WO2020085841A1 - 광촉매 및 이의 제조방법 - Google Patents

광촉매 및 이의 제조방법 Download PDF

Info

Publication number
WO2020085841A1
WO2020085841A1 PCT/KR2019/014146 KR2019014146W WO2020085841A1 WO 2020085841 A1 WO2020085841 A1 WO 2020085841A1 KR 2019014146 W KR2019014146 W KR 2019014146W WO 2020085841 A1 WO2020085841 A1 WO 2020085841A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic oxide
ferrocene
photocatalyst
based photocatalyst
layer
Prior art date
Application number
PCT/KR2019/014146
Other languages
English (en)
French (fr)
Inventor
김영독
Original Assignee
주식회사 제이치글로벌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180129020A external-priority patent/KR102009397B1/ko
Priority claimed from KR1020190077668A external-priority patent/KR102112259B1/ko
Priority claimed from KR1020190077671A external-priority patent/KR102130378B1/ko
Priority claimed from KR1020190077669A external-priority patent/KR102130373B1/ko
Priority claimed from KR1020190077670A external-priority patent/KR102130376B1/ko
Application filed by 주식회사 제이치글로벌 filed Critical 주식회사 제이치글로벌
Priority to SG11202103786WA priority Critical patent/SG11202103786WA/en
Priority to DE112019005332.9T priority patent/DE112019005332T5/de
Priority to US17/284,774 priority patent/US20220143261A1/en
Publication of WO2020085841A1 publication Critical patent/WO2020085841A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation
    • A61L9/205Ultraviolet radiation using a photocatalyst or photosensitiser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/349Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of flames, plasmas or lasers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/406Oxides of iron group metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment

Definitions

  • the present invention relates to a photocatalyst having an expanded catalytically active wavelength region and a method for manufacturing the same.
  • the photocatalyst has catalytic activity by absorbing light energy and oxidatively decomposes environmental pollutants such as organic substances with strong oxidizing power by catalytic activity. That is, the photocatalyst, by irradiating light (ultraviolet rays) having energy of a band gap or more, a transition of electrons from a valence band to a conduction band occurs, and a hole is formed in the valence band. The electrons and holes diffuse to the surface of the powder, and react with oxygen and moisture to cause a redox reaction or recombine to generate heat.
  • light ultraviolet rays
  • hydroxy radicals OH ⁇
  • titanium dioxide (TiO 2 ) powder is used as a photocatalyst, and titanium dioxide (TiO 2 ) is advantageous in that it is harmless to the human body, has excellent photocatalytic activity, has excellent light corrosion resistance, and is inexpensive.
  • Titanium dioxide absorbs and reacts with ultraviolet rays of 388 nm or less to generate electrons (conduction bands) and holes (valence bands).
  • the ultraviolet rays used as light sources are lamps, incandescent lamps, and mercury lamps. Artificial lighting, light emitting diodes, and the like can be used.
  • the electrons and holes generated in the reaction recombine in 10 -12 to 10 -9 seconds, but if contaminants or the like adsorb on the surface before recombination, they are decomposed by the electrons and holes.
  • the band gap energy (wavelength of 380nm or more) of titanium dioxide (TiO 2 ) powder is obtained from sunlight, and since about 2% of the light can be used, smooth catalytic activity in the visible wavelength (400 ⁇ 800nm), which is the main wavelength of sunlight It is difficult to have. That is, in order to respond to visible light, it is essential to effectively reduce the band gap of the photocatalyst and to efficiently separate the electron / hole pairs generated through light absorption, but the efficiency of the visible light-sensitive photocatalyst of titanium dioxide (TiO 2 ) powder is still It is not reaching the level to be commercialized in the air cleaning field.
  • the present invention is to solve the above problems, the present invention is to provide an inorganic oxide-based photocatalyst, formed by introducing a ferrocene doping process, having excellent photocatalytic activity in the visible light region.
  • the present invention provides a photocatalyst composition comprising an inorganic oxide-based photocatalyst in the present invention.
  • the present invention is to provide a product comprising an inorganic oxide-based photocatalyst according to the present invention and having a photolysis function.
  • the present invention provides a method for producing an inorganic oxide-based photocatalyst according to the present invention using a ferrocene doping process.
  • the present invention relates to an inorganic oxide-based photocatalyst, and according to an embodiment of the present invention, the photocatalyst may include an inorganic oxide and a metal oxide layer derived from an organic metal compound.
  • an inorganic oxide Including, it relates to an inorganic oxide-based photocatalyst.
  • the iron content in the ferrocene-derived iron oxide layer may be 0.001 to 10% by weight compared to the inorganic oxide.
  • the ferrocene-derived iron oxide layer according to an embodiment of the present invention may be a ferrocene deposited on the inorganic oxide is heat-treated.
  • the inorganic oxide may include at least one selected from the group consisting of oxides containing at least one of Ti, Zn, Al and Sn.
  • the inorganic oxide includes at least one selected from the group consisting of beads, powder, rod, wire, needle, and fiber, and the size of the inorganic oxide may be 1 nm to 500 ⁇ m. have.
  • the inorganic oxide-based photocatalyst may have photoactivity in a visible light region of 400 nm or more, and the inorganic oxide-based photocatalyst may have photoactivity in dry conditions of 30% or less humidity.
  • the ferrocene-derived iron oxide may include one or more of the compounds represented by Chemical Formula 1 below.
  • the specific surface area of the inorganic oxide-based photocatalyst may be 5 (m 2 / g) or more.
  • the photocatalyst may be included in 0.01 to 99% by weight of the photocatalyst composition.
  • the inorganic oxide-based photocatalyst of claim 1 It relates to a product having a photolysis function, including.
  • the product may be a coating material on which the inorganic oxide-based photocatalyst is coated or a molded body comprising the inorganic oxide-based photocatalyst.
  • the product may be applied to a building material for air purification having a photolysis function of acid gas and organic materials.
  • the building material for air purification is one or more of paint, wallpaper, blind, sidewalk block, median separator, artificial turf, artificial turf filler, elastic packaging material, flooring material, asphalt, concrete, and elastic mat You can.
  • Preparing an inorganic oxide according to an embodiment of the present invention Forming a ferrocene layer on the inorganic oxide; And forming a ferrocene-derived iron oxide layer by heat treatment after the step of forming the ferrocene layer. It relates to a method of manufacturing an inorganic oxide-based photocatalyst comprising a.
  • the step of forming the ferrocene layer according to an embodiment of the present invention uses a wet coating method, a sputtering method or a vapor deposition method, and the step of forming the ferrocene layer is performed at room temperature to 120 ° C., and the ferrocene layer is , It may include a ferrocene of 0.001% to 20% by weight of the inorganic oxide.
  • the step of forming the ferrocene layer according to an embodiment of the present invention may be to form a ferrocene deposition layer using temperature-regulated chemical vapor deposition (TR-CVD).
  • TR-CVD temperature-regulated chemical vapor deposition
  • the forming of the ferrocene-derived iron oxide layer according to an embodiment of the present invention includes: a first heat treatment at a temperature of 100 ° C. to 300 ° C .; And a second heat treatment at a temperature of 300 ° C to 900 ° C, and each step may be heat treatment at different temperatures.
  • the present invention can provide an inorganic oxide-based photocatalyst having excellent photocatalytic activity in the visible light region and excellent photodegradation efficiency in various humidity and temperature regions.
  • the present invention can provide an inorganic oxide-based photocatalyst in a simple and economical manner, wherein the inorganic oxide-based photocatalyst has the ability to decompose volatile organic compounds with high efficiency and excellent stability in response to light in the visible region. It can be effectively applied as a material for indoor and outdoor air cleaning.
  • the present invention provides an inorganic oxide-based photocatalyst having excellent photocatalytic activity in the visible light region by a ferrocene doping process, and the photocatalyst can be applied to construction materials, interior props, and the like that can add and utilize a photoactive function.
  • FIG. 1 is a flowchart of a method for manufacturing an inorganic oxide-based photocatalyst according to the present invention, according to an embodiment of the present invention.
  • Figure 2 shows an exemplary configuration of a TR-CVD reactor used in the manufacturing process of an inorganic oxide-based photocatalyst according to the present invention.
  • Figure 3 illustratively shows the manufacturing process of the inorganic oxide-based photocatalyst according to the present invention.
  • FIG 4 shows an image of an inorganic oxide-based photocatalyst prepared according to an embodiment of the present invention.
  • FIG. 5 shows a TEM image of an inorganic oxide-based photocatalyst prepared according to an embodiment of the present invention.
  • FIG 6 shows the evaluation results of the photodegradation performance of the inorganic oxide-based photocatalyst prepared according to the embodiment of the present invention.
  • Figure 7 shows the evaluation results of the photodegradation performance according to the humidity of the inorganic oxide-based photocatalyst prepared according to an embodiment of the present invention.
  • Figure 8 shows the results of the stability evaluation of the photolysis performance according to the repeated photolysis experiments of the inorganic oxide-based photocatalyst prepared according to an embodiment of the present invention.
  • the present invention relates to a photocatalyst, a product containing the same, and a method for manufacturing the photocatalyst, more specifically, an inorganic oxide; And an iron oxide layer derived from ferrocene formed on the inorganic oxide.
  • the present invention relates to an inorganic oxide-based photocatalyst, and according to an embodiment of the present invention, the photocatalyst may include an inorganic oxide and a metal oxide layer derived from an organic metal compound.
  • the present invention relates to an inorganic oxide-based photocatalyst, and according to an embodiment of the present invention, the photocatalyst may include an iron oxide layer derived from ferrocene formed by an inorganic oxide and a ferrocene doping process.
  • the ferrocene-derived iron oxide layer is formed as a coating layer on the inorganic oxide, and may improve light absorption and photocatalytic efficiency in the visible light region.
  • the inorganic oxide is an inorganic semiconductor compound that absorbs light energy and exhibits catalytic activity.
  • Ti, Zn, Al, Fe, W, Sn, Bi, Ta, Cu, Si, Ru, Sr, Ba, and Ce It is an oxide containing at least one selected from the group consisting of, it may be preferably Ti, Zn, Al and Sn.
  • semiconductor compounds such as CdS, GaP, InP, GaAs, and InPb may be further included in addition to the oxide.
  • the inorganic oxide may include at least one selected from the group consisting of beads, powder, rod, wire, needle, and fiber, and the size of the inorganic oxide is 1 nm or more; 10 nm or more; 30 nm to 500 ⁇ m; 30 nm to 100 ⁇ m; Or 30 nm to 1 ⁇ m.
  • the size may mean diameter, thickness, length, etc., depending on the shape.
  • the ferrocene-derived iron oxide layer is formed by a ferrocene doping process.
  • the ferrocene layer formed on the inorganic oxide may be thermally decomposed to ferrocene, and may include iron oxide converted from ferrocene by the thermal decomposition process.
  • the ferrocene doping process will be described in more detail in the following manufacturing method.
  • the ferrocene-derived iron oxide is an iron oxide derived from at least one of ferrocene and ferrocene derivatives, and the ferrocene derivative is ferrocene aldehyde, ferrocene ketone, ferrocene carboxylic acid, ferrocene alcohol, phenol or ether compound, nitrogen-containing ferrocene compound, Sulfur-containing ferrocene compounds, phosphorus-containing ferrocene compounds, silicon-containing ferrocene compounds, 1,1'-di-copper ferrocene, ferrocene boric acid, ferrocenyl cue And at least one selected from the group consisting of ferrocenyl cuprous acetylide and bisferrocenyl titanocene.
  • Iron content in the ferrocene-derived iron oxide layer is 0.001 to 10% by weight compared to the inorganic oxide; 0.01 to 10% by weight; 0.01 to 3% by weight; 0.001 to 5% by weight; 0.001 to 6% by weight; 0.01 to 1.5% by weight; Or 0.01 to 1% by weight.
  • the photocatalytic activity in the visible light region may be increased to improve photolysis efficiency.
  • the absorption of the visible region may increase when the iron content is increased, since the photocatalytic activity may be lowered due to the increase in the iron content, it is preferable to include the iron content within the above range, and more preferably, The content of iron may be 0.01 to 1% by weight.
  • the ferrocene derived iron oxide layer 0.01 nm or more; 0.1 nm or more; 10 nm or more; Or it may have a thickness of 1 nm to 100 nm.
  • the porosity of the photocatalyst can be prevented due to the increase in the thickness of the coating layer, and the amount of adsorption of moisture, OH- ions, decomposition targets, etc. on the surface can be increased to improve photodegradation performance.
  • the ferrocene-derived iron oxide layer 0.01 nm or more; 0.1 nm or more; 10 nm or more; Or it may include ferrocene-derived iron oxide having a size of 1 nm to 100 nm. The size may mean length, diameter, thickness, and the like depending on the shape.
  • the ferrocene-derived iron oxide may include one or more of the compounds represented by Formula 1 below.
  • X, Y and Z are each selected from 0 to 3, and X and Y are not 0. That is, iron oxide (Fe x O y H z ), which is a stable and inexpensive semiconducting material, is absorbed in the visible light region and introduced into the TiO 2 surface in the form of nano-sized particles to form a photocatalyst that responds to visible light. You can.
  • the inorganic oxide-based photocatalyst, the wavelength region exhibiting a photoreaction by absorbing light is extended from ultraviolet to visible light region, and particularly, can exhibit excellent photocatalytic activity in a visible light region of 400 nm or more.
  • the photocatalytic reactivity capable of adsorption and decomposition of the decomposition target on the surface is improved to have photocatalytic activity in various humidity regions, and can exhibit excellent photocatalytic activity even in dry conditions of humidity of 30% or less.
  • the inorganic oxide-based photocatalyst 5 (m 2 / g) or more; 5 (m 2 / g) to 1000 (m 2 / g); Or it has a specific surface area of 5 (m 2 / g) to 100 (m 2 / g), and the average pore size may be 50 nm or less. That is, by introducing ferrocene-derived iron oxide on the surface, the amount of adsorption target to be decomposed increases on the surface of the photocatalyst, and the photocatalytic reactivity is increased to improve the efficiency of the photocatalyst.
  • the inorganic oxide-based photocatalyst is applied to the decomposition of various harmful substances, that is, it can be used for treatment of environmental pollutants, odor substances, organic compounds, acid gases, and the like.
  • it is used to adsorb and / or photodecompose at least one of gas, liquid, and solid materials, and can exhibit photoactivity by light energy including various light rays such as halogen lamps, xenon lamps, sunlight, and fluorescence diodes. .
  • VOCs volatile organic compounds, volatile organic compounds
  • volatile organic compounds such as acidic, basic gas, acetaldehyde, and ketones
  • hydrocarbons of aromatic hydrocarbons and aliphatic hydrocarbons paraffin and Olefin
  • ozone gas organic And inorganic glass gases, and more specifically, carbon dioxide, carbon monoxide, NOx, SOx, HCl, HF, NH 3 , methylamine, formaldehyde, hydrogen sulfide, amine, methylmergattan, hydrogen, oxygen, nitrogen, methane, paraffin , Olefin, and the like.
  • liquid examples include formaldehyde, acetaldehyde, benzene, toluene, methyl ethyl ethyl ketone (MEK), trichloroethylene, disinfectant, gasoline, diesel, oil, alcohol, Phenol, dye, and the like
  • the solid may be a transition metal, a precious metal such as Pt, Pd, ions and / or particles such as Hg, Cr, nanoparticles of 100 nm or less, but is not limited thereto.
  • the inorganic oxide-based photocatalyst according to the present invention relates to a photocatalyst composition comprising a.
  • the inorganic oxide-based photocatalyst may be included in 0.01 to 99% by weight of the photocatalyst composition.
  • the photocatalyst composition may include an aqueous solvent, an oily solvent, or both in a residual amount, and may be appropriately selected depending on the application field.
  • it may be a lower alcohol of C 1 -C 4 such as water, tanol, ethanol, propanol, isopropanol, butanol, but is not limited thereto.
  • the photocatalyst composition may further include additives according to performance improvement and application fields, and may further include a surfactant, a siloxane-based binder, an antibacterial agent, a disinfectant, etc. Do not mention.
  • the photocatalyst composition may be coated on a substrate or molded into various shapes.
  • the substrate may include cellulose paper; Synthetic wood, wood; fiber; textile; And metal, polymer resin or glass, powder of glass, sheet, film or beads; It may include one or more selected from the group consisting of, but is not limited thereto.
  • the substrate may be a finished product that requires a photocatalytic function, for example, lamps, TVs, refrigerators, notebooks, household appliances, wallpaper, concrete, blinders, furniture, tiles, mats, interior accessories, construction materials, etc., but is not limited thereto. Does not work.
  • the inorganic oxide-based photocatalyst according to the present invention relates to a product having a photocatalytic function, including.
  • the product can also exhibit an air purification function.
  • it may be one having a photodegradation function and / or an air purification function by photoactivity such as volatile substances, odor substances, and contaminants.
  • the product may be a molded body comprising the photocatalyst or the photocatalyst bound on a substrate.
  • it may be a substrate coated with a photocatalyst or photocatalyst composition, an impregnated substrate, a molded substrate, a solid comprising a photocatalyst or photocatalyst composition, a liquid, or a formulation comprising both, and the like.
  • the molding method may be molded by mixing the photocatalyst and the photocatalyst composition according to the present invention with a molding material or by injecting together the injection molding of the molding material.
  • the formulation is a powder, solid, suspension, emulsion, cream, ointment, gel, liquid formulation, and the like, and may be, for example, ink, paint, or dye, but is not limited thereto.
  • the products include masks, helmets, gas masks, anti-gas clothing, fire fighting clothing, clothing, pharmaceuticals, cosmetics, sensors, semiconductors, lithium batteries, solar cells, boilers, cell phones, laptops, PCs, refrigerators, air conditioners, heaters, Electric appliances such as electric floors, microwave ovens, kitchen appliances such as gas ranges, gas ovens, kettles, cutlery, tableware, furniture such as beds, wardrobes, accessories such as necklaces, ink, paint (water-based, oil-based), paints, dyes Used for dyes, artificial turf, artificial turf filling, elastic packaging, flooring, asphalt, concrete, elastic packing materials for children's play facilities, sidewalk blocks, median, concrete, glass, insulation sheet, wallpaper, blinds, windows, mats, elastic Interior or building materials such as mats, yoga mats, tiles, incandescent or led bulbs, lighting devices or appliances such as stands, air conditioning filters, dehumidifier filters, air cleaner filters, etc. But it is applied to medical equipment and clothing, such as fraud, stethoscopes,
  • it may be a building material for air purification such as paint, wallpaper, blind, sidewalk block, median separator, artificial turf, artificial turf filler, elastic packaging material, flooring, asphalt, concrete, elastic mat, and the like.
  • a building material for air purification such as paint, wallpaper, blind, sidewalk block, median separator, artificial turf, artificial turf filler, elastic packaging material, flooring, asphalt, concrete, elastic mat, and the like.
  • the present invention relates to a method for manufacturing an inorganic oxide-based photocatalyst, according to an embodiment of the present invention, the manufacturing method comprises: preparing an inorganic oxide; Forming a ferrocene layer on the inorganic oxide; And forming a ferrocene-derived iron oxide layer by heat treatment after the step of forming the ferrocene layer.
  • the preparing of the inorganic oxide is a step of preparing an inorganic oxide dispersion or coating an inorganic oxide on a substrate, wherein the dispersion is an aqueous solvent, an oily solvent or a mixture of the two, and the substrate is a silicon substrate , A wafer, a glass substrate, a semiconductor substrate, a metal substrate, and the like.
  • the inorganic oxide may be applied by spin coating, roll coating, spray coating, dip coating, flow coating, doctor blade method, or the like.
  • a ferrocene film may be formed using a wet coating method, a sputtering method, or a vapor deposition method.
  • a deposition method such as atomic layer deposition (ALD) or temperature-regulated chemical vapor deposition (CVD) is used, and more preferably, TR-CVD (temperature-regulated chemical vapor deposition) is used.
  • a ferrocene layer can be formed.
  • the step of forming the ferrocene layer is performed at room temperature to 120 ° C, preferably 40 ° C to 100 ° C; More preferably it can be carried out at 60 °C to 100 °C. That is, it can be carried out at 60 °C to 100 °C in order to induce the deposition by the vaporization process of ferrocene when applying TR-CVD.
  • the step of forming the ferrocene layer is performed in an air or oxygen atmosphere under atmospheric conditions, and may further include an inert gas.
  • the ferrocene layer including ferrocene of 0.01% to 20% by weight of the inorganic oxide may be formed.
  • the step of forming the ferrocene-derived iron oxide layer may partially or completely oxidize with iron oxide through heat treatment of the ferrocene layer, and remove impurities such as carbon residues.
  • the forming of the ferrocene-derived iron oxide layer may include: 50 ° C to 900 ° C; Alternatively 100 ° C to 800 ° C; Heat treatment may be performed at two or more stages at a temperature.
  • the step of forming the ferrocene-derived iron oxide layer includes a first heat treatment at a temperature of 100 ° C to 300 ° C and a second heat treatment at a temperature of 300 ° C to 900 ° C, and each step is different from each other. It can be heat treated at a temperature.
  • Each of the above steps is performed for 1 minute to 20 hours, respectively, and air, 20% or more; It may be carried out in an air or inert gas atmosphere containing at least 40% oxygen.
  • the first heat treatment step may be an annealing process for iron oxide deposition, which is converted to iron oxide by the reaction of ferrocene and oxygen.
  • the second heat treatment step is a post-heat treatment step after the first heat treatment step, and may be an annealing process to improve the activity and performance of the photocatalyst by removing impurities such as carbides.
  • a photocatalyst (Fe-TiO 2 ) in which nano-sized iron oxide particles were deposited on TiO 2 was prepared using the TR-CVD (temperature-controlled chemical vapor deposition) reactor of FIG. 2 and utilizing the temperature-controlled chemical vapor deposition method shown in FIG. 3. . More specifically, 0.02 g of Ferrocene, a precursor of iron, is placed in a container made of quartz on the inner bottom of a reactor made of stainless steel surrounded by a heating band. After placing and placing 3 g of TiO 2 (TiO 2 , P-25, Evonik, particle size: 25 nm) in a container made of stainless steel wire in the center inside the reactor, the reactor is sealed with polyimide tape.
  • TR-CVD temperature-controlled chemical vapor deposition
  • the temperature of the reactor was carried out by a TR-CVD vaporization process at 60 ° C. for 2 hours, and then a ferrocene deposition process was carried out, and the temperature was raised to 200 ° C. and maintained for 12 hours to convert to iron oxide.
  • An iron oxide-TiO 2 hybrid nanostructured photocatalyst was prepared in the same manner as in Example 1 except that 0.05 g of the iron precursor Ferrocene was applied. The content of iron deposited on TiO 2 under these conditions is about 0.13 wt%.
  • An iron oxide-TiO 2 hybrid nanostructured photocatalyst was prepared in the same manner as in Example 1, except that 0.1 g of the iron precursor Ferrocene was applied.
  • the iron content deposited on TiO 2 under the conditions is about 0.65 wt%.
  • An iron oxide-TiO 2 hybrid nanostructured photocatalyst was prepared in the same manner as in Example 1 except that 0.3 g of the iron precursor Ferrocene was applied.
  • the iron content deposited on TiO 2 under the conditions is about 1.81 wt%.
  • the prepared photocatalyst (Fe-TiO 2 ) is compared to a TiO 2 photocatalyst coated with a general iron oxide, and the transparency and color are shown in FIG. 4. 4, the photocatalyst (Fe-TiO 2 ) coated with ferrocene-derived iron oxide according to the present invention is more transparent and lighter than the photocatalyst (Fe 2 O 3 -TiO 2 ) coated with iron oxide (Fe 2 O 3 ). It can be seen that it has a yellow color.
  • the TEM image (image measured by a transmission electron microscope) of the prepared photocatalyst (Fe-TiO 2 ) was measured and shown in FIG. 5. 5, it is shown that as the iron content decreases, the size of the iron oxide particles deposited on the Fe-TiO 2 surface decreases.
  • Example 1 Put the photocatalyst (Fe-TiO 2 ) of Example 1 in a volume 5.3 L reactor composed of quartz glass on the top surface, acetaldehyde initial concentration 66 ppm, dry air (relative humidity: ⁇ 33%, total pressure 760 torr) and the visible light region with a white LED at room temperature to analyze the photodegradation properties of acetaldehyde.
  • Acetaldehyde in the reactor was measured by gas chromatography. The results are shown in FIG. 6.
  • FIG. 6 is a graph showing (a) acetaldehyde mole number change over time of visible light (white light) irradiation at 33% humidity condition, and (b) carbon dioxide mole number change resulting from photodecomposition reaction of acetaldehyde.
  • the photocatalyst (Fe-TiO 2 ) prepared in Example can be confirmed that photodecomposition of acetaldehyde is performed by photocatalytic activity by visible light (white light) irradiation, and the ferrocene deposition amount is 0.09 wt% and decomposition efficiency in visible light You can see this is the biggest.
  • the smaller the iron content the faster the acetaldehyde photodecomposition rate of Fe-TiO 2 is.
  • the photocatalyst (Fe-TiO 2 ) having a ferrocene deposition amount of 0.13 wt% was analyzed for the photodegradation properties of acetaldehyde in the same manner as in Evaluation Example 1 under dry conditions without humidity and relative humidity: ⁇ 33%. Acetaldehyde and carbon dioxide in the reactor were periodically measured using gas chromatography. The results are shown in FIGS. 7 and 8.
  • FIG. 7 shows changes in the number of moles of (a) acetaldehyde and (b) the number of moles of carbon dioxide generated as a result of the photolysis reaction of acetaldehyde according to the visible light irradiation time, when the acetaldehyde photolysis experiment was performed under dry conditions and 33% humidity. 7, the slopes of the two graphs were similar in the same acetaldehyde concentration section indicated by a dotted line, and it shows that acetaldehyde photolysis activity is maintained similarly in visible light irrespective of the presence or absence of humidity.
  • FIG. 8 shows changes in the number of moles of (a) acetaldehyde and (b) the number of moles of carbon dioxide resulting from the photodecomposition reaction of acetaldehyde according to visible light irradiation time, when repeatedly used in the acetaldehyde photolysis experiment under a 33% humidity condition. It is a graph shown, and it can be seen from FIG. 8 that high photocatalytic activity is maintained even in a repeated photolysis experiment.
  • Fe-TiO 2 TiO 2 (hereinafter Fe-TiO 2 ) on which iron oxide was deposited, was utilized in photodegradation experiments of acetaldehyde, one of the representative volatile organic compounds, and acetaldehyde photodegradation activity of Fe-TiO 2 according to the content of iron oxide. Compared. As a result, when the iron content was as low as about 0.09 wt%, the photodegradation activity of acetaldehyde of Fe-TiO 2 was the highest, and about 70% of the initial acetaldehyde concentration ( ⁇ 95 mol ppm) decreased within 20 hours.
  • the activity of the photocatalyst is greatly affected by humidity, but Fe-TiO 2 prepared in the present invention shows similar catalytic activity under dry conditions and humidity conditions, confirming that the photocatalytic activity is not sensitive to humidity.
  • Fe-TiO 2 having various iron contents it was confirmed that the iron content did not significantly affect the total specific surface area of the photocatalyst.
  • the photocatalytic activity of Fe-TiO 2 was greatly affected by the iron content, it can be seen that the photocatalytic activity is more important in the electronic structure of the interface between the deposited iron oxide nanoparticles and TiO 2 than the surface structure. .
  • Fe-TiO 2 absorbs light in the visible region when the iron oxide nanoparticles of a very small size have a content of about 0.09 wt%, and the electron / hole pair is most efficiently separated to remove oxygen / Reacts with water to form radicals, which can rapidly break down acetaldehyde.
  • the target organic material is not completely oxidized and partially oxidized and remains on the surface of the photocatalyst to block the active site, the activity of the photocatalyst decreases, which has been pointed out as one of the biggest problems of the photocatalyst.
  • the Fe-TiO 2 prepared in the present invention maintained the same catalytic activity even in repeated acetaldehyde photolysis experiments, and thus it was confirmed that there was no problem of catalytic activity degradation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Plant Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Thermal Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Nanotechnology (AREA)

Abstract

본 발명은, 광촉매, 이를 포함하는 제품 및 광촉매의 제조방법에 관한 것으로, 보다 구체적으로, 무기산화물; 및 상기 무기산화물 상에 형성된 페로센 유래 철 산화물층; 을 포함하는, 무기산화물 기반 광촉매, 이를 포함하는 제품 및 광촉매의 제조방법에 관한 것이다.

Description

[규칙 제26조에 의한 보정 13.12.2019] 광촉매 및 이의 제조방법
본 발명은, 촉매 활성 파장 영역이 확대된 광촉매 및 이의 제조방법에 관한 것이다.
광촉매는 빛 에너지를 흡수함으로써 촉매활성을 갖는 것으로, 촉매활성에 의해서 강력한 산화력으로 유기물질 등과 같은 환경오염물질을 산화 분해하는 것이다. 즉, 광촉매는, 밴드갭 이상(Band gap)의 에너지를 갖는 광(자외선)을 조사하여 가전자대(Valence band)에서 전도대(conduction band)로의 전자의 천이가 일어나고, 가전자대에서 홀이 형성된다. 이 전자와 정공은 분말의 표면으로 확산되고, 산소 및 수분에 접촉하여 산화환원 반응을 일으키거나 재결합하여 열을 발생시키다. 즉, 전도대의 전자는 산소를 환원시켜 슈퍼옥사이음이온을 생성시키고, 가전자대의 정공은 수분을 산화해서 히드록시 라디칼(OH·)을 형성시킨다. 이러한 정공에 의해 생성되는 히드록시 라디칼(OH·)의 강력한 산화력으로 광촉매 표면에 흡착된 기상 또는 액상의 유기물, 즉, 난부해성 유기물의 분해, 살균력, 친수성 등을 나타낼 수 있다. 일반적으로 광촉매로 이산화티타늄(TiO2) 분말이 사용되고, 이산화티타늄(TiO2)은 인체에 무해하고 광촉매활성이 탁월하며, 내광부식성이 우수하고 가격이 저렴한 이점이 있다. 이산화티타늄(TiO2)은 388㎚ 이하의 자외선을 흡수하여 반응함으로써 전자(전도대)와 정공(가전자대)이 생성되는데, 이때 광원으로 사용되는 자외선은 태양광 외에 램프, 백열전등, 수은램프 등의 인공조명, 발광다이오드 등이 사용될 수 있다. 상기 반응에서 생성된 전자와 정공은 10-12 내지 10-9 초 만에 재결합하지만, 재결합하기 전에 오염물질 등이 표면에 흡착하게 되면 상기 전자와 정공에 의해 분해된다. 하지만, 이산화티타늄(TiO2) 분말의 밴드갭에너지(380nm 이상의 파장)를 태양광에서 획득하는데, 그 광의 2 % 정도 이용할 수 있으므로, 태양광의 주요 파장인 가시광영역(400~800nm)에서 원활한 촉매 활성을 갖는데 어려움이 있다. 즉, 가시광선에 감응하기 위해서는 광촉매의 밴드갭을 효과적으로 줄이고 빛 흡수를 통해 발생되는 전자/정공 쌍을 효율적으로 분리시키는 것이 필수적인데 이산화티타늄(TiO2) 분말의 가시광 감응형 광촉매에서 효율은 아직까지 공기 청정 분야에 상용화되기 위한 수준에는 못 미치고 있는 실정이다.
본 발명은 상술한 문제점을 해결하기 위한 것으로, 본 발명은, 페로센 도핑 공정을 도입하여 형성된, 가시광선 영역에서 우수한 광촉매 활성을 갖는, 무기산화물 기반 광촉매를 제공하는 것이다.
본 발명은, 본 발명에 무기산화물 기반 광촉매를 포함하는 광촉매 조성물을 제공하는 것이다.
본 발명은, 본 발명에 의한 무기산화물 기반 광촉매를 포함하고, 광분해 기능을 갖는 제품을 제공하는 것이다.
본 발명은, 페로센 도핑 공정을 이용하는, 본 발명에 의한 무기산화물 기반 광촉매의 제조방법을 제공하는 것이다.
그러나, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 것들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 해당 분야 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
본 발명은, 무기산화물 기반 광촉매에 관한 것으로, 본 발명의 일 실시예에 따라, 상기 광촉매는, 무기산화물 및 유기금속화합물 유래 금속 산화물층을 포함할 수 있다.
본 발명의 일 실시예에 따라, 무기산화물; 및 상기 무기산화물 상에 형성된 페로센 유래 철 산화물층; 을 포함하는, 무기산화물 기반 광촉매에 관한 것이다.
본 발명의 일 실시예에 따라 상기 페로센 유래 철 산화물층에서 철의 함량이 상기 무기산화물 대비 0.001 내지 10 중량%인 것일 수 있다.
본 발명의 일 실시예에 따라 상기 페로센 유래 철 산화물층은, 상기 무기산화물 상에 증착된 페로센이 열처리된 것일 수 있다.
본 발명의 일 실시예에 따라 상기 무기산화물은, Ti, Zn, Al 및 Sn 중 적어도 하나를 포함하는 산화물로 이루어진 군에서 선택된 적어도 하나를 포함하는 것일 수 있다.
본 발명의 일 실시예에 따라 상기 무기산화물은, 비드, 분말, 로드, 와이어, 니들 및 섬유 형태로 이루어진 군에서 선택된 적어도 하나를 포함하고, 상기 무기산화물의 크기는 1 nm 내지 500 ㎛인 것일 수 있다.
본 발명의 일 실시예에 따라 상기 무기산화물 기반 광촉매는, 400 nm 이상의 가시광선 영역에서 광활성을 갖고, 상기 무기산화물 기반 광촉매는, 30 % 이하의 습도의 건식 조건에서 광활성을 갖는 것일 수 있다.
본 발명의 일 실시예에 따라 상기 페로센 유래 철 산화물은, 하기의 화학식 1로 표시되는 화합물 중 1종 이상을 포함하는 것일 수 있다.
[화학식 1]
FexOYHZ
(X, Y 및 Z는, 각각 0 내지 3에서 선택되고, X 및 Y는 0이 아니다.)
본 발명의 일 실시예에 따라 상기 무기산화물 기반 광촉매의 비표면적은 5 (m2/g) 이상인 것일 수 있다.
본 발명의 일 실시예에 따라 제1항의 무기산화물 기반 광촉매;를 포함하고, 상기 광촉매는, 상기 광촉매 조성물 중 0.01 내지 99 중량%로 포함되는 것일 수 있다.
본 발명의 일 실시예에 따라 제1항의 무기산화물 기반 광촉매; 를 포함하는, 광분해 기능을 갖는, 제품에 관한 것이다.
본 발명의 일 실시예에 따라 상기 제품은, 기재 상에 상기 무기산화물 기반 광촉매가 코팅되거나 또는 상기 무기산화물 기반 광촉매를 포함하는 성형체인 것일 수 있다.
본 발명의 일 실시예에 따라 상기 제품은, 산성가스 및 유기물질의 광분해 기능을 갖는 공기정화용 건축자재에 적용되는 것일 수 있다.
본 발명의 일 실시예에 따라 상기 공기정화용 건축자재는, 페인트, 벽지, 블라인드, 보도블럭, 중앙분리대, 인조잔디, 인조잔디충진재, 탄성포장재, 바닥재, 아스팔트, 콘크리트, 탄성매트 중 하나 이상인 것 것일 수 있다.
본 발명의 일 실시예에 따라 무기산화물을 준비하는 단계; 상기 무기산화물 상에 페로센층을 형성하는 단계; 및 상기 페로센층을 형성하는 단계 이후에 열처리하여 페로센 유래 철 산화물층을 형성하는 단계; 를 포함하는, 무기산화물 기반 광촉매의 제조방법에 관한 것이다.
본 발명의 일 실시예에 따라 상기 페로센층을 형성하는 단계는, 습식 코팅법, 스퍼터링법 또는 증착법을 이용하고, 상기 페로센층을 형성하는 단계는, 상온 내지 120 ℃에서 실시되고, 상기 페로센층은, 상기 무기산화물 대비 0.001 중량% 내지 20 중량%의 페로센을 포함하는 것일 수 있다.
본 발명의 일 실시예에 따라 상기 페로센층을 형성하는 단계는, TR-CVD(temperature-regulated chemical vapor deposition)를 이용하여 페로센 증착층을 형성하는 것일 수 있다.
본 발명의 일 실시예에 따라 상기 페로센 유래 철 산화물층을 형성하는 단계는, 100 ℃ 내지 300 ℃의 온도에서 제1 열처리하는 단계; 및 300 ℃ 내지 900 ℃의 온도에서 제2 열처리하는 단계를 포함하고, 각 단계는 서로 상이한 온도에서 열처리하는 것일 수 있다.
본 발명은, 가시광선 영역에서 우수한 광촉매 활성을 갖고, 다양한 습도 및 온도 영역에서 우수한 광분해 효율을 갖는 무기산화물 기반 광촉매를 제공할 수 있다.
본 발명은, 간단하고 경제적인 방법으로 무기산화물 기반 광촉매를 제공할 수 있고, 상기 무기산화물 기반 광촉매는, 가시광선 영역의 빛에 감응하여 휘발성 유기화합물을 높은 효율로 분해시키는 능력과 뛰어난 안정성을 지니고 있어 실내외 공기청정을 위한 소재로 효과적으로 적용할 수 있다.
본 발명은, 페로센 도핑 공정에 의해서 가시광 영역에서 광촉매 활성이 우수한 무기산화물 기반 광촉매를 제공하고, 상기 광촉매는, 광활성 기능을 부가하고 활용할 수 있는 건축자재, 인테리어 소품 등에 적용할 수 있다.
도 1은, 본 발명의 일 실시예에 따른, 본 발명에 의한 무기산화물 기반 광촉매의 제조방법의 흐름도를 나타낸 것이다.
도 2는, 본 발명의 실시예에 따라, 본 발명에 의한 무기산화물 기반 광촉매의 제조공정에 이용되는 TR-CVD 반응기의 구성을 예시적으로 나타낸 것이다.
도 3은, 본 발명의 실시예에 따라, 본 발명에 의한 무기산화물 기반 광촉매의 제조공정을 예시적으로 나타낸 것이다.
도 4는, 본 발명의 실시예에 따라 제조된 무기산화물 기반 광촉매의 이미지를 나타낸 것이다.
도 5는, 본 발명의 실시예에 따라 제조된 무기산화물 기반 광촉매의 TEM 이미지를 나타낸 것이다.
도 6은, 본 발명의 실시예에 따라 제조된 무기산화물 기반 광촉매의 광분해 성능의 평가 결과를 나타낸 것이다.
도 7은, 본 발명의 실시예에 따라 제조된 무기산화물 기반 광촉매의 습도에 따른 광분해 성능의 평가 결과를 나타낸 것이다.
도 8은, 본 발명의 실시예에 따라 제조된 무기산화물 기반 광촉매의 반복적인 광분해 실험에 따른 광분해 성능의 안정성 평가 결과를 나타낸 것이다.
본 발명은, 광촉매, 이를 포함하는 제품 및 광촉매의 제조방법에 관한 것으로, 보다 구체적으로, 무기산화물; 및 상기 무기산화물 상에 형성된 페로센 유래 철 산화물층; 을 포함하는, 무기산화물 기반 광촉매, 이를 포함하는 제품 및 광촉매의 제조방법에 관한 것일 수 있다.
이하 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명한다. 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 또한, 본 명세서에서 사용되는 용어들은 본 발명의 바람직한 실시예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자, 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다. 따라서, 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다.
명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
이하, 본 발명의 무기산화물 기반 광촉매에 대하여 실시예 및 도면을 참조하여 구체적으로 설명하도록 한다. 그러나, 본 발명이 이러한 실시예 및 도면에 제한되는 것은 아니다.
본 발명은, 무기산화물 기반 광촉매에 관한 것으로, 본 발명의 일 실시예에 따라, 상기 광촉매는, 무기산화물 및 유기금속화합물 유래 금속 산화물층을 포함할 수 있다.
본 발명은, 무기산화물 기반 광촉매에 관한 것으로, 본 발명의 일 실시예에 따라, 상기 광촉매는, 무기산화물 및 페로센 도핑 공정에 의해서 형성된 페로센 유래 철 산화물층을 포함할 수 있다. 상기 페로센 유래 철 산화물층은, 상기 무기산화물 상에 코팅층으로 형성되고, 가시광선 영역에서 광흡수 및 광촉매 효율을 향상시킬 수 있다.
상기 무기산화물은, 빛 에너지를 흡수하여 촉매활성을 나타내는 무기반도체화합물이며, 예를 들어, Ti, Zn, Al, Fe, W, Sn, Bi, Ta, Cu, Si, Ru, Sr, Ba 및 Ce으로 이루어진 군에서 선택된 적어도 하나를 포함하는 산화물이며, 바람직하게는 Ti, Zn, Al 및 Sn일 수 있다. 구체적으로, TiO2, Al2O3, ZnO2, ZnO, SrTiO3, Fe2O3, Ta2O5, WO3, SnO2, Bi2O3, NiO, Cu2O, SiO, SiO2, MoS2, InPb, RuO2, CeO2 등일 수 있다. 또한, 산화물 외에 CdS, GaP, InP, GaAs, InPb 등의 반도체 화합물을 더 포함할 수 있다.
상기 무기산화물은, 비드, 분말, 로드, 와이어, 니들 및 섬유 형태로 이루어진 군에서 선택된 적어도 하나를 포함하고, 상기 무기산화물의 크기는 1 nm 이상; 10 nm 이상; 30 nm 내지 500 ㎛; 30 nm 내지 100 ㎛; 또는 30 nm 내지 1 ㎛일 수 있다. 상기 크기는, 형태에 따라 직경, 두께, 길이 등을 의미할 수 있다.
상기 페로센 유래 철 산화물층은, 페로센 도핑 공정에 의해서 형성된 것이다. 예를 들어, 상기 무기산화물 상에 형성된 페로센층을 열처리하여 페로센을 열분해하고, 이러한 열분해 공정에 의해 페로센에서 전환된 철 산화물을 포함할 수 있다. 상기 페로센 도핑 공정은, 하기의 제조방법에서 보다 구체적으로 설명한다.
상기 페로센 유래 철 산화물은, 페로센, 페로센 유도체 중 적어도 하나에 의해 유래된 철 산화물이며, 상기 페로센 유도체는, 페로센 알데히드, 페로센 케톤, 페로센 카르복시산, 페로센 알콜, 페놀 또는 에테르 화합물, 질소-함유 페로센 화합물, 황-함유 페로센 화합물, 인-함유 페로센 화합물, 규소-함유 페로센 화합물, 1,1'-디코퍼 페로센(1,1'-di-copper ferrocene), 페로센 보로닉산(ferrocene boric acid), 페로세닐 큐프러스 아세틸라이트(ferrocenyl cuprous acetylide) 및 비스페로세닐 티타노센(bisferrocenyl titanocene)으로 이루어진 군에서 선택된 적어도 하나를 포함할 수 있다.
상기 페로센 유래 철 산화물층에서 철의 함량이 상기 무기산화물 대비 0.001 내지 10 중량%; 0.01 내지 10 중량%; 0.01 내지 3 중량%; 0.001 내지 5 중량%; 0.001 내지 6 중량%; 0.01 내지 1.5 중량%; 또는 0.01 내지 1 중량% 중 하나로 포함될 수 있다. 상기 범위 내에 포함되면, 가시광 영역에서 광촉매 활성을 증가시켜 광분해 효율을 향상시킬 수 있다. 또한, 철의 함량이 증가하면 가시광 영역의 흡수가 증가할 수 있으나, 이러한 철 함량 증가에 의한 광촉매 활성의 저하가 발생할 수 있으므로, 상기 범위 내의 철의 함량을 포함하는 것이 바람직하고 더 바람직하게는 상기 철의 함량은, 0.01 내지 1 중량%일 수 있다.
상기 페로센 유래 철 산화물층은, 0.01 nm 이상; 0.1 nm 이상; 10 nm 이상; 또는 1 nm 내지 100 nm의 두께를 갖는 것일 수 있다. 상기 두께 범위 내에 포함되면, 코팅층의 두께 증가에 따른 광촉매의 다공도 저하를 방지하고, 표면에 수분, OH- 이온, 분해 대상 등의 흡착량을 증가시켜 광분해 성능을 향상시킬 수 있다. 또한, 상기 페로센 유래 철 산화물층은, 0.01 nm 이상; 0.1 nm 이상; 10 nm 이상; 또는 1 nm 내지 100 nm의 크기를 갖는 페로센 유래 철산화물을 포함할 수 있다. 상기 크기는 형태에 따라 길이, 직경, 두께 등을 의미할 수 있다.
상기 페로센 유래 철 산화물은, 하기의 화학식 1로 표시되는 화합물 중 1종 이상을 포함할 수 있다.
[화학식 1]
FexOYHZ
여기서, X, Y 및 Z는, 각각 0 내지 3에서 선택되고, X 및 Y는 0이 아니다. 즉, 가시광선 영역의 빛을 흡수하고 안정적이며 값이 싼 반도체성 물질인 산화철 (FexOyHz)을 나노 크기의 입자 형태로 TiO2 표면에 도입하여 가시광선에 감응하는 광촉매를 형성할 수 있다.
본 발명의 일 실시예에 따라, 상기 무기산화물 기반 광촉매는, 광흡수하여 광반응을 나타내는 파장 영역이 자외선에서 가시광선 영역까지 확대되고, 특히 400 nm 이상의 가시광선 영역에서 우수한 광촉매 활성을 나타낼 수 있다. 또한, 표면에서 분해 대상의 흡착 및 분해시킬 수 있는 광촉매 반응성이 향상되어 다양한 습도 영역에서 광촉매 활성을 가지며, 30 % 이하의 습도의 건식 조건에서도 우수한 광촉매 활성을 나타낼 수 있다.
본 발명의 일 실시예에 따라, 상기 무기산화물 기반 광촉매는, 5 (m2/g) 이상; 5 (m2/g) 내지 1000 (m2/g); 또는 5 (m2/g) 내지 100 (m2/g)의 비표면적을 갖고, 평균 기공 크기는 50 nm 이하일 수 있다. 즉, 표면에 페로센 유래 철 산화물을 도입함으로써, 광촉매의 표면에 분해 대상의 흡착량이 증가하고, 광분해 반응성을 증가시켜 광촉매의 효율을 향상시킬 수 있다.
본 발명의 일 실시예에 따라, 상기 무기산화물 기반 광촉매는, 다양한 유해물질의 분해에 적용되고, 즉, 환경 오염물질, 악취 물질, 유기화합물, 산성가스 등의 처리에 이용될 수 있다. 예를 들어, 기체, 액체 및 고체 물질 중 적어도 하나를 흡착 및/또는 광분해하는데 이용되고, 할로겐램프, 제논램프, 태양광, 발과다이오드 등 다양한 광선을 포함하는 빛 에너지에 의해서 광활성을 나타낼 수 있다. 보다 구체적으로, 상기 기체로는 산성, 염기성 가스, 아세트알데히드, 케톤류 등의 VOC(휘발성 유기 화합, Volatile Organic Compounds), 방향족 탄화수소와 지방족 탄화수소(Paraffin계와 Olefin계)의 탄화수소류, 오존 가스, 유기 및 무기계 유리 가스 등일 수 있고, 보다 구체적으로, 이산화탄소, 일산화탄소, NOx, SOx, HCl, HF, NH3, 메틸아민, 포름알데히드, 황화수소, 아민, 메틸메르갑탄, 수소, 산소, 질소, 메탄, 파라핀, 올레핀 등일 수 있다. 상기 액체로는 포름알데하이드(Formaldehyde), 아세트알데하이드(Acetaldehyde), 벤젠(Benzene), 톨루엔(Toluene), MEK(Methyl Ethyl Ketone), 트리클로로에틸렌(Trichloroethylene), 살균제, 가솔린, 디젤, 오일, 알코올, 페놀, 염료 등이며, 상기 고체로는 전이금속, Pt, Pd 등의 귀금속, Hg, Cr 등의 이온 및/또는 입자, 100 nm 이하의 나노입자 등일 수 있으나, 이에 제한되지 않는다.
본 발명의 일 실시예에 따라, 본 발명에 의한 무기산화물 기반 광촉매; 를 포함하는, 광촉매 조성물에 관한 것이다.
상기 무기산화물 기반 광촉매는, 상기 광촉매 조성물 중 0.01 내지 99 중량%로 포함될 수 있다.
상기 광촉매 조성물은, 잔량으로 수성 용매, 유성 용매 또는 둘 다를 포함할 수 있고, 적용 분야에 따라 적절하게 선택될 수 있다. 예를 들어, 물, 탄올, 에탄올, 프로판올, 이소프로판올, 부탄올과 같은 C1-C4의 저급 알코올 등일 수 있으나, 이에 제한되지 않는다.
상기 광촉매 조성물은, 본 발명의 목적을 벗어나지 않는다면, 성능 향상과 적용 분야에 따라 첨가제를 더 포함할 수 있으며, 계면활성제, 실록산계 바인더, 항균제, 살균제 등을 더 포함할 수 있으나, 본 명세서에는 구체적으로 언급하지 않는다.
상기 광촉매 조성물은, 기재 상에 코팅되거나 다양한 형태로 성형될 수 있다. 예를 들어, 상기 기재는, 셀룰로오스 종이; 합성 목재, 목재; 섬유; 직물; 및 금속, 폴리머 수지 또는 유리, 유리의 분말, 시트, 필름 또는 비즈; 로 이루어진 군에서 선택된 1종 이상을 포함할 수 있으나, 이에 제한되지 않는다. 또한, 상기 기재는 광촉매 기능이 필요한 완제품, 예를 들어, 램프, 티브, 냉장고, 노트북, 가전 제품, 벽지, 콘크리트, 블라인더, 가구, 타일, 매트 등의 인테리어 소품, 건축자재 등일 수 있으나, 이에 제한되지 않는다.
본 발명의 일 실시예에 따라, 본 발명에 의한 무기산화물 기반 광촉매; 를 포함하는, 광촉매 기능을 갖는, 제품에 관한 것이다. 상기 제품은, 광촉매 기능과 함께 공기정화 기능도 나타낼 수 있다. 예를 들어, 휘발성 물질, 악취물질, 오염 물질 등의 광활성에 의한 광분해 기능 및/또는 공기정화 기능을 갖는 것일 수 있다.
본 발명의 일 실시예에 따라, 상기 제품은, 기재 상에 상기 광촉매가 코팅 의해 결착되거나 또는 상기 광촉매를 포함하는 성형체일 수 있다.
예를 들어, 광촉매 또는 광촉매 조성물이 코팅된 기재, 함침된 기재, 성형된 기재, 광촉매 또는 광촉매 조성물을 포함하는 고체, 액체 또는 이 둘을 포함하는 제형 등일 수 있다. 상기 성형 방법은, 본 발명에 의한 광촉매 및 광촉매 조성물을 성형 재료와 혼합하거나 또는 성형 재료의 사출 성형 시 함께 투입되어 성형될 수 있다.
예를 들어, 상기 제형은, 분말, 고형, 현탁액(suspension), 에멀젼, 크림, 연고, 젤, 액상의 제형 등이며, 예를 들어, 잉크, 페인트, 염색제 등일 수 있으나, 이에 제한되지 않는다.
예를 들어, 상기 제품은, 마스크, 헬멧, 방독면, 방역복, 소방의류 등의 의류, 제약, 코스메틱, 센서, 반도체, 리튬전지, 태양전지, 보일러, 핸드폰, 노트북, PC, 냉장고, 에어콘, 온열기, 전기장판, 전자레인지 등의 전자제품, 가스레인지, 가스오븐, 주전자, 수저, 식기 등의 주방제품, 침대, 옷장 등의 가구, 목걸이 등의 악세사리, 잉크, 페인트(수성,유성), 물감, 염색제, 등에 사용되는 염료, 인조잔디, 인조잔디충진재, 탄성포장재, 바닥재, 아스팔트, 콘크리트, 어린이놀이시설 탄성포장재, 보도블럭, 중앙분리대, 콘크리트, 유리, 단열시트, 벽지, 블라인드, 창문, 매트, 탄성매트, 요가 매트, 타일 등의 인테리어 또는 건축 자재, 백열 또는 led 전구, 스탠드 등의 조명장치 또는 기구, 냉나방기 필터, 제습기 필터, 공기청전기 필터 등 공기정화용 자재, 온도계, 주사기, 청진기, 진단키트 또는 패치, 환자복 등의 의료용 장비 및 의류 등에 적용될 수 있으나, 이에 제한하는 것은 아니 등에 적용될 수 있으나, 이에 제한되지 않는다.
바람직하게는, 페인트, 벽지, 블라인드, 보도블럭, 중앙분리대, 인조잔디, 인조잔디충진재, 탄성포장재, 바닥재, 아스팔트, 콘크리트, 탄성매트 등의 공기정화용 건축자재일 수 있다.
본 발명은, 무기산화물 기반 광촉매의 제조방법에 관한 것으로, 본 발명의 일 실시예에 따라, 상기 제조방법은, 무기산화물을 준비하는 단계; 상기 무기산화물 상에 페로센층을 형성하는 단계; 및 상기 페로센층을 형성하는 단계 이후에 열처리하여 페로센 유래 철 산화물층을 형성하는 단계;를 포함할 수 있다.
상기 무기산화물을 준비하는 단계는, 무기산화물 분산액을 준비하거나 또는 무기산화물을 기판 상에 도포하는 단계이며, 상기 분산액은 수성 용매, 유성 용매 또는 이 둘의 혼합물을 적용하고, 상기 기판은, 실리콘 기판, 웨이퍼, 유리 기판, 반도체 기판, 금속 기판 등일 수 있다. 상기 무기산화물은 스핀 코팅, 롤 코팅, 스프레이 코팅, 딥 코팅, 플로 코팅, 닥터 블레이드법 등으로 도포될 수 있다.
상기 페로센층을 형성하는 단계는, 습식 코팅법, 스퍼터링법 또는 증착법을 이용하여 페로센막을 형성할 수 있다. 바람직하게는 ALD(atomic layer deposition), CVD(temperature-regulated chemical vapor deposition) 등의 증착법을 이용하고, 더 바람직하게는 TR-CVD(온도 조절식 화학 증착법, temperature-regulated chemical vapor deposition)를 이용하여 페로센층을 형성할 수 있다. TR-CVD의 적용 시 페로센 양의 조절을 통하여 무기산화물 상에 증착되는 철 산화물의 양을 용이하게 조절할 수 있고, 광촉매의 제조공정을 단순화시키고 효율적으로 광촉매를 제공할 수 있다.
상기 페로센층을 형성하는 단계는, 상온 내지 120 ℃에서 실시되고, 바람직하게는 40 ℃ 내지 100 ℃; 더 바람직하게는 60 ℃ 내지 100 ℃에서 실시될 수 있다. 즉, TR-CVD의 적용 시 페로센의 기화 공정에 의한 증착을 유도하기 위해서 60 ℃ 내지 100 ℃에서 실시될 수 있다.
상기 페로센층을 형성하는 단계는, 대기 조건 하에서 공기 또는 산소 분위기에서 실시되고, 비활성 기체를 더 포함할 수 있다.
상기 페로센층을 형성하는 단계는, 상기 무기산화물 대비 0.01 중량% 내지 20 중량%의 페로센을 포함하는 상기 페로센층을 형성할 수 있다.
본 발명의 일 실시예에 따라, 상기 페로센 유래 철 산화물층을 형성하는 단계는, 상기 페로센층의 열처리를 통하여 철 산화물로 부분적 또는 완전하게 산화시키고, 탄소 잔여물 등과 같은 불순물을 제거할 수 있다.
상기 페로센 유래 철 산화물층을 형성하는 단계는, 50 ℃ 내지 900 ℃; 또는 100 ℃ 내지 800 ℃; 온도에서 2 단계 이상으로 열처리할 수 있다.
예를 들어, 상기 페로센 유래 철 산화물층을 형성하는 단계는, 100 ℃ 내지 300 ℃ 온도에서 제1 열처리하는 단계 및 300 ℃ 내지 900 ℃ 온도에서 제2 열처리하는 단계를 포함하고, 각 단계는 서로 상이한 온도에서 열처리할 수 있다. 상기 각 단계는 각각 1분 내지 20 시간 동안 실시되고, 공기, 20 % 이상; 40 % 이상의 산소를 포함하는 공기 또는 비활성 기체 분위기에서 실시될 수 있다.
즉, 상기 제1 열처리하는 단계는, 페로센과 산소의 반응에 의해서 철 산화물로 전환하는 철 산화물 증착을 위한 어닐링 공정일 수 있다. 상기 제2 열처리하는 단계는, 제1 열처리 단계 이후의 후열 처리단계이며, 탄화물 등과 같은 불순을 제거하여 광촉매의 활성 및 성능을 향상시키는 어닐링 공정일 수 있다.
이하, 실시예 및 비교예에 의하여 본 발명을 더욱 상세히 설명하고자 한다.
단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
실시예 1
도 2의 TR-CVD(온도 조절식 화학 증착법) 반응기를 이용하고 도 3에 나타낸 온도 조절식 화학 증착법을 활용하여 TiO2에 나노 크기의 산화철 입자가 증착된 광촉매(Fe-TiO2)를 제조하였다. 보다 구체적으로, 가열 밴드로 둘러 쌓인 스테인리스강으로 만든 반응기의 내부 바닥에 철의 전구체인 Ferrocene 0.02 g을 Quartz로 만든 용기에 담아 위치시킨다. 반응기 내부 중앙에 3g의 TiO2 (TiO2, P-25, Evonik, 입자 크기: 25 nm)를 스테인리스강 철망으로 만든 용기에 담은 뒤 위치시킨 후 반응기를 폴리이미드 테이프를 이용하여 밀봉한다. 반응기의 온도를 60 ℃에서 2 시간 동안 TR-CVD 기화 공정으로 페로센의 증착공정을 진행하고, 다음으로, 온도를 200 ℃로 올려 12 시간 동안 유지하여 철산화물로 전환하였다.
이어서 TiO2를 꺼내 건조 공기 가스 분위기에서 750 ℃에서 2 시간 동안 추가적인 열처리를 하여 최종적으로 철 산화물-TiO2 하이브리드 나노구조의 광촉매(또는, Fe-TiO2로 표시)를 제조하였다. 해당 조건에서 TiO2에 증착된 철의 함량은 약 0.09 wt%이다.
실시예 2
철 전구체 Ferrocene를 0.05g을 적용한 것 외에는 실시예 1과 동일한 방법으로 철 산화물-TiO2 하이브리드 나노구조의 광촉매를 제조하였다. 해당 조건에서 TiO2에 증착된 철의 함량은 약 0.13 wt%이다.
실시예 3
철 전구체 Ferrocene를 0.1g을 적용한 것 외에는 실시예 1과 동일한 방법으로 철 산화물-TiO2 하이브리드 나노구조의 광촉매를 제조하였다. 해당 조건에서 TiO2에 증착된 철의 함량은 약 0.65 wt%이다.
실시예 4
철 전구체 Ferrocene를 0.3g을 적용한 것 외에는 실시예 1과 동일한 방법으로 철 산화물-TiO2 하이브리드 나노구조의 광촉매를 제조하였다. 해당 조건에서 TiO2에 증착된 철의 함량은 약 1.81 wt%이다.
상기 제조된 광촉매(Fe-TiO2)를 일반 철 산화물로 코팅된 TiO2 광촉매와 투명도 및 색을 비교하여 도 4에 나타내었다. 도 4를 살펴보면, 본 발명에 의한 페로센 유래 철 산화물로 코팅된 광촉매(Fe-TiO2)는, 철 산화물(Fe2O3)로 코팅된 광촉매(Fe2O3-TiO2)보다 투명하고 연한 노란색을 갖는 것을 확인할 수 있다.
상기 제조된 광촉매(Fe-TiO2)의 TEM 이미지(투과 전자현미경으로 측정된 이미지)를 측정하여 도 5에 나타내었다. 도 5에서 철의 함량이 감소할수록 Fe-TiO2 표면에 증착된 산화철 입자의 크기가 작아지는 것을 보여준다.
상기 제조된 광촉매(Fe-TiO2)의 질소 흡착 분석을 통한 비표면적(BET) 및 BJH 평균 기공 크기를 측정하여 표 1에 나타내었다.
0.13 wt% Fe-TiO2 0.65 wt% Fe-TiO2 1.81 wt% Fe-TiO2
BET Surface area(m2/g) 11.6259 10.3426 8.3939
BJHAdsorption average pore size(nm) 13.2 12.5 13.9
표 1을 살펴보면, Fe-TiO2의 철의 함량이 변화하여도 비표면적과 평균 기공 크기는 크게 변하지 않는 것을 확인할 수 있고, Fe-TiO2의 메조 기공이 형성된 것을 확인할 수 있다.
평가예 1
위면이 쿼츠 유리로 이루어진 부피 5.3 L 반응기(batch reactor) 내에 실시예 1의 광촉매(Fe-TiO2)를 넣고, 아세트알데히드 초기 농도 66 ppm, 건조 공기(상대습도: ~33%, 총 압력은 760 torr) 및 상온에서 백색 LED로 가시광 영역을 조사하여 아세트알데히드의 광분해 특성을 분석하였다. 반응기 내의 아세트알데히드는 기체크로마토그래피를 이용하여 주시적으로 측정하였다. 그 결과는 도 6에 나타내었다.
도 6은, 33 %의 습도 조건에서 가시광선 (백색광) 조사 시간에 따른 (a) 아세트알데하이드 몰수 변화, 및 (b) 아세트알데하이드의 광분해 반응의 결과 발생한 이산화탄소 몰수 변화를 나타낸 그래프이며, 도 6을 살펴보면, 실시예에서 제조된 광촉매(Fe-TiO2)는 가시광선(백색광) 조사에 의한 광촉매 활성에 의해서 아세트알데히드의 광분해가 이루어지는 것을 확인할 수 있고, 페로센 증착양이 0.09 wt %에서 가시광에서 분해 효율이 가장 큰 것을 확인할 수 있다. 또한, 철의 함량이 적어질수록 Fe-TiO2의 아세트알데하이드 광분해 속도가 빨라지는 것을 확인할 수 있다.
평가예 2
페로센 증착양이 0.13 wt %인 광촉매(Fe-TiO2)를 습도가 없는 건식 조건 및 상대습도: ~33%의 습도 조건에서 각각 평가예 1과 동일한 방법으로 아세트알데히드의 광분해 특성을 분석하였다. 반응기 내의 아세트알데히드 및 이산화탄소를 기체크로마토그래피를 이용하여 주기적으로 측정하였다. 그 결과는 도 7 및 도 8에 나타내었다.
도 7은, 건조 조건과 33% 습도 조건에서의 아세트알데하이드 광분해 실험을 했을 때, 가시광선 조사 시간에 따른 (a) 아세트알데하이드 몰 수 변화와 (b) 아세트알데하이드의 광분해 반응의 결과 발생한 이산화탄소 몰수 변화를 나타낸 그래프이며, 도 7을 살펴보면, 점선으로 표시된 같은 아세트 알데하이드 농도 구간에서 두 그래프의 기울기는 비슷하게 나타났는데, 습도의 유무와 상관없이 가시광 조사에서 아세트 알데하이드 광분해 활성은 비슷하게 유지됨을 보여준다.
또한, 이산화탄소 발생이 광조사 시간에 따라 증가되는 것을 확인할 수 있고, 이는 아세트 알데히드의 완전산화에 의한 이산화탄소 발생된 것이다.
도 8은, 33% 습도 조건에서 반복적으로 아세트 알데하이드 광분해 실험에 활용하였을 때, 가시광선 조사 시간에 따른 (a) 아세트알데하이드 몰 수 변화와 (b) 아세트알데하이드의 광분해 반응의 결과 발생한 이산화탄소 몰수 변화를 나타낸 그래프이며, 도 8에서 반복적인 광분해 실험에도 높은 광촉매 활성이 유지됨을 확인할 수 있다.
종합적으로, 본 발명은, 산화철이 증착된 TiO2 (이하 Fe-TiO2)는 대표적인 휘발성 유기 화합물 중 하나인 아세트알데하이드의 광분해 실험에 활용되었고 산화철의 함량에 따른 Fe-TiO2의 아세트알데하이드 광분해 활성을 비교하였다. 그 결과 철의 함량이 약 0.09 wt% 정도로 낮을때 Fe-TiO2의 아세트알데하이드의 광분해 활성이 가장 높았고, 20 시간 안에 초기 아세트알데하이드 농도(~95 mol ppm)의 약 70%가 감소하였다. 또한 일반적으로 광촉매의 활성은 습도에 많은 영향을 받게 되지만 본 발명에서 제조한 Fe-TiO2는 건조 조건과 습도 조건에서 비슷한 촉매 활성을 보여 광촉매 활성이 습도에 민감하지 않음을 확인하였다. 다양한 철의 함량을 가지는 Fe-TiO2의 질소 흡착 실험을 진행한 결과, 철의 함량이 광촉매의 총 비표면적에 크게 영향을 주지 않은 것을 확인하였다. 또한, Fe-TiO2의 광촉매 활성은 철의 함량에 크게 영향을 받은 것으로 보았을 때 광촉매의 활성은 표면 구조보다는 증착된 산화철 나노입자와 TiO2가 이루는 계면의 전자구조가 더 중요하다는 것을 알 수 있다. 또한 투과전자현미경을 통해 철 함량이 낮아질수록 표면에 존재하는 산화철 입자의 크기가 작아지는 것을 확인하였고 1~3 나노미터 수준의 산화철 입자가 증착되었을 때 광촉매 활성이 증가될 수 있다. 분석 결과들을 통해 미루어보았을 때 아주 작은 크기의 산화철 나노입자가 약 0.09 wt%의 함량을 가질 때 Fe-TiO2는 가시광선 영역의 빛을 흡수하여 전자/정공 쌍을 가장 효율적으로 분리해내어 산소/물과 반응해 라디칼을 생성시켜 아세트알데하이드를 빠르게 분해시킬 수 있다. 한 편, 타켓 유기물이 완전히 산화되지 않고 부분적으로 산화가 되어 광촉매 표면에 남아 활성 자리를 막으면 광촉매의 활성이 감소하게 되는데 이는 광촉매의 가장 큰 문제점 중의 하나로 지적받고 있다. 그러나 본 발명에서 제조한 Fe-TiO2는 반복된 아세트알데하이드 광분해 실험에도 촉매 활성이 동일하게 유지가 되었고 따라서 촉매 활성 저하의 문제점 역시 없는 것을 확인하였다.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다. 그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.

Claims (18)

  1. 무기산화물; 및
    상기 무기산화물 상에 형성된 페로센 유래 철 산화물층;
    을 포함하는,
    무기산화물 기반 광촉매.
  2. 제1항에 있어서,
    상기 페로센 유래 철 산화물층에서 철의 함량이 상기 무기산화물 대비 0.001 내지 10 중량%인 것인, 무기산화물 기반 광촉매.
  3. 제1항에 있어서,
    상기 페로센 유래 철 산화물층은, 상기 무기산화물 상에 증착된 페로센이 열처리된 것인,
    무기산화물 기반 광촉매.
  4. 제1항에 있어서,
    상기 무기산화물은, Ti, Zn, Al 및 Sn 중 적어도 하나를 포함하는 산화물로 이루어진 군에서 선택된 적어도 하나를 포함하는 것인,
    무기산화물 기반 광촉매.
  5. 제1항에 있어서,
    상기 무기산화물은, 비드, 분말, 로드, 와이어, 니들 및 섬유 형태로 이루어진 군에서 선택된 적어도 하나를 포함하고,
    상기 무기산화물의 크기는 1 nm 내지 500 ㎛인 것인,
    무기산화물 기반 광촉매.
  6. 제1항에 있어서,
    상기 무기산화물 기반 광촉매는, 400 nm 이상의 가시광선 영역에서 광활성을 갖는 것인,
    무기산화물 기반 광촉매.
  7. 제1항에 있어서,
    상기 무기산화물 기반 광촉매는, 30 % 이하의 습도의 건식 조건에서 광활성을 갖는 것인,
    무기산화물 기반 광촉매.
  8. 제1항에 있어서,
    상기 페로센 유래 철 산화물은, 하기의 화학식 1로 표시되는 화합물 중 1종 이상을 포함하는 것인, 무기산화물 기반 광촉매.
    [화학식 1]
    FexOYHZ
    (X, Y 및 Z는, 각각 0 내지 3에서 선택되고, X 및 Y는 0이 아니다.)
  9. 제1항에 있어서,
    상기 무기산화물 기반 광촉매의 비표면적은 5 (m2/g) 이상이고, 평균 기공 크기는 50 nm 이하인 것인,
    무기산화물 기반 광촉매.
  10. 제1항의 무기산화물 기반 광촉매;
    를 포함하고,
    상기 광촉매는, 상기 광촉매 조성물 중 0.01 내지 99 중량%로 포함되는 것인,
    광촉매 조성물.
  11. 제1항의 무기산화물 기반 광촉매;
    를 포함하는,
    광분해 기능을 갖는, 제품.
  12. 제11항에 있어서,
    상기 제품은, 기재 상에 상기 무기산화물 기반 광촉매가 코팅되거나 또는 상기 무기산화물 기반 광촉매를 포함하는 성형체인 것인,
    제품.
  13. 제11항에 있어서,
    상기 제품은, 산성가스 및 유기물질의 광분해 기능을 갖는 공기정화용 건축자재에 적용되는 것인,
    제품.
  14. 제13항에 있어서,
    상기 공기정화용 건축자재는, 페인트, 벽지, 블라인드, 보도블럭, 중앙분리대, 인조잔디, 인조잔디충진재, 탄성포장재, 바닥재, 아스팔트, 콘크리트, 탄성매트 중 하나 이상인 것인,
    제품.
  15. 무기산화물을 준비하는 단계;
    상기 무기산화물 상에 페로센층을 형성하는 단계; 및
    상기 페로센층을 형성하는 단계 이후에 열처리하여 페로센 유래 철 산화물층을 형성하는 단계;
    를 포함하는,
    무기산화물 기반 광촉매의 제조방법.
  16. 제15항에 있어서,
    상기 페로센층을 형성하는 단계는, 습식 코팅법, 스퍼터링법 또는 증착법을 이용하고,
    상기 페로센층을 형성하는 단계는, 상온 내지 120 ℃에서 실시되고,
    상기 페로센층은, 상기 무기산화물 대비 0.001 중량% 내지 20 중량%의 페로센을 포함하는 것인,
    무기산화물 기반 광촉매의 제조방법.
  17. 제15항에 있어서,
    상기 페로센층을 형성하는 단계는, TR-CVD(temperature-regulated chemical vapor deposition)를 이용하여 페로센 증착층을 형성하는 것인,
    무기산화물 기반 광촉매의 제조방법.
  18. 제15항에 있어서,
    상기 페로센 유래 철 산화물층을 형성하는 단계는, 100 ℃ 내지 300 ℃의 온도에서 제1 열처리하는 단계; 및 300 ℃ 내지 900 ℃의 온도에서 제2 열처리하는 단계를 포함하고, 각 단계는 서로 상이한 온도에서 열처리하는 것인,
    무기산화물 기반 광촉매의 제조방법.
PCT/KR2019/014146 2018-10-26 2019-10-25 광촉매 및 이의 제조방법 WO2020085841A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SG11202103786WA SG11202103786WA (en) 2018-10-26 2019-10-25 Photocatalyst and preparation method therefor
DE112019005332.9T DE112019005332T5 (de) 2018-10-26 2019-10-25 Photokalysator und Herstellungsverfahren davon
US17/284,774 US20220143261A1 (en) 2018-10-26 2019-10-25 Photocatalyst and preparation method therefor

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR1020180129020A KR102009397B1 (ko) 2018-10-26 2018-10-26 광촉매 및 이의 제조방법
KR10-2018-0129020 2018-10-26
KR10-2019-0077671 2019-06-28
KR1020190077668A KR102112259B1 (ko) 2019-06-28 2019-06-28 광촉매 및 이의 제조방법
KR1020190077671A KR102130378B1 (ko) 2019-06-28 2019-06-28 광촉매 및 이의 제조방법
KR10-2019-0077670 2019-06-28
KR1020190077669A KR102130373B1 (ko) 2019-06-28 2019-06-28 광촉매 및 이의 제조방법
KR1020190077670A KR102130376B1 (ko) 2019-06-28 2019-06-28 광촉매 및 이의 제조방법
KR10-2019-0077668 2019-06-28
KR10-2019-0077669 2019-06-28

Publications (1)

Publication Number Publication Date
WO2020085841A1 true WO2020085841A1 (ko) 2020-04-30

Family

ID=70330511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/014146 WO2020085841A1 (ko) 2018-10-26 2019-10-25 광촉매 및 이의 제조방법

Country Status (4)

Country Link
US (1) US20220143261A1 (ko)
DE (1) DE112019005332T5 (ko)
SG (1) SG11202103786WA (ko)
WO (1) WO2020085841A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115318290B (zh) * 2022-08-12 2023-11-03 同济大学 一种三维海胆状结构Cu/Cu2O-Al2O3纳米复合材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015507537A (ja) * 2012-01-18 2015-03-12 日東電工株式会社 チタニア光触媒化合物およびそれらの製造方法
KR101738610B1 (ko) * 2015-12-22 2017-05-23 성균관대학교산학협력단 온도조절-화학적 기상 증착법을 이용한 다공성 담체에 금속 산화물이 담지된 촉매의 제조방법
JP2018030704A (ja) * 2016-08-26 2018-03-01 村田機械株式会社 バンニング・デバンニング装置
KR20180116269A (ko) * 2016-02-27 2018-10-24 니폰 제온 가부시키가이샤 촉매 담지체 및 섬유상 탄소 나노 구조체의 제조 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3981757B2 (ja) * 2001-11-05 2007-09-26 住友化学株式会社 光触媒体およびそれを用いてなる光触媒体コーティング剤
KR101887022B1 (ko) * 2016-12-12 2018-08-10 대한민국 셀룰로오스 나노 결정을 이용한 다공성 티타니아 박막의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015507537A (ja) * 2012-01-18 2015-03-12 日東電工株式会社 チタニア光触媒化合物およびそれらの製造方法
KR101738610B1 (ko) * 2015-12-22 2017-05-23 성균관대학교산학협력단 온도조절-화학적 기상 증착법을 이용한 다공성 담체에 금속 산화물이 담지된 촉매의 제조방법
KR20180116269A (ko) * 2016-02-27 2018-10-24 니폰 제온 가부시키가이샤 촉매 담지체 및 섬유상 탄소 나노 구조체의 제조 방법
JP2018030704A (ja) * 2016-08-26 2018-03-01 村田機械株式会社 バンニング・デバンニング装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J, ATCHALEEYA: "Highly active sustainable ferrocenated iron oxide nanocat alysts for the decolor izat ion of methyleneblue", RSC ADVANCES, 2015, pages 31324 - 31328, XP055709514 *

Also Published As

Publication number Publication date
SG11202103786WA (en) 2021-05-28
DE112019005332T5 (de) 2021-07-15
US20220143261A1 (en) 2022-05-12

Similar Documents

Publication Publication Date Title
KR102009397B1 (ko) 광촉매 및 이의 제조방법
WO2012173400A2 (en) Visible light sensitive photocatalyst, method of producing the same, and electrochemical water decomposition cell, water decomposition system, and organic material decomposition system each including the same
WO2017217693A1 (ko) 광촉매 기능성 필터
KR102042655B1 (ko) 공기이동공과 광촉매층을 갖는 조명기구
WO2016021888A1 (ko) 광촉매 기능성 필름 및 이의 제조방법
WO2016021889A1 (ko) 광촉매 기능성 필름 및 이의 제조방법
WO2020085841A1 (ko) 광촉매 및 이의 제조방법
WO2021049811A1 (ko) 이산화티타늄 복합체, 이의 제조 방법, 및 이를 포함하는 광촉매
Bianchi et al. Self-cleaning measurements on tiles manufactured with microsized photoactive TiO2
KR102130373B1 (ko) 광촉매 및 이의 제조방법
KR102279008B1 (ko) 가시광 활성 광촉매를 포함하는 공기정화용 창호
KR102070720B1 (ko) 무기산화물 기반 광촉매가 적용된 콘크리트 블록
KR102120253B1 (ko) 가시광 활성 광촉매를 포함하는 도료용 조성물
TW201325711A (zh) 殼體及殼體的製作方法
US10898890B2 (en) Photocatalytic coating and method of making same
KR102060521B1 (ko) 가시광 활성 광촉매를 포함하는 방수제
KR102089491B1 (ko) 가시광 활성 광촉매를 포함하는 흙콘크리트
KR102089987B1 (ko) 가시광 활성 광촉매를 포함하는 에어돔
KR102130376B1 (ko) 광촉매 및 이의 제조방법
KR102112259B1 (ko) 광촉매 및 이의 제조방법
KR102130378B1 (ko) 광촉매 및 이의 제조방법
KR102152874B1 (ko) 가시광 활성 광촉매를 포함하는 방음 패널
CN112409897A (zh) 一种超亲水被动式自洁涂料及其制备方法和应用
KR102271170B1 (ko) 아크릴계 수지 조성물 및 이에 의하여 제조된 아크릴계 바닥재
KR102244534B1 (ko) 가시광 활성 광촉매를 포함하는 led

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19876292

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19876292

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 521421748

Country of ref document: SA