WO2022228280A1 - 噻吩衍生物的晶型及其制备方法 - Google Patents

噻吩衍生物的晶型及其制备方法 Download PDF

Info

Publication number
WO2022228280A1
WO2022228280A1 PCT/CN2022/088295 CN2022088295W WO2022228280A1 WO 2022228280 A1 WO2022228280 A1 WO 2022228280A1 CN 2022088295 W CN2022088295 W CN 2022088295W WO 2022228280 A1 WO2022228280 A1 WO 2022228280A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal form
compound
formula
present
angles
Prior art date
Application number
PCT/CN2022/088295
Other languages
English (en)
French (fr)
Inventor
张杨
伍文韬
李志祥
朱文元
Original Assignee
东宝紫星(杭州)生物医药有限公司
南京明德新药研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东宝紫星(杭州)生物医药有限公司, 南京明德新药研发有限公司 filed Critical 东宝紫星(杭州)生物医药有限公司
Priority to BR112023022532A priority Critical patent/BR112023022532A2/pt
Priority to EP22794751.2A priority patent/EP4332097A1/en
Priority to AU2022265937A priority patent/AU2022265937A1/en
Priority to KR1020237041057A priority patent/KR20240004711A/ko
Priority to CN202280015619.2A priority patent/CN116867773A/zh
Priority to MX2023012804A priority patent/MX2023012804A/es
Priority to CA3216757A priority patent/CA3216757A1/en
Priority to JP2023566003A priority patent/JP2024516222A/ja
Publication of WO2022228280A1 publication Critical patent/WO2022228280A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/06Antigout agents, e.g. antihyperuricemic or uricosuric agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/38Heterocyclic compounds having sulfur as a ring hetero atom
    • A61K31/381Heterocyclic compounds having sulfur as a ring hetero atom having five-membered rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/72Benzo[c]thiophenes; Hydrogenated benzo[c]thiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the present invention relates to a crystal form of a thiophene derivative and a preparation method thereof, in particular to a crystal form of a compound represented by formula (I) and a preparation method thereof.
  • Gouty arthritis is a common and complex type of arthritis.
  • concentration of uric acid in human blood exceeds 7mg/dL
  • uric acid deposits in the joints, cartilage and kidneys as a monosodium salt, causing the body's immune system to become overly (sensitized) and cause painful inflammation.
  • the common attack sites are the big toe joint, ankle joint, knee joint, etc.
  • Hyperuricemia is the pathological basis of gouty arthritis. Hyperuricemia refers to a disorder in which the metabolism of purine substances in the human body is disordered, resulting in an increase in the synthesis or a decrease in the excretion of uric acid in the human body, and an abnormally high level of uric acid in the blood.
  • HUA diagnosis of HUA is defined as: under a normal purine diet, fasting serum uric acid levels on two different days: >400 ⁇ mol/L (6.8 mg/dL) for males and >360 ⁇ mol/L (6 mg/dL) for females. It can be divided into three types: dysuric acid excretion type, hyperuric acid production type, and mixed type. Clinical research results show that 90% of primary hyperuricemia belong to the type of poor uric acid excretion.
  • Hyperuricemia is inseparable from gout, and is an independent risk factor for metabolic diseases [diabetes, metabolic syndrome (MS), hyperlipidemia, etc.], chronic kidney disease, cardiovascular disease, and stroke. Therefore, reducing the level of uric acid in the human body can be used not only to treat or prevent hyperuricemia and gout, but also to reduce the risk of other complications associated with hyperuricemia.
  • endogenous purines come from self-synthesis or nucleic acid degradation (about 600 mg/d)
  • exogenous purines come from ingested purine diets (about 100 mg/d).
  • the uric acid pool in the body is 1200 mg, and about 700 mg of uric acid is generated every day, of which 2/3 is excreted by the kidneys, 1/3 is excreted from the intestines, and a very small amount is excreted through the sweat glands.
  • uric acid-lowering drugs in clinical practice include Xanthine Oxidase inhibitors (such as allopurinol and febusteine) that inhibit the production of uric acid and Urat1 inhibitors (benbromarone and uric acid) that excrete uric acid. Resinard, etc.).
  • Xanthine Oxidase inhibitors such as allopurinol and febusteine
  • Urat1 inhibitors bromarone and uric acid
  • Xanthine oxidase is an enzyme with low specificity, which can not only catalyze hypoxanthine to generate xanthine, and then generate uric acid, but also directly catalyze xanthine to generate uric acid.
  • Xanthine oxidase inhibitors are the first-line drugs for the treatment of hyperuricemia.
  • the main drugs on the market are allopurinol and febusteine.
  • Allopurinol is the only urate-lowering therapy available worldwide, but it has been associated with serious cutaneous adverse events.
  • Allopurinol-related severe hypersensitivity reactions are closely related to leukocyte antigen (HLA)-B*5801.
  • Chinese HLA-B*5801 positive (6%-8%) is higher than whites ( ⁇ 2%), and the occurrence of hypersensitivity The risk of a reaction is greater.
  • the uric acid-lowering effect of febusteine is better than that of allopurinol, but at a high dose of 80 mg/day, 40% to 52% of patients do not achieve the expected uric acid-lowering target, and it will increase acute gout attacks.
  • the present invention provides Form A of the compound of formula (I), characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 12.35 ⁇ 0.20°, 15.05 ⁇ 0.20°, 18.19 ⁇ 0.20°, 20.10 ⁇ 0.20°, 23.05 ⁇ 0.20°, 25.05 ⁇ 0.20°, 25.87 ⁇ 0.20°, 27.16 ⁇ 0.20°,
  • the X-ray powder diffraction pattern of the above-mentioned A crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 10.89 ⁇ 0.20°, 12.35 ⁇ 0.20°, 13.42 ⁇ 0.20°, 15.05 ⁇ 0.20°, 18.19 ⁇ 0.20°, 20.10 ⁇ 0.20°, 21.82 ⁇ 0.20°, 23.05 ⁇ 0.20°, 25.05 ⁇ 0.20°, 25.87 ⁇ 0.20°, 27.16 ⁇ 0.20°, 30.28 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned A crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 6.72°, 8.94°, 10.89°, 12.35°, 13.42°, 15.05°, 17.26°, 18.19° °, 18.70°, 20.10°, 21.82°, 23.05°, 24.28°, 25.05°, 25.87°, 27.16°, 29.41°, 30.28°, 30.89°, 33.58°, 36.29°, 37.29°, 38.99°.
  • the XRPD pattern of the above-mentioned Form A is substantially as shown in FIG. 1 .
  • thermogravimetric analysis curve of the above-mentioned crystal form A has a weight loss of 1.96% at 200°C ⁇ 3°C.
  • the TGA spectrum of the above-mentioned A crystal form is shown in FIG. 2 .
  • the differential scanning calorimetry curve of the above-mentioned crystal form A has an onset of an endothermic peak at 244.3.0°C ⁇ 2°C.
  • the DSC spectrum of the above-mentioned A crystal form is shown in FIG. 3 .
  • the present invention provides the B crystal form of the compound of formula (I), which is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 23.93 ⁇ 0.20°, 24.73 ⁇ 0.20°, 26.58 ⁇ 0.20°,
  • the X-ray powder diffraction pattern of the above-mentioned crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 13.02 ⁇ 0.20°, 14.68 ⁇ 0.20°, 16.44 ⁇ 0.20°, 19.50 ⁇ 0.20°, 22.69 ⁇ 0.20°, 23.93 ⁇ 0.20°, 24.73 ⁇ 0.20°, 26.58 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 13.02 ⁇ 0.20°, 14.68 ⁇ 0.20°, 16.44 ⁇ 0.20°, 19.50 ⁇ 0.20°, 22.69 ⁇ 0.20°, 23.93 ⁇ 0.20°, 24.73 ⁇ 0.20°, 25.87 ⁇ 0.20°, 26.58 ⁇ 0.20°, 28.98 ⁇ 0.20°, 29.34 ⁇ 0.20°, 31.86 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 5.37°, 11.72°, 13.02°, 14.68°, 15.44°, 16.05°, 16.44°, 16.94° °, 18.68°, 19.50°, 20.69°, 21.13°, 21.32°, 21.70°, 22.41°, 22.69°, 23.46°, 23.93°, 24.73°, 25.87°, 26.58°, 27.78°, 28.98°, 29.34°, 29.66°, 30.07°, 31.26°, 31.38°, 31.86°, 32.73°, 33.71°, 34.02°, 34.68°, 35.41°, 36.64°, 37.30°, 37.86°, 38.30°.
  • the XRPD pattern of the above-mentioned Form B is substantially as shown in FIG. 4 .
  • the present invention provides crystals of the compound of formula (I), characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 13.28 ⁇ 0.30°, 15.34 ⁇ 0.30°, 25.14 ⁇ 0.30°,
  • the X-ray powder diffraction pattern of the above crystals has characteristic diffraction peaks at the following 2 ⁇ angles: 9.11 ⁇ 0.30°, 13.28 ⁇ 0.30°, 15.34 ⁇ 0.30°, 18.16 ⁇ 0.30°, 22.06 ⁇ 0.30° , 25.14 ⁇ 0.30°, 26.75 ⁇ 0.30°, 27.25 ⁇ 0.30°.
  • the X-ray powder diffraction pattern of the above crystals has characteristic diffraction peaks at the following 2 ⁇ angles: 9.11 ⁇ 0.30°, 11.21 ⁇ 0.30°, 13.28 ⁇ 0.30°, 15.34 ⁇ 0.30°, 18.16 ⁇ 0.30° , 22.06 ⁇ 0.30°, 23.15 ⁇ 0.30°, 25.14 ⁇ 0.30°, 25.97 ⁇ 0.30°, 26.75 ⁇ 0.30°, 27.25 ⁇ 0.30°, 30.82 ⁇ 0.30°.
  • the present invention provides crystals of the compound of formula (I), characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 13.20 ⁇ 0.20°, 15.26 ⁇ 0.20°, 25.07 ⁇ 0.20°,
  • the X-ray powder diffraction pattern of the above crystals has characteristic diffraction peaks at the following 2 ⁇ angles: 13.20 ⁇ 0.20°, 15.26 ⁇ 0.20°, 18.08 ⁇ 0.20°, 21.99 ⁇ 0.20°, 25.07 ⁇ 0.20° , 26.66 ⁇ 0.20°, 28.38 ⁇ 0.20°, 30.70 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above crystals has characteristic diffraction peaks at the following 2 ⁇ angles: 9.03 ⁇ 0.20°, 11.13 ⁇ 0.20°, 13.20 ⁇ 0.20°, 15.26 ⁇ 0.20°, 18.08 ⁇ 0.20° , 21.99 ⁇ 0.20°, 25.07 ⁇ 0.20°, 26.66 ⁇ 0.20°, 28.38 ⁇ 0.20°, 29.41 ⁇ 0.20°, 30.70 ⁇ 0.20°, 38.53 ⁇ 0.20°.
  • the present invention provides the C crystal form of the compound of formula (I), which is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 13.20 ⁇ 0.20°, 18.08 ⁇ 0.20°, 25.07 ⁇ 0.20°,
  • the X-ray powder diffraction pattern of the above crystal form C has characteristic diffraction peaks at the following 2 ⁇ angles: 13.20 ⁇ 0.20°, 15.26 ⁇ 0.20°, 18.08 ⁇ 0.20°, 21.99 ⁇ 0.20°, 25.07 ⁇ 0.20°, 26.66 ⁇ 0.20°, 28.38 ⁇ 0.20°, 30.70 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above crystal form C has characteristic diffraction peaks at the following 2 ⁇ angles: 13.20 ⁇ 0.20°, 15.26 ⁇ 0.20°, 18.08 ⁇ 0.20°, 21.99 ⁇ 0.20°, 25.07 ⁇ 0.20°, 25.38 ⁇ 0.20°, 26.66 ⁇ 0.20°, 30.70 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above crystal form C has characteristic diffraction peaks at the following 2 ⁇ angles: 9.03 ⁇ 0.20°, 11.13 ⁇ 0.20°, 13.20 ⁇ 0.20°, 15.26 ⁇ 0.20°, 18.08 ⁇ 0.20°, 21.99 ⁇ 0.20°, 25.07 ⁇ 0.20°, 26.66 ⁇ 0.20°, 28.38 ⁇ 0.20°, 29.41 ⁇ 0.20°, 30.70 ⁇ 0.20°, 38.53 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form C has characteristic diffraction peaks at the following 2 ⁇ angles: 9.03 ⁇ 0.20°, 13.20 ⁇ 0.20°, 15.26 ⁇ 0.20°, 18.08 ⁇ 0.20°, 21.99 ⁇ 0.20°, 25.07 ⁇ 0.20°, 25.38 ⁇ 0.20°, 26.66 ⁇ 0.20°, 28.38 ⁇ 0.20°, 29.41 ⁇ 0.20°, 30.70 ⁇ 0.20°, 38.53 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above crystal form C has characteristic diffraction peaks at the following 2 ⁇ angles: 9.03 ⁇ 0.20°, 11.13 ⁇ 0.20°, 13.20 ⁇ 0.20°, 15.26 ⁇ 0.20°, 18.08 ⁇ 0.20°, 21.99 ⁇ 0.20°, 24.09 ⁇ 0.20°, 25.07 ⁇ 0.20°, 25.38 ⁇ 0.20°, 26.66 ⁇ 0.20°, 27.17 ⁇ 0.20°, 28.38 ⁇ 0.20°, 29.41 ⁇ 0.20°, 30.70 ⁇ 0.20°, 31.02 ⁇ 0.20°, 38.53 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form C has characteristic diffraction peaks at the following 2 ⁇ angles: 13.20 ⁇ 0.20°, 25.07 ⁇ 0.20°, and also at 18.08 ⁇ 0.20°, and/or 9.03 ⁇ 0.20°, and/or 11.13 ⁇ 0.20°, and/or 15.26 ⁇ 0.20°, and/or 18.92 ⁇ 0.20°, and/or 21.99 ⁇ 0.20°, and/or 24.09 ⁇ 0.20°, and/or 25.38 ⁇ 0.20 °, and/or 26.66 ⁇ 0.20°, and/or 27.17 ⁇ 0.20°, and/or 28.38 ⁇ 0.20°, and/or 29.41 ⁇ 0.20°, and/or 30.70 ⁇ 0.20°, and/or 31.02 ⁇ 0.20°, and/or 33.67 ⁇ 0.20°, and/or 35.40 ⁇ 0.20°, and/or 36.35 ⁇ 0.20°, and/or 37.26 ⁇ 0.20°,
  • the X-ray powder diffraction pattern of the above-mentioned crystal form C has characteristic diffraction peaks at the following 2 ⁇ angles: 9.03°, 11.13°, 13.20°, 15.26°, 18.08°, 18.92°, 21.99°, 24.09° °, 25.07°, 25.38°, 26.66°, 27.17°, 28.38°, 29.41°, 30.70°, 31.02°, 33.67°, 35.40°, 36.35°, 37.26°, 38.53°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form C has characteristic diffraction peaks at the following 2 ⁇ angles: 5.66°, 9.03°, 11.13°, 13.20°, 13.70°, 15.26°, 17.25°, 18.08 °,18.92°,20.88°,21.99°,23.41°,24.09°,25.07°,25.38°,25.99°,26.66°,27.17°,28.38°,29.41°,29.98°,30.70°,31.02°,31.72°, 33.67°, 35.40°, 36.35°, 36.74°, 37.26°, 38.53°, 39.80°.
  • the XRPD pattern of the above-mentioned crystal form C is substantially as shown in FIG. 5 .
  • thermogravimetric analysis curve of the above-mentioned crystal form C loses weight up to 1.21% at 200°C ⁇ 3°C.
  • the TGA spectrum of the above-mentioned C crystal form is shown in FIG. 6 .
  • the differential scanning calorimetry curve of the above-mentioned crystal form C has an onset of an endothermic peak at 250.0°C ⁇ 2°C.
  • the DSC spectrum of the above-mentioned C crystal form is shown in FIG. 7 .
  • the present invention provides the D crystal form of the compound of formula (I), which is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 6.71 ⁇ 0.20°, 11.87 ⁇ 0.20°, 25.21 ⁇ 0.20°,
  • the X-ray powder diffraction pattern of the above-mentioned crystal form D has characteristic diffraction peaks at the following 2 ⁇ angles: 6.71 ⁇ 0.20°, 11.87 ⁇ 0.20°, 13.39 ⁇ 0.20°, 15.44 ⁇ 0.20°, 20.77 ⁇ 0.20°, 22.16 ⁇ 0.20°, 25.21 ⁇ 0.20°, 27.05 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form D has characteristic diffraction peaks at the following 2 ⁇ angles: 6.71 ⁇ 0.20°, 11.87 ⁇ 0.20°, 13.39 ⁇ 0.20°, 15.44 ⁇ 0.20°, 16.32 ⁇ 0.20°, 17.90 ⁇ 0.20°, 20.77 ⁇ 0.20°, 22.16 ⁇ 0.20°, 24.31 ⁇ 0.20°, 25.21 ⁇ 0.20°, 27.05 ⁇ 0.20°, 27.41 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned D crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 6.45°, 6.71°, 9.22°, 10.40°, 11.61°, 11.87°, 12.53°, 13.39° °,13.82°,15.44°,16.32°,17.37°,17.90°,18.27°,19.07°,19.67°,19.90°,20.77°,22.16°,24.31°,25.21°,26.10°,27.05°,27.41°, 28.50°, 29.59°, 30.10°, 30.89°, 31.17°, 32.81°, 33.77°, 34.17°, 35.52°, 36.57°, 38.20°, 38.68°.
  • the XRPD pattern of the above-mentioned D crystal form is substantially as shown in FIG. 8 .
  • thermogravimetric analysis curve of the above-mentioned D crystal form has a weight loss of 1.14% at 200°C ⁇ 3°C.
  • the TGA spectrum of the above-mentioned D crystal form is shown in FIG. 9 .
  • the differential scanning calorimetry curve of the above-mentioned crystal form D has an onset of an endothermic peak at 251.4°C ⁇ 2°C.
  • the DSC spectrum of the above-mentioned D crystal form is shown in FIG. 10 .
  • the invention provides the E crystal form of the compound of formula (I), which is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 13.28 ⁇ 0.20°, 15.34 ⁇ 0.20°, 25.14 ⁇ 0.20°,
  • the X-ray powder diffraction pattern of the above-mentioned E crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 9.11 ⁇ 0.20°, 13.28 ⁇ 0.20°, 15.34 ⁇ 0.20°, 18.16 ⁇ 0.20°, 22.06 ⁇ 0.20°, 25.14 ⁇ 0.20°, 26.75 ⁇ 0.20°, 27.25 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form E has characteristic diffraction peaks at the following 2 ⁇ angles: 9.11 ⁇ 0.20°, 12.43 ⁇ 0.20°, 13.28 ⁇ 0.20°, 15.34 ⁇ 0.20°, 18.16 ⁇ 0.20°, 22.06 ⁇ 0.20°, 23.15 ⁇ 0.20°, 25.14 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form E has characteristic diffraction peaks at the following 2 ⁇ angles: 9.11 ⁇ 0.20°, 11.21 ⁇ 0.20°, 13.28 ⁇ 0.20°, 15.34 ⁇ 0.20°, 18.16 ⁇ 0.20°, 22.06 ⁇ 0.20°, 23.15 ⁇ 0.20°, 25.14 ⁇ 0.20°, 25.97 ⁇ 0.20°, 26.75 ⁇ 0.20°, 27.25 ⁇ 0.20°, 30.82 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form E has characteristic diffraction peaks at the following 2 ⁇ angles: 9.11 ⁇ 0.20°, 11.21 ⁇ 0.20°, 12.43 ⁇ 0.20°, 13.28 ⁇ 0.20°, 15.34 ⁇ 0.20°, 18.16 ⁇ 0.20°, 22.06 ⁇ 0.20°, 23.15 ⁇ 0.20°, 25.14 ⁇ 0.20°, 25.97 ⁇ 0.20°, 26.75 ⁇ 0.20°, 27.25 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form E has characteristic diffraction peaks at the following 2 ⁇ angles: 13.28 ⁇ 0.20°, 25.14 ⁇ 0.20°, and also at 15.34 ⁇ 0.20°, and/or 9.11 ⁇ 0.20°, and/or 10.94 ⁇ 0.20°, and/or 11.21 ⁇ 0.20°, and/or 12.43 ⁇ 0.20°, and/or 18.16 ⁇ 0.20°, and/or 22.06 ⁇ 0.20°, and/or 23.15 ⁇ 0.20 °, and/or 23.35 ⁇ 0.20°, and/or 24.19 ⁇ 0.20°, and/or 25.97 ⁇ 0.20°, and/or 26.75 ⁇ 0.20°, and/or 27.25 ⁇ 0.20°, and/or 28.45 ⁇ 0.20°, and/or 29.49 ⁇ 0.20°, and/or 30.82 ⁇ 0.20°, and/or 33.74 ⁇ 0.20°, and/or 36.39 ⁇ 0.20°,
  • the X-ray powder diffraction pattern of the above-mentioned crystal form E has characteristic diffraction peaks at the following 2 ⁇ angles: 9.11 ⁇ 0.20°, 10.94 ⁇ 0.20°, 11.21 ⁇ 0.20°, 12.43 ⁇ 0.20°, 13.28 ⁇ 0.20°, 15.34 ⁇ 0.20°, 18.16 ⁇ 0.20°, 22.06 ⁇ 0.20°, 23.15 ⁇ 0.20°, 23.35 ⁇ 0.20°, 24.19 ⁇ 0.20°, 25.14 ⁇ 0.20°, 25.97 ⁇ 0.20°, 26.75 ⁇ 0.20°, 27.25 ⁇ 0.20°, 28.45 ⁇ 0.20°, 29.49 ⁇ 0.20°, 30.82 ⁇ 0.20°, 33.74 ⁇ 0.20°, 36.39 ⁇ 0.20°, 37.34 ⁇ 0.20°, 38.57 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form E has characteristic diffraction peaks at the following 2 ⁇ angles: 9.11°, 10.94°, 11.21°, 12.43°, 13.28°, 15.34°, 17.39°, 18.16° degrees 35.45°, 36.39°, 37.34°, 38.57°.
  • the XRPD pattern of the above-mentioned Form E is substantially as shown in FIG. 11 .
  • thermogravimetric analysis curve of the above-mentioned crystal form E has a weight loss of 0.79% at 200°C ⁇ 3°C.
  • the TGA spectrum of the above-mentioned E crystal form is shown in FIG. 12 .
  • the differential scanning calorimetry curve of the above-mentioned crystal form E has an onset of an endothermic peak at 250.4°C ⁇ 2°C.
  • the DSC spectrum of the above-mentioned E crystal form is shown in FIG. 13 .
  • the present invention also provides the application of A crystal form, B crystal form, C crystal form, D crystal form and E crystal form of the compound of formula (I) in preparing medicine for treating gout and hyperuricemia.
  • the crystal form of the compound of formula (I) is stable, has no hygroscopicity, and has a good prospect for medicine.
  • the intermediate compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, the embodiments formed by their combination with other chemical synthesis methods, and those skilled in the art.
  • Well-known equivalents, preferred embodiments include, but are not limited to, the examples of the present invention.
  • the structure of the compound of the present invention can be confirmed by conventional methods well known to those skilled in the art. If the present invention relates to the absolute configuration of the compound, the absolute configuration can be confirmed by conventional technical means in the art. For example, single crystal X-ray diffraction method (SXRD), the cultured single crystal is collected by Bruker D8 venture diffractometer, the light source is CuK ⁇ radiation, and the scanning mode is: After scanning and collecting relevant data, the crystal structure was further analyzed by the direct method (Shelxs97), and the absolute configuration could be confirmed.
  • SXRD single crystal X-ray diffraction method
  • the cultured single crystal is collected by Bruker D8 venture diffractometer
  • the light source is CuK ⁇ radiation
  • the scanning mode is: After scanning and collecting relevant data, the crystal structure was further analyzed by the direct method (Shelxs97), and the absolute configuration could be confirmed.
  • the solvent used in the present invention is commercially available.
  • the following abbreviations are used in the present invention: -OMOM stands for methyl oxymethyl ether; HPE stands for 100% inhibitory activity; ZPE stands for 0% inhibitory activity; DPBS stands for Dulbecco's Phosphate Buffer.
  • Anti-scatter slit 0mm
  • Test method Take a sample ( ⁇ 1mg) and place it in a DSC aluminum pot for testing, and heat the sample from 30°C to 250°C at a heating rate of 10°C/min under the condition of 50mL/min N2 .
  • Thermogravimetric Analysis (Thermal Gravimetric Analyzer, TGA) method of the present invention
  • Test method Take a sample (2-5mg) and place it in a TGA platinum pot for testing. Under the condition of 25mL/min N2 , heat the sample from room temperature to 300°C at a heating rate of 10°C/min.
  • Test conditions Take a sample (10-30 mg) and place it in the DVS sample tray for testing.
  • Hygroscopic classification ⁇ W% deliquescence Absorbs enough water to form a liquid Very hygroscopic ⁇ W% ⁇ 15% hygroscopic 15%> ⁇ W% ⁇ 2% slightly hygroscopic 2%> ⁇ W% ⁇ 0.2% No or almost no hygroscopicity ⁇ W% ⁇ 0.2%
  • ⁇ W% represents the hygroscopic weight gain of the test product at 25 ⁇ 1°C and 80 ⁇ 2%RH.
  • Fig. 1 is the XRPD spectrum of the Cu-K ⁇ radiation of the A crystal form of the compound of formula (I).
  • Figure 2 is a TGA spectrum of the A crystal form of the compound of formula (I).
  • Figure 3 is the DSC spectrum of the A crystal form of the compound of formula (I).
  • Fig. 4 is the XRPD spectrum of Cu-K ⁇ radiation of the B crystal form of the compound of formula (I).
  • Figure 5 is a Cu-K ⁇ radiation XRPD spectrum of the C crystal form of the compound of formula (I).
  • Figure 6 is a TGA spectrum of the C crystal form of the compound of formula (I).
  • Figure 7 is the DSC spectrum of the C crystal form of the compound of formula (I).
  • Figure 8 is the XRPD spectrum of the D crystal form of the compound of formula (I) irradiated by Cu-K ⁇ .
  • Figure 9 is a TGA spectrum of the D crystal form of the compound of formula (I).
  • Figure 10 is the DSC spectrum of the D crystal form of the compound of formula (I).
  • Fig. 11 is an XRPD spectrum of Cu-K ⁇ radiation of the E crystal form of the compound of formula (I).
  • Figure 12 is a TGA spectrum of the E crystal form of the compound of formula (I).
  • Figure 13 is the DSC spectrum of the E crystal form of the compound of formula (I).
  • Figure 14 is a DVS spectrum of Form C of the compound of formula (I).
  • Potassium tert-butoxide (234.26 g, 2.09 mol) was added to dimethyl sulfoxide (1200 mL), stirred at room temperature until clear, and added dropwise at 15-20 °C with two solutions of compound I-1 (200 g, 1.49 mol). Methyl sulfoxide (500 mL) solution was added dropwise and continued to stir for 40 minutes. Continue to add carbon disulfide (113.54 g, 1.49 mol, 90.11 mL) dropwise, and keep the temperature of the reaction solution not exceeding 20° C., and continue stirring for 20 minutes after the dropwise addition.
  • Potassium tert-butoxide (100.40 g, 894.70 mmol) was slowly added, and the temperature of the reaction solution was kept at 15-20° C. and stirred for 30 minutes.
  • Ethyl bromoacetate (498.05 g, 2.98 mol, 329.83 mL) was added dropwise, and the temperature of the reaction solution was kept at 15-20°C, and stirred at this temperature for 1.5 hours.
  • Potassium carbonate (206.09 g, 1.49 mol) was added, and the temperature of the reaction solution was raised to 60° C. and stirring was continued for 1.5 hours.
  • reaction solution was diluted with 250 mL of ethyl acetate, washed successively with water (100 mL ⁇ 2), saturated sodium bicarbonate solution (150 mL) and saturated brine (100 mL), dried over anhydrous sodium sulfate, filtered, and the organic solvent was removed under reduced pressure to obtain the compound 1-7, this compound was used in the next reaction without further purification.
  • 1 H NMR 400 MHz, CDCl 3 ) ⁇ : 3.13-2.97 (m, 4H), 2.30-2.20 (m, 2H).
  • Form A of the compound of formula (I) (20 mg, 0.06 mmol) was added to dichloromethane (1 mL) and stirring was continued at 25°C for 120 hours. After filtration, the filter cake is dried under vacuum at 50° C. for 2-5 hours to obtain the B crystal form of the compound of formula (I).
  • the XRPD pattern of Form B is shown in FIG. 4 .
  • Form A of the compound of formula (I) (1.0 g, 2.98 mmol) was added to a mixed solvent of ethyl acetate (5 mL) and n-heptane (5 mL), and then stirring was continued at 25° C. for 72 hours. After filtration, the filter cake was dried under vacuum at 45°C for 2 hours to obtain the C crystal form of the compound of formula (I).
  • the XRPD pattern of crystal form C is shown in FIG. 5
  • the TGA pattern is shown in FIG. 6
  • the DSC pattern is shown in FIG. 7 .
  • Crystal form A of the compound of formula (I) was weighed and added to a mixed solvent of tetrahydrofuran (0.4 mL) and water (0.4 mL). After filtration, the filter cake was dried under vacuum at 45° C. for 2 hours to obtain the D crystal form of the compound of formula (I).
  • the XRPD pattern of Form D is shown in FIG. 8
  • the TGA pattern is shown in FIG. 9
  • the DSC pattern is shown in FIG. 10 .
  • Form A of the compound of formula (I) (1.0 g, 2.98 mmol) was added to a mixed solvent of tetrahydrofuran (3.3 mL) and water (6.6 mL), and the resulting mixture was stirred at 25° C. for 72 hours. After filtration, the filter cake was dried under vacuum at 45° C. for 2 hours to obtain the E crystal form of the compound of formula (I).
  • the XRPD pattern of Form E is shown in FIG. 11
  • the TGA pattern is shown in FIG. 12
  • the DSC pattern is shown in FIG. 13 .
  • the hygroscopic weight gain of compound C of formula (I) at 25° C. and 80% RH is 0.196%, and it has no hygroscopicity.
  • each part is about 1.5g, put into a flat weighing bottle (70*35mm) or a disposable petri dish, and spread it into a thin layer. They were placed under conditions of high temperature (60°C), high humidity (25°C/92.5% humidity), high temperature and high humidity (40°C/75% humidity) and light stability, respectively.
  • the samples placed under high temperature and high humidity conditions were sealed with aluminum foil paper, and some small holes were made in the aluminum foil paper to ensure that the samples could be fully contacted with the ambient air; the samples placed under strong light conditions were sealed with a quartz glass cover.
  • the main reagents used in this study included xanthine (Sigma, catalog number: X4002-1G, lot number: SLBB5664V) and xanthine oxidase (Sigma, catalog number: X4376-5UN, lot number: SLBQ1518V).
  • the main instrument used in this institute is a multi-function microplate reader.
  • O test sample is the optical density value of compound activity test well, containing compound, xanthine and xanthine oxidase;
  • OD compound control is the background optical density (optical density) value of the compound to be tested at different concentrations, containing compound and xanthine, but not containing xanthine oxidase;
  • OD ZPE the mean value of optical density of control wells without inhibitory activity, containing 0.5% DMSO, xanthine and xanthine oxidase;
  • OD HPE is the mean of optical density values of 100% inhibitory activity control wells with 0.5% DMSO and xanthine, without xanthine oxidase.
  • the compound of the present invention has good xanthine oxidase inhibitory activity.
  • the human Urat1 gene stably transfected cell line was constructed by Shanghai WuXi AppTec New Drug Development Co., Ltd.
  • Human Urat1 gene stably transfected cell line (Urat1-MDCK) is MDCK cells transfected with human Urat1 gene and obtained by G418 screening. Cell lines were cultured in MEM medium containing 10% fetal bovine serum (FBS), 100 U/ml penicillin, 100 ⁇ g/ml streptomycin, 2 mM L-glutamine and 1% non-essential amino acids and 250 ⁇ g/ml G418.
  • FBS fetal bovine serum
  • penicillin 100 ⁇ g/ml
  • streptomycin 100 ⁇ g/ml streptomycin
  • 2 mM L-glutamine 2 mM L-glutamine
  • non-essential amino acids 250 ⁇ g/ml G418.
  • the main reagent used in this study included 14C-uric acid (ARC, Cat. No. ARC-0513, Lot No. 200122).
  • the main instrument used in this study was a liquid scintillation analyzer (Perkin Elmer, Tri-Carb 4910TR).
  • *CPD is the radioactive signal value of the compound well
  • HC is the mean value of the radioactive signal of the 0% inhibition rate control well
  • LC is the mean value of radioactive signal from 100% inhibition control wells.
  • Thawing medium Williams' medium E contains 5% fetal bovine serum and 30% Percoll solution and other auxiliary materials.
  • Incubation medium Williams medium E (without phenol red) containing 2 mM L-glutamine and 25 mM hydroxyethylpiperazine ethanethiosulfonic acid.
  • Stop solution 200 ng/mL of tosylate and labetalol in acetonitrile as internal standards.
  • Dilution solution Ultrapure water.
  • cryopreserved cells were thawed, separated and suspended in the culture medium, and then diluted to 0.5 ⁇ 10 6 cells/mL with the pre-warmed culture medium.
  • the residual ratio of the test compound and the control compound was obtained by the following formula:
  • the elimination rate constant k of the test compound and the control compound in hepatocytes was calculated by plotting the logarithm of the remaining rate, and the elimination rate k was used to obtain the half-life (T 1/2 ) and in vitro intrinsic clearance (CL int ) , the formula is as follows:
  • CL int(liver) CL int(hep) ⁇ liver weight to body weight ratio ⁇ number of hepatocytes per gram of liver
  • the compound of the present invention has moderate clearance in human hepatocytes and high clearance in rat hepatocytes.
  • MDR1-MDCKII cells are Madin-Darby canine kidney cells transfected with human MDR1 gene, which can stably express P-gp at a high level.
  • the aim of this study was to test the bidirectional permeability of compounds across the MDR1-MDCK II cell model and to assess whether they are transported by efflux.
  • MDR1-MDCK II cells obtained from Piet Borst, Netherlands Cancer Institute were seeded at a density of 2.5 x 10 cells/mL onto polyethylene membranes (PET) in a 96-well insert system until 4-7 days to form. Confluent cell monolayers.
  • Test compounds were diluted in transport buffer (HBSS, 10 mM Hepes with DMSO, pH 7.4) at a concentration of 2 [mu]M (DMSO ⁇ 1%) and coated on the apical or basolateral side of the cell monolayer.
  • the compound to be tested was tested in duplicate from A to B direction or B to A direction, digoxin was also tested at 10 ⁇ M from A to B direction or B to A direction, while nadolol and metoprolol in A to B direction Tests at 2 ⁇ M Plates were incubated for 2.5 h in a CO2 incubator at 37 ⁇ 1 °C with 5% saturated humidity in CO2 without shaking, in addition, the efflux ratio of each compound was determined against the test and reference Compounds were quantified.
  • Lucifer Yellow exclusion assay was used to determine cell monolayer integrity.
  • the buffer was removed from the apical and basolateral compartments, then 75 ⁇ L of 100 ⁇ M Lucifer Yellow and 250 ⁇ L of transport buffer were added to the apical and basolateral compartments, respectively.
  • Incubate the plate at 37 °C, 5% CO and saturated humidity for 30 min without shaking.
  • 20 ⁇ L of luciferin yellow sample was withdrawn from the tip, followed by the addition of 60 ⁇ L of transport buffer.
  • An 80 ⁇ L sample of Lucifer Yellow was then collected basolaterally.
  • Relative fluorescence units (RFU) of luciferin yellow were measured at 425/528 nm (excitation/emission) with an Envision microplate reader.
  • dC r /d t is the cumulative concentration of the compound at the receiver end per unit time ( ⁇ M/s);
  • V r is the volume of the receiver solution (0.075 mL and 0.250 mL for the apical and basal ends, respectively);
  • A is the cell monolayer The relative surface area (0.0804cm 2 );
  • C 0 is the initial concentration (nM) of the test substance at the administration end or the peak area ratio of the reference substance.
  • the efflux ratio is calculated using the following formula:
  • the recovery rate was calculated using the following formula:
  • C 0 is the initial concentration (nM) of the test article at the administration end or the peak area ratio of the reference substance
  • V d is the volume of the administration end (0.075 mL for the apical side and 0.250 mL for the basal side)
  • C d and C r are the final concentration (nM) of the test substance at the dosing end and the receiving end, or the peak area ratio of the reference substance, respectively.
  • the percentage of Lucifer Yellow in the basolateral pores was calculated using the following formula:
  • RFUApical and RFUBasolateral are the relative fluorescence unit values of Lucifer Yellow in the apical and basolateral pores, respectively;
  • VApical and VBasolateral pores are the volumes of the apical and basolateral pores (0.075mL and 0.25mL), respectively.
  • % Fluorescent Yellow should be less than 2.
  • the compound of the present invention is a high permeability compound.
  • test compound Prepare test compound, standard inhibitor (100x final concentration), and mixed substrate working solutions; remove microsomes (purchased from Corning Inc) frozen at -80°C to thaw.
  • Add the biological solution to the corresponding wells, except for the Blank wells add 20 ⁇ L of phosphate buffered saline (PB) to the Blank wells); prepare the human liver microsome solution (return to the refrigerator immediately after use with the date marked), and then add 158 ⁇ L of human liver Add the microsomal solution to all wells; place the above sample plate in a 37°C water bath for pre-incubation, and then prepare the coenzyme factor (NADPH) solution; 10 minutes later, add 20 ⁇ L of NADPH solution to all wells
  • the compounds of the present invention have very low inhibitory activity on CYP1A2, CYP2C19, CYP2D6 and CYP3A4-M, and have moderate inhibitory activity on CYP2C9.
  • the compound was mixed with 5% DMSO/10% Solutol/85% water, stirred and vortexed to prepare a clear solution of 0.6 mg/mL, which was used for the administration of the injection group, and was filtered through a microporous membrane for use.
  • Compounds were mixed with 5% DMSO/10% Solutol/85% water), stirred and vortexed to prepare a clear solution at 1 mg/mL for oral administration.
  • Six male SD rats were divided into 2 groups. Group 1 animals were given a single intravenous dose of 3 mg/kg in a vehicle of 5% DMSO/10% Solutol/85% water in a volume of 5 mL/kg.
  • the animals in the second group were given a single oral gavage of 10 mg/kg of the test compound, the oral vehicle was 5% DMSO/10% Solutol/85% water, and the oral volume was 10 mL/kg.
  • Whole blood was collected at 0 (gavage only group), 0.083 (iv only), 0.25, 0.5, 1, 2, 4, 8 and 24 hours after dosing.
  • the compound of the present invention has good pharmacokinetic properties and high oral bioavailability.
  • C 0 is the initial concentration
  • T 1/2 is the elimination half-life
  • Vd ss is the steady-state apparent volume of distribution
  • Cl is the total clearance
  • AUC 0-last is the plasma from time 0 to the last quantifiable time point Area under the concentration-time curve
  • AUC0 -inf is the area under the plasma concentration-time curve from time 0 to extrapolation to infinity
  • Cmax is the peak concentration
  • Tmax is the time to peak.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Rheumatology (AREA)
  • Pain & Pain Management (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

提供式(I)所示化合物的晶型及其制备方法。

Description

噻吩衍生物的晶型及其制备方法
本发明主张如下优先权:
CN202110472705.3,申请日:2021年04月29日。
CN202111112439.X,申请日:2021年09月18日。
技术领域
本发明涉及噻吩衍生物的晶型及其制备方法,具体涉及式(I)所示化合物的晶型及其制备方法。
背景技术
痛风性关节炎是一种常见且复杂的关节炎类型。当尿酸在人体血液中浓度超过7mg/dL时,尿酸以单钠盐的形式沉积在关节、软骨和肾脏中,导致身体免疫系统过度(敏感)而造成痛苦的炎症。一般发作部位为大拇趾关节,踝关节,膝关节等。高尿酸血症是痛风性关节炎的病理基础。高尿酸血症是指人体内嘌呤的物质的新陈代谢发生紊乱,致使人体尿酸的合成增加或排出减少,血液中尿酸水平异常高的病症。国际上将HUA的诊断定义为:正常嘌呤饮食状态下,非同日2次空腹血尿酸水平:男性>400μmol/L(6.8mg/dL),女性>360μmol/L(6mg/dL)。可分为尿酸排泄不良型,尿酸生成过多型,混合型三种。临床研究结果显示,90%的原发性高尿酸血症属于尿酸排泄不良型。
高尿酸血症与痛风之间密不可分,并且是代谢性疾病[糖尿病、代谢综合征(metabolic syndrome,MS)、高脂血症等]、慢性肾病、心血管疾病、脑卒中的独立危险因素。因此,降低人体内的尿酸水平不但可用于治疗或预防高尿酸血症和痛风,并且可降低与高尿酸血症相关的其它并发症风险。
人体内嘌呤来源有两种:内源性嘌呤来源于自身合成或核酸降解(约600mg/d),外源性嘌呤来自摄入嘌呤饮食(约100mg/d)。在正常状态下,体内尿酸池为1200mg,每天生成尿酸约700mg,其中2/3经肾脏排泄,1/3从肠道排泄,另有极少量经汗腺排泄。因此,目前临床上常用的降尿酸药物有抑制尿酸生成的黄嘌呤氧化酶(Xanthine Oxidase)抑制剂(如:别嘌醇和非布司坦等)和排尿酸的Urat1抑制剂(苯溴马隆和雷西纳德等)。
黄嘌呤氧化酶是一种专一性不高,既能催化次黄嘌呤生成黄嘌呤,进而生成尿酸,又能直接催化黄嘌呤生成尿酸的酶。黄嘌呤氧化酶抑制剂是治疗高尿酸血症的一线治疗药物,目前上市药物主要有别嘌醇和非布司坦。但此类药物并不能满足所有患者的临床需要,并具有较明显的副作用。别嘌醇是唯一世界范围内可获得的降尿酸治疗药物,但会导致严重的皮肤不良事件。别嘌醇相关的严重超敏反应与白细胞抗原(HLA)-B*5801密切相关,中国人HLA-B*5801阳性者(6%~8%)比白人高(~2%),发生超敏反应的风险更大。非布司坦的降尿酸作用优于别嘌醇,但在80mg/天的高剂量下,也有40%~52%的患者没有达到预期的降尿酸目标,并且会增加急性痛风发作。
市场上对安全有效的降尿酸药物仍然有未满足的临床需求。
发明内容
本发明提供了式(I)化合物的A晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:12.35±0.20°,15.05±0.20°,18.19±0.20°,20.10±0.20°,23.05±0.20°,25.05±0.20°,25.87±0.20°,27.16±0.20°,
Figure PCTCN2022088295-appb-000001
在本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:10.89±0.20°,12.35±0.20°,13.42±0.20°,15.05±0.20°,18.19±0.20°,20.10±0.20°,21.82±0.20°,23.05±0.20°,25.05±0.20°,25.87±0.20°,27.16±0.20°,30.28±0.20°。
在本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.72°,8.94°,10.89°,12.35°,13.42°,15.05°,17.26°,18.19°,18.70°,20.10°,21.82°,23.05°,24.28°,25.05°,25.87°,27.16°,29.41°,30.28°,30.89°,33.58°,36.29°,37.29°,38.99°。
在本发明的一些方案中,上述A晶型的XRPD图谱基本上如图1所示。
在本发明的一些方案中,上述A晶型的XRPD图谱解析数据如表1所示:
表1.A晶型的XRPD图谱解析数据
Figure PCTCN2022088295-appb-000002
Figure PCTCN2022088295-appb-000003
在本发明的一些方案中,上述A晶型的热重分析曲线在200℃±3℃时失重达1.96%。
在本发明的一些方案中,上述A晶型的TGA图谱如图2所示。
在本发明的一些方案中,上述A晶型的差示扫描量热曲线在244.3.0℃±2℃处具有一个吸热峰的起始值。
在本发明的一些方案中,上述A晶型的DSC图谱如图3所示。
本发明提供了式(I)化合物的B晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:23.93±0.20°,24.73±0.20°,26.58±0.20°,
Figure PCTCN2022088295-appb-000004
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:13.02±0.20°,14.68±0.20°,16.44±0.20°,19.50±0.20°,22.69±0.20°,23.93±0.20°,24.73±0.20°,26.58±0.20°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:13.02±0.20°,14.68±0.20°,16.44±0.20°,19.50±0.20°,22.69±0.20°,23.93±0.20°,24.73±0.20°,25.87±0.20°,26.58±0.20°,28.98±0.20°,29.34±0.20°,31.86±0.20°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.37°,11.72°,13.02°,14.68°,15.44°,16.05°,16.44°,16.94°,18.68°,19.50°,20.69°,21.13°,21.32°,21.70°,22.41°,22.69°,23.46°,23.93°,24.73°,25.87°,26.58°,27.78°,28.98°,29.34°,29.66°,30.07°,31.26°,31.38°,31.86°,32.73°,33.71°,34.02°,34.68°,35.41°,36.64°,37.30°,37.86°,38.30°。
在本发明的一些方案中,上述B晶型的XRPD图谱基本上如图4所示。
在本发明的一些方案中,上述B晶型的XRPD图谱解析数据如表2所示:
表2.B晶型的XRPD图谱解析数据
Figure PCTCN2022088295-appb-000005
Figure PCTCN2022088295-appb-000006
本发明提供了式(I)化合物的结晶,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:13.28±0.30°,15.34±0.30°,25.14±0.30°,
Figure PCTCN2022088295-appb-000007
在本发明的一些方案中,上述结晶的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.11±0.30°,13.28±0.30°,15.34±0.30°,18.16±0.30°,22.06±0.30°,25.14±0.30°,26.75±0.30°,27.25±0.30°。
在本发明的一些方案中,上述结晶的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.11±0.30°,11.21±0.30°,13.28±0.30°,15.34±0.30°,18.16±0.30°,22.06±0.30°,23.15±0.30°,25.14±0.30°,25.97 ±0.30°,26.75±0.30°,27.25±0.30°,30.82±0.30°。
本发明提供了式(I)化合物的结晶,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:13.20±0.20°,15.26±0.20°,25.07±0.20°,
Figure PCTCN2022088295-appb-000008
在本发明的一些方案中,上述结晶的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:13.20±0.20°,15.26±0.20°,18.08±0.20°,21.99±0.20°,25.07±0.20°,26.66±0.20°,28.38±0.20°,30.70±0.20°。
在本发明的一些方案中,上述结晶的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.03±0.20°,11.13±0.20°,13.20±0.20°,15.26±0.20°,18.08±0.20°,21.99±0.20°,25.07±0.20°,26.66±0.20°,28.38±0.20°,29.41±0.20°,30.70±0.20°,38.53±0.20°。
本发明提供了式(I)化合物的C晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:13.20±0.20°,18.08±0.20°,25.07±0.20°,
Figure PCTCN2022088295-appb-000009
在本发明的一些方案中,上述C晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:13.20±0.20°,15.26±0.20°,18.08±0.20°,21.99±0.20°,25.07±0.20°,26.66±0.20°,28.38±0.20°,30.70±0.20°。
在本发明的一些方案中,上述C晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:13.20±0.20°,15.26±0.20°,18.08±0.20°,21.99±0.20°,25.07±0.20°,25.38±0.20°,26.66±0.20°,30.70±0.20°。
在本发明的一些方案中,上述C晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.03±0.20°,11.13±0.20°,13.20±0.20°,15.26±0.20°,18.08±0.20°,21.99±0.20°,25.07±0.20°,26.66±0.20°,28.38±0.20°,29.41±0.20°,30.70±0.20°,38.53±0.20°。
在本发明的一些方案中,上述C晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.03±0.20°,13.20±0.20°,15.26±0.20°,18.08±0.20°,21.99±0.20°,25.07±0.20°,25.38±0.20°,26.66±0.20°,28.38±0.20°,29.41±0.20°,30.70±0.20°,38.53±0.20°。
在本发明的一些方案中,上述C晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.03±0.20°,11.13±0.20°,13.20±0.20°,15.26±0.20°,18.08±0.20°,21.99±0.20°,24.09±0.20°,25.07±0.20°,25.38±0.20°,26.66±0.20°,27.17±0.20°,28.38±0.20°,29.41±0.20°,30.70±0.20°,31.02±0.20°,38.53±0.20°。
在本发明的一些方案中,上述C晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:13.20±0.20°,25.07±0.20°,还可以在18.08±0.20°,和/或9.03±0.20°,和/或11.13±0.20°,和/或15.26±0.20°,和/或18.92±0.20°,和/或21.99±0.20°,和/或24.09±0.20°,和/或25.38±0.20°,和/或26.66±0.20°,和/或27.17±0.20°,和/或28.38±0.20°,和/或29.41±0.20°,和/或30.70±0.20°,和/或31.02±0.20°,和/或33.67±0.20°,和/或35.40±0.20°,和/或36.35±0.20°,和/或37.26±0.20°,和/或38.53±0.20°具有特征衍射峰。
在本发明的一些方案中,上述C晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.03°,11.13°,13.20°,15.26°,18.08°,18.92°,21.99°,24.09°,25.07°,25.38°,26.66°,27.17°,28.38°,29.41°,30.70°,31.02°,33.67°,35.40°,36.35°,37.26°,38.53°。
在本发明的一些方案中,上述C晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.66°,9.03°,11.13°,13.20°,13.70°,15.26°,17.25°,18.08°,18.92°,20.88°,21.99°,23.41°,24.09°,25.07°,25.38°,25.99°,26.66°,27.17°,28.38°,29.41°,29.98°,30.70°,31.02°,31.72°,33.67°,35.40°,36.35°,36.74°,37.26°,38.53°,39.80°。
在本发明的一些方案中,上述C晶型的XRPD图谱基本上如图5所示。
在本发明的一些方案中,上述C晶型的XRPD图谱解析数据如表3所示:
表3.C晶型的XRPD图谱解析数据
Figure PCTCN2022088295-appb-000010
Figure PCTCN2022088295-appb-000011
在本发明的一些方案中,上述C晶型的热重分析曲线在200℃±3℃时失重达1.21%。
在本发明的一些方案中,上述C晶型的TGA图谱如图6所示。
在本发明的一些方案中,上述C晶型的差示扫描量热曲线在250.0℃±2℃处具有一个吸热峰的起始值。
在本发明的一些方案中,上述C晶型的DSC图谱如图7所示。
本发明提供了式(I)化合物的D晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.71±0.20°,11.87±0.20°,25.21±0.20°,
Figure PCTCN2022088295-appb-000012
在本发明的一些方案中,上述D晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.71±0.20°,11.87±0.20°,13.39±0.20°,15.44±0.20°,20.77±0.20°,22.16±0.20°,25.21±0.20°,27.05±0.20°。
在本发明的一些方案中,上述D晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.71±0.20°,11.87±0.20°,13.39±0.20°,15.44±0.20°,16.32±0.20°,17.90±0.20°,20.77±0.20°,22.16±0.20°,24.31±0.20°,25.21±0.20°,27.05±0.20°,27.41±0.20°。
在本发明的一些方案中,上述D晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.45°,6.71°,9.22°,10.40°,11.61°,11.87°,12.53°,13.39°,13.82°,15.44°,16.32°,17.37°,17.90°,18.27°,19.07°,19.67°,19.90°,20.77°,22.16°,24.31°,25.21°,26.10°,27.05°,27.41°,28.50°,29.59°,30.10°,30.89°,31.17°,32.81°,33.77°,34.17°,35.52°,36.57°,38.20°,38.68°。
在本发明的一些方案中,上述D晶型的XRPD图谱基本上如图8所示。
在本发明的一些方案中,上述D晶型的XRPD图谱解析数据如表4所示:
表4.D晶型的XRPD图谱解析数据
Figure PCTCN2022088295-appb-000013
在本发明的一些方案中,上述D晶型的热重分析曲线在200℃±3℃时失重达1.14%。
在本发明的一些方案中,上述D晶型的TGA图谱如图9所示。
在本发明的一些方案中,上述D晶型的差示扫描量热曲线在251.4℃±2℃处具有一个吸热峰的起始值。
在本发明的一些方案中,上述D晶型的DSC图谱如图10所示。
本发明提供了式(I)化合物的E晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:13.28±0.20°,15.34±0.20°,25.14±0.20°,
Figure PCTCN2022088295-appb-000014
在本发明的一些方案中,上述E晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.11±0.20°,13.28±0.20°,15.34±0.20°,18.16±0.20°,22.06±0.20°,25.14±0.20°,26.75±0.20°,27.25±0.20°。
在本发明的一些方案中,上述E晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.11±0.20°,12.43±0.20°,13.28±0.20°,15.34±0.20°,18.16±0.20°,22.06±0.20°,23.15±0.20°,25.14±0.20°。
在本发明的一些方案中,上述E晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.11±0.20°,11.21±0.20°,13.28±0.20°,15.34±0.20°,18.16±0.20°,22.06±0.20°,23.15±0.20°,25.14±0.20°,25.97±0.20°,26.75±0.20°,27.25±0.20°,30.82±0.20°。
在本发明的一些方案中,上述E晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.11±0.20°,11.21±0.20°,12.43±0.20°,13.28±0.20°,15.34±0.20°,18.16±0.20°,22.06±0.20°,23.15±0.20°,25.14±0.20°,25.97±0.20°,26.75±0.20°,27.25±0.20°。
在本发明的一些方案中,上述E晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:13.28±0.20°,25.14±0.20°,还可以在15.34±0.20°,和/或9.11±0.20°,和/或10.94±0.20°,和/或11.21±0.20°,和/或12.43±0.20°,和/或18.16±0.20°,和/或22.06±0.20°,和/或23.15±0.20°,和/或23.35±0.20°,和/或24.19±0.20°,和/或25.97±0.20°,和/或26.75±0.20°,和/或27.25±0.20°,和/或28.45±0.20°,和/或29.49±0.20°,和/或30.82±0.20°,和/或33.74±0.20°,和/或36.39±0.20°,和/或37.34±0.20°,和/或38.57±0.20°具有特征衍射峰。
在本发明的一些方案中,上述E晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.11±0.20°,10.94±0.20°,11.21±0.20°,12.43±0.20°,13.28±0.20°,15.34±0.20°,18.16±0.20°,22.06±0.20°,23.15±0.20°,23.35±0.20°,24.19±0.20°,25.14±0.20°,25.97±0.20°,26.75±0.20°,27.25±0.20°,28.45±0.20°,29.49±0.20°,30.82±0.20°,33.74±0.20°,36.39±0.20°,37.34±0.20°,38.57±0.20°。
在本发明的一些方案中,上述E晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.11°,10.94°,11.21°,12.43°,13.28°,15.34°,17.39°,18.16°,20.18°,18.94°,20.95°,22.06°,23.15°,23.35°,24.19°,25.14°,25.97°,26.75°,27.25°,28.45°,29.49°,30.16°,30.82°,33.74°,35.45°,36.39°,37.34°,38.57°。
在本发明的一些方案中,上述E晶型的XRPD图谱基本上如图11所示。
在本发明的一些方案中,上述E晶型的XRPD图谱解析数据如表5所示:
表5.E晶型的XRPD图谱解析数据
Figure PCTCN2022088295-appb-000015
在本发明的一些方案中,上述E晶型的热重分析曲线在200℃±3℃时失重达0.79%。
在本发明的一些方案中,上述E晶型的TGA图谱如图12所示。
在本发明的一些方案中,上述E晶型的差示扫描量热曲线在250.4℃±2℃处具有一个吸热峰的起始值。
在本发明的一些方案中,上述E晶型的DSC图谱如图13所示。
本发明还提供了式(I)化合物的A晶型、B晶型、C晶型、D晶型和E晶型在制备治疗痛风和高尿酸血症药物上的应用。
技术效果
式(I)化合物的晶型性质稳定,无吸湿性,成药前景良好。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在含有下列含义。一个特定的短语或术语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文出现商品名时,旨在指代其对应的商品或其活性成分。
本发明的中间体化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明具体实施方式的化学反应是在合适的溶剂中完成的,所述的溶剂须适合于本发明的化学变化及其所需的试剂和物料。为了获得本发明的化合物,有时需要本领域技术人员在已有实施方式的基础上对合成步骤或者反应流程进行修改或选择。
下面会通过实施例具体描述本发明,这些实施例并不意味着对本发明的任何限制。
本发明所使用的所有溶剂是市售的,无需进一步纯化即可使用。
化合物依据本领域常规命名原则或者
Figure PCTCN2022088295-appb-000016
软件命名,市售化合物采用供应商目录名称。
本发明的化合物可以通过本领域技术人员所熟知的常规方法来确认结构,如果本发明涉及化合物的绝对构型,则该绝对构型可以通过本领域常规技术手段予以确证。例如单晶X射线衍射法(SXRD),把培养出的单晶用Bruker D8 venture衍射仪收集衍射强度数据,光源为CuKα辐射,扫描方式:
Figure PCTCN2022088295-appb-000017
扫描,收集相关数据后,进一步采用直接法(Shelxs97)解析晶体结构,便可以确证绝对构型。
本发明所使用的溶剂可经市售获得。本发明采用下述缩略词:-OMOM代表甲基氧甲醚;HPE代表100%抑制率活性;ZPE代表0%抑制率活性;DPBS代表杜氏磷酸缓冲液。
本发明粉末X-射线衍射(X-ray powder diffractometer,XRPD)方法
仪器型号:Bruker公司D2PHASER型X-射线衍射仪
详细的XRPD参数如下:
射线源:Cu,k-Alphal
Figure PCTCN2022088295-appb-000018
光管电压:30kV
光管电流:10mA
发散狭缝:0.6mm
主光路轴向索拉狭缝:2.5°
次级光路轴向索拉狭缝:2.5°
探测器狭缝:5.827°
防散射狭缝:0mm
扫描轴:θs-θd
步长:0.02deg
每步停留时间:0.2秒
扫描角度范围:3-40deg
本发明差热分析(Differential Scanning Calorimeter,DSC)方法
仪器型号:TA DSC Q2000差示扫描量热仪
测试方法:取样品(~1mg)置于DSC铝锅内进行测试,在50mL/min N 2条件下,以10℃/min的升温速率,加热样品从30℃到250℃。
本发明热重分析(Thermal Gravimetric Analyzer,TGA)方法
仪器型号:DISCOVERY TGA 5500热重分析仪
测试方法:取样品(2~5mg)置于TGA铂金锅内进行测试,在25mL/min N 2条件下,以10℃/min的升温速率,加热样品从室温到300℃。
本发明动态蒸汽吸附分析(Dynamic Vapor Sorption,DVS)方法
仪器型号:Intrinsic动态蒸汽吸附仪
测试条件:取样品(10~30mg)置于DVS样品盘内进行测试。
详细的DVS参数如下:
温度:25℃
平衡:dm/dt=0.002%/min(最短:10min,最长:180min)
RH(%)测试梯度:10(90-0-90%),5(90-95%)
RH(%)测试范围:0%-95%-0%
引湿性评价分类如下表6所示:
表6.引湿性评价分类
吸湿性分类 ΔW%
潮解 吸收足量水分形成液体
极具吸湿性 ΔW%≥15%
有吸湿性 15%>ΔW%≥2%
略有吸湿性 2%>ΔW%≥0.2%
无或几乎无吸湿性 ΔW%<0.2%
注:ΔW%表示受试品在25±1℃和80±2%RH下的吸湿增重。
附图说明
图1为式(I)化合物的A晶型的Cu-Kα辐射的XRPD谱图。
图2为式(I)化合物的A晶型的TGA谱图。
图3为式(I)化合物的A晶型的DSC谱图。
图4为式(I)化合物的B晶型的Cu-Kα辐射的XRPD谱图。
图5为式(I)化合物的C晶型的Cu-Kα辐射的XRPD谱图。
图6为式(I)化合物的C晶型的TGA谱图。
图7为式(I)化合物的C晶型的DSC谱图。
图8为式(I)化合物的D晶型的Cu-Kα辐射的XRPD谱图。
图9为式(I)化合物的D晶型的TGA谱图。
图10为式(I)化合物的D晶型的DSC谱图。
图11为式(I)化合物的E晶型的Cu-Kα辐射的XRPD谱图。
图12为式(I)化合物的E晶型的TGA谱图。
图13为式(I)化合物的E晶型的DSC谱图。
图14为式(I)化合物的C晶型的DVS谱图。
具体实施方式
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本文已经详细地描述了本发明,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
实施例1:式(I)化合物A晶型的制备
Figure PCTCN2022088295-appb-000019
步骤1:化合物I-2的合成
将叔丁醇钾(234.26g,2.09mol)加入到二甲亚砜(1200mL)中,室温条件下搅拌至澄清,在15-20℃下滴加化合物I-1(200g,1.49mol)的二甲亚砜(500mL)溶液,滴加完毕继续搅拌40分钟。继续滴加二硫化碳(113.54g,1.49mol,90.11mL),并保持反应液温度不超过20℃,滴加完毕继续搅拌20分钟。缓慢加入叔丁醇钾(100.40g,894.70mmol),保持反应液温度在15-20℃搅拌30分钟。再滴加溴乙酸乙酯(498.05g,2.98mol,329.83mL),并保持反应液温度在15-20℃,在该温度下搅拌1.5小时。加入碳酸钾(206.09g,1.49mol),反应液升温至60℃继续搅拌1.5小时。反应液中加入1L水,用6M盐酸水溶液 调节pH至3~4,用乙酸乙酯(1.5L×2)萃取,合并后的有机相用饱和食盐水(200mL×3)洗涤,减压除去有机溶剂,所得粗产物加入异丙醇(200mL),搅拌均匀,静置15小时,过滤,45℃真空干燥1小时得到化合物I-2。 1H NMR(400MHz,CDCl 3)δ:4.32(q,J=7.2Hz,2H),4.19(q,J=7.2Hz,2H),3.56(s,2H),3.25(t,J=6.8Hz,2H),3.19(t,J=14.4Hz,2H),2.26-2.17(m,2H),1.37(t,J=7.2Hz,3H),1.27(t,J=7.2Hz,3H).MS m/z=364.8[M+H]+。
步骤2:化合物I-3的合成
将化合物I-2(282g,773.82mmol)溶于乙醇(3.5L)中,加入雷尼镍(99.45g,1.16mol),氮气置换三次,在2.5MPA氢气压力下,85℃搅拌反应48小时。冷却,氮气保护下经硅藻土过滤,滤液减压除去溶剂,得到化合物I-3,该化合物不经进一步纯化直接用于下一步反应。 1H NMR(400MHz,CDCl 3)δ:7.09(s,1H),4.26(q,J=7.2Hz,2H),3.20(t,J=6.8Hz,2H),3.12(t,J=14.4Hz,2H),2.20-2.10(m,2H),1.30(t,J=6.8Hz,3H).MS m/z=247.0[M+H]+。
步骤3:化合物I-4的合成
将化合物I-3(40.00g,162.42mmol)溶于甲醇(200mL)中,加入氢氧化钠(12.99g,324.84mmol)的200mL水溶液,反应液升温至50℃继续搅拌2小时。减压除去有机溶剂,残留物中加入150mL水,用6M盐酸水溶液调节pH至2~3,有大量白色固体析出。过滤,滤饼用100mL水洗涤,用50mL石油醚洗涤,50℃下真空干燥3小时得到化合物I-4。 1H NMR(400MHz,CD 3OD)δ:7.38(s,1H),3.33-3.17(1m,4H),2.28-2.21(m,2H)。
步骤4:化合物I-5的合成
将化合物I-4(35.0g,160.39mmol)溶于四氢呋喃(200mL)中,加入羰基二咪唑(33.81g,208.51mmol),反应液在氮气保护下搅拌2小时,加入氨水(31.23g,240.58mmol,34.32mL),反应液继续搅拌15小时。减压除去有机溶剂,所得残留物中加入300mL水,搅拌10分钟,过滤,滤饼用100mL水洗涤,55℃下真空干燥2.5小时,得化合物I-5。 1H NMR(400MHz,CDCl 3)δ:7.09(s,1H),5.72(brs,2H),3.30-3.18(m,4H),2.29-2.19(m,2H)。
步骤5:化合物I-6的合成
将化合物I-5(31g,142.70mmol)溶于N,N-二甲基甲酰胺(200mL)中,分批缓慢加入N-溴代丁二酰亚胺(27.94g,156.97mmol),反应液在20℃下继续搅拌2小时。将反应液缓慢倒入600mL搅拌的水中,有大量固体析出,搅拌10分钟,过滤,滤饼用200mL水洗涤,用100mL石油醚洗涤,50℃下真空干燥2小时得到化合物I-6。 1H NMR(400MHz,CDCl 3)δ:5.62(brs,2H),3.25(t,J=7.2Hz,2H),3.04(t,J=14.0Hz,2H),2.26-2.18(m,2H)。
步骤6:化合物I-7的合成
将化合物I-6(48g,162.09mmol)和三乙胺(32.80g,324.18mmol,45.12mL)加入到乙酸乙酯(250mL)中,氮气保护下冷却到0℃,滴加三氟乙酸酐(44.26g,210.72mmol,29.31mL),反应液在该温度下继续搅拌1小时,升温至20℃继续搅拌0.5小时。反应液用250mL乙酸乙酯稀释,依次用水(100mL×2),饱和碳酸氢钠溶液(150mL)和饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,减压除去有机溶剂,得到化合物I-7,该化合物不经进一步纯化直接用于下一步反应。 1H NMR(400MHz,CDCl 3)δ:3.13-2.97(m,4H),2.30-2.20(m,2H)。
步骤7:化合物I-8的合成
将化合物I-7(6.0g,21.57mmol),化合物I-7-1(7.60g,23.73mmol)和无水磷酸钾(9.16g,43.15mmol)加入到乙二醇二甲醚(60mL)和水(12mL)中,氮气保护下,加入Pd(dppf)Cl 2(394.64mg,539.34μmol),反应液在氮气保护下升温至85℃继续搅拌15小时。冷却,向反应液中加入20mL水和100mL乙酸乙酯,搅拌10分钟,过滤,滤液分出有机相,水相用乙酸乙酯(30mL×3)萃取,合并后的有机相用饱和食盐水(30mL)洗涤,无水硫酸钠干燥,过滤,减压除去有机溶剂。所得粗产物加入乙酸乙酯(80mL),依次加入活性炭(4g)和除钯硅胶(4g),升温至80℃继续搅拌1小时,冷却,经硅藻土过滤,减压除去有机溶剂。所得粗品继续用叔丁基甲基醚(25mL)在25℃打浆0.5小时,过滤,所得滤饼经45℃真空干燥1小时,得到化合物I-8。 1H NMR(400MHz,CDCl 3)δ:11.18(s,1H),7.86(d,J=8.0Hz,1H),7.01(d,J=1.6Hz,1H),6.92-6.90(m,1H),3.24(t,J=14.4Hz,2H),3.12(t,J=6.8Hz,2H),2.36-2.26(m,2H),1.64(s,9H)。
步骤8:式(I)化合物A晶型的合成
将化合物I-8(32g,81.75mmol)加入到三氟乙酸(250mL)中,反应液在20℃搅拌反应1小时。减压除去三氟乙酸,所得残留物中加入水(300mL),在室温下打浆20分钟至完全分散,过滤,滤饼用水(200mL)洗涤,在45℃真空干燥1小时,得到式(I)化合物的A晶型。 1H NMR(400MHz,CD 3OD)δ:8.03-7.96(m,1H),7.12-7.06(m,2H),3.36-3.29(m,2H),3.16-3.07(m,2H),2.44-2.30(m,2H)。A晶型的XRPD图如图1所示,TGA图如图2所示,DSC图如图3所示。
实施例2:式(I)化合物的制备
Figure PCTCN2022088295-appb-000020
步骤1:化合物I-4的合成
将化合物I-3(2.5g,10.15mmol)溶解于甲醇(10mL)中,然后向其中加入水(10mL)和氢氧化钠(1.62g,40.61mmol)。所得反应液置于40℃油浴中搅拌反应2小时。将反应液减压浓缩去一半,残留物中加入水(5mL),搅拌下用6M盐酸调节pH=2~3有大量白色固体析出。过滤收集固体,50℃下真空干燥3小时得到化合物I-4。 1H NMR(400MHz,CDCl 3)δ:7.28(s,1H),3.30(t,J=7.0Hz,2H),3.22(t,J=14.3Hz,2H),2.25(tt,J=6.8,13.4Hz,2H)。
步骤2:化合物I-5的合成
将化合物I-4(500mg,2.29mmol)溶解于二氯甲烷(5mL)中,然后加入碳基二咪唑(445.83mg,2.75mmol),所得反应液在氮气保护下搅拌反应1小时,然后将此反应液倒入剧烈搅拌的氨水(2.87g,22.91mmol,3.15mL,含量28%)的四氢呋喃(5mL)中,搅拌反应30分钟。将反应液在25℃下减压浓缩,残留物用乙酸乙酯(20mL×3)萃取,合并有机相,旋干得到粗品。粗品经硅胶柱层析(乙酸乙酯/石油醚=0~45%)得到化合物I-5。 1H NMR(400MHz,CDCl 3)δ:7.10(s,1H),5.58(br s,2H),3.28(t,J=6.9Hz,2H),3.21(t,J=14.4Hz,2H),2.24(tt,J=6.9,13.4Hz,2H)。
步骤3:化合物2-4的合成
将化合物I-5(320mg,1.47mmol)溶解于DMF(3mL)中,所得溶液冷却到0℃,然后加入氰尿酰氯(298.81mg,1.62mmol),最终反应液在氮气保护下搅拌反应2小时(期间有大量白色固体析出来)。将反应液用乙酸乙酯(50mL)稀释,然后用水(10mL×3)和饱和食盐水(10mL)洗涤,有机相用适量无水硫酸钠干燥,过滤除去干燥剂。滤液减压除去溶剂得到粗品化合物2-4,粗产物直接用于下一步反应。 1H NMR:(400MHz,CDCl 3)δ:7.25(s,1H),3.21(t,J=14.3Hz,2H),3.09(t,J=6.9Hz,2H),2.28(tt,J=6.8,13.2Hz,2H)。
步骤4:化合物2-5的合成
将化合物2-4(290mg,1.46mmol)溶解于乙酸(2mL)中,然后加入液溴(348.94mg,2.18mmol,112.56 μL),所得反应液室温25℃搅拌反应15小时。将反应液旋干,残留物中加入乙酸乙酯(30mL),然后用饱和碳酸钠调节pH至7~8,分出有机相,水相用乙酸乙酯(30mL)萃取。合并有机相,减压浓缩得到粗品。粗品经硅胶柱层析(乙酸乙酯/石油醚=0~5%)得到化合物I-7。 1H NMR:(400MHz,CDCL 3)δ:3.10-2.99m,4H),2.32-2.19(m,2H)。
步骤5:化合物2-6的合成
将化合物I-7(140mg,503.39μmol),硼酸酯2-5A(178.39mg,553.73μmol),碳酸钾(139.14mg,1.01mmol)加入到二氧六环(3mL)和水(0.6mL)中,然后加入1,1′-双(二苯基膦基)二茂铁]二氯化钯(Pd(dppf)Cl2)(36.83mg,50.34μmol),然后在氮气保护下置于105℃油浴中搅拌反应15小时。将反应液旋干得粗品,粗品经硅胶柱层析(乙酸乙酯/石油醚=0~25%)得到化合物2-6。 1H NMR:(400MHz,CHCl 3)δ:7.87(d,J=8.0Hz,1H),7.28(d,J=1.6Hz,1H),7.10(dd,J=1.6,8.0Hz,1H),5.0(s,2H),3.3(s,3H),3.55(s,3H),3.23(t,J=14.4Hz,2H),3.13(t,J=6.8Hz,2H),2.39-2.24(m,2H)。
步骤6:化合物2-7的合成
将化合物2-6(105mg,266.90μmol)溶解于四氢呋喃(2mL)中,然后加入一水合氢氧化锂水溶液(2M,533.80μL),所得反应液室温25℃搅拌反应15小时。将反应液在40℃旋去四氢呋喃,残留物用2M盐酸调节pH=2-3有大量固体析出,加入乙酸乙酯(50mL)搅拌,分出乙酸乙酯,旋干得化合物2-7,粗品直接用于下一步反应。
步骤7:式(I)化合物的合成
将化合物2-7(105mg,276.77μmol)溶解于甲醇(1mL)中,然后加入盐酸(60.55mg,1.66mmol,59.36μL),反应液变浑浊,在25℃下搅拌反应3小时。将反应液在40℃旋干,所得残留物经制备型高效液相分离纯化(色谱柱:VenusilASB Phenyl 150*30mm*5μm;流动相:[水(0.05%HCl)-ACN];ACN%:60%-90%,9min)得到式(I)化合物。 1H NMR(400MHz,CD 3OD)δ:8.00(d,J=8.0Hz,1H),7.13-7.04(m,2H),3.35-3.32(m,2H),3.12(t,J=7.2Hz,2H),2.45-2.30(m,2H);MS(ESI)m/z:334.02[M-H]-。
实施例3:式(I)化合物B晶型的制备
将式(I)化合物的A晶型(20mg,0.06mmol)加入到二氯甲烷(1mL)中,然后在25℃下继续搅拌120小时。过滤,滤饼在50℃真空下干燥2-5小时,得到式(I)化合物的B晶型。B晶型的XRPD图如图4所示。
实施例4:式(I)化合物C晶型的制备
将式(I)化合物的A晶型(1.0g,2.98mmol)加入到乙酸乙酯(5mL)和正庚烷(5mL)的混合溶剂中,然后在25℃下继续搅拌72小时。过滤,滤饼在45℃真空下干燥2小时,得到式(I)化合物的C晶型。C晶型的XRPD图如图5所示,TGA图如图6所示,DSC图如图7所示。
实施例5:式(I)化合物D晶型的制备
称取式(I)化合物的A晶型约20mg加入到四氢呋喃(0.4mL)和水(0.4mL)混合溶剂中,混合液在50℃下搅拌至固体溶解,降温至13℃搅拌72小时。过滤,滤饼在45℃真空下干燥2小时,得到式(I)化合物的D晶型。D晶型的XRPD图如图8所示,TGA图如图9所示,DSC图如图10所示。
实施例6:式(I)化合物E晶型的制备
将式(I)化合物的A晶型(1.0g,2.98mmol)加入到四氢呋喃(3.3mL)和水(6.6mL)混合溶剂中,所得混合物在25℃搅拌72小时。过滤,滤饼在45℃真空下干燥2小时,得到式(I)化合物的E晶型。E晶型的XRPD图如图11所示,TGA图如图12所示,DSC图如图13所示。
实施例7:式(I)化合物C晶型的吸湿性研究
实验材料:
DVS Intrinsic动态蒸汽吸附仪
实验方法:
取式(I)化合物C晶型10~30mg置于DVS样品盘内进行测试。
实验结果:
式(I)化合物C晶型的DVS谱图如图14所示,ΔW=0.196%。
实验结论:
式(I)化合物C晶型在25℃和80%RH下的吸湿增重为0.196%,无吸湿性。
实施例8:式(I)化合物C晶型的固体稳定性试验
依据《原料药与制剂稳定性试验指导原则》(中国药典2015版四部通则9001),考察式(I)化合物C晶型在高温(60℃,敞口),高湿(室温/相对湿度92.5%,敞口)及强光照(5000lx,密闭)条件下的稳定性。
平行称取式(I)化合物C晶型12份,每份大约1.5g,置于扁形称量瓶(70*35mm)或一次性培养皿中,铺成薄薄一层。分别放置在高温(60℃)、高湿(25℃/92.5%湿度)、高温高湿(40℃/75%湿度)和光照稳定性条件下。高温及高湿条件下放置的样品用铝箔纸封瓶口,并在铝箔纸上扎些小孔,保证样品能与环境空气充分接触;强光照条件下放置的样品用石英玻璃盖密封。在高温(60℃)和高湿(92.5%湿度,室温)条件下放置的样品于第5天,10天取样检测(外观、有关物质和含量),在高温高湿(40℃/75%湿度)条件下放置的样品于第1,2,3个月取样检测(外观、有关物质和含量),光照射条件下放置的样品于总光照度达到1.2×10 6Lux·hr时取样检测,检测结果与0天的初始检测结果进行比较,试验结果见下表7所示:
表7式(I)化合物的固体稳定性试验结果
Figure PCTCN2022088295-appb-000021
Figure PCTCN2022088295-appb-000022
结论:式(I)化合物C晶型在影响因素高温、高湿、强光照条件以及加速条件下具有良好的稳定性。
生物测试数据:
实验例1:黄嘌呤氧化酶抑制活性测试
1.实验目的
评价化合物对黄嘌呤氧化酶活性抑制的水平。
2.试剂
本研究使用的主要试剂包括黄嘌呤(Sigma,货号:X4002-1G,批号:SLBB5664V)和黄嘌呤氧化酶(Sigma,货号:X4376-5UN,批号:SLBQ1518V)。
3.仪器
本研究所使用主要仪器为多功能酶标仪。
4.实验方法
1)在化合物背景对照孔与HPE(100%抑制率活性)阳性对照孔中加入50μL杜氏磷酸缓冲液(DPBS)。
2)将2U/mL的黄嘌呤氧化酶用DPBS稀释至0.04U/mL,在化合物活性测试孔与ZPE(0%抑制率活性)阴性对照孔中加入50μL黄嘌呤氧化酶。
3)将化合物用DMSO以3倍梯度稀释8个点,然后将化合物用DPBS稀释,每孔加入50μL,三复孔。HPE(100%抑制率活性)阳性对照孔与ZPE(0%抑制率活性)阴性对照孔每孔加入50μL DPBS。
4)将200mM的黄嘌呤用DPBS稀释至300μM。每孔加入100μL黄嘌呤,室温反应30分钟,每孔黄嘌呤氧化酶的终浓度为0.01U/mL,每孔DMSO的终浓度为0.5%。HPE(100%抑制率活性)阳性对照孔含 黄嘌呤但不含黄嘌呤氧化酶,ZPE(0%抑制率活性)阴性对照孔含黄嘌呤和黄嘌呤氧化酶,化合物背景对照孔含不同浓度的化合物和黄嘌呤但不含黄嘌呤氧化酶。
5)用分光光度计检测290nm处检测吸光度值。
6)数据分析:按下列公式计算各孔对黄嘌呤氧化酶的抑制率:
Figure PCTCN2022088295-appb-000023
*OD test sample为化合物活性测试孔的光密度(optical density)值,含化合物、黄嘌呤和黄嘌呤氧化酶;
OD compound control为不同浓度的待测化合物背景光密度(optical density)值,含化合物和黄嘌呤,不含黄嘌呤氧化酶;
OD ZPE:为无抑制活性对照孔光密度(optical density)值的平均值,含0.5%DMSO、黄嘌呤和黄嘌呤氧化酶;
OD HPE为100%抑制活性对照孔光密度(optical density)值的平均值,含0.5%DMSO和黄嘌呤,不含黄嘌呤氧化酶。
7)使用GraphPad Prism软件对化合物的抑制率数据(抑制率%)进行log(agonist)vs.response--Variable slope非线性拟合分析,得到化合物的IC 50值,拟合公式为:
Y=Bottom+(Top-Bottom)/(1+10^((LogIC 50-X)*HillSlope))
5.实验结果
实验结果见表8。
表8.化合物黄嘌呤氧化酶抑制活性测试结果
化合物编号 XO IC 50(nM)
式(I)化合物 20.7
实验结论:本发明化合物具有良好的黄嘌呤氧化酶抑制活性。
实验例2:化合物对尿酸摄取的抑制活性测试
1.实验目的
本研究使用人Urat1基因稳转细胞株评价受试化合物对尿酸摄取的抑制活性。
2.实验材料
2.1 细胞株
人Urat1基因稳转细胞株由上海药明康德新药开发有限公司构建。人Urat1基因稳转细胞株(Urat1-MDCK)是MDCK细胞转染了人Urat1基因,并经G418筛选得到。细胞株在含10%胎牛血清(FBS)、100U/ml青霉素、100μg/ml链霉素、2mML-谷氨酰胺和1%的非必需氨基酸以及250μg/ml G418的MEM培养液中培养。
2.2 试剂
本研究使用的主要试剂包括14C-尿酸(ARC,货号:ARC-0513,批号:200122)。
2.3 仪器
本研究所使用主要仪器为液体闪烁分析仪(Perkin Elmer,Tri-Carb 4910TR)。
3.实验方法
3.1 细胞铺板
3.1.1 将培养于T150细胞培养瓶的Urat1-MDCK细胞用0.25%胰蛋白酶消化后,用新鲜培养液稀释调整到200,000细胞/毫升的悬液。
3.1.2 将细胞种入48孔细胞培养板,每孔0.5ml,细胞终密度为100,000细胞/孔。
3.1.3 将细胞培养板放置在37℃、5%CO 2培养箱中培养过夜。
3.2 化合物处理及检测
3.2.1 将化合物用DMSO以5倍梯度稀释4个点,稀释后的浓度为200×检测终浓度。然后将化合物用HBSS缓冲液稀释10倍。
3.2.2 将10mM的14C-尿酸浓储液用HBSS缓冲液稀释至1mM。
3.2.3 细胞培养板过夜培养后,将培养板中细胞培养液去除,用HBSS缓冲液清洗细胞3次后,每孔加入90μl HBSS缓冲液。
3.2.4 每孔加5μl稀释好的化合物,将细胞放到37℃、5%CO 2培养箱中培养20分钟。每孔DMSO的含量为0.5%。用供试化合物(10μM)为100%抑制率对照,0.5%DMSO为0%抑制率对照。
3.2.5 每孔加5μl稀释好的14C-尿酸到细胞板里,每孔尿酸的终浓度为50μM。将细胞放到37℃、5%CO 2培养箱中培养15分钟。然后用预冷的HBSS缓冲液清洗细胞3次。
3.2.6 每孔加150μl 0.1M NaOH裂解细胞10分钟。
3.2.7 将细胞裂解液收集到液闪检测瓶中,每瓶中再加入2ml闪烁液待测。
3.2.8 用液体闪烁分析仪检测每管样品的14C含量。
3.2.9 数据分析:
抑制率%=(HC-CPD)/(HC-LC)×100%*
*CPD为化合物孔的放射性信号值;
HC为0%抑制率对照孔的放射性信号平均值;
LC为100%抑制率对照孔的放射性信号平均值。
3.2.10 使用GraphPad Prism软件,采用非线性回归log(inhibitor)vs.response--Variable slope方法按如下公式拟合剂量效应曲线,并得出化合物的IC 50值和IC 90值。
Y=Bottom+(Top-Bottom)/(1+10^((LogIC 50-X)*HillSlope))
4.实验结果
实验结果见表9。
表9.化合物对尿酸摄取的抑制活性
化合物编号 IC 50(μM)
式(I)化合物 2.24
实验结论:本发明化合物具有良好的尿酸摄取的抑制活性
实验例3:肝细胞中的代谢稳定性(HMS)研究
1.实验目的
测试供试品在人和大鼠肝细胞中的代谢稳定性。
2.实验材料
2.1 供试化合物(10mM),对照品:7-乙氧基香豆素(7-Ethoxycoumarin,30mM),7-羟基基香豆素(7-Hydroxycoumarin,对照品,30mM)
2.2 细胞
细胞信息见表10。
表10.细胞信息
肝细胞 细胞活力 供应商Cat No.
大鼠肝细胞 85% BioreclamationIVTM00005
人肝细胞 84% Bioreclamation IVTX008001
2.3缓冲体系:
解冻培养基:威廉姆斯的培养基E含5%胎牛血清和30%Percoll溶液及其他辅助用品。
孵育培养基:威廉姆斯培养基E(不含酚红),其中包含2mM L-谷氨酰胺和25mM羟乙基哌嗪乙硫磺酸。
终止溶液:乙腈中含有200ng/mL的甲苯磺丁酰胺和拉贝洛尔作为内标。
稀释溶液:超纯水。
3.实验方法
1)将准确量的阳性对照化合物溶解在二甲基亚砜(DMSO)中,配制成30mM溶液。
2)在96孔板上用DMSO将10mM测试化合物和30mM阳性对照化合物稀释至1mM和3mM。
3)用乙腈将1mM的测试化合物和3mM的阳性对照化合物稀释到100μM和300μM的定量溶液中。
4)将冻存的细胞融化,分离并悬浮在培养液中,然后用预热的培养液稀释至0.5×10 6cells/mL。
5)在96孔板中添加198μL预热的细胞悬液。
6)在一组预先标记的96孔板中转移100μL终止溶液(乙腈含有200ng/mL的甲苯磺丁酰胺和200ng/mL的拉贝洛尔作为内标)。
7)向96孔板的每个孔中一式两份加入2μL 100μM测试化合物或300μM阳性对照定量溶液。
8)对于T0样品,混合以达到均匀悬浮约1分钟,然后立即将每个样品20μL转移到含有100μL冰冷终止溶液的孔中,然后混合。
9)在95%加湿的培养箱中,在5%CO2中于37℃孵育所有平板,以约600rpm的恒定摇动开始反应。
10)在15、30、60和90分钟时,混合样品,然后在每个时间点将20μL每个样品转移到含有100μL冰冷终止溶液的孔中,然后混合。
11)通过在每个孔中添加除细胞悬液以外的相同成分,在T0和T90制备培养基对照(MC)样品板(标记为T0-MC和T90-MC)。生成最终浓度表。
12)在每个相应的时间点,通过从培养箱中移出平板并与100μL冰冷的终止溶液混合来终止反应。
13)立即在平板振荡器上以500rpm涡旋振荡平板10分钟。然后,将所有样品板在4℃下以3220xg离心20分钟。
14)离心后,将35μL/孔的样品板中的上清液转移至另一组预先标记的96孔板中,该板包含70μL超纯水。
15)将分析板密封并在4℃下储存,直到LC-MS-MS分析为止。
通过下面公式求得受试化合物和对照化合物的剩余率:
Figure PCTCN2022088295-appb-000024
通过绘制时间对剩余率的对数作图计算受试化合物和对照化合物在肝细胞中的消除速率常数k,以消除速率k求得半衰期(T 1/2)和体外固有清除率(CL int),公式如下:
T 1/2=0.693/k
CL int(hep)=k/每毫升细胞量(million cells/mL)
CL int(liver)=CL int(hep)×肝重体重比×每克肝脏中的肝细胞数量
公式中各种属的参数如下表11:
表11.各种属参数
Figure PCTCN2022088295-appb-000025
4.实验结果
结果见表12。
表12化合物在人和大鼠肝固有清除率
Figure PCTCN2022088295-appb-000026
实验结论:本发明化合物在人肝细胞中为中等清除,在大鼠肝细胞中为高清除。
实测例4.膜渗透性MDR1测试
1.实验目的:
MDR1-MDCKII细胞是一种转染了人的MDR1基因的Madin-Darby犬肾细胞,该细胞能稳定高表达P-gp。本研究的目的是测试化合物穿过MDR1-MDCK II细胞模型的双向渗透性,并评估其是否被外排转运。
2.细胞培养:
将MDR1-MDCK II细胞(从荷兰癌症研究所的Piet Borst获得)以2.5 x 10 5细胞/mL的密度接种到96孔插入系统中的聚乙烯膜(PET)上,直到4-7天,形成融合细胞单层。
3.实验方法
将测试化合物用运输缓冲液(HBSS,含DMSO的10mM Hepes,pH7.4)稀释,浓度为2μM(DMSO<1%),并涂在细胞单层的顶侧或基底外侧。重复测定从A到B方向或B到A方向的待测化合物,地高辛从A到B方向或B到A方向也以10μM进行测试,而纳多洛尔和美托洛尔在A到B中以2μM进行测试将板在37±1℃的CO 2培养箱中于饱和湿度为5%的CO 2中孵育2.5小时,不摇动,此外,还测定了每种化合物的流出比,对测试和参考化合物进行了定量。根据分析物/IS的峰面积比通过LC/MS/MS分析。转运测定后,采用路西法黄排斥测定来确定细胞单层完整性。从顶室和基底外侧室中除去缓冲液,然后分别在转运缓冲液中添加75μL 100μM萤光黄和在顶端和基底外侧室中添加250μL输送缓冲液。将板在37℃,5%CO 2和饱和湿度下孵育30分钟,不要摇动。孵育30分钟后,从顶端提取20μL萤光素黄色样品,然后添加60μL运输缓冲液。然后从基底外侧采集80μL的萤光黄样品。用Envision酶标仪在425/528nm(激发/发射)下测量荧光素黄的相对荧光单位(RFU)。
4.数据计算
采用如下公式计算表观渗透系数(P app,cm/s),外排率以及回收率。
表观渗透系数(P app,cm/s)采用如下公式计算:
P app=(dC r/d t)×V r/(A×C 0)
dC r/d t是化合物在单位时间内接收端的累积浓度(μM/s);V r是接收端溶液的体积(顶端和基底端的溶液体积分别为0.075mL和0.250mL);A是胞单层的相对表面积(0.0804cm 2);C 0是给药端供试品的起始浓度(nM)或对照品的峰面积比值。
外排比采用如下公式计算:
外排比=P app(BA)/P app(AB)
回收率采用如下公式计算:
%回收率=100×[(V r×C r)+(V d×C d)]/(V d×C 0)
C 0是给药端供试品的起始浓度(nM)或对照品的峰面积比值;V d是给药端的体积(顶侧为0.075mL,基底侧为0.250mL);C d和C r分别为给药端和接收端供试品的终浓度(nM)或对照品的峰面积比值。
基底外侧孔中的萤光黄的百分比使用以下公式计算:
Figure PCTCN2022088295-appb-000027
其中RFUApical和RFUBasolateral分别是顶端和基底外侧孔中萤光黄的相对荧光单位值;VApical和VBasolateral孔分别是顶孔和基底外侧孔的体积(0.075mL和0.25mL)。%荧光黄应小于2。
5.实验结果
结果见表13。
表13化合物对MDR1细胞膜渗透性数据
化合物编号 P app(AB)(10 -6cm/s) P app(BA)(10 -6cm/s) 外排比
式(I)化合物 26.42 6.63 0.25
实验结论:本发明化合物为高渗透性化合物。
实测例5.细胞色素P450同工酶抑制活性测试
1.实验目的
测定受试化合物对人细胞色素P450同工酶不同亚型的抑制活性。
2.实验方法
准备受试化合物、标准抑制剂(100×最终浓度)和混合底物工作溶液;将冷冻于-80℃冰箱的微粒体(购自Corning Inc)取出解冻。将20μL的待测化合物和标准抑制剂溶液加至相应孔位,同时将20μL相应的溶剂加至无抑制剂对照孔位(NIC)和空白对照孔位(Blank)孔位;其次将20μL混合底物溶液加至相应孔位,Blank孔位除外(将20μL磷酸缓冲液(PB)加至Blank孔位);准备人肝微粒体溶液(使用后标记日期立刻放回冰箱),随即将158μL人肝微粒体溶液加至所有孔位;将上述样品板放入37℃水浴预孵育,随即准备辅酶因子(NADPH)溶液;10分钟后,添加20μL NADPH溶液到所有孔位,样品板摇匀后,放入37℃水浴孵育10分钟;在相应时间点,加入400μL冷的乙腈溶液(内标为200ng/mL甲苯磺丁脲和拉贝洛尔)终止反应;样品板混合均匀后,4000rpm离心20分钟,沉淀蛋白质;取200μL上清加至100μL水中,摇匀后送LC/MS/MS检测。
3.实验结果
结果见表14。
表14化合物对P450同工酶抑制的IC 50
Figure PCTCN2022088295-appb-000028
实验结论:本发明化合物对CYP1A2、CYP2C19、CYP2D6和CYP3A4-M的抑制活性很低,对CYP2C9 具有中等抑制活性。
实测例6:SD大鼠体内药代动力学
1.实验目的:
测试化合物在SD大鼠体内药代动力学
2.实验材料:
Sprague Dawley大鼠(雄性,180-350g,6~10周龄,北京维通利华)
3.实验方法:
将化合物与5%DMSO/10%Solutol/85%水混合,搅拌并涡旋,制备得到0.6mg/mL的澄清溶液,用于注射组给药,微孔滤膜过滤后备用。化合物与5%DMSO/10%Solutol/85%水)混合,搅拌并涡旋,制备得到1mg/mL的澄清溶液,用于口服给药。将6只雄性SD大鼠分为2组。第1组动物单次静脉给药,剂量为3mg/kg,溶媒为5%DMSO/10%Solutol/85%水,给药体积为5mL/kg。第2组动物单次灌胃口服10mg/kg的受试化合物,口服溶媒为5%DMSO/10%Solutol/85%水,口服体积为10mL/kg。在给药后0(仅灌胃口服组)、0.083(仅静脉注射)、0.25、0.5、1、2、4、8和24小时采集全血。全血3200g,4℃离心10min后得到血浆,用LC/MS/MS法测定血浆中化合物和尿酸(仅灌胃口服组)的浓度,并用PhoenixWinNonlin软件计算药代参数,如达峰浓度,达峰时间,清除率,半衰期,药时曲线下面积,生物利用度等。
实验结果如下表15:
表15.式(I)化合物在大鼠上的药代动力学数据
Figure PCTCN2022088295-appb-000029
实验结论:本发明化合物具有良好的药代动力学性质,口服生物利用度高。其中,C 0为起始浓度,T 1/2为消除半衰期,Vd ss为稳态表观分布容积,Cl为总清除率,AUC 0-last为从0时间到最后一个可定量时间点的血浆浓度-时间曲线下面积,AUC 0-inf为从0时间到外推至无穷大时的血浆浓度-时间曲线下面积,C max为达峰浓度,T max为达峰时间。

Claims (19)

  1. 式(I)化合物的C晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:13.20±0.20°,15.26±0.20°,18.08±0.20°,21.99±0.20°,25.07±0.20°,25.38±0.20°,26.66±0.20°,30.70±0.20°,
    Figure PCTCN2022088295-appb-100001
  2. 根据权利要求1所述的C晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.03±0.20°,13.20±0.20°,15.26±0.20°,18.08±0.20°,21.99±0.20°,25.07±0.20°,25.38±0.20°,26.66±0.20°,28.38±0.20°,29.41±0.20°,30.70±0.20°,38.53±0.20°。
  3. 根据权利要求2所述的C晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:13.20°,15.26°,18.08°,21.99°,25.07°,25.38°,26.66°,30.70°。
  4. 根据权利要求3所述的C晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.66°,9.03°,11.13°,13.20°,13.70°,15.26°,17.25°,18.08°,18.92°,20.88°,21.99°,23.41°,24.09°,25.07°,25.38°,25.99°,26.66°,27.17°,28.38°,29.41°,29.98°,30.70°,31.02°,31.72°,33.67°,35.40°,36.35°,36.74°,37.26°,38.53°,39.80°。
  5. 根据权利要求1~4任意一项所述的C晶型,其XRPD图谱基本上如图5所示。
  6. 根据权利要求1~4任意一项所述的C晶型,其热重分析曲线在200℃±3℃时失重达1.21%。
  7. 根据权利要求6所述的C晶型,其TGA图谱如图6所示。
  8. 根据权利要求1~4任意一项所述的C晶型,其差示扫描量热曲线在250.0℃±2℃处具有一个吸热峰的起始值。
  9. 根据权利要求8所述的C晶型,其DSC图谱如图7所示。
  10. 式(I)化合物的E晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.11±0.20°,12.43±0.20°,13.28±0.20°,15.34±0.20°,18.16±0.20°,22.06±0.20°,23.15±0.20°,25.14±0.20°,
    Figure PCTCN2022088295-appb-100002
  11. 根据权利要求10所述的E晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.11±0.20°, 11.21±0.20°,12.43±0.20°,13.28±0.20°,15.34±0.20°,18.16±0.20°,22.06±0.20°,23.15±0.20°,25.14±0.20°,25.97±0.20°,26.75±0.20°,27.25±0.20°。
  12. 根据权利要求11所述的E晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.11°,12.43°,13.28°,15.34°,18.16°,22.06°,23.15°,25.14°。
  13. 根据权利要求12所述的E晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.11°,10.94°,11.21°,12.43°,13.28°,15.34°,17.39°,18.16°,18.94°,20.18°,20.95°,22.06°,23.15°,23.35°,24.19°,25.14°,25.97°,26.75°,27.25°,28.45°,29.49°,30.16°,30.82°,33.74°,35.45°,36.39°,37.34°,38.57°。
  14. 根据权利要求10~13任意一项所述的E晶型,其XRPD图谱基本上如图11所示。
  15. 根据权利要求10~13任意一项所述的E晶型,其热重分析曲线在200℃±3℃时失重达0.79%。
  16. 根据权利要求15所述E晶型,其TGA图谱如图12所示。
  17. 根据权利要求10~13任意一项所述的E晶型,其差示扫描量热曲线在250.4℃±2℃处具有一个吸热峰的起始值。
  18. 根据权利要求17所述E晶型,其DSC图谱如图13所示。
  19. 根据权利要求1~9任意一项所述的C晶型或权利要求10~18任意一项所述的E晶型在制备治疗痛风和高尿酸血症药物上的应用。
PCT/CN2022/088295 2021-04-29 2022-04-21 噻吩衍生物的晶型及其制备方法 WO2022228280A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BR112023022532A BR112023022532A2 (pt) 2021-04-29 2022-04-21 Forma cristalina do derivado de tiofeno e método de preparação do mesmo
EP22794751.2A EP4332097A1 (en) 2021-04-29 2022-04-21 Crystal form of thiophene derivative and preparation method therefor
AU2022265937A AU2022265937A1 (en) 2021-04-29 2022-04-21 Crystal form of thiophene derivative and preparation method therefor
KR1020237041057A KR20240004711A (ko) 2021-04-29 2022-04-21 티오펜 유도체의 결정형 및 이의 제조 방법
CN202280015619.2A CN116867773A (zh) 2021-04-29 2022-04-21 噻吩衍生物的晶型及其制备方法
MX2023012804A MX2023012804A (es) 2021-04-29 2022-04-21 Forma cristalina de derivado de tiofeno y metodo de preparacion de la misma.
CA3216757A CA3216757A1 (en) 2021-04-29 2022-04-21 Crystal form of thiophene derivative and preparation method therefor
JP2023566003A JP2024516222A (ja) 2021-04-29 2022-04-21 チオフェン誘導体の結晶及びその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110472705.3 2021-04-29
CN202110472705 2021-04-29
CN202111112439.X 2021-09-18
CN202111112439 2021-09-18

Publications (1)

Publication Number Publication Date
WO2022228280A1 true WO2022228280A1 (zh) 2022-11-03

Family

ID=83847813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088295 WO2022228280A1 (zh) 2021-04-29 2022-04-21 噻吩衍生物的晶型及其制备方法

Country Status (9)

Country Link
EP (1) EP4332097A1 (zh)
JP (1) JP2024516222A (zh)
KR (1) KR20240004711A (zh)
CN (1) CN116867773A (zh)
AU (1) AU2022265937A1 (zh)
BR (1) BR112023022532A2 (zh)
CA (1) CA3216757A1 (zh)
MX (1) MX2023012804A (zh)
WO (1) WO2022228280A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010044403A1 (ja) * 2008-10-15 2010-04-22 キッセイ薬品工業株式会社 5員環ヘテロアリール誘導体及びその医薬用途
CN106478500A (zh) * 2015-09-02 2017-03-08 广东东阳光药业有限公司 羧酸取代的(杂)芳环类衍生物及其制备方法和用途
WO2021083319A1 (zh) * 2019-10-30 2021-05-06 南京明德新药研发有限公司 作为黄嘌呤氧化酶抑制剂的噻吩衍生物及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010044403A1 (ja) * 2008-10-15 2010-04-22 キッセイ薬品工業株式会社 5員環ヘテロアリール誘導体及びその医薬用途
CN106478500A (zh) * 2015-09-02 2017-03-08 广东东阳光药业有限公司 羧酸取代的(杂)芳环类衍生物及其制备方法和用途
WO2021083319A1 (zh) * 2019-10-30 2021-05-06 南京明德新药研发有限公司 作为黄嘌呤氧化酶抑制剂的噻吩衍生物及其应用

Also Published As

Publication number Publication date
CN116867773A (zh) 2023-10-10
AU2022265937A1 (en) 2023-12-14
EP4332097A1 (en) 2024-03-06
JP2024516222A (ja) 2024-04-12
KR20240004711A (ko) 2024-01-11
CA3216757A1 (en) 2022-11-03
MX2023012804A (es) 2023-11-08
BR112023022532A2 (pt) 2024-01-02

Similar Documents

Publication Publication Date Title
WO2021190413A1 (zh) 靶向降解黏着斑激酶的化合物及其在医药上的应用
CN105263915A (zh) 谷氨酰胺酶抑制剂及使用方法
JPH05501540A (ja) Pcpレセプター・リガンドおよびその用途
PT2663564E (pt) Composto de imidazo[4,5-c]quinolin-2-ona e a sua utilização como inibidor dual de quinase pi3/mtor
BR112021001881A2 (pt) compostos de 2,6-diaminopiridina
WO2021023194A1 (zh) 吡嗪-2(1h)-酮类化合物的c晶型和e晶型及其制备方法
WO2017071607A1 (zh) 4H-吡唑并[1,5-α]苯并咪唑类化合物晶型及其制备方法和中间体
WO2022228280A1 (zh) 噻吩衍生物的晶型及其制备方法
WO2021143843A1 (zh) 一种pde3/pde4双重抑制剂的结晶及其应用
EP4248967A2 (en) Synthesis method of furoimidazopyridine compound, crystal form of furoimidazopyridine compound, and crystal form of salt thereof
BR112013007073A2 (pt) derivados do cromeno; composição farmacêutica; utilização de um composto da fórmula i e processo de preparação de um composto da fórmula i
WO2018214958A1 (zh) Ido1抑制剂的晶型及其制备方法
WO2022068860A1 (zh) 一种吡咯并杂环类衍生物的晶型及其制备方法
JP7362916B2 (ja) キサンチンオキシダーゼ阻害剤としてのチオフェン誘導体およびその使用
WO2019114838A1 (zh) 一种4-(萘-1-基)-4h-1,2,4-三唑类类化合物的晶型、盐型及其制备方法
WO2020221358A1 (zh) Wee1抑制剂化合物的晶型及其应用
WO2023185869A1 (zh) 一种吡咯并杂环类衍生物的富马酸盐的晶型及其制备方法
WO2021164789A1 (zh) 一种吡唑并嘧啶类化合物的晶型及其应用
WO2023116879A1 (zh) 一种glp-1受体激动剂的结晶形式及其制备方法
WO2020192762A1 (zh) 一种a2a受体拮抗剂的盐型、晶型及其制备方法
US11708357B2 (en) Crystal form of pyrrolidinyl urea derivative and application thereof
WO2020238802A1 (zh) 一种c-MET/AXL抑制剂的晶型
WO2022068739A1 (zh) 吡啶并吡唑类化合物的晶型及其制备方法
US20230045991A1 (en) Salt form and crystal form of mutant idh1 inhibitor and preparation method therefor
TW202406912A (zh) 稠三環類衍生物的晶型及製備方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794751

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280015619.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18556896

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 3216757

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2023566003

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/012804

Country of ref document: MX

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023022532

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 805993

Country of ref document: NZ

Ref document number: 2022265937

Country of ref document: AU

Ref document number: AU2022265937

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 20237041057

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023130956

Country of ref document: RU

Ref document number: 2022794751

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022794751

Country of ref document: EP

Effective date: 20231129

ENP Entry into the national phase

Ref document number: 2022265937

Country of ref document: AU

Date of ref document: 20220421

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112023022532

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231027