WO2020087604A1 - 信号调整方法及电路、显示装置 - Google Patents

信号调整方法及电路、显示装置 Download PDF

Info

Publication number
WO2020087604A1
WO2020087604A1 PCT/CN2018/117366 CN2018117366W WO2020087604A1 WO 2020087604 A1 WO2020087604 A1 WO 2020087604A1 CN 2018117366 W CN2018117366 W CN 2018117366W WO 2020087604 A1 WO2020087604 A1 WO 2020087604A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
signal
transmission amplitude
amplitude
transmission
Prior art date
Application number
PCT/CN2018/117366
Other languages
English (en)
French (fr)
Inventor
王明良
Original Assignee
惠科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司 filed Critical 惠科股份有限公司
Priority to US17/043,107 priority Critical patent/US20210065612A1/en
Publication of WO2020087604A1 publication Critical patent/WO2020087604A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2092Details of a display terminals using a flat panel, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • G09G3/2096Details of the interface to the display terminal specific for a flat panel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/003Details of a display terminal, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • G09G5/006Details of the interface to the display terminal
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/08Details of image data interface between the display device controller and the data line driver circuit

Definitions

  • the present application relates to a signal adjustment method, circuit and display device.
  • the data that needs to be transmitted is increasing.
  • differential signals are popularized as a high-speed transmission protocol, and the quality of data transmission is also facing a more severe test.
  • the voltage amplitude the magnitude of the voltage amplitude corresponds to the high level and low level of the data
  • the data can be stored in the register to make the data transmission accurate.
  • a signal adjustment method, a circuit, and a display device are provided.
  • a signal adjustment method includes the following steps:
  • the output data signal transmission amplitude is adjusted correspondingly according to the numerical information.
  • the step of converting each transmission amplitude into a corresponding number includes:
  • the step of calculating the numbers to obtain the numerical information of the transmission amplitude it includes:
  • the steps of establishing a communication connection and transmitting the numerical information specifically include:
  • the communication connection is established through a two-way communication protocol.
  • the step of correspondingly adjusting the transmission amplitude of the output data signal according to the numerical information is specifically:
  • the numerical value information is adjusted to be the same as the preset numerical value information, so that the data signal transmission amplitude is the same as the corresponding amplitude value of the preset numerical value information.
  • the amplitude corresponding to the preset value information is a first threshold.
  • the signal edge of the clock includes a rising edge or a falling edge of the clock.
  • the calculation method includes at least one of an average method and a weighting method.
  • a signal adjustment circuit including:
  • the identification circuit is set to access the clock signal and the current line data signal, and identify the transmission amplitude of each data signal at the clock signal edge;
  • a conversion circuit the conversion circuit is connected to the identification circuit, and is configured to convert each transmission amplitude to a corresponding number
  • a calculation circuit the calculation circuit is connected to the conversion circuit, and is set to perform calculation on each number to obtain numerical information of the transmission amplitude;
  • An adjustment circuit which is respectively connected to the identification circuit and the calculation circuit, and is configured to adjust the output data signal transmission amplitude correspondingly according to the numerical value information.
  • the signal adjustment circuit further includes:
  • a storage circuit which is connected between the conversion circuit and the calculation circuit, and is configured to store each transmission amplitude and its corresponding number.
  • the signal adjustment circuit further includes:
  • a communication circuit connected between the calculation circuit and the adjustment circuit, and configured to establish a communication connection between the calculation circuit and the adjustment circuit to transmit the numerical value information.
  • the communication circuit includes a two-way communication protocol.
  • the communication circuit includes an I2C protocol.
  • the conversion circuit includes an analog-to-digital converter.
  • the signal edge of the clock includes a rising edge or a falling edge of the clock.
  • a display device includes a display panel and the signal adjustment circuit as described above.
  • FIG. 1 is a flowchart of a signal adjustment method in an embodiment
  • Figure 2 is an effect diagram of data transmission amplitude adjustment
  • FIG. 3 is a flowchart of a signal adjustment method in another embodiment
  • FIG. 4 is a circuit structure diagram corresponding to the signal adjustment method of FIG. 1 in an embodiment
  • FIG. 5 is a circuit structure diagram corresponding to the signal adjustment method of FIG. 3 in another embodiment.
  • FIG. 1 is a flowchart of a signal adjustment method in an embodiment.
  • the signal adjustment method includes steps S101, S102, S103, and S104.
  • the details are as follows:
  • step S101 the clock signal and the current line data signal are accessed, and the transmission amplitude of each data signal is identified at the signal edge of the clock.
  • the current row of data signals refers to the currently transmitted row of data signals.
  • S101 receives the currently transmitted row of data signals and the clock signal, and identifies the transmission amplitude of each data signal at the clock signal edge.
  • the signal edge of the clock includes the rising edge or falling edge of the clock. Specifically, the rising edge or falling edge of the clock is detected first, and the transmission amplitude of each data signal is identified when the rising or falling edge of the clock is detected.
  • step S102 each transmission amplitude is converted into a corresponding number.
  • S102 identifies the transmission amplitude of each data signal through S101, and then converts the specific transmission amplitude into a digital representation method.
  • the analog quantity of each transmission amplitude can be converted into a digital quantity through an analog-to-digital converter.
  • step S103 each number is calculated to obtain numerical information of the transmission amplitude.
  • S103 calculates each number to obtain numerical information corresponding to the transmission amplitude of the line data, and feeds back the numerical information to S104.
  • the numerical information refers to the digitized information of the overall transmission amplitude of the data signal of the current line, which is obtained by calculating each digit.
  • the calculation method includes but is not limited to the average method, the weighting method, and a combination of the two.
  • the selection of the method is specifically set according to the data transmission status.
  • S103 may specifically transmit numerical information in real time to achieve accurate calibration in real time to improve the accuracy of delay. Or you can choose to feedback during the non-data transmission period, that is, the idle time in the horizontal or vertical direction to avoid the impact on data transmission.
  • step S104 the transmission amplitude of the output data signal is adjusted according to the numerical information.
  • S104 receives numerical information and adjusts the data transmission amplitude of the data transmission sender according to the numerical information to meet the transmission requirements, so that the data transmission receiver can reliably collect data; at the same time, automatic adjustment does not require Excessive manual participation in debugging, saving time and effort.
  • adjusting the transmission amplitude according to the numerical information refers to adjusting the numerical information to be the same as the preset numerical information, so that the output transmission amplitude is the same as the amplitude corresponding to the preset numerical information.
  • the setting of the preset value information is set according to the actual data transmission status, that is, different data transmission states correspond to different preset value information. Different data transmission states correspond to different amplitude ranges.
  • the amplitude range may include multiple thresholds, such as a first threshold (lowest threshold), a second threshold (medium threshold), and a third threshold (highest threshold).
  • the preset value information corresponds to the first threshold (lowest threshold) of the data signal transmission amplitude, that is, the data transmission transmitting terminal outputs the data signal transmission amplitude correspondingly adjusted according to the value information, so that the amplitude can satisfy the data signal
  • the minimum threshold of the transmission amplitude For example, referring to FIG. 2, FIG. 2 is an effect diagram of data transmission amplitude adjustment (the curve a represents the amplitude reference position and the curve b data transmission line), where A1 is the transmission amplitude before automatic adjustment and A2 is the automatic adjustment Before the transmission amplitude, the transmission amplitude of the data signal increases from A1 to A2 to meet the transmission requirements.
  • the signal adjustment method provided in this embodiment recognizes the transmission amplitude of each data signal at the signal edge of the clock, and converts each transmission amplitude to a corresponding number, and operates each number to obtain numerical information of the transmission amplitude, Therefore, the transmission amplitude of the output data signal can be adjusted according to the numerical information, so that the transmission amplitude meets the transmission requirements, so that the data transmission receiver can reliably collect data and improve the quality of data transmission; and according to the different conditions of data transmission, there are different Amplitude matching to achieve adaptive dynamic matching to meet the eye diagram requirements under various data transmission conditions, while automatically adjusting without excessive manual participation in debugging, saving time and effort.
  • FIG. 3 is a flowchart of a signal adjustment method in another embodiment.
  • the signal adjustment method includes steps S201, S202, S203, S204, S205, and S206.
  • the details are as follows:
  • step S201 the clock signal and the current line data signal are accessed, and the transmission amplitude of each data signal is identified at the signal edge of the clock.
  • step S202 each transmission amplitude is converted into a corresponding number.
  • step S203 each transmission amplitude and its corresponding number are stored.
  • step S204 each number is calculated to obtain numerical information of the transmission amplitude.
  • step S205 a communication connection is established, and numerical information is transmitted.
  • step S206 the output data signal transmission amplitude is adjusted according to the numerical information.
  • each transmission amplitude and its corresponding number through S203 can prevent data loss; on the other hand, through storage, more numbers can be accumulated so that S204 can operate on more numbers, so that The calculation result is more accurate and the efficiency is higher.
  • S205 may specifically establish a communication connection and transmit numerical information in real time; or may establish a communication connection and transmit numerical information when the current row of data signals stops transmitting.
  • the transmitted value information includes the value information obtained according to the current data signal, and may also include the value information corresponding to the accumulated other line data signals.
  • the communication connection can be established through a two-way communication protocol.
  • the two-way communication protocol includes but is not limited to the I2C protocol.
  • the signal adjustment method provided in this embodiment recognizes the transmission amplitude of each data signal at the signal edge of the clock, converts each transmission amplitude to a corresponding number, stores each number, and operates each number to obtain the transmission amplitude
  • the transmission amplitude of the output data signal can be adjusted according to the numerical information, so that the transmission amplitude meets the transmission requirements, so that the data transmission receiver can reliably collect data and improve the quality of data transmission; and according to the different data transmission
  • the situation has different amplitude combinations to achieve adaptive dynamic matching to meet the eye diagram requirements under various data transmission conditions, while automatically adjusting without excessive manual participation in debugging, saving time and effort.
  • steps in the flowchart of the above embodiment are displayed sequentially according to the arrows, the steps are not necessarily executed in the order indicated by the arrows. Unless clearly stated in this article, the execution of these steps is not strictly limited in order, and these steps can be executed in other orders. Moreover, at least some of the steps in FIGS. 1 and 3 may include multiple sub-steps or multiple stages. These sub-steps or stages are not necessarily executed at the same time, but may be executed at different times. These sub-steps or The execution order of the stages does not necessarily need to be performed sequentially, but may be executed in turn or alternately with other steps or sub-steps of the other steps or at least a part of the stages.
  • FIG. 4 is a structural diagram of a signal adjustment circuit corresponding to each step in the embodiment of FIG. 1 in an embodiment.
  • the signal adjustment circuit includes: an identification circuit 101, a conversion circuit 102, a calculation circuit 103, and an adjustment circuit 104.
  • the identification circuit 101, the conversion circuit 102, and the calculation circuit 103 are provided at the data transmission receiving end, and the adjustment circuit 104 is provided at the data transmission sending end.
  • the identification circuit 101, the conversion circuit 102, and the calculation circuit 103 of the signal adjustment circuit are provided in the data driver, and the adjustment circuit 104 is provided in the timing controller.
  • the identification circuit 101 is configured to access the clock signal and the current line data signal, and identify the transmission amplitude of each data signal at the signal edge of the clock.
  • the conversion circuit 102 is connected to the identification circuit 101 and is configured to convert each transmission amplitude to a corresponding number.
  • the calculation circuit 103 is connected to the conversion circuit 102, and is configured to perform calculation on each number to obtain numerical information of the transmission amplitude.
  • the adjustment circuit 104 is connected to the calculation circuit 103, and is set to adjust the transmission data signal transmission amplitude according to the numerical information.
  • the identification circuit 101 is at the data transmission receiving end, and is configured to receive the transmitted data signal and the clock signal, and identify the transmission amplitude of each data signal at the signal edge of the clock. Specifically, the rising edge or falling edge of the clock is detected first, and the transmission amplitude of each data signal is identified when the rising or falling edge of the clock is detected.
  • the conversion circuit 102 is configured to convert each transmission amplitude to a corresponding number. Specifically, the conversion circuit 102 recognizes the transmission amplitude of each data signal through the recognition circuit 101, and then converts the size of the specific transmission amplitude into a digital representation method.
  • the conversion circuit 102 may specifically be an analog-to-digital converter, and convert the analog quantity of each transmission amplitude into a digital quantity through the analog-to-digital converter.
  • the calculation circuit 103 is set to receive the numbers corresponding to the respective transmission amplitudes obtained by the conversion by the conversion circuit 102, calculate the numbers to obtain numerical information corresponding to the transmission amplitude of the line data, and convert the numerical information Feedback to the adjustment circuit 104.
  • the calculation method includes but is not limited to the average method, the weighting method, and a combination of the two.
  • the selection of the method is specifically set according to the data transmission status.
  • the feedback from the calculation circuit 103 to the adjustment circuit 104 can transmit the time information in real time, so as to accurately calibrate in real time to improve the accuracy of the delay. Or you can choose to feedback during the non-data transmission period, that is, the idle time in the horizontal or vertical direction to avoid the impact on data transmission.
  • the adjustment circuit 104 is located at the data transmission sending end, and is set to receive the value information fed back by the calculation circuit 103, and adjust the data transmission signal output amplitude of the data transmission sending end according to the value information to meet the transmission requirements, so The receiving end of the data transmission can reliably collect data; at the same time, automatic adjustment does not require too much manual participation in debugging, saving time and effort.
  • adjusting the transmission amplitude according to the numerical information refers to adjusting the numerical information to be the same as the preset numerical information, so that the output transmission amplitude is the same as the amplitude corresponding to the preset numerical information.
  • the setting of the preset value information is set according to the actual data transmission status, that is, different data transmission states correspond to different preset value information. Different data transmission states correspond to different amplitude ranges.
  • the amplitude range may include multiple thresholds, such as a first threshold (lowest threshold), a second threshold (medium threshold), and a third threshold (highest threshold).
  • the preset value information corresponds to the first threshold (lowest threshold) of the data signal transmission amplitude, that is, the data transmission transmitting terminal outputs the data signal transmission amplitude correspondingly adjusted according to the value information, so that the amplitude can satisfy the data signal The minimum threshold of the transmission amplitude.
  • the signal adjustment circuit provided in this embodiment includes an identification circuit 101, a conversion circuit 102, a calculation circuit 103, and an adjustment circuit 104.
  • the identification circuit 101 identifies the transmission amplitude of each data signal at the clock edge of the clock, and the conversion circuit 102 combines each The transmission amplitude is converted into corresponding numbers and the calculation circuit 103 calculates each number to obtain numerical information of the transmission amplitude, so that the adjustment circuit 104 can adjust the transmission amplitude of the output data signal according to the numerical information, so that the transmission amplitude meets the transmission Requirements, so that the receiving end of the data transmission can reliably collect data and improve the quality of data transmission; and have different amplitude combinations according to different conditions of data transmission to achieve adaptive dynamic matching to meet the needs of various data transmission conditions Figure requirements, automatic adjustment at the same time without excessive manual participation in debugging, saving time and effort.
  • FIG. 5 is a structural diagram of a signal adjustment circuit corresponding to performing the steps in the embodiment of FIG. 3 in another embodiment.
  • the signal adjustment circuit includes: an identification circuit 101, a conversion circuit 102, a calculation circuit 103, an adjustment circuit 104, a storage circuit 105, and a communication circuit 106.
  • the relevant descriptions of the identification circuit 101, the conversion circuit 102, the calculation circuit 103, and the adjustment circuit 104 refer to the previous embodiment, and will not be repeated here.
  • the storage circuit 105 is connected between the conversion circuit 102 and the calculation circuit 103, and is set to each transmission amplitude and its corresponding number.
  • the recognition circuit 101 receives many data signals at one time, so multiple transmission amplitudes can be recognized, and the storage circuit 105 stores each transmission amplitude and its corresponding number to prevent data loss; on the other hand, by storing, More numbers can be accumulated to allow the calculation circuit 103 to perform calculations on more numbers, so that the calculation result is more accurate and the efficiency is higher.
  • the communication circuit 106 is configured to establish a communication connection between the calculation circuit 103 and the adjustment circuit 104 and transmit numerical information.
  • the communication circuit 106 may be a two-way communication protocol, including but not limited to the I2C protocol.
  • the communication protocol is applied, since the line of the communication protocol and the transmission data are separate and will not affect each other, the time information can be transmitted in real time at the same time as the data transmission, so as to achieve accurate calibration in real time.
  • the signal adjustment circuit includes an identification circuit 101, a conversion circuit 102, a calculation circuit 103, an adjustment circuit 104, a storage circuit 105, and a communication circuit 106.
  • the identification circuit 101 identifies the transmission amplitude of each data signal at the clock signal edge Value, combined with the conversion circuit 102 and the storage circuit 105 to convert each transmission amplitude to a corresponding number and store it, and the calculation circuit 103 calculates each number to obtain the numerical information of the transmission amplitude, so that the adjustment circuit 104 can correspond to the numerical information Adjust the transmission amplitude of the output data signal so that the transmission amplitude meets the transmission requirements, so that the data transmission receiver can reliably collect data and improve the quality of data transmission; and according to the different conditions of data transmission, there are different amplitude combinations to achieve Adaptive dynamic matching can meet the requirements of eye diagrams under various data transmission conditions, while automatically adjusting without excessive manual participation in debugging, saving time and effort.
  • This embodiment also provides a display device.
  • the display device includes a display panel and the signal adjustment circuit described in the foregoing embodiment, which can ensure that each piece of displayed data is correctly received, and improve the reliability of the display.
  • the display panel in this embodiment may be any of the following: liquid crystal display panel, OLED display panel, QLED display panel, twisted nematic (TN) or super twisted nematic (Super Twisted Nematic, STN) type, plane switching (In-Plane Switching, IPS) type, Vertical Alignment (VA) type, curved type panel, or other display panel.
  • TN twisted nematic
  • STN super twisted nematic
  • IPS plane switching
  • VA Vertical Alignment
  • curved type panel or other display panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dc Digital Transmission (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

一种信号调整方法,该信号调整方法包括:接入时钟信号和当前行数据信号,并在时钟的信号沿识别各数据信号的传输幅值;将各传输幅值转换为相应的数字;将各数字进行运算,获取传输幅值的数值信息;根据所述数值信息对应调整输出数据信号传输幅值。

Description

信号调整方法及电路、显示装置
本申请要求于2018年10月30日提交中国专利局,申请号为201811277605X,申请名称为“信号调整方法及电路、显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种信号调整方法及电路、显示装置。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有技术。
随着液晶电视尺寸的增大以及解析度的升高,需要传输的数据也日益增多,由此差分信号作为一种高速的传输协议便得到普及,数据传输的质量也面临更严峻的考验,只有在电压幅值(电压幅值的大小对应数据的高电平和低电平)满足要求时,数据才能存储在寄存器中以使数据传输准确无误。
然而,随着差分对数量的增多及驱动板日益的薄型化,再加上传输数据的增加,以及由于传输的数据始终在变化,实际接收到的数据幅值状况复杂多变,使得数据传输的幅值状况越来越糟糕,从而在实际应用中需要耗费大量的时间来进行人工调试,确保每一对的差分传输状况,耗时耗力。而且由于传输的数据始终在变化,也无法确保每一笔数据的接收都准确无误。
发明内容
根据本申请公开的各种实施例,提供一种信号调整方法及电路、显示装置。
一种信号调整方法,包括如下步骤:
接入时钟信号和当前行数据信号,并在时钟的信号沿识别各数据信号的传输幅值;
将各传输幅值转换为相应的数字;
将各数字进行运算,获取传输幅值的数值信息;
根据所述数值信息对应调整输出数据信号传输幅值。
在其中一个实施例中,所述将各传输幅值转换为相应的数字的步骤之后,包括:
存储各传输幅值及其对应的数字。
在其中一个实施例中,所述将各数字进行运算,获取传输幅值的数值信息的步骤之后,包括:
建立通信连接,传输所述数值信息。
在其中一个实施例中,所述建立通信连接,传输所述数值信息的步骤,具体为:
建立通信连接,实时传输所述数值信息;或者
建立通信连接,在当前行数据信号停止传输时,传输所述数值信息。
在其中一个实施例中,通过双向通信协议建立通信连接。
在其中一个实施例中,所述根据所述数值信息对应调整输出数据信号传输幅值的步骤,具体为:
将数值信息调整至与预设数值信息相同,以使所述数据信号传输幅值与预设数值信息对应的幅值相同。
在其中一个实施例中,所述预设数值信息对应的幅值为第一阈值。
在其中一个实施例中,所述时钟的信号沿包括时钟的上升沿或下降沿。
在其中一个实施例中,运算的方法包括平均值法和加权法中的至少一种。
一种信号调整电路,包括:
识别电路,设置为接入时钟信号和当前行数据信号,并在时钟的信号沿识别各数据信号的传输幅值;
转换电路,所述转换电路连接所述识别电路,设置为将各传输幅值转换为相应的数字;
计算电路,所述计算电路连接所述转换电路,设置为将各数字进行运算,获取传输幅值的数值信息;
调整电路,所述调整电路分别连接所述识别电路和所述计算电路,设置为根据所述数值信息对应调整输出数据信号传输幅值。
在其中一个实施例中,所述信号调整电路还包括:
存储电路,所述存储电路连接在所述转换电路和所述计算电路之间,设置为存储各传输幅值及其对应的数字。
在其中一个实施例中,所述信号调整电路还包括:
通信电路,所述通信电路连接在所述计算电路和所述调整电路之间,设置为建立所述计算电路和所述调整电路的通信连接,传输所述数值信息。
在其中一个实施例中,所述通信电路包括双向通信协议。
在其中一个实施例中,所述通信电路包括I2C协议。
在其中一个实施例中,所述转换电路包括模数转换器。
在其中一个实施例中,所述时钟的信号沿包括时钟的上升沿或下降沿。
一种显示装置,所述显示装置包括显示面板和如上所述的信号调整电路。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为一实施例中信号调整方法的流程图;
图2为一数据传输幅值调整的效果图;
图3为另一实施例中信号调整方法的流程图;
图4为一实施例中对应图1的信号调整方法的电路结构图;
图5为另一实施例中对应图3的信号调整方法的电路结构图。
具体实施方式
为了使本申请的技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
参见图1,图1为一实施例中信号调整方法的流程图。
在本实施例中,该信号调整方法包括步骤S101、S102、S103以及S104。详述如下:
在步骤S101中,接入时钟信号和当前行数据信号,并在时钟的信号沿识别各数据信 号的传输幅值。
在本实施例中,当前行数据信号是指当前传输的一行数据信号,S101接收当前传输的一行数据信号和时钟信号,在时钟的信号沿识别各数据信号的传输幅值。其中,时钟的信号沿包括时钟的上升沿或下降沿。具体地,先侦测时钟的上升沿或下降沿,并在侦测到时钟的上升或下降沿时对各数据信号的传输幅值进行识别。
在步骤S102中,将各传输幅值转换为相应的数字。
在本实施例中,S102通过S101识别了各数据信号的传输幅值,进而将具体传输幅值的大小转化为数字化的表示方法。在其中一个实施例,可以通过模数转换器将各传输幅值的模拟量转换为数字量。
在步骤S103中,将各数字进行运算,获取传输幅值的数值信息。
在本实施例中,S103将各数字进行运算,获取与行数据的传输幅值对应的数值信息,并将数值信息反馈至S104。其中,数值信息是指当前行数据信号的整体传输幅值的数字化信息,由各数字进行运算获得。运算的方法包括但不限于平均值法、加权法以及两者的结合,方法的选择具体根据数据传输状况进行设定。其中,S103具体可以是可以实时地传送数值信息,做到实时准确地校准,以提高延迟的准确性。或者也可以选择在非数据传输期间,即水平方向或垂直方向上的空闲时间进行反馈,以避免对数据传送的影响。
在步骤S104中,根据数值信息对应调整输出数据信号传输幅值。
在本实施例中,S104接收数值信息,并根据数值信息对应调整数据传输发送端输出数据信号传输幅值,使之满足传输要求,让数据传输的接收端能够可靠地采集数据;同时自动化调整无需过多的人工参与调试,省时省力。
其中,根据数值信息对应调整传输幅值是指将数值信息调整至与预设数值信息相同,以使输出传输幅值与预设数值信息对应的幅值相同。其中,预设数值信息的设定根据实际数据传输状况进行设定,即,不同的数据传输状态对应有不同的预设数值信息。不同的数据传输状态对应不同的幅值范围,该幅值范围可以包括多个阈值,例如第一阈值(最低阈值)、第二阈值(中等阈值)以及第三阈值(最高阈值)等。在其中一个实施例中,预设数值信息对应数据信号传输幅值的第一阈值(最低阈值),即根据数值信息对应调整数据传输发送端输出数据信号传输幅值,可以使幅值满足数据信号传输幅值的最低阈值。例如, 参见图2,图2为数据传输幅值调整的效果图(图中曲线a代表幅值基准位,曲线b数据传输线),其中,A1为自动调整前的传输幅值,A2为自动调整前的传输幅值,数据信号传输幅值由A1增加到A2,满足传输的要求。
本实施例提供的信号调整方法,通过在时钟的信号沿识别各数据信号的传输幅值,并将各传输幅值转换为相应的数字,将各数字进行运算,获取传输幅值的数值信息,从而能够根据数值信息对应调整输出数据信号传输幅值,以使传输幅值满足传输要求,让数据传输的接收端能够可靠地采集数据,提高数据传输质量;且根据数据传输的不同状况有着不同的幅值搭配,以实现自适应的动态匹配,满足各种数据传输状况下的眼图要求,同时自动调整无需过多的人工参与调试,省时省力。
参见图3,图3为另一实施例中信号调整方法的流程图。
在本实施例中,该信号调整方法包括步骤S201、S202、S203、S204、S205以及S206。详述如下:
在步骤S201中,接入时钟信号和当前行数据信号,并在时钟的信号沿识别各数据信号的传输幅值。
在步骤S202中,将各传输幅值转换为相应的数字。
在步骤S203中,存储各传输幅值及其对应的数字。
在步骤S204中,将各数字进行运算,获取传输幅值的数值信息。
在步骤S205中,建立通信连接,传输数值信息。
在步骤S206中,根据数值信息对应调整输出数据信号传输幅值。
在本实施例中,S201、S202、S204以及S206的相关描述对应参见上一实施例S101、S102、S103以及S104的相关描述,在此不再赘述。且步骤S201、S202、S203、S204、S205以及S206的先后顺序不受限定。
在本实施例中,通过S203存储各传输幅值及其对应的数字可以防止数据的丢失;另一方面,通过存储,可以积累更多的数字,以使S204对更多的数字进行运算,使得运算结果更加精准,同时效率更高。
在本实施例中,S205具体可以为建立通信连接,实时传输数值信息;或者可以为建立通信连接,在当前行数据信号停止传输时,传输数值信息。具体地,在当前行数据停止传 输时,传输的数值信息包括根据当前数据信号获取的数值信息,还可以包括存储累积的其他行数据信号对应的数值信息。其中,可以通过双向通信协议建立通信连接,双向通信协议包括但不限于I2C协议。当应用通信协议时,由于通信协议的线路和传输数据是分开的,不会互相影响,因此可以在数据传输的同时实时地传送数值信息,做到实时准确地校准。
本实施例提供的信号调整方法,通过在时钟的信号沿识别各数据信号的传输幅值,将各传输幅值转换为相应的数字,存储各数字,并将各数字进行运算,获取传输幅值的数值信息,从而能够根据数值信息对应调整输出数据信号传输幅值,以使传输幅值满足传输要求,让数据传输的接收端能够可靠地采集数据,提高数据传输质量;且根据数据传输的不同状况有着不同的幅值搭配,以实现自适应的动态匹配,满足各种数据传输状况下的眼图要求,同时自动调整无需过多的人工参与调试,省时省力。
应该理解的是,虽然上述实施例的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图1和图3中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也并非都需要依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
参见图4,图4为一实施例中对应执行图1实施例中各步骤的信号调整电路的结构图。
在本实施例中,该信号调整电路包括:识别电路101、转换电路102、计算电路103以及调整电路104。其中,识别电路101、转换电路102、计算电路103设置在数据传输接收端,调整电路104设置在数据传输发送端。在一实施例中,信号调整电路的识别电路101、转换电路102以及计算电路103设置在数据驱动器中,调整电路104设置在时序控制器中。
识别电路101,设置为接入时钟信号和当前行数据信号,并在时钟的信号沿识别各数据信号的传输幅值。
转换电路102,转换电路102连接识别电路101,设置为将各传输幅值转换为相应的数字。
计算电路103,计算电路103连接转换电路102,设置为将各数字进行运算,获取传输幅值的数值信息。
调整电路104,调整电路104连接计算电路103,设置为根据数值信息对应调整输出数据信号传输幅值。
在本实施例中,识别电路101处于数据传输接收端,设置为接收传输的数据信号和时钟信号,在时钟的信号沿识别各数据信号的传输幅值。具体地,先侦测时钟的上升沿或下降沿,并在侦测到时钟的上升或下降沿时对各数据信号的传输幅值进行识别。
在本实施例中,转换电路102设置为将各传输幅值转换为相应的数字。具体地,转换电路102通过识别电路101识别了各数据信号的传输幅值,进而将具体传输幅值的大小转化为数字化的表示方法。其中,转换电路102具体可以使模数转换器,通过模数转换器将各传输幅值的模拟量转换为数字量。
在本实施例中,计算电路103设置为接收转换电路102转换获得的各传输幅值对应的各数字,将各数字进行运算,获取与行数据的传输幅值对应的数值信息,并将数值信息反馈至调整电路104。其中,运算的方法包括但不限于平均值法、加权法以及两者的结合,方法的选择具体根据数据传输状况进行设定。其中,计算电路103对调整电路104进行的反馈,可以实时地传送时间信息,做到实时准确地校准,以提高延迟的准确性。或者也可以选择在非数据传输期间,即水平方向或垂直方向上的空闲时间进行反馈,以避免对数据传送的影响。
在本实施例中,调整电路104处于数据传输发送端,设置为接收计算电路103反馈的数值信息,并根据数值信息对应调整数据传输发送端输出数据信号传输幅值,使之满足传输要求,让数据传输的接收端能够可靠地采集数据;同时自动化调整无需过多的人工参与调试,省时省力。
其中,根据数值信息对应调整传输幅值是指将数值信息调整至与预设数值信息相同,以使输出传输幅值与预设数值信息对应的幅值相同。其中,预设数值信息的设定根据实际数据传输状况进行设定,即,不同的数据传输状态对应有不同的预设数值信息。不同的数据传输状态对应不同的幅值范围,该幅值范围可以包括多个阈值,例如第一阈值(最低阈值)、第二阈值(中等阈值)以及第三阈值(最高阈值)等。在其中一个实施例中,预设 数值信息对应数据信号传输幅值的第一阈值(最低阈值),即根据数值信息对应调整数据传输发送端输出数据信号传输幅值,可以使幅值满足数据信号传输幅值的最低阈值。
本实施例提供的信号调整电路,包括识别电路101、转换电路102、计算电路103以及调整电路104,通过识别电路101在时钟的信号沿识别各数据信号的传输幅值,结合转换电路102将各传输幅值转换为相应的数字以及计算电路103将各数字进行运算,获取传输幅值的数值信息,使得调整电路104能够根据数值信息对应调整输出数据信号传输幅值,以使传输幅值满足传输要求,让数据传输的接收端能够可靠地采集数据,提高数据传输质量;且根据数据传输的不同状况有着不同的幅值搭配,以实现自适应的动态匹配,满足各种数据传输状况下的眼图要求,同时自动调整无需过多的人工参与调试,省时省力。
参见图5,图5为另一实施例中对应执行图3实施例中各步骤的信号调整电路的结构图。
在本实施例中,该信号调整电路包括:识别电路101、转换电路102、计算电路103、调整电路104、存储电路105以及通信电路106。
在本实施例中,识别电路101、转换电路102、计算电路103以及调整电路104的相关描述参见上一实施例,在此不再赘述。
在本实施例中,存储电路105连接在转换电路102和计算电路103之间,设置为各传输幅值及其对应的数字。一方面,识别电路101一次性接收很多数据信号,因此可以识别出多个传输幅值,通过存储电路105存储各传输幅值及其对应的数字可以防止数据的丢失;另一方面,通过存储,可以积累更多的数字,以使计算电路103对更多的数字进行运算,使得运算结果更加精准,同时效率更高。
在本实施例中,通信电路106设置为建立计算电路103和调整电路104的通信连接,传输数值信息。具体地,通信电路106可以双向通信协议,包括但不限于I2C协议。当应用通信协议时,由于通信协议的线路和传输数据是分开的,不会互相影响,因此可以在数据传输的同时实时地传送时间信息,做到实时准确地校准。
本实施例提供的信号调整电路,包括识别电路101、转换电路102、计算电路103、调整电路104、存储电路105以及通信电路106,通过识别电路101在时钟的信号沿识别各数据信号的传输幅值,结合转换电路102及存储电路105将各传输幅值转换为相应的数字 并存储,以及计算电路103将各数字进行运算,获取传输幅值的数值信息,使得调整电路104能够根据数值信息对应调整输出数据信号传输幅值,以使传输幅值满足传输要求,让数据传输的接收端能够可靠地采集数据,提高数据传输质量;且根据数据传输的不同状况有着不同的幅值搭配,以实现自适应的动态匹配,满足各种数据传输状况下的眼图要求,同时自动调整无需过多的人工参与调试,省时省力。
本实施例还提供了一种显示装置,该显示装置包括显示面板和上述实施例所述的信号调整电路,能够保证显示的每一笔数据都被正确接收,提高显示的可靠性。
本实施例的显示面板可以为以下任一种:液晶显示面板、OLED显示面板、QLED显示面板、扭曲向列(Twisted Nematic,TN)或超扭曲向列(Super Twisted Nematic,STN)型,平面转换(In-Plane Switching,IPS)型、垂直配向(Vertical Alignment,VA)型、曲面型面板、或其他显示面板。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (17)

  1. 一种信号调整方法,包括如下步骤:
    接入时钟信号和当前行数据信号,并在时钟的信号沿识别各数据信号的传输幅值;
    将各传输幅值转换为相应的数字;
    将各数字进行运算,获取传输幅值的数值信息;
    根据所述数值信息对应调整输出数据信号传输幅值。
  2. 根据权利要求1所述的信号调整方法,其中,所述将各传输幅值转换为相应的数字的步骤之后,包括:
    存储各传输幅值及其对应的数字。
  3. 根据权利要求1所述的信号调整方法,其中,所述将各数字进行运算,获取传输幅值的数值信息的步骤之后,包括:
    建立通信连接,传输所述数值信息。
  4. 根据权利要求3所述的信号调整方法,其中,所述建立通信连接,传输所述数值信息的步骤,具体为:
    建立通信连接,实时传输所述数值信息;或者
    建立通信连接,在当前行数据信号停止传输时,传输所述数值信息。
  5. 根据权利要求4所述的信号调整方法,其中,通过双向通信协议建立通信连接。
  6. 根据权利要求1所述的信号调整方法,其中,所述根据所述数值信息对应调整输出数据信号传输幅值的步骤,具体为:
    将数值信息调整至与预设数值信息相同,以使所述数据信号传输幅值与预设数值信息对应的幅值相同。
  7. 根据权利要求6所述的信号调整方法,其中,所述预设数值信息对应的幅值为第一阈值。
  8. 根据权利要求1所述的信号调整方法,其中,所述时钟的信号沿包括时钟的上升沿或下降沿。
  9. 根据权利要求1所述的信号调整方法,其中,运算的方法包括平均值法和加权法中的至少一种。
  10. 一种信号调整电路,包括:
    识别电路,设置为接入时钟信号和当前行数据信号,并在时钟的信号沿识别各数据信号的传输幅值;
    转换电路,所述转换电路连接所述识别电路,设置为将各传输幅值转换为相应的数字;
    计算电路,所述计算电路连接所述转换电路,设置为将各数字进行运算,获取传输幅值的数值信息;
    调整电路,所述调整电路分别连接所述识别电路和所述计算电路,设置为根据所述数值信息对应调整输出数据信号传输幅值。
  11. 根据权利要求10所述的信号调整电路,其中,所述信号调整电路还包括:
    存储电路,所述存储电路连接在所述转换电路和所述计算电路之间,设置为存储各传输幅值及其对应的数字。
  12. 根据权利要求10所述的信号调整电路,其中,所述信号调整电路还包括:
    通信电路,所述通信电路连接在所述计算电路和所述调整电路之间,设置为建立所述计算电路和所述调整电路的通信连接,传输所述数值信息。
  13. 根据权利要求10所述的信号调整电路,其中,所述通信电路包括双向通信协议。
  14. 根据权利要求13所述的信号调整电路,其中,所述通信电路包括I2C协议。
  15. 根据权利要求10所述的信号调整电路,其中,所述转换电路包括模数转换器。
  16. 根据权利要求10所述的信号调整电路,其中,所述时钟的信号沿包括时钟的上升沿或下降沿。
  17. 一种显示装置,所述显示装置包括显示面板和如权利要求10所述的信号调整电路。
PCT/CN2018/117366 2018-10-30 2018-11-26 信号调整方法及电路、显示装置 WO2020087604A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/043,107 US20210065612A1 (en) 2018-10-30 2018-11-26 Signal adjustment method and circuit, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811277605.XA CN109215560A (zh) 2018-10-30 2018-10-30 信号调整方法及电路、显示装置
CN201811277605.X 2018-10-30

Publications (1)

Publication Number Publication Date
WO2020087604A1 true WO2020087604A1 (zh) 2020-05-07

Family

ID=64998035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117366 WO2020087604A1 (zh) 2018-10-30 2018-11-26 信号调整方法及电路、显示装置

Country Status (3)

Country Link
US (1) US20210065612A1 (zh)
CN (1) CN109215560A (zh)
WO (1) WO2020087604A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1117232A (zh) * 1993-11-30 1996-02-21 日本电气株式会社 使用检测信号的平均幅度解调检测信号的电路
JP2000224440A (ja) * 1999-02-04 2000-08-11 Matsushita Electric Ind Co Ltd ディジタルクランプ回路
CN102262411A (zh) * 2010-05-26 2011-11-30 北大方正集团有限公司 一种精确控制电压的方法和装置
CN104036722A (zh) * 2014-05-16 2014-09-10 京东方科技集团股份有限公司 像素单元驱动电路及其驱动方法、显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103116064A (zh) * 2013-02-06 2013-05-22 湖南大学 一种基于能量算子和频谱校正的电压波动与闪变检测方法及装置
CN105004899B (zh) * 2015-07-21 2018-03-02 许继集团有限公司 一种直流信号变化量自适应检测方法和装置
CN206497714U (zh) * 2017-01-19 2017-09-15 昆山龙腾光电有限公司 Led背光检测电路、驱动电路、模组及液晶显示装置
CN107509155B (zh) * 2017-09-29 2020-07-24 广州视源电子科技股份有限公司 一种阵列麦克风的校正方法、装置、设备及存储介质
CN107948554B (zh) * 2017-11-30 2021-07-06 深圳Tcl新技术有限公司 显示画面的对比度调节方法、显示器和可读存储介质
CN108198536B (zh) * 2017-12-29 2020-06-09 深圳市华星光电技术有限公司 基于时序控制器的电压校准方法及校准系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1117232A (zh) * 1993-11-30 1996-02-21 日本电气株式会社 使用检测信号的平均幅度解调检测信号的电路
JP2000224440A (ja) * 1999-02-04 2000-08-11 Matsushita Electric Ind Co Ltd ディジタルクランプ回路
CN102262411A (zh) * 2010-05-26 2011-11-30 北大方正集团有限公司 一种精确控制电压的方法和装置
CN104036722A (zh) * 2014-05-16 2014-09-10 京东方科技集团股份有限公司 像素单元驱动电路及其驱动方法、显示装置

Also Published As

Publication number Publication date
CN109215560A (zh) 2019-01-15
US20210065612A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
WO2021036220A1 (zh) 一种获取发射机测试参数的方法和装置以及存储介质
US9264740B2 (en) Methods and apparatus for error rate estimation
CN104750588B (zh) 一种基于串口通信的压力测试方法
WO2020087605A1 (zh) 延时调整电路及方法、显示装置
CN109075742B (zh) 波特率校准电路及串口芯片
CN1918871A (zh) 为通信链路自动校准双接头和多接头均衡的系统和方法
CN111314018B (zh) 波特率自适应调节处理系统及方法、信息数据处理终端
US9531980B2 (en) Method and apparatus for sending and receiving audio data
CN102546084B (zh) 异步串行通信数据接收时的抗干扰纠错采样系统和方法
US20080175327A1 (en) System for reducing cross-talk induced source synchronous bus clock jitter
WO2021159860A1 (zh) 一种检测设备、检测方法及处理器
CN109787724B (zh) 传输参数配置信息的确定方法、装置及通信系统
US8228074B2 (en) Method and apparatus for estimating cable length
WO2020087604A1 (zh) 信号调整方法及电路、显示装置
CN104253606A (zh) 接收电路
WO2017193683A1 (zh) 一种信号增强板、信号增强方法以及系统
US7313197B2 (en) Data transceiver and method for transceiving data performing equalization and pre-emphasis adaptive to transmission characteristics of receiving part
CN104699580A (zh) 一种sas存储板卡的环回测试方法及装置
CN106597098B (zh) 一种频谱分析仪的数据处理方法和装置
US20090323794A1 (en) Transmitter Equalization Method and System
CN105991186A (zh) 光信噪比的监测装置、方法以及接收机
US8254494B2 (en) Method and device for implementing data transmission
US8036302B2 (en) Apparatus with communication capability, method for adjusting the same, and medium recording adjusting program
CN108540999A (zh) 信号强度值的处理方法、装置、设备及可读存储介质
TWI413907B (zh) 一種用於訊號傳輸之省電方法及裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18938450

Country of ref document: EP

Kind code of ref document: A1