Synergistic combination of immunologic inhibitors for the treatment of cancer
CN106565696A (zh) * 2015-10-09 2017-04-19 江苏恒瑞医药股份有限公司 噁二唑类衍生物、其制备方法及其在医药上的应用
WO2017106062A1 (en) * 2015-12-15 2017-06-22 Merck Sharp & Dohme Corp. Novel compounds as indoleamine 2,3-dioxygenase inhibitors
WO2018024208A1 (zh) * 2016-08-02 2018-02-08 南京明德新药研发股份有限公司 Ido1抑制剂及其制备方法和应用
WO2018083241A1 (en) * 2016-11-03 2018-05-11 Phenex Discovery Verwaltungs-GmbH Substituted n-hydroxyamidinoheterocycles as modulators of indoleamine 2,3- dioxygenase

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190169140A1 (en) * 2016-08-02 2019-06-06 Shandong Luye Pharmaceutical Co., Ltd. Ido1 inhibitor and preparation method and application thereof
CN112315954A (zh) * 2020-11-24 2021-02-05 烟台大学 紫杉醇和ido1小分子抑制剂复方药物组合物及其用途

Similar Documents

Publication Publication Date Title
WO2018024208A1 (zh) Ido1抑制剂及其制备方法和应用
WO2021023194A1 (zh) 吡嗪-2(1h)-酮类化合物的c晶型和e晶型及其制备方法
WO2018214958A1 (zh) Ido1抑制剂的晶型及其制备方法
TW201725204A (zh) 吡啶並{1,2-a}嘧啶酮類似物的晶型及其製備方法和中間體
JP6974618B2 (ja) Fgfr及びvegfr阻害剤としての化合物の塩形態、結晶形およびその製造方法
WO2021023192A1 (zh) 吡嗪-2(1h)-酮类化合物的a晶型和b晶型及其制备方法
CN111479809A (zh) 一种TGF-βRI抑制剂的晶型、盐型及其制备方法
WO2021023195A1 (zh) 吡嗪-2(1h)-酮类化合物的d晶型及其制备方法
WO2019114741A1 (zh) 作为Akt抑制剂的盐型及其晶型
CN114292270B (zh) 一种btk抑制剂及其制备方法与应用
WO2019080928A1 (zh) 一种iap拮抗剂的晶型及其制备方法
WO2019085893A1 (zh) 一种作为fgfr4抑制剂化合物的盐型、晶型及其制备方法
WO2019047920A1 (zh) 作为ido1抑制剂的噁二唑类衍生物的晶型及其制备方法
WO2017050224A1 (zh) 喹啉衍生物的盐型、晶型及其制备方法和中间体
RU2794977C2 (ru) Соль ингибитора lsd1 и её полиморфная форма
WO2021023271A1 (zh) 作为前列环素受体激动剂的化合物的晶型及其制备方法
TWI809904B (zh) 一種二甲基取代的噻唑並吡咯酮類化合物的晶型及其製備方法
WO2021164789A1 (zh) 一种吡唑并嘧啶类化合物的晶型及其应用
WO2024027631A1 (zh) 一种稠三环类衍生物的晶型及制备方法
WO2020088677A1 (zh) 一种血管紧张素ii受体2拮抗剂的盐型、晶型及其制备方法
WO2020224585A1 (zh) 一种mTORC1/2双激酶活性抑制剂的盐型、晶型及其制备方法
WO2022135580A1 (zh) 吡啶并吡咯类化合物的晶型、制备方法及其应用
WO2020221358A1 (zh) Wee1抑制剂化合物的晶型及其应用
WO2022228280A1 (zh) 噻吩衍生物的晶型及其制备方法
WO2024027825A1 (zh) 一种cdk抑制剂及其磷酸盐的多晶型

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18806568

Country of ref document: EP

Kind code of ref document: A1