WO2020088518A1 - 图像输出方法及摄像机 - Google Patents

图像输出方法及摄像机 Download PDF

Info

Publication number
WO2020088518A1
WO2020088518A1 PCT/CN2019/114327 CN2019114327W WO2020088518A1 WO 2020088518 A1 WO2020088518 A1 WO 2020088518A1 CN 2019114327 W CN2019114327 W CN 2019114327W WO 2020088518 A1 WO2020088518 A1 WO 2020088518A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
mirror
image
focal length
camera
Prior art date
Application number
PCT/CN2019/114327
Other languages
English (en)
French (fr)
Inventor
沈辰弋
杨坤
徐鹏
Original Assignee
杭州海康威视数字技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州海康威视数字技术股份有限公司 filed Critical 杭州海康威视数字技术股份有限公司
Publication of WO2020088518A1 publication Critical patent/WO2020088518A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B19/00Cameras
    • G03B19/02Still-picture cameras
    • G03B19/14Still-picture cameras with paired lenses, one of which forms image on photographic material and the other forms a corresponding image on a focusing screen
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the present application relates to the technical field of image processing, in particular to an image output method and a camera.
  • the camera is a professional image acquisition device, and its working principle is to convert the optical image signal into an electrical signal for easy storage or transmission.
  • the light reflected on the object is collected by the camera lens, and the collected light beam is focused on the light receiving surface of the imaging device, such as the photosensitive surface of the image sensor, and then the optical signal is converted into an electrical signal by the imaging device Image data.
  • the camera can also amplify the electrical signal, and then process and adjust it through various circuits to obtain the standard signal, and transfer the standard information to a recording medium such as a video recorder to record it, or transmit it to the screen for display.
  • FIG. 1 which includes two lenses, two image sensors and two for processing The SoC (System on Chip) of image data increases the cost of the camera.
  • SoC System on Chip
  • the purpose of the embodiments of the present application is to provide an image output method and a camera to reduce the cost of the camera.
  • the specific technical solutions are as follows:
  • an embodiment of the present application provides a camera, the camera includes:
  • a first lens, a second lens, a first mirror, a second mirror, and an image sensor the focal length range of the first lens is different from the focal length range of the second lens, wherein the optical axis of the first lens is The optical axis of the second lens is parallel;
  • the image sensor is configured to receive light reflected from the first lens and reflected by the first mirror or to receive light reflected from the second lens and reflected by the second mirror.
  • the image sensor is specifically used for:
  • the image sensor When the first mirror is in the working position, the image sensor receives light from the first lens and is reflected by the first mirror to generate a first image;
  • the image sensor When the first mirror is in a non-working position and the second mirror is in a working position, the image sensor receives the light reflected from the first lens and reflected by the first mirror to generate the first Second image.
  • the preset angle is forty-five degrees.
  • the first mirror is a movable mirror
  • the second mirror is a fixed mirror
  • the camera further includes a solenoid valve
  • the first mirror is disposed on the solenoid valve, and the solenoid valve drives the rotation of the first mirror when the solenoid valve is in operation.
  • the camera further includes a processor, and the processor controls the operation of the solenoid valve.
  • the first lens and the second lens are both zoom lenses.
  • the focal length range of the first lens is different from that of the second lens.
  • the processor is used to:
  • the processor calculates an object distance corresponding to the preset focal length, where the preset switching condition is used to instruct the camera to switch from the current lens to Another lens, and when the current lens is the first lens, the other lens is the second lens; or when the current lens is the second lens, the other lens is the first lens ;
  • the method when it is detected that the focal length of the current lens satisfies a preset switching condition, the method includes:
  • the focal length adjustment speed of the current lens calculate the time required to adjust the focal length of the current lens to the preset focus as the target time; when the target time decreases to the preset time threshold, it is determined that the focal length of the current lens meets the preset Switch condition.
  • the camera further includes a plurality of motors, the first lens and the second lens are zoomed and focused by the traction of the motor, the setting of the overlapping interval and the selection of the preset focal length Meet the starting and braking conditions of the motor.
  • the processor includes: a system-level chip SoC, a micro control unit MCU, a motor control chip, and a solenoid valve control chip;
  • the SoC is used to receive image data sent by the image sensor, process and output the image data;
  • the MCU is used to control the motor control chip and the solenoid valve control chip;
  • the motor control chip is used to control the operation of the motor
  • the solenoid valve control chip is used to control the operation of the solenoid valve.
  • the distance between the first mirror and the image sensor is closer.
  • an embodiment of the present application provides an image output method, which is applied to a camera.
  • the camera includes a first lens, a second lens, a first mirror, a second mirror, and an image sensor.
  • the first lens The focal length of is different from that of the second lens. In the first mirror and the second mirror, the distance between the first mirror and the image sensor is closer, and the distance between the first lens
  • the optical axis is parallel to the optical axis of the second lens; the method includes:
  • the preset angle is forty-five degrees.
  • the first mirror is a movable mirror
  • the second mirror is a fixed mirror
  • the camera further includes a solenoid valve, the first mirror is disposed on the solenoid valve, and the first mirror is driven when the solenoid valve is in operation The rotation of the mirror.
  • the camera further includes a processor, and the processor controls the operation of the solenoid valve.
  • the first lens and the second lens are both zoom lenses.
  • the method further includes:
  • the target object distance of the current lens at the preset focal length is determined; according to the target object distance, the object distance of the target lens is adjusted so that the target lens The object distance is the target object distance, and the solenoid valve is adjusted so that the image sensor receives the image collected by the target lens; wherein, the current lens is a lens that collects the image that the image sensor is receiving, the The target lens is another lens of the first lens and the second lens except the current lens.
  • the camera further includes a plurality of motors, the first lens and the second lens are zoomed and focused by the traction of the motor, and the overlap
  • the setting of the interval and the selection of the preset focal length satisfy the starting and braking conditions of the motor.
  • the processor includes: a system-level chip SoC, a micro control unit MCU, a motor control chip, and a solenoid valve control chip.
  • the first lens and the second lens are both zoom lenses, and the method further includes:
  • the current lens When it is detected that the focal length of the current lens satisfies the preset switching condition, determine the target object distance of the current lens at the preset focal length, wherein the current lens is a lens that collects the image being received by the image sensor;
  • the solenoid valve is adjusted so that the image sensor receives the image collected by the target lens.
  • the method further includes:
  • the setting parameters include at least one of exposure parameters and white balance parameters.
  • the method further includes:
  • Distortion correction is performed on the lens corresponding to the first TV distortion, so that the TV distortion of the lens with the distortion correction at the target object distance and the difference between the second TV distortion and the second TV distortion are less than a preset distortion error.
  • the method further includes:
  • Relative brightness correction is performed on the lens corresponding to the second relative brightness, so that the relative brightness of the lens after the relative brightness correction at the target object distance and at the same image height is opposite to the first The difference in brightness is less than the preset relative brightness error.
  • An image output method and a camera provided by an embodiment of the present application include a first lens, a second lens, a first mirror, a second mirror, and an image sensor, the focal length range of the first lens and the focal length range of the second lens The difference is that the optical axis of the first lens is parallel to the optical axis of the second lens; the image sensor is configured to receive light reflected from the first lens and reflected by the first mirror or to receive light from the second lens and pass through the second The light reflected by the mirror.
  • the camera realizes that one image sensor can receive the image collected by any one of the two lenses through the first mirror and the second mirror, so that the number of image sensors in the camera can be reduced, and the production cost of the camera can be saved.
  • any of the products or methods of this application does not necessarily need to achieve all the advantages described above at the same time.
  • FIG. 1 is a schematic diagram of a prior art camera
  • FIG. 2 is a first schematic diagram of a camera according to an embodiment of this application.
  • 3a is a second schematic diagram of a camera according to an embodiment of this application.
  • 3b is a third schematic diagram of the camera of the embodiment of the present application.
  • 3c is a fourth schematic diagram of the camera of the embodiment of the present application.
  • FIG. 4 is a fifth schematic diagram of a camera according to an embodiment of this application.
  • FIG. 5 is a schematic diagram of a focal length of a lens of an embodiment of the present application.
  • FIG. 6 is a sixth schematic diagram of a camera according to an embodiment of this application.
  • FIG. 7 is a seventh schematic diagram of a camera according to an embodiment of this application.
  • FIG. 8 is an eighth schematic diagram of a camera according to an embodiment of this application.
  • the existing dual-lens camera replaces a large-magnification lens with two continuous zoom lenses to reduce costs. Its structure is shown in Figure 1. It includes two lenses, two image sensors, and two SoCs for processing image data. .
  • the camera includes:
  • the optical axis of is parallel to the optical axis of the second lens 202 described above;
  • the image sensor 205 is configured to receive light reflected from the first lens 201 and reflected by the first mirror 203 or receive light reflected from the second lens 202 and reflected by the second mirror 204.
  • the first lens 201 and the second lens 202 are used to collect images, and the images here are optical signals.
  • the first mirror 203 is used to reflect the image collected by the first lens 201
  • the second mirror 204 is used to reflect the image collected by the second lens 202.
  • the image sensor 205 is used to convert an image from an optical signal to an electrical signal.
  • the focal length of the first lens 201 is different from that of the second lens 202, that is, the magnification of the first lens 201 is different from the magnification of the second lens 202, so as to ensure that the shooting ranges of the first lens 201 and the second lens 202 are different.
  • both the first lens 201 and the second lens 202 are zoom lenses
  • the focal length of the first lens 201 is different from that of the second lens 202, which means that the focal length range of the first lens 201 is different from that of the second lens 202.
  • the difference here may be completely different, or may not be completely the same.
  • both the first lens 201 and the second lens 202 are fixed-focus lenses
  • the focal length of the first lens 201 and the second lens 202 are different, which means that the focal lengths of the two lenses are different.
  • the camera uses the first mirror and the second mirror to realize that one image sensor can receive the image collected by any one of the two lenses, thereby reducing the number of image sensors in the camera and saving the camera ’s Cost of production.
  • the image sensor 205 is specifically configured to receive the image collected by the first lens 201 reflected by the first mirror 203 when the first mirror 203 is in the working position;
  • the image sensor 205 receives the image collected by the second lens 202 reflected by the second mirror 204.
  • the distance between the first mirror 203 and the image sensor 205 is closer.
  • the first reflector 203 can be adjusted between a working position and a non-working position, and the adjustment method can be translation or rotation.
  • the second reflector 204 can be fixed in the working position, and the second reflector 204 can also be adjusted between the working position and the non-working position.
  • the first mirror 203 is in the working position, the light collected by the first lens 201 is reflected to the image sensor 205.
  • the setting of the non-working position of the first mirror 203 needs to be satisfied: when the first mirror 203 is in the non-working position, the image sensor 205 is not blocked from receiving the image collected by the second lens 202 reflected by the second mirror 204.
  • the camera of the embodiment of the present application may further include a processor, which may be an image processing chip, such as an SoC, for processing the electrical signal image in the image sensor 205 and Compression, etc.
  • the camera uses the first mirror and the second mirror to realize that one image sensor can alternately receive images collected by two lenses, thereby reducing the number of image sensors in the camera and saving camera production costs.
  • the first included angle and the second included angle should be the same, where the first included angle is The angle between the reflection surface of the first mirror 203 and the optical axis of the first lens 201, and the second angle is the angle between the reflection surface of the first mirror 203 and the perpendicular of the target surface of the image sensor 205.
  • the third angle and the fourth angle should be the same, where the third angle is the second mirror 204 and The angle between the optical axis of the second lens 202, and the fourth angle is the angle between the reflection surface of the second mirror 204 and the perpendicular to the target surface of the image sensor 205.
  • the target surface of the image sensor 205 is the surface of the image sensor 205 that receives light signals.
  • the plane where the optical axis of the first lens 201 and the optical axis of the second lens 202 are perpendicular to the image sensor 205 may be perpendicular to the image sensor 205 Target surface; when the image sensor 205 receives the image collected by the first lens 201 reflected by the first mirror 203, the angle between the first mirror 203 and the optical axis of the first lens 201 is a preset angle When the image sensor 205 receives the image collected by the second lens 202 reflected by the second mirror 204, the included angle between the second mirror 204 and the optical axis of the second lens 202 is the preset angle, The value range of the preset angle is 30 degrees to 45 degrees.
  • the optical axis of the first lens is parallel to the optical axis of the second lens, and the plane where the optical axis of the first lens and the second lens are located is perpendicular to the target surface of the image sensor, which is convenient for image acquisition and image
  • the determination of the position of the sensor can block the light reflected by the second mirror through the first mirror to ensure that the image sensor receives only the image collected by one lens in the normal working state.
  • the preset angle is forty-five degrees.
  • the preset angle is set to forty-five degrees, which is convenient for the calculation and setting of the positions of the components inside the camera, the components in the camera are easy to install, and can reduce the image distortion caused by the light transmission.
  • the first reflector 203 is a movable reflector
  • the second reflector 204 is a fixed reflector
  • the first mirror 203 is a movable mirror. When the first mirror 203 is in the working position, it will block the image collected by the second lens 202 reflected by the second mirror 204.
  • the image sensor 205 receives the first mirror reflected by the first mirror 203. An image captured by a lens 201. When the first mirror 203 is in the non-working position, the image sensor 205 receives the image collected by the second lens 202 reflected by the second mirror 204. When the first mirror 203 is in the non-working position, the image sensor 205 will not receive the light image reflected by the first mirror 203.
  • the second mirror 204 is a fixed mirror, and the position adjustment process of the second mirror 204 can be omitted.
  • the first mirror 203 can be translated or rotated to switch between the working position and the non-working position; of course, it can also be combined with translation and rotation to switch between the working position and the non-working position.
  • the first reflector 203 can rotate along a fixed axis.
  • the image collected by the second lens 202 reflected by the second mirror 204 will be blocked, and the image sensor 205 receives the first lens 201 reflected by the first mirror 203.
  • Image When the first mirror 203 is in the non-working position, as shown in FIG. 3C, the image sensor 205 receives the image collected by the second lens 202 reflected by the second mirror 204.
  • the second mirror 204 is a fixed mirror, and the position adjustment process of the second mirror 204 can be omitted.
  • the camera further includes a solenoid valve 206, the first mirror 203 is disposed on the solenoid valve 206, and the solenoid valve 206 drives the rotation of the first mirror 203 when it operates.
  • the solenoid valve 206 When the solenoid valve 206 is in operation, the first reflector 203 is rotated along the rotation axis of the reflector, so that the first reflector 203 moves between the working position and the non-working position.
  • the camera further includes a processor, and the processor controls the operation of the solenoid valve 206.
  • the first lens 201 and the second lens 202 are both zoom lenses, and the processor is further used to:
  • the processor calculates the object distance corresponding to the preset focal length, where the preset switching condition is used to instruct the camera to switch from the current lens to another lens, and the current lens is When the first lens 201, the other lens is the second lens 202; or when the current lens is the second lens 202, the other lens is the first lens 201; according to the object distance corresponding to the preset focal length, adjust the other lens
  • the object distance of one lens is the object distance corresponding to the preset focal length, and the solenoid valve is adjusted so that the image sensor receives the image collected by the other lens.
  • the target object distance of the current lens at the preset focal length is determined; according to the target object distance, the object distance of the target lens is adjusted so that the object distance of the target lens is The target object distance, the solenoid valve 206 is adjusted so that the image sensor 205 receives the image captured by the target lens; wherein the current lens is a lens that captures the image being received by the image sensor 205, and the target lens is the first lens 201 and another lens in the second lens 202 except the current lens.
  • the setting rule of the preset switching condition may include: the target to be shot is about to deviate from the shooting range of the current lens, and the target lens has sufficient reaction time to complete the adjustment of the focal length and the focal distance before the image is switched. Sufficient reaction time should not be less than the time required for the target lens to complete the adjustment of the focal length and focus distance, which can be set according to the actual situation.
  • the focal length of the current lens when it is detected that the focal length of the current lens satisfies the preset switching condition, it includes: calculating the time required for the focal length of the current lens to adjust to the preset focus according to the focal length adjustment speed of the current lens As the target time; when the target time decreases to the preset time threshold, it is determined that the focal length of the current lens satisfies the preset switching condition.
  • the preset time threshold should be no less than the time required to adjust the focal length of the target lens.
  • the preset focal length can be set according to the actual focal length range of the zoom lens.
  • the preset focal length is set to the maximum value of the zoom lens focal length, or the preset focal length is set to the minimum value of the zoom lens focal length, etc.
  • the focal length range of lens A is f AW -f AT
  • the focal length range of lens B is f BW -f BT
  • the preset focal length may be set to f AB .
  • the lens A is the current lens
  • the lens B is the target lens
  • the lens A is the target lens.
  • the processor controls the solenoid valve 206 to adjust the first lens 201 to the non-working position, so that the image sensor 205 receives The image captured by the second lens 202 reflected by the mirror 204.
  • the processor controls the solenoid valve 206 to adjust the first lens 201 to the working position, so that the image sensor 205 receives the first reflection The image captured by the first lens 201 reflected by the mirror 203.
  • the solenoid valve is adjusted so that the image sensor receives the image collected by the target lens, thereby converting the image output by the camera from the image collected by the current lens to the target lens
  • the collected image can increase the smoothness and continuity of the picture compared to adjusting the object distance of the target lens after switching the output image.
  • Setting the preset focal length in the overlapping interval helps smooth switching of the target lens, and can improve the smoothness of the screen during the lens switching process.
  • the camera further includes a plurality of motors, the first lens 201 and the second lens 202 are zoomed and focused by the traction of the motor, the setting of the overlapping interval and the selection of the preset focal length satisfy the requirements of the motor Starting and braking conditions.
  • the zoom lens may include a zoom group and a focus group.
  • the lens in the zoom lens is pulled to move, thereby achieving zooming and focusing of the zoom lens.
  • the focal length range of lens A is f AW -f AT
  • the focal length range of lens B is f BW -f BT
  • the preset focal length is f AB .
  • W refers to Wide, which is the wide-angle end
  • T refers to Tele, that is, the far end.
  • the lens A is the current lens and the lens B is the target lens
  • satisfying the motor starting and braking conditions means that during the zooming process of f AB- f BW , each of the zoom group and focus group for lens B Groups, the travel of the group is not less than the travel required for the group to decelerate from the highest speed to standstill.
  • the travel of the group is not less than the travel required for the group to accelerate from standstill to the highest speed.
  • the setting of the overlapping interval and the selection of the preset focal length satisfy the starting and braking conditions of the motor, which can ensure the starting and braking of the motor and reduce the wear of the lens due to inadequate braking and incomplete start .
  • the above processor includes: SoC207, MCU (Microcontroller Unit) 208, motor control chip 209, and solenoid valve control chip 210;
  • the SoC 207 is used to receive the image data sent by the image sensor, process and output the image data;
  • the MCU 208 is used to control the motor control chip 209 and the solenoid valve control chip 210;
  • the motor control chip 209 is used to control the operation of the motor 211;
  • the solenoid valve control chip 210 is used to control the operation of the solenoid valve 206.
  • the SoC 207 in the camera processes and outputs the received image, and the image output by the SoC is the image output by the camera.
  • the exposure parameters and white balance parameters of the image are also controlled by the SoC207, where the electronic shutter and analog gain are sensor parameters, and the digital gain and white balance parameters are image processing parameters in the SoC.
  • MCU 208 can obtain the parameters of each lens from SoC 207, and control each motor 211 through motor control chip 209, so as to adjust the lens parameters, and control it through solenoid valve control chip 210
  • the solenoid valve 206 is used to adjust the position of the first lens 201.
  • the setting parameters of the current lens and synchronize the setting parameters of the current lens to the target lens, where the setting parameters include at least one of exposure parameters and white balance parameters.
  • the focal length of the current lens Before the focal length of the current lens is adjusted to the preset focal length, for example, the focal length of the current lens is adjusted to 0.1 second before the preset focal length, or the focal length of the current lens is adjusted to the third last received video frame before the preset focal length, etc. (can It is calculated according to the adjustment speed of the zoom lens), or when the focal length of the current lens is adjusted to a preset focal length before the preset focal length, the setting parameters of the current lens are obtained.
  • the setting parameters include at least one of exposure parameters and white balance parameters, and may also include other shooting-related parameters, where the exposure parameters include: electronic shutter parameters, gain parameters, and aperture parameters.
  • synchronizing the setting parameters of the current lens to the target lens can reduce the difference in image brightness and color before and after lens switching, and contribute to the smooth switching of the output image.
  • the TV distortion of the first lens and the second lens at the target object distance Pre-measure the TV distortion of the first lens and the second lens at the target object distance to obtain a first TV distortion and a second TV distortion, where the first lens and the second lens are at the target object distance Among the TV distortions, the larger distortion value is the above-mentioned first TV distortion, and the smaller distortion value is the above-mentioned second TV distortion;
  • Distortion correction is performed on the lens corresponding to the first TV distortion, so that the TV distortion of the lens with the distortion correction at the target object distance and the difference between the second TV distortion and the second TV distortion are less than a preset distortion error.
  • the preset distortion error can be set according to actual needs, for example, the preset distortion error is set to 0.5%, 0.4%, or 0.3%.
  • the first lens and the second lens Pre-measure the relative brightness of the first lens and the second lens at the target object distance and at the same image height to obtain the first relative brightness and the second relative brightness, wherein the first lens and the second lens Among the relative brightness of the lens at the above target distance and at the same image height, the first relative brightness with the larger relative brightness value is the first relative brightness, and the second relative brightness with the smaller relative brightness value;
  • the preset relative brightness error can be set according to actual needs. For example, the preset brightness error is set to 5%, 4%, or 3%.
  • a zoom lens with a lower brightness value is required for correction to reduce the occurrence of four corners when switching output graphics The problem of different relative brightness of the image.
  • the camera may further include a memory, a communication interface, and a communication bus.
  • the communication bus is used for signal transmission between components
  • the memory is used for storing data
  • the communication interface is used for communication between the camera and other devices.
  • the camera of the embodiment of the present application is equipped with two lenses.
  • the camera of the embodiment of the present application may be the dual-lens spherical camera shown in FIG. 7, and the camera of the embodiment of the present application may be the dual-lens PTZ camera shown in FIG. 8.
  • the communication bus mentioned in the above camera may be a peripheral component interconnection standard (Peripheral Component Interconnect, PCI) bus or an extended industry standard architecture (Extended Industry Standard, Architecture, EISA) bus, etc.
  • PCI peripheral component interconnection standard
  • EISA Extended Industry Standard, Architecture
  • the communication bus can be divided into an address bus, a data bus, and a control bus. For ease of representation, only one thick line is used in the figure, but it does not mean that there is only one bus or one type of bus.
  • the memory may include random access memory (Random Access Memory, RAM), or non-volatile memory (Non-Volatile Memory, NVM), such as at least one disk memory.
  • RAM Random Access Memory
  • NVM Non-Volatile Memory
  • the memory may also be at least one storage device located away from the foregoing processor.
  • the aforementioned processor may be a general-purpose processor, including a central processor (Central Processing Unit, CPU), a network processor (Network Processor, NP), etc .; it may also be a digital signal processor (Digital Signal Processing, DSP), dedicated integration Circuit (Application Specific Integrated Circuit, ASIC), field programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • a central processor Central Processing Unit, CPU
  • NP Network Processor
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • An embodiment of the present application also provides an image output method, which is applied to a camera.
  • the camera includes a first lens, a second lens, a first mirror, a second mirror, and an image sensor.
  • the focal length of the first lens is the same as that of the first
  • the focal lengths of the two lenses are different.
  • the distance between the first mirror and the image sensor is closer, and the optical axis of the first lens is parallel to the optical axis of the second lens ;
  • the included angle between the first mirror and the optical axis of the first lens is a preset angle;
  • the image sensor receives the image reflected by the second mirror
  • the included angle between the second mirror and the optical axis of the second lens is the preset angle, and the value range of the preset angle is 30 degrees to 45 degrees.
  • the preset angle is forty-five degrees.
  • the first mirror is a movable mirror
  • the second mirror is a fixed mirror
  • the camera further includes a solenoid valve
  • the first mirror is disposed on the solenoid valve
  • the solenoid valve drives the rotation of the first mirror when the solenoid valve is in operation.
  • the camera further includes a processor, and the processor controls the operation of the solenoid valve.
  • the first lens and the second lens are both zoom lenses.
  • the method further includes:
  • the target object distance of the current lens at the preset focal length is determined; according to the target object distance, the object distance of the target lens is adjusted so that the object distance of the target lens is The target object distance, the solenoid valve is adjusted so that the image sensor receives the image captured by the target lens; wherein the current lens is a lens that captures the image being received by the image sensor, the target lens is the first lens and the first lens The other lens of the two lenses except the above-mentioned current lens.
  • the camera further includes a plurality of motors, the first lens and the second lens are zoomed and focused by the traction of the motor, the setting of the overlapping section and the above The selection of the preset focal length satisfies the above-mentioned motor starting and braking conditions.
  • the processor includes: a system-level chip SoC, a micro control unit MCU, a motor control chip, and a solenoid valve control chip.
  • the image output method according to the embodiment of the present application further includes:
  • the setting parameters of the current lens and synchronize the setting parameters of the current lens to the target lens, where the setting parameters include at least one of exposure parameters and white balance parameters.
  • the image output method according to the embodiment of the present application further includes:
  • the pre-measured TV distortion of the first lens and the second lens at the target object distance to obtain a first TV distortion and a second TV distortion, where the first lens and the second lens are at the target object Among the TV distortions at a distance, the larger distortion value is the aforementioned first TV distortion, and the smaller distortion value is the aforementioned second TV distortion;
  • Distortion correction is performed on the lens corresponding to the first TV distortion, so that the TV distortion of the lens with the distortion correction at the target object distance and the difference between the second TV distortion and the second TV distortion are less than a preset distortion error.
  • the image output method according to the embodiment of the present application further includes:
  • the pre-measured relative brightness of the first lens and the second lens at the target object distance and at the same image height to obtain the first relative brightness and the second relative brightness.
  • the first relative brightness has a larger relative brightness value
  • the second relative brightness has a smaller relative brightness value

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Studio Devices (AREA)
  • Lens Barrels (AREA)

Abstract

一种图像输出方法及摄像机,该摄像机包括:第一镜头、第二镜头、第一反光镜、第二反光镜及图像传感器,第一镜头的焦距范围与第二镜头的焦距范围不同,其中,第一镜头的光轴与第二镜头的光轴平行;图像传感器,被配置用于接收来自第一镜头且经由第一反光镜反射后的光线或接收来自第二镜头且经由第二反光镜反射后的光线。摄像机通过第一反光镜及第二反光镜实现一个图像传感器能够接收两个镜头中任一镜头采集的图像,从而可以减少摄像机中图像传感器的数量,能够实现节约摄像机的生产成本。

Description

图像输出方法及摄像机
本申请要求于2018年10月31日提交中国专利局、申请号为201811287390.X发明名称为“图像输出方法及摄像机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及图像处理技术领域,特别是涉及图像输出方法及摄像机。
背景技术
摄像机是一种专业的图像采集设备,其工作原理是把光学图像信号转变为电信号,以便于存储或传输。在拍摄物体时,该物体上反射的光被摄像机镜头收集,收集的光束聚焦在摄像器件的受光面,例如图像传感器的感光面上,再通过摄像器件把光信号转变为电信号,即得到了图像数据。摄像机还可以对电信号进行放大,再经过各种电路进行处理和调整,得到的标准信号,并将标准信息传输到录像机等记录媒介上记录下来,或传输到屏幕上进行显示。
现有的摄像机中,为了增加摄像机的有效拍摄范围,通常在相机中植入两套拍摄范围不同的摄像系统,如图1所示,包括两个镜头、两个图像传感器及两个用于处理图像数据的SoC(System on Chip,系统级芯片),增加了摄像机的成本。
发明内容
本申请实施例的目的在于提供一种图像输出方法及摄像机,以实现降低摄像机的成本。具体技术方案如下:
第一方面,本申请实施例提供了一种摄像机,所述摄像机包括:
第一镜头、第二镜头、第一反光镜、第二反光镜及图像传感器,所述第一镜头的焦距范围与所述第二镜头的焦距范围不同其中,所述第一镜头的光轴与所述第二镜头的光轴平行;
所述图像传感器,被配置用于接收来自所述第一镜头且经由所述第一反光镜反射后的光线或接收来自所述第二镜头且经由所述第二反光镜反射后的光线。
一种实施例,所述图像传感器具体用于:
在所述第一反光镜处于工作位置时,所述图像传感器接收来自所述第一镜头且经由所述第一反光镜反射后的光线,生成第一图像;
在所述第一反光镜处于非工作位置,且所述第二反光镜处于工作位置时,所述图像传感器接收来自所述第一镜头且经由所述第一反光镜反射后的光线,生成第二图像。
一种实施例,所述第一镜头的光轴与所述第二镜头的光轴所在的平面垂直于所述图像传感器;在所述图像传感器接收由所述第一反光镜反射的所述第一镜头采集的图像时,所述第一反光镜与所述第一镜头的光轴的夹角为预设角度;在所述图像传感器接收由所述第二反光镜反射的所述第二镜头采集的图像时,所述第二反光镜与所述第二镜头的光轴的夹角为所述预设角度,其中,所述预设角度的取值范围为三十度至四十五度。
一种实施例,所述预设角度为四十五度。
一种实施例,所述第一反光镜为活动反光镜,所述第二反光镜为固定反光镜。
一种实施例,所述摄像机还包括电磁阀,所述第一反光镜设置在所述电磁阀上,所述电磁阀运行时带动所述第一反光镜的转动。
一种实施例,所述摄像机还包括处理器,所述处理器控制所述电磁阀运行。
一种实施例,所述第一镜头及所述第二镜头均为变焦镜头,所述第一镜头的焦距范围与所述第二镜头的焦距范围不同,所述处理器用于:
在检测到当前镜头的焦距满足预设切换条件时,所述处理器计算所述预设焦距对应的物距,其中,所述预设切换条件用于指示所述摄像机由所述当前镜头切换至另一个镜头,且,当所述当前镜头为第一镜头时,则所述另一 个镜头为第二镜头;或当所述当前镜头为第二镜头时,则所述另一个镜头为第一镜头;
根据所述预设焦距对应的物距,调节所述摄像机的另一个镜头的物距为所述预设焦距对应的物距,调节所述电磁阀以使所述图像传感器接收所述另一个镜头采集的图像。
一种实施例,所述第一镜头与所述第二镜头的焦距范围存在重叠区间,且所述预设焦距在所述重叠区间内。
一种实施例,所述在检测到当前镜头的焦距满足预设切换条件时,包括:
按照当前镜头的焦距调整速度,计算当前镜头的焦距调整至所述预设焦所需的时间,作为目标时间;在所述目标时间降低至预设时间阈值时,判定当前镜头的焦距满足预设切换条件。
一种实施例,所述摄像机还包括多个电机,所述第一镜头及所述第二镜头通过所述电机的牵引进行变焦及对焦,所述重叠区间的设置及所述预设焦距的选取满足所述电机的启动和制动条件。
一种实施例,所述处理器包括:系统级芯片SoC、微控制单元MCU、电机控制芯片及电磁阀控制芯片;
所述SoC用于接收所述图像传感器发送的图像数据,处理及输出所述图像数据;
所述MCU用于控制所述电机控制芯片及电磁阀控制芯片;
所述电机控制芯片用于控制所述电机的运行;
所述电磁阀控制芯片用于控制所述电磁阀的运行。
一种实施例,在所述第一反光镜及所述第二反光镜中,所述第一反光镜与所述图像传感器的距离更近。
第二方面,本申请实施例提供了一种图像输出方法,应用于摄像机,所述摄像机包括第一镜头、第二镜头、第一反光镜、第二反光镜及图像传感器,所述第一镜头的焦距与所述第二镜头的焦距不同,在所述第一反光镜及所述 第二反光镜中,所述第一反光镜与所述图像传感器的距离更近,所述第一镜头的光轴与所述第二镜头的光轴平行;所述方法包括:
调节所述第一反光镜处于工作位置,以使所述图像传感器接收由所述第一反光镜反射的所述第一镜头采集的图像;或
调节所述第一反光镜处于非工作位置,且所述第二反光镜处于工作位置,以使所述图像传感器接收由所述第二反光镜反射的所述第二镜头采集的图像。
一种实施例,在本申请实施例的图像输出方法中,所述第一镜头的光轴与所述第二镜头的光轴所在的平面垂直于所述图像传感器的靶面;在所述图像传感器接收由所述第一反光镜反射的所述第一镜头采集的图像时,所述第一反光镜与所述第一镜头的光轴的夹角为预设角度;在所述图像传感器接收由所述第二反光镜反射的所述第二镜头采集的图像时,所述第二反光镜与所述第二镜头的光轴的夹角为所述预设角度,其中,所述预设角度的取值范围为三十度至四十五度。
一种实施例,在本申请实施例的图像输出方法中,所述预设角度为四十五度。
一种实施例,在本申请实施例的图像输出方法中,所述第一反光镜为活动反光镜,所述第二反光镜为固定反光镜。
一种实施例,在本申请实施例的图像输出方法中,所述摄像机还包括电磁阀,所述第一反光镜设置在所述电磁阀上,所述电磁阀运行时带动所述第一反光镜的转动。
一种实施例,在本申请实施例的图像输出方法中,所述摄像机还包括处理器,所述处理器控制所述电磁阀运行。
一种实施例,在本申请实施例的图像输出方法中,所述第一镜头及所述第二镜头均为变焦镜头,所述方法还包括:
在检测到当前镜头的焦距满足预设切换条件时,确定所述当前镜头在预设焦距时的目标物距;按照所述目标物距,调节目标镜头的物距,以使所述目标镜头的物距为所述目标物距,调节所述电磁阀以使所述图像传感器接收 所述目标镜头采集的图像;其中,所述当前镜头为采集所述图像传感器正在接收的图像的镜头,所述目标镜头为所述第一镜头及所述第二镜头中除所述当前镜头外的另一镜头。
一种实施例,在本申请实施例的图像输出方法中,所述第一镜头与所述第二镜头的焦距范围存在重叠区间,且所述预设焦距在所述重叠区间内。
一种实施例,在本申请实施例的图像输出方法中,所述摄像机还包括多个电机,所述第一镜头及所述第二镜头通过所述电机的牵引进行变焦及对焦,所述重叠区间的设置及所述预设焦距的选取满足所述电机的启动和制动条件。
一种实施例,在本申请实施例的图像输出方法中,所述处理器包括:系统级芯片SoC、微控制单元MCU、电机控制芯片及电磁阀控制芯片。
一种实施例,所述第一镜头及所述第二镜头均为变焦镜头,所述方法还包括:
在检测到当前镜头的焦距满足预设切换条件时,确定所述当前镜头在预设焦距时的目标物距,其中,所述当前镜头为采集所述图像传感器正在接收的图像的镜头;
按照所述目标物距,调节目标镜头的物距,以使所述目标镜头的物距为所述目标物距,其中,所述目标镜头为所述第一镜头及所述第二镜头中除所述当前镜头外的另一镜头;
调节所述电磁阀以使所述图像传感器接收所述目标镜头采集的图像。
一种实施例,所述方法还包括:
获取所述当前镜头的设置参数,将所述当前镜头的设置参数同步到所述目标镜头,其中,所述设置参数包括曝光参数及白平衡参数中的至少一种。
一种实施例,所述方法还包括:
获取预先测量的所述第一镜头与所述第二镜头在所述目标物距下的TV畸变,得到第一TV畸变及第二TV畸变,其中,在所述第一镜头与所述第二镜头在所述目标物距下的TV畸变中,畸变值较大的为所述第一TV畸变,畸变值较小的为所述第二TV畸变;
对所述第一TV畸变对应的镜头进行畸变校正,以使该畸变校正后的镜头在所述目标物距下的TV畸变,与所述第二TV畸变的差值小于预设畸变误差。
一种实施例,所述方法还包括:
获取预先测量的所述第一镜头与所述第二镜头在所述目标物距下、且在同等像高下的相对亮度,得到第一相对亮度及第二相对亮度,其中,在所述第一镜头与所述第二镜头在所述目标物距下、且在同等像高下的相对亮度中,相对亮度值较大的为所述第一相对亮度,相对亮度值较小的为所述第二相对亮度;
对所述第二相对亮度对应的镜头进行相对亮度校正,以使该相对亮度校正后的镜头在所述目标物距下、且在所述同等像高下的相对亮度,与所述第一相对亮度的差值小于预设相对亮度误差。
本申请实施例提供的图像输出方法及摄像机,该摄像机包括:第一镜头、第二镜头、第一反光镜、第二反光镜及图像传感器,第一镜头的焦距范围与第二镜头的焦距范围不同其中,第一镜头的光轴与第二镜头的光轴平行;图像传感器,被配置用于接收来自第一镜头且经由第一反光镜反射后的光线或接收来自第二镜头且经由第二反光镜反射后的光线。摄像机通过第一反光镜及第二反光镜实现一个图像传感器能够接收两个镜头中任一镜头采集的图像,从而可以减少摄像机中图像传感器的数量,能够实现节约摄像机的生产成本。当然,实施本申请的任一产品或方法并不一定需要同时达到以上所述的所有优点。
附图说明
为了更清楚地说明本申请实施例和现有技术的技术方案,下面对实施例和现有技术中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术的摄像机的一种示意图;
图2为本申请实施例的摄像机的第一种示意图;
图3a为本申请实施例的摄像机的第二种示意图;
图3b为本申请实施例的摄像机的第三种示意图;
图3c为本申请实施例的摄像机的第四种示意图;
图4为本申请实施例的摄像机的第五种示意图;
图5为本申请实施例的镜头焦距的一种示意图;
图6为本申请实施例的摄像机的第六种示意图;
图7为本申请实施例的摄像机的第七种示意图;
图8为本申请实施例的摄像机的第八种示意图。
具体实施方式
为使本申请的目的、技术方案、及优点更加清楚明白,以下参照附图并举实施例,对本申请进一步详细说明。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
现有的双镜头摄像机,通过两个连续变焦的镜头替代一个大倍率镜头以降低成本,其结构如图1所示,包括两个镜头、两个图像传感器及两个用于处理图像数据的SoC。
为了进一步节约摄像机成本,本申请实施例增加了一种摄像机,参见图2,该摄像机包括:
第一镜头201、第二镜头202、第一反光镜203、第二反光镜204及图像传感器205,上述第一镜头201的焦距与上述第二镜头202的焦距不同,其中,上述第一镜头201的光轴与上述第二镜头202的光轴平行;
上述图像传感器205,被配置用于接收来自上述第一镜头201且经由上述第一反光镜203反射后的光线或接收来自上述第二镜头202且经由上述第二反光镜204反射后的光线。
第一镜头201及第二镜头202用于采集图像,此处的图像为光信号。第一反光镜203用于反射第一镜头201采集的图像,第二反光镜204用于反射第二镜头202采集的图像。图像传感器205用于将图像由光信号转换为电信号。第一镜头201的焦距与第二镜头202的焦距不同,即第一镜头201的倍率与第二镜头202的倍率不同,从而保证第一镜头201与第二镜头202的拍摄范围不同。在第一镜头201与第二镜头202均为变焦镜头时,第一镜头201的焦距与第二镜头202的焦距不同,是指第一镜头201的焦距范围与第二镜头202的焦距范围不同,此处的不同,可以为完全不相同,也可以为不完全相同。在第一镜头201与第二镜头202均为定焦镜头时,第一镜头201的焦距与第二镜头202的焦距不同,是指二者的焦距值不同。
在本申请实施例中,摄像机通过第一反光镜及第二反光镜实现一个图像传感器能够接收两个镜头中任一镜头采集的图像,从而可以减少摄像机中图像传感器的数量,能够实现节约摄像机的生产成本。
一种可能的实施例中,上述图像传感器205具体用于在上述第一反光镜203处于工作位置时,上述图像传感器205接收由上述第一反光镜203反射的上述第一镜头201采集的图像;
在上述第一反光镜203处于非工作位置,且上述第二反光镜204处于工作位置时,上述图像传感器205接收由上述第二反光镜204反射的上述第二镜头202采集的图像。
一种可能的实施例中,参见图2,在上述第一反光镜203及上述第二反光镜204中,上述第一反光镜203与上述图像传感器205的距离更近。
第一反光镜203的可以在工作位置及非工作位置间进行调节,调节方式可以为平动或转动等。第二反光镜204可以固定在工作位置,第二反光镜204还以在工作位置及非工作位置间进行调节。第一反光镜203处于工作位置时,将第一镜头201采集的光线反射至图像传感器205。第一反光镜203非工作位置的设置需要满足:第一反光镜203在非工作位置时,不阻挡图像传感器205接收由第二反光镜204反射的第二镜头202采集的图像。一种实施例,为了实现图像数据的输出,本申请实施例的摄像机还可以包括处理器,具体的可以为图像处理芯片,例如SoC等,用于对图像传感器205中的电信号图像进 行处理及压缩等。
在本申请实施例中,摄像机通过第一反光镜及第二反光镜实现一个图像传感器能够交替接收两个镜头采集的图像,从而可以减少摄像机中图像传感器的数量,能够实现节约摄像机的生产成本。
为了提高摄像机拍摄的图像的质量,在图像传感器205接收由第一反光镜203反射的第一镜头201采集的图像时,第一夹角与第二夹角应当相同,其中,第一夹角为第一反光镜203反射面与第一镜头201光轴的夹角,第二夹角为第一反光镜203反射面与图像传感器205靶面垂线的夹角。在上述图像传感器205接收由上述第二反光镜204反射的上述第二镜头202采集的图像时,第三夹角与第四夹角应当相同,其中,第三夹角为第二反光镜204与第二镜头202的光轴的夹角,第四夹角为第二反光镜204反射面与图像传感器205靶面垂线的夹角。图像传感器205的靶面为图像传感器205中接收光信号的面。
一种实施例,在本申请实施例的摄像机中,上述第一镜头201的光轴与上述第二镜头202的光轴所在的平面垂直于上述图像传感器205,具体可以为垂直于图像传感器205的靶面;在上述图像传感器205接收由上述第一反光镜203反射的上述第一镜头201采集的图像时,上述第一反光镜203与上述第一镜头201的光轴的夹角为预设角度;在上述图像传感器205接收由上述第二反光镜204反射的上述第二镜头202采集的图像时,上述第二反光镜204与上述第二镜头202的光轴的夹角为上述预设角度,其中,上述预设角度的取值范围为三十度至四十五度。
在本申请实施例中,第一镜头的光轴与第二镜头的光轴平行,第一镜头光轴与第二镜头光轴共同所在的平面与图像传感器的靶面垂直,便于图像采集及图像传感器位置的确定,能够通过第一反光镜遮挡第二反光镜反射的光线,保证图像传感器在正常工作状态下仅接收一个镜头采集的图像。
一种实施例,在本申请实施例的图像输出方法中,上述预设角度为四十五度。
上述第一镜头201的光轴与上述第二镜头202的光轴所在的平面与上述 图像传感器205的靶面垂直;在上述图像传感器205接收由上述第一反光镜203反射的上述第一镜头201采集的图像时,上述第一反光镜203与上述第一镜头201的光轴的夹角为四十五度;在上述图像传感器205接收由上述第二反光镜204反射的上述第二镜头202采集的图像时,上述第二反光镜204与上述第二镜头202的光轴的夹角为四十五度。
在本申请实施例中,将预设角度设置为四十五度,便于摄像机内部各元件位置的计算及设置,摄像机中各元件安装方便,同时能够减少因光线传输造成的图像失真。
一种实施例,上述第一反光镜203为活动反光镜,上述第二反光镜204为固定反光镜。
第一反光镜203为活动反光镜,第一反光镜203处于工作位置时,会遮挡第二反光镜204反射的第二镜头202采集的图像,图像传感器205接收由第一反光镜203反射的第一镜头201采集的图像。第一反光镜203处于非工作位置时,图像传感器205接收由第二反光镜204反射的第二镜头202采集的图像。并且第一反光镜203处于非工作位置时,图像传感器205不会接受到第一反光镜203反射的光线图像。第二反光镜204为固定反光镜,可以省去第二反光镜204的位置调节过程。
第一反光镜203可以采用平动或转动的方式,在工作位置与非工作位置间进行转换;当然也可以结合平动及转动在工作位置与非工作位置间进行转换。例如图3a所示,第一反光镜203可以沿固定轴转动。第一反光镜203处于工作位置时,如图3b所示,会遮挡第二反光镜204反射的第二镜头202采集的图像,图像传感器205接收由第一反光镜203反射的第一镜头201采集的图像。第一反光镜203处于非工作位置时,如图3c所示,图像传感器205接收由第二反光镜204反射的第二镜头202采集的图像。第二反光镜204为固定反光镜,可以省去第二反光镜204的位置调节过程。
一种实施例,参见图4,上述摄像机还包括电磁阀206,上述第一反光镜203设置在上述电磁阀206上,上述电磁阀206运行时带动上述第一反光镜203的转动。
电磁阀206运行时带动第一反光镜203沿反光镜旋转轴转动,以使第一反光镜203在工作位置及非工作位置间移动。
一种实施例,上述摄像机还包括处理器,上述处理器控制上述电磁阀206运行。
一种实施例,上述第一镜头201及上述第二镜头202均为变焦镜头,上述处理器还用于:
在检测到当前镜头的焦距满足预设切换条件时,处理器计算预设焦距对应的物距,其中,预设切换条件用于指示摄像机由当前镜头切换至另一个镜头,且,在当前镜头为第一镜头201时,则另一个镜头为第二镜头202;或当当前镜头为第二镜头202时,则另一个镜头为第一镜头201;根据预设焦距对应的物距,调节摄像机的另一个镜头的物距为预设焦距对应的物距,调节电磁阀以使图像传感器接收另一个镜头采集的图像。
在检测到当前镜头的焦距满足预设切换条件时,确定上述当前镜头在预设焦距时的目标物距;按照上述目标物距,调节目标镜头的物距,以使上述目标镜头的物距为上述目标物距,调节上述电磁阀206以使上述图像传感器205接收上述目标镜头采集的图像;其中,上述当前镜头为采集上述图像传感器205正在接收的图像的镜头,上述目标镜头为上述第一镜头201及上述第二镜头202中除上述当前镜头外的另一镜头。
在当前镜头的焦距满足预设切换条件时,说明被拍摄目标即将脱离当前镜头的拍摄范围,因此需要更换可拍摄更远物距的镜头,或可拍摄更近物距的镜头。预设切换条件的设定规则可以包括:被拍摄目标即将脱离当前镜头的拍摄范围,且目标镜头有足够的反应时间以在图像切换前完成焦距及聚焦距离的调节。足够的反应时间应当不小于目标镜头完成焦距及聚焦距离调节所需的时间,可以按照实际情况进行设定。例如,可以在当前镜头的焦距调整到预设焦距前的0.1秒,或当前镜头的焦距调整到预设焦距前接收的倒数第三帧视频帧等(可以根据变焦镜头的调节速度进行计算),或在当前镜头的焦距调整到预设焦距前的某一预设焦距时,判定满足预设切换条件。一种可能的实施例中,所述在检测到当前镜头的焦距满足预设切换条件时,包括:按照当前镜头的焦距调整速度,计算当前镜头的焦距调整至所述预设焦所需的 时间,作为目标时间;在所述目标时间降低至预设时间阈值时,判定当前镜头的焦距满足预设切换条件。预设时间阈值应当不小于目标镜头的焦距调节所需的时间。
预设焦距可以根据变焦镜头的实际焦距范围进行设定,例如,预设焦距设定为变焦镜头焦距的最大值,或预设焦距设定为变焦镜头焦距的最小值等。在一种可能的实施方式中如图5所示,镜头A的焦距范围为f AW-f AT,镜头B的焦距范围为f BW-f BT,预设焦距可以设置为f AB。其中,若镜头A为当前镜头,则镜头B为目标镜头;若镜头B为当前镜头,则镜头A为目标镜头。
在当前镜头为第一镜头201时,当第二镜头202的物距调节为目标物距后,处理器控制电磁阀206调节第一镜头201处于非工作位置,以使图像传感器205接收由第二反光镜204反射的第二镜头202采集的图像。在当前镜头为第二镜头202时,当第一镜头201的物距调节为目标物距后,处理器控制电磁阀206调节第一镜头201处于工作位置,以使图像传感器205接收由第一反光镜203反射的第一镜头201采集的图像。
在本申请实施例中,在目标镜头的物距调整为目标物距后,调节电磁阀以使图像传感器接收目标镜头采集的图像,从而将摄像机输出的图像由当前镜头采集的图像转换为目标镜头采集的图像,相比于切换输出图像后再调节目标镜头的物距,可以增加画面的平滑性和连续性。
一种实施例,上述第一镜头201与上述第二镜头202的焦距范围存在重叠区间,且上述预设焦距在上述重叠区间内。
将预设焦距设定在重叠区间中,有助于目标镜头的平滑切换,能够提高镜头切换过程中画面的平滑性。
一种实施例,上述摄像机还包括多个电机,上述第一镜头201及上述第二镜头202通过上述电机的牵引进行变焦及对焦,上述重叠区间的设置及上述预设焦距的选取满足上述电机的启动和制动条件。
变焦镜头可以包括zoom(变焦)群组及focus(对焦)群组。电机在转动时牵引变焦镜头中透镜的移动,从而实现变焦镜头的变焦及对焦。
如图5所示,镜头A的焦距范围为f AW-f AT,镜头B的焦距范围为f BW-f BT, 预设焦距为f AB。W指Wide,即广角端,T指Tele,即望远端。
在镜头A为当前镜头,镜头B为目标镜头时,满足电机的启动和制动条件是指:在f AB-f AT的变焦过程中,针对镜头A的变焦群组和对焦群组中的每个群组,该群组的行程不小于该群组从最高速减速到静止所需的行程,在f BW-f AB的变焦过程中,针对镜头B的变焦群组和对焦群组中的每个群组,该群组的行程不小于该群组由静止加速到最高速度所需的行程。
在镜头A为目标镜头,镜头B为当前镜头时,满足电机的启动和制动条件是指:在f AB-f BW的变焦过程中,针对镜头B的变焦群组和对焦群组中的每个群组,该群组的行程不小于该群组从最高速减速到静止所需的行程,在f AT-f AB的变焦过程中,针对镜头A的变焦群组和对焦群组中的每个群组,该群组的行程不小于该群组由静止加速到最高速度所需的行程。
在本申请实施例中,重叠区间的设置及预设焦距的选取满足电机的启动和制动条件,能够保证电机的启动及制动,减少镜头因未及时制动和未完全启动造成磨损的情况。
一种实施例,参见图6,上述处理器包括:SoC 207、MCU(Microcontroller Unit,微控制单元)208、电机控制芯片209及电磁阀控制芯片210;
上述SoC 207用于接收上述图像传感器发送的图像数据,处理及输出上述图像数据;
上述MCU 208用于控制上述电机控制芯片209及电磁阀控制芯片210;
上述电机控制芯片209用于控制上述电机211的运行;
上述电磁阀控制芯片210用于控制上述电磁阀206的运行。
摄像机中SoC 207将接收的图像进行处理并输出,SoC输出的图像为摄像机输出的图像。图像的曝光参数和白平衡参数也由SoC 207控制,其中, 电子快门和模拟增益为sensor(传感器)参数,数字增益和白平衡参数为SoC中的图像处理参数。SoC 207与MCU 208之间存在数据交互,MCU 208可以从SoC 207中获取各镜头的参数,并通过电机控制芯片209控制各电机211,以实现对镜头参数的调节,通过电磁阀控制芯片210控制电磁阀206,以实现第一镜头201位置的调节。
一种实施例,在本申请实施例的摄像机中,上述处理器还用于:
获取上述当前镜头的设置参数,将上述当前镜头的设置参数同步到上述目标镜头,其中,上述设置参数包括曝光参数及白平衡参数中的至少一种。
在当前镜头的焦距调整到预设焦距之前,例如,当前镜头的焦距调整到预设焦距前的0.1秒,或当前镜头的焦距调整到预设焦距前接收的倒数第三帧视频帧等(可以根据变焦镜头的调节速度进行计算),或在当前镜头的焦距调整到预设焦距前的某一预设焦距时,获取当前镜头的设置参数。设置参数包括曝光参数及白平衡参数中的至少一种,还可以包括其他与拍摄有关的参数,其中,曝光参数包括:电子快门参数,增益参数及光圈参数。
在本申请实施例中,将当前镜头的设置参数同步到目标镜头中,能够减少镜头切换前后,图像亮度及色彩的差异,有助于输出图像的平滑切换。
一种实施例,在本申请实施例的摄像机中,上述处理器还用于:
预先测量上述第一镜头与上述第二镜头在上述目标物距下的TV畸变,得到第一TV畸变及第二TV畸变,其中,在上述第一镜头与上述第二镜头在上述目标物距下的TV畸变中,畸变值较大的为上述第一TV畸变,畸变值较小的为上述第二TV畸变;
对上述第一TV畸变对应的镜头进行畸变校正,以使该畸变校正后的镜头在上述目标物距下的TV畸变,与上述第二TV畸变的差值小于预设畸变误差。
预设畸变误差可以根据实际需求进行设定,例如预设畸变误差设置为0.5%,0.4%或0.3%等。
在本申请实施例中,在第一镜头和第二镜头在预设焦距处的TV畸变有差异时,需要对畸变值较大的变焦镜头进行校正,减少输出图形切换时出现四 角图像大小不同的问题。
一种实施例,在本申请实施例的摄像机中,上述处理器还用于:
预先测量上述第一镜头与上述第二镜头在上述目标物距下、且在同等像高下的相对亮度,得到第一相对亮度及第二相对亮度,其中,在上述第一镜头与上述第二镜头在上述目标物距下、且在同等像高下的相对亮度中,相对亮度值较大的为上述第一相对亮度,相对亮度值较小的为上述第二相对亮度;
对上述第二相对亮度对应的镜头进行相对亮度校正,以使该相对亮度校正后的镜头在上述目标物距下、且在上述同等像高下的相对亮度,与上述第一相对亮度的差值小于预设相对亮度误差。
预设相对亮度误差可以根据实际需求进行设定,例如预设亮度误差设置为5%,4%或3%等。
在本申请实施例中,在第一镜头和第二镜头在预设焦距处等像高位置下的相对亮度有差异时,需要亮度值较低的变焦镜头进行校正,减少输出图形切换时出现四角图像相对亮度不同的问题。
一种实施例,上述摄像机还可以包括存储器、通信接口及通信总线,通信总线用于各部件间的信号传递,存储器用于存储数据,通信接口用于上述摄像机与其他设备之间的通信。
本申请实施例的摄像机安装有两个镜头,例如,本申请实施例的摄像机可以为图7所示双镜头球形摄像机,本申请实施例的摄像机可以为图8所示双镜头云台摄像机等。
上述摄像机提到的通信总线可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。该通信总线可以分为地址总线、数据总线、控制总线等。为便于表示,图中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
存储器可以包括随机存取存储器(Random Access Memory,RAM),也可以包括非易失性存储器(Non-Volatile Memory,NVM),例如至少一个磁盘存 储器。一种实施例,存储器还可以是至少一个位于远离前述处理器的存储装置。
上述的处理器可以是通用处理器,包括中央处理器(Central Processing Unit,CPU)、网络处理器(Network Processor,NP)等;还可以是数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
本申请实施例还提供了一种图像输出方法,应用于摄像机,上述摄像机包括第一镜头、第二镜头、第一反光镜、第二反光镜及图像传感器,上述第一镜头的焦距与上述第二镜头的焦距不同,在上述第一反光镜及上述第二反光镜中,上述第一反光镜与上述图像传感器的距离更近,上述第一镜头的光轴与上述第二镜头的光轴平行;上述方法包括:
调节上述第一反光镜处于工作位置,以使上述图像传感器接收由上述第一反光镜反射的上述第一镜头采集的图像;或
调节上述第一反光镜处于非工作位置,且上述第二反光镜处于工作位置,以使上述图像传感器接收由上述第二反光镜反射的上述第二镜头采集的图像。
一种实施例,在本申请实施例的图像输出方法中,上述第一镜头的光轴与上述第二镜头的光轴所在的平面垂直于上述图像传感器的靶面;在上述图像传感器接收由上述第一反光镜反射的上述第一镜头采集的图像时,上述第一反光镜与上述第一镜头的光轴的夹角为预设角度;在上述图像传感器接收由上述第二反光镜反射的上述第二镜头采集的图像时,上述第二反光镜与上述第二镜头的光轴的夹角为上述预设角度,其中,上述预设角度的取值范围为三十度至四十五度。
一种实施例,在本申请实施例的图像输出方法中,上述预设角度为四十五度。
一种实施例,在本申请实施例的图像输出方法中,上述第一反光镜为活动反光镜,上述第二反光镜为固定反光镜。
一种实施例,在本申请实施例的图像输出方法中,上述摄像机还包括电磁阀,上述第一反光镜设置在上述电磁阀上,上述电磁阀运行时带动上述第一反光镜的转动。
一种实施例,在本申请实施例的图像输出方法中,上述摄像机还包括处理器,上述处理器控制上述电磁阀运行。
一种实施例,在本申请实施例的图像输出方法中,上述第一镜头及上述第二镜头均为变焦镜头,上述方法还包括:
在检测到当前镜头的焦距满足预设切换条件时,确定上述当前镜头在预设焦距时的目标物距;按照上述目标物距,调节目标镜头的物距,以使上述目标镜头的物距为上述目标物距,调节上述电磁阀以使上述图像传感器接收上述目标镜头采集的图像;其中,上述当前镜头为采集上述图像传感器正在接收的图像的镜头,上述目标镜头为上述第一镜头及上述第二镜头中除上述当前镜头外的另一镜头。
一种实施例,在本申请实施例的图像输出方法中,上述第一镜头与上述第二镜头的焦距范围存在重叠区间,且上述预设焦距在上述重叠区间内。
一种实施例,在本申请实施例的图像输出方法中,上述摄像机还包括多个电机,上述第一镜头及上述第二镜头通过上述电机的牵引进行变焦及对焦,上述重叠区间的设置及上述预设焦距的选取满足上述电机的启动和制动条件。
一种实施例,在本申请实施例的图像输出方法中,上述处理器包括:系统级芯片SoC、微控制单元MCU、电机控制芯片及电磁阀控制芯片。
一种实施例,本申请实施例的图像输出方法还包括:
获取上述当前镜头的设置参数,将上述当前镜头的设置参数同步到上述目标镜头,其中,上述设置参数包括曝光参数及白平衡参数中的至少一种。
一种实施例,本申请实施例的图像输出方法还包括:
获取预先测量的上述第一镜头与上述第二镜头在上述目标物距下的TV畸变,得到第一TV畸变及第二TV畸变,其中,在上述第一镜头与上述第二镜头在上述目标物距下的TV畸变中,畸变值较大的为上述第一TV畸变,畸 变值较小的为上述第二TV畸变;
对上述第一TV畸变对应的镜头进行畸变校正,以使该畸变校正后的镜头在上述目标物距下的TV畸变,与上述第二TV畸变的差值小于预设畸变误差。
一种实施例,本申请实施例的图像输出方法还包括:
获取预先测量的上述第一镜头与上述第二镜头在上述目标物距下、且在同等像高下的相对亮度,得到第一相对亮度及第二相对亮度,其中,在上述第一镜头与上述第二镜头在上述目标物距下、且在同等像高下的相对亮度中,相对亮度值较大的为上述第一相对亮度,相对亮度值较小的为上述第二相对亮度;
对上述第二相对亮度对应的镜头进行相对亮度校正,以使该相对亮度校正后的镜头在上述目标物距下、且在上述同等像高下的相对亮度,与上述第一相对亮度的差值小于预设相对亮度误差。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本说明书中的各个实施例均采用相关的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处,相关之处参见方法实施例的部分说明即可。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (18)

  1. 一种摄像机,其特征在于,所述摄像机包括:
    第一镜头、第二镜头、第一反光镜、第二反光镜及图像传感器,所述第一镜头的焦距范围与所述第二镜头的焦距范围不同,其中,所述第一镜头的光轴与所述第二镜头的光轴平行;
    所述图像传感器,被配置用于接收来自所述第一镜头且经由所述第一反光镜反射后的光线或接收来自所述第二镜头且经由所述第二反光镜反射后的光线。
  2. 根据权利要求1所述的摄像机,其特征在于,所述图像传感器具体用于:
    在所述第一反光镜处于工作位置时,所述图像传感器接收来自所述第一镜头且经由所述第一反光镜反射后的光线,生成第一图像;
    在所述第一反光镜处于非工作位置,且所述第二反光镜处于工作位置时,所述图像传感器接收来自所述第一镜头且经由所述第一反光镜反射后的光线,生成第二图像。
  3. 根据权利要求1所述的摄像机,其特征在于,所述第一镜头的光轴与所述第二镜头的光轴所在的平面垂直于所述图像传感器;在所述图像传感器接收由所述第一反光镜反射的所述第一镜头采集的图像时,所述第一反光镜与所述第一镜头的光轴的夹角为预设角度;在所述图像传感器接收由所述第二反光镜反射的所述第二镜头采集的图像时,所述第二反光镜与所述第二镜头的光轴的夹角为所述预设角度,其中,所述预设角度的取值范围为三十度至四十五度。
  4. 根据权利要求3所述的摄像机,其特征在于,所述预设角度为四十五度。
  5. 根据权利要求1所述的摄像机,其特征在于,所述第一反光镜为活动反光镜,所述第二反光镜为固定反光镜。
  6. 根据权利要求5所述的摄像机,其特征在于,所述摄像机还包括电磁阀,所述第一反光镜设置在所述电磁阀上,所述电磁阀运行时带动所述第一反光镜的转动。
  7. 根据权利要求6所述的摄像机,其特征在于,所述摄像机还包括处理器,所述处理器控制所述电磁阀运行。
  8. 根据权利要求7所述的摄像机,其特征在于,所述第一镜头及所述第二镜头均为变焦镜头,所述处理器用于:
    在检测到当前镜头的焦距满足预设切换条件时,所述处理器计算所述预设焦距对应的物距,其中,所述预设切换条件用于指示所述摄像机由所述当前镜头切换至另一个镜头,且,当所述当前镜头为第一镜头时,则所述另一个镜头为第二镜头;或当所述当前镜头为第二镜头时,则所述另一个镜头为第一镜头;
    根据所述预设焦距对应的物距,调节所述摄像机的另一个镜头的物距为所述预设焦距对应的物距,调节所述电磁阀以使所述图像传感器接收所述另一个镜头采集的图像。
  9. 根据权利要求8所述的摄像机,其特征在于,所述在检测到当前镜头的焦距满足预设切换条件时,包括:
    按照当前镜头的焦距调整速度,计算当前镜头的焦距调整至所述预设焦所需的时间,作为目标时间;在所述目标时间降低至预设时间阈值时,判定当前镜头的焦距满足预设切换条件。
  10. 根据权利要求8所述的摄像机,其特征在于,所述第一镜头与所述第二镜头的焦距范围存在重叠区间,且所述预设焦距在所述重叠区间内。
  11. 根据权利要求10所述的摄像机,其特征在于,所述摄像机还包括多个电机,所述第一镜头及所述第二镜头通过所述电机的牵引进行变焦及对焦,所述重叠区间的设置及所述预设焦距的选取满足所述电机的启动和制动条件。
  12. 根据权利要求11所述的摄像机,其特征在于,所述处理器包括:系统级芯片SoC、微控制单元MCU、电机控制芯片及电磁阀控制芯片;
    所述SoC用于接收所述图像传感器发送的图像数据,处理及输出所述图像数据;
    所述MCU用于控制所述电机控制芯片及电磁阀控制芯片;
    所述电机控制芯片用于控制所述电机的运行;
    所述电磁阀控制芯片用于控制所述电磁阀的运行。
  13. 根据权利要求1所述的摄像机,其特征在于,在所述第一反光镜及所述第二反光镜中,所述第一反光镜与所述图像传感器的距离更近。
  14. 一种图像输出方法,其特征在于,应用于摄像机,所述摄像机包括第一镜头、第二镜头、第一反光镜、第二反光镜及图像传感器,所述第一镜头的焦距与所述第二镜头的焦距不同,在所述第一反光镜及所述第二反光镜中,所述第一反光镜与所述图像传感器的距离更近,所述第一镜头的光轴与所述第二镜头的光轴平行;所述方法包括:
    调节所述第一反光镜处于工作位置,以使所述图像传感器接收由所述第一反光镜反射的所述第一镜头采集的图像;或
    调节所述第一反光镜处于非工作位置,且所述第二反光镜处于工作位置,以使所述图像传感器接收由所述第二反光镜反射的所述第二镜头采集的图像。
  15. 根据权利要求14所述的方法,其特征在于,所述第一反光镜为活动反光镜,所述第二反光镜为固定反光镜,所述第一镜头及所述第二镜头均为变焦镜头,所述摄像机还包括电磁阀,所述第一反光镜设置在所述电磁阀上,所述电磁阀运行时带动所述第一反光镜的转动,所述方法还包括:
    在检测到当前镜头的焦距满足预设切换条件时,确定所述当前镜头在预设焦距时的目标物距,其中,所述当前镜头为采集所述图像传感器正在接收的图像的镜头;
    按照所述目标物距,调节目标镜头的物距,以使所述目标镜头的物距为所述目标物距,其中,所述目标镜头为所述第一镜头及所述第二镜头中除所述当前镜头外的另一镜头;
    调节所述电磁阀以使所述图像传感器接收所述目标镜头采集的图像。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    获取所述当前镜头的设置参数,将所述当前镜头的设置参数同步到所述目标镜头,其中,所述设置参数包括曝光参数及白平衡参数中的至少一种。
  17. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    获取预先测量的所述第一镜头与所述第二镜头在所述目标物距下的TV畸变,得到第一TV畸变及第二TV畸变,其中,在所述第一镜头与所述第二镜头在所述目标物距下的TV畸变中,畸变值较大的为所述第一TV畸变,畸变值较小的为所述第二TV畸变;
    对所述第一TV畸变对应的镜头进行畸变校正,以使该畸变校正后的镜头在所述目标物距下的TV畸变,与所述第二TV畸变的差值小于预设畸变误差。
  18. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    获取预先测量的所述第一镜头与所述第二镜头在所述目标物距下、且在同等像高下的相对亮度,得到第一相对亮度及第二相对亮度,其中,在所述第一镜头与所述第二镜头在所述目标物距下、且在同等像高下的相对亮度中,相对亮度值较大的为所述第一相对亮度,相对亮度值较小的为所述第二相对亮度;
    对所述第二相对亮度对应的镜头进行相对亮度校正,以使该相对亮度校正后的镜头在所述目标物距下、且在所述同等像高下的相对亮度,与所述第一相对亮度的差值小于预设相对亮度误差。
PCT/CN2019/114327 2018-10-31 2019-10-30 图像输出方法及摄像机 WO2020088518A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811287390.XA CN111131687B (zh) 2018-10-31 2018-10-31 图像输出方法及摄像机
CN201811287390.X 2018-10-31

Publications (1)

Publication Number Publication Date
WO2020088518A1 true WO2020088518A1 (zh) 2020-05-07

Family

ID=70462988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114327 WO2020088518A1 (zh) 2018-10-31 2019-10-30 图像输出方法及摄像机

Country Status (2)

Country Link
CN (1) CN111131687B (zh)
WO (1) WO2020088518A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111601026B (zh) * 2020-05-28 2021-12-07 维沃移动通信(杭州)有限公司 摄像模组及电子设备
CN112291452B (zh) * 2020-09-29 2021-12-14 北京全网数商科技股份有限公司 一种利用电生磁对物联网监测摄像头反光时的保护装置
CN115734059A (zh) * 2021-08-25 2023-03-03 晋城三赢精密电子有限公司 双镜头摄像模组
WO2023115407A1 (en) * 2021-12-22 2023-06-29 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Imaging lens assembly, camera module and imaging device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10254055A (ja) * 1997-03-10 1998-09-25 Minolta Co Ltd 多焦点カメラ
CN2807647Y (zh) * 2005-06-17 2006-08-16 中山火炬开发区美景光学模具厂 一种电脑摄像头
CN102540477A (zh) * 2010-12-08 2012-07-04 大立光电股份有限公司 双光路系统交互校正方法及使用该方法的光学系统
CN102778806A (zh) * 2011-05-13 2012-11-14 广达电脑股份有限公司 双向摄影装置及可携式电子装置
US20130002913A1 (en) * 2011-06-30 2013-01-03 Hon Hai Precision Industry Co., Ltd. Electronic device having one image sensor and two lens modules
CN205921665U (zh) * 2016-07-30 2017-02-01 深圳市泰凯达科技有限公司 一种双摄像头装置
CN108270952A (zh) * 2017-11-21 2018-07-10 深圳市芯舞时代科技有限公司 一种双目摄像机影像色差的校正方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101278239B1 (ko) * 2006-10-17 2013-06-24 삼성전자주식회사 듀얼 렌즈 광학계 및 이를 구비하는 듀얼 렌즈 카메라
CN104967775B (zh) * 2015-06-05 2017-12-01 深圳市星苑科技有限公司 一种变焦镜头成像的装置及方法
CN105959525B (zh) * 2016-06-16 2019-01-15 维沃移动通信有限公司 一种拍摄控制方法、摄像头模组及移动终端
CN206865574U (zh) * 2017-03-30 2018-01-09 成都通甲优博科技有限责任公司 一种低照度环境下彩色图像获取装置
CN108632518A (zh) * 2018-07-20 2018-10-09 珠海格力电器股份有限公司 一种共用传感器的摄像头装置及其移动终端

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10254055A (ja) * 1997-03-10 1998-09-25 Minolta Co Ltd 多焦点カメラ
CN2807647Y (zh) * 2005-06-17 2006-08-16 中山火炬开发区美景光学模具厂 一种电脑摄像头
CN102540477A (zh) * 2010-12-08 2012-07-04 大立光电股份有限公司 双光路系统交互校正方法及使用该方法的光学系统
CN102778806A (zh) * 2011-05-13 2012-11-14 广达电脑股份有限公司 双向摄影装置及可携式电子装置
US20130002913A1 (en) * 2011-06-30 2013-01-03 Hon Hai Precision Industry Co., Ltd. Electronic device having one image sensor and two lens modules
CN205921665U (zh) * 2016-07-30 2017-02-01 深圳市泰凯达科技有限公司 一种双摄像头装置
CN108270952A (zh) * 2017-11-21 2018-07-10 深圳市芯舞时代科技有限公司 一种双目摄像机影像色差的校正方法及系统

Also Published As

Publication number Publication date
CN111131687A (zh) 2020-05-08
CN111131687B (zh) 2021-09-24

Similar Documents

Publication Publication Date Title
WO2020088518A1 (zh) 图像输出方法及摄像机
JP5337170B2 (ja) タイミング調節されるシャッターを用いる複数のイメージセンサーを有するパノラマカメラ
US5926218A (en) Electronic camera with dual resolution sensors
JP3429755B2 (ja) 撮像装置の被写界深度制御装置
JP2002176585A (ja) レンズ及び撮像システム
JP2008054206A (ja) ゴースト検出装置およびその関連技術
US20110050856A1 (en) Stereoscopic imaging apparatus
JP2008252461A (ja) 撮像装置
JP2001281530A (ja) デジタルスチルカメラ
JP2007274669A (ja) 撮像装置
JP2006162990A (ja) 立体画像撮影装置
US7499088B2 (en) Imaging apparatus, imaging method and imaging processing program
JP2017215578A (ja) 焦点検出装置及びその制御方法
CN111131662B (zh) 图像输出方法、装置、摄像机及存储介质
JP2010258669A (ja) 全方位撮像装置
JPH095610A (ja) 被写界認識用エリアセンサ及び光学機器
US9888165B2 (en) Image capturing apparatus, control method therefor and storage medium
JP2001346095A (ja) デジタルスチルカメラ
JPH07303207A (ja) 撮像装置
JP2002010126A (ja) 撮像装置
US8582016B2 (en) Photographing apparatus and focus detecting method using the same
CN209017154U (zh) 一种摄像机
US6546076B1 (en) Digital high resolution x-ray imaging utilizing an imaging sensor
JPH099132A (ja) 自動焦点調節装置及びカメラ
JP2009109792A (ja) オートフォーカス装置及びこれを用いるカメラ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19879251

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19879251

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19879251

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19.11.2021)