WO2020085283A1 - 金属複合水酸化物とその製造方法、リチウムイオン二次電池用正極活物質とその製造方法、及び、それを用いたリチウムイオン二次電池 - Google Patents

金属複合水酸化物とその製造方法、リチウムイオン二次電池用正極活物質とその製造方法、及び、それを用いたリチウムイオン二次電池 Download PDF

Info

Publication number
WO2020085283A1
WO2020085283A1 PCT/JP2019/041267 JP2019041267W WO2020085283A1 WO 2020085283 A1 WO2020085283 A1 WO 2020085283A1 JP 2019041267 W JP2019041267 W JP 2019041267W WO 2020085283 A1 WO2020085283 A1 WO 2020085283A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal composite
aqueous solution
tungsten
composite hydroxide
positive electrode
Prior art date
Application number
PCT/JP2019/041267
Other languages
English (en)
French (fr)
Inventor
徹太郎 林
慎介 菅沼
秀造 小澤
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to US17/287,726 priority Critical patent/US20210395105A1/en
Priority to CN201980070086.6A priority patent/CN112912343B/zh
Publication of WO2020085283A1 publication Critical patent/WO2020085283A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a metal composite hydroxide, a method for producing the same, a positive electrode active material for a lithium ion secondary battery, a method for producing the same, and a lithium ion secondary battery using the same.
  • a lithium-ion secondary battery which is a type of non-aqueous electrolyte secondary battery, is a secondary battery that meets these requirements.
  • a lithium ion secondary battery is composed of a negative electrode, a positive electrode, an electrolytic solution, etc., and a material capable of desorbing and inserting lithium is used as an active material used as a material of the negative electrode and the positive electrode.
  • a lithium-ion secondary battery using a layered or spinel type lithium metal composite oxide as a positive electrode active material can obtain a voltage of 4V class, and thus is currently used as a battery having high energy density.
  • Research and development are actively carried out, and some of them are being put to practical use.
  • lithium cobalt composite oxide LiCoO 2
  • LiNiO 2 lithium nickel composite oxide
  • LiMn 2 O 4 lithium manganese composite oxide using manganese
  • LiNi 0. 5 Mn 0.5 O 2 lithium metal composite oxides
  • Patent Documents 1 to 3 propose methods for producing a positive electrode active material by using a composite hydroxide obtained by a crystallization process performed in two stages as a precursor.
  • the positive electrode active materials described in these patent documents are said to have a high specific surface area and excellent output characteristics due to having a small particle size and a narrow particle size distribution and having a hollow structure or space inside the particles.
  • a positive electrode active material having higher output characteristics is required as a power source for driving a vehicle such as a hybrid automobile.
  • a different element to the lithium metal composite oxide constituting the positive electrode active material is being studied as a means of further reducing the reaction resistance and realizing a positive electrode active material having higher output characteristics.
  • a transition metal that can be expensive such as Mo, Nb, W, or Ta, has been proposed.
  • a lithium transition metal-based compound having a function of inserting / desorbing lithium ions is used as a main component, and an additive that suppresses grain growth and sintering during firing is added to the main component raw material.
  • Lithium transition metal-based compound powder obtained by adding at least one or more kinds in a proportion of 0.01 mol% or more and less than 2 mol% with respect to the total molar amount of transition metal elements in the main component raw material, and then firing the mixture.
  • the body is listed.
  • the additive is an oxide containing at least one element selected from Mo, W, Nb, Ta, and Re, and the total of Li of the surface portion of the primary particles and the metal element other than the additive element. It is described that the total atomic ratio of the additional elements to the is 5 times or more the atomic ratio of the whole particles.
  • Patent Document 5 a step of dispersing W on the surface of the primary particles of the lithium metal composite oxide powder by adding and mixing an alkaline aqueous solution in which a specific proportion of a tungsten compound is dissolved,
  • the mixed lithium aqueous solution of the tungsten compound and the lithium metal composite oxide powder are heat-treated in the range of 100 to 700 ° C. to represent Li 2 WO 4 , Li 4 WO 5 , or Li 6 W 2 O 9.
  • a positive electrode active material composed of a lithium metal composite oxide which is composed of primary particles and secondary particles formed by aggregating primary particles, has secondary particles having voids into which an electrolytic solution can penetrate.
  • a positive electrode active material having a compound layer having a layer thickness of 20 nm or less containing lithium enriched with tungsten on the surface or grain boundary of the lithium metal composite oxide is proposed near and inside the surface of.
  • a lithium metal composite oxide can be obtained by mixing and burning a tungsten compound when mixing a composite hydroxide or a composite oxide and a lithium compound.
  • the particle size of the tungsten compound is preferably 1/5 times or less the average particle size of the manganese composite hydroxide or the manganese composite hydroxide.
  • Patent Document 7 in a crystallization reaction, a step of producing a composite hydroxide particle by separating a nucleation step and a particle growth step by pH control, and tungsten on the surface of the obtained composite hydroxide particle.
  • a method for producing a transition metal composite hydroxide which comprises a coating step for forming a coating material containing, and a positive electrode active material using the hydroxide thereof as a precursor have been proposed.
  • Patent Document 8 a layer of a first positive electrode active material represented by Li x1 Ni a1 Mn b1 Co c1 O 2 is attached to the surface of the current collector, and the surface of the first positive electrode active material is attached.
  • a positive electrode for a lithium secondary battery provided with a layer of a second positive electrode active material represented by Li x2 Ni a2 Mn b2 Co c2 M d O 2 (M is Mo, W, and Nb) has been proposed.
  • Patent Document 9 discloses a method for producing a nickel-cobalt composite hydroxide, in which a solution containing nickel, cobalt and manganese, a complex ion forming agent and a basic solution are separately and simultaneously provided in one reaction vessel.
  • nickel-cobalt composite hydroxide particles By supplying to the first cobalt crystallization step to obtain nickel-cobalt composite hydroxide particles, further after the first crystallization step, a solution containing nickel, cobalt and manganese, a complex ion forming agent, a basic solution And a solution containing the element M are separately and simultaneously supplied, whereby nickel, cobalt, manganese and the element M (Al, Mg, Ca, Ti, Zr, Nb, Ta) are supplied to the nickel-cobalt composite hydroxide particles. At least one selected from the group consisting of Cr, Mo, W, Fe, Cu, Si, Sn, Bi, Ga, Y, Sm, Er, Ce, Nd, La, Cd, and Lu.
  • the total mol of nickel, cobalt and manganese supplied in the first step of crystallizing is MOL (1), the second crystal.
  • MOL (1) the total mol of nickel, cobalt and manganese supplied in the deposition step.
  • the lithium metal composite oxide manufactured by the manufacturing method described in Patent Document 5 has improved output characteristics, the cycle characteristics are not sufficient when the thickness of the tungsten fine particles formed on the particle surfaces is not uniform. was there.
  • Patent Document 6 is not industrially suitable because the tungsten compound needs to be crushed once to obtain a nano-order tungsten compound, and the method is not easy to handle.
  • the unevenness in the particle size of the obtained fine particles causes variations in the thickness of the compound layer, so that the reduction of the reaction resistance is insufficient and the effect of improving the output characteristics is limited.
  • tungsten is added to the manganese composite hydroxide as an additional element in order to obtain the powder, but it is difficult to form a compound layer enriched with tungsten in a nano order by the method.
  • Patent Document 7 is not preferable industrially because the number of steps is increased because a step of coating tungsten is added.
  • tungsten is deposited by controlling the pH in the coating step, it is difficult to coat uniformly because the thickness of the coating layer is not uniform due to the fluctuation of the controlled pH.
  • a composite oxide obtained by mixing a composite hydroxide in which tungsten is nonuniformly coated with lithium is used, resistance is generated, and there is a problem that the output is rather reduced.
  • the positive electrode active material configured by the method described in Patent Document 8 has a different phase between the first positive electrode active material and the second positive electrode active material, when used in a secondary battery, charging and discharging are performed. There is a problem in that there is a difference in structure change during reaction, cracks occur during repeated charging and discharging, and cycle characteristics deteriorate.
  • the SEM-EDX of the second layer in which the ratio of the depth in the radial direction is 5% or more and less than 50% is present. It is described that the spectrum has an element M peak according to the spectrum, and since the element M containing tungsten is contained in the inside of the surface layer of the secondary particles in the positive electrode active material, the crystallinity is lowered and it is used for a secondary battery. If so, the battery characteristics may deteriorate.
  • the present inventors have found that when a raw material aqueous solution containing tungsten is supplied in the crystallization step, the obtained metal composite hydroxide (precursor) is supplied with respect to the supply amount (charge amount) of tungsten. It was found that the amount of tungsten contained in () is not sufficient (the yield of tungsten is not sufficient).
  • the reaction resistance positive electrode resistance
  • the output is higher
  • nickel, manganese, and tungsten, and optionally cobalt and element M are contained, and the material ratio of each metal element is Ni: Mn: Co :.
  • a method for producing a metal composite hydroxide comprising supplying a first raw material aqueous solution containing a metal element and an ammonium ion supplier to a reaction tank, adjusting the pH of the reaction aqueous solution in the reaction tank, and performing crystallization.
  • the first crystallization step in which the reaction is carried out, and the reaction tank contains a metal element A second crystallization step of supplying a second raw material aqueous solution containing a large amount of ammonium and an ammonium ion supplier, adjusting the pH of the reaction aqueous solution to cause a crystallization reaction, and forming a tungsten concentrated layer.
  • the first crystallization step and the second crystallization step are performed in this order one or more times, and the first crystallization step for the first time is a nucleation step for nucleation and particles for grain growth.
  • a growth step, and the second crystallization step includes performing particle growth subsequent to the particle growth step.
  • the oxygen concentration is 5% by volume or less.
  • the reaction atmosphere is switched from one of the non-oxidizing atmosphere and the oxidizing atmosphere having an oxygen concentration higher than that of the non-oxidizing atmosphere to the other atmosphere two or more times. 2 time to supply the raw material aqueous solution to the reaction tank
  • the second raw material solution for the entire time required to supply to the reaction vessel, is 50% or more, the production method of the metal complex hydroxide is provided.
  • the nucleation in the first crystallization step is performed in a non-oxidizing atmosphere
  • the particle growth in the first and second crystallization steps is performed by changing the pH of the reaction aqueous solution from the pH value of the reaction aqueous solution in the nucleation step. It is preferable that the temperature is adjusted to be low and the atmosphere is switched from the non-oxidizing atmosphere to the oxidizing atmosphere twice or more. Further, it is preferable to switch the reaction atmosphere from the non-oxidizing atmosphere to the oxidizing atmosphere four times.
  • the metal composite hydroxide includes secondary particles obtained by aggregating a plurality of primary particles, the secondary particles from the center of the secondary particles toward the surface, the central portion in which the primary particles are densely arranged, It has a multi-layered structure including voids in which primary particles are arranged more sparsely than the central part and solid parts in which primary particles are densely arranged, and the tap density of the metal composite hydroxide is 0.75 g / It is preferably not less than cm 3 and not more than 1.35 g / cm 3 . Further, it is preferable that the second crystallization step includes forming the tungsten concentrated layer so as to have a thickness of 100 nm or less in a direction from the surface of the metal composite hydroxide toward the central portion.
  • the addition of the second raw material aqueous solution in the second crystallization step is performed when 30% or more and 95% or less of the entire time during which particle growth is performed in the first and second crystallization steps. It is preferable to carry out.
  • the second raw material aqueous solution includes a first raw material aqueous solution and an aqueous solution containing tungsten, and the supply of the second raw material aqueous solution is a reaction aqueous solution in which the first raw material aqueous solution and the tungsten containing aqueous solution are separately supplied.
  • the tungsten concentration in the aqueous solution containing tungsten is preferably 18% by mass or more based on the entire aqueous solution containing tungsten. Further, it is preferable that the content of tungsten in the metal composite hydroxide is 70 mol% or more with respect to the amount of tungsten supplied to the reaction tank.
  • nickel, manganese, and tungsten, and optionally cobalt, and the element M are contained, and the material ratio of each metal element is Ni: Mn: Co: W.
  • M is one or more elements selected from Mg, Ca, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, and Ta).
  • a metal composite hydroxide including secondary particles in which a plurality of primary particles are aggregated, having a tungsten concentrated layer on the surface layer of the secondary particles, the secondary particles from the center of the secondary particles toward the surface.
  • a deployed solid portion has a multilayer structure, a tap density of less 0.75 g / cm 3 or more 1.35 g / cm 3, and tungsten, from the gap portion, heavily parenchyma
  • the metal composite hydroxide contained in is provided.
  • the thickness of the tungsten concentrated layer is preferably 100 nm or less.
  • the average particle size of the metal composite hydroxide is 4.0 ⁇ m or more and 9.0 ⁇ m or less, and [(d90-d10) / average particle size], which is an index showing the spread of the particle size distribution, is 0.65 or less. Is preferred.
  • At least one of the metal composite hydroxide obtained by the above production method and the metal composite oxide obtained by heat-treating the metal composite hydroxide, and a lithium compound are mixed to obtain lithium.
  • a method for producing a positive electrode active material for a lithium ion secondary battery which comprises a step of obtaining a mixture and a step of firing a lithium mixture to obtain a lithium metal composite oxide.
  • a compound containing tungsten and lithium is concentrated and present, the tap density is 1 g / cm 3 or more and 2 g / cm 3 or less, and the BET specific surface area is 1.45 m 2 / g or more and 5.4 m 2 / g.
  • the positive electrode active material preferably has a (003) plane crystallite diameter of 110 nm or more obtained by powder X-ray diffraction measurement.
  • a lithium ion secondary battery comprising a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte, wherein the positive electrode active material for a lithium ion secondary battery is used as a positive electrode positive electrode material. Batteries are provided.
  • the reaction resistance is reduced, the output is high, and the crystallinity of the positive electrode active material is high, and the metal composite hydroxide that is the precursor thereof.
  • the method for producing a metal composite hydroxide of the present invention can provide a method for producing a metal composite hydroxide having a good yield of tungsten.
  • a secondary battery containing such a positive electrode active material can be provided. Furthermore, according to the present invention, it is possible to provide a method capable of easily producing such a positive electrode active material and a metal composite hydroxide on an industrial scale. Therefore, the industrial significance of the present invention is extremely large.
  • FIG. 1 is a diagram showing an example of a method for producing a metal composite hydroxide.
  • FIG. 2 is a diagram showing an example of a method for producing a metal composite hydroxide.
  • FIG. 3 is a diagram showing an example of a method for producing a metal composite hydroxide.
  • 4 (A) and 4 (B) are schematic views showing an example of the metal composite hydroxide, and
  • FIG. 4 (C) is an example of a cross-sectional SEM image of the metal composite hydroxide.
  • 5A and 5B are schematic diagrams showing an example of a lithium metal composite oxide.
  • FIG. 6 is a diagram showing an example of a method for producing a lithium metal composite oxide.
  • FIG. 1 is a diagram showing an example of a method for producing a metal composite hydroxide.
  • FIG. 2 is a diagram showing an example of a method for producing a metal composite hydroxide.
  • FIG. 3 is a diagram showing an example of a method for producing a metal composite hydrox
  • FIG. 7 is a drawing-substituting photograph (upper figure) showing an example of W distribution by surface analysis using EDX of a metal composite hydroxide having a tungsten-concentrating layer, and an explanation for explaining the tungsten-concentrating layer in the drawing-substituting photograph. It is a figure (lower figure).
  • FIG. 8 is a schematic diagram showing the evaluation coin battery used in the examples.
  • 1 to 3 are views showing an example of a method for producing a metal composite hydroxide according to this embodiment.
  • the metal composite hydroxide 10 (secondary particles 2) obtained by the manufacturing method according to the present embodiment has a tungsten concentrated layer 3 in which tungsten is concentrated on the surface layer (surface side) thereof.
  • the metal composite hydroxide 10 includes secondary particles 2 in which a plurality of primary particles 1 are aggregated (see FIG. 4 (C)). Due to the presence of the tungsten concentrated layer 3 in the metal composite hydroxide 10, it is possible to obtain a secondary battery in which the reaction resistance (positive electrode resistance) is extremely reduced when used in the positive electrode of the secondary battery.
  • such a metal composite hydroxide 10 can be easily manufactured on an industrial scale.
  • the second crystallization step (step S20) by adding more tungsten in a non-oxidizing atmosphere, the charged amount (supplied amount) is increased. Minute) tungsten can be efficiently deposited inside the secondary particles 2 (metal composite hydroxide 10), the yield of tungsten is significantly improved, and it is more suitable for industrial scale production.
  • the first crystallization step (step S10) and the second crystallization step (step S20) may be performed only once in this order or may be repeated twice or more. Hereinafter, each step will be described.
  • step S10 nickel (Ni) and manganese (Mn), and optionally cobalt (Co) and / or a metal element are provided in the reaction tank.
  • a second crystallization step (step of forming a tungsten concentrated layer by supplying a second raw material aqueous solution containing a large amount of tungsten and an ammonium ion supplier and adjusting the pH of the reaction aqueous solution to cause a crystallization reaction. S20), and.
  • the particles (hereinafter, also referred to as “first metal composite hydroxide particles”) obtained by the first crystallization step (step S10) are primary particles that do not contain tungsten or have a low tungsten content. Composed. Therefore, the lithium metal composite oxide 20 (see FIGS. 5A and 5B) using the metal composite hydroxide 10 having a site derived from the first metal composite hydroxide particles as a precursor is Thus, high crystallinity can be obtained.
  • the compound 23 containing tungsten and lithium derived from the tungsten concentrated layer 3 formed in the second crystallization step (step S20) is the surface of the primary particles 21 in the lithium metal composite oxide 20, or the primary particles 21. Since it exists in the grain boundary between 21, the output characteristics are excellent.
  • the first crystallization step (step S10) further includes a nucleation step (step S11) that mainly performs nucleation and a particle growth step (step S12) that mainly performs particle growth. It is preferable.
  • the nucleation step (step S11) and the particle growth step (step S12) can be clearly separated, for example, by controlling the pH of the reaction aqueous solution, and the metal composite having a narrow particle size distribution and a uniform particle diameter.
  • the hydroxide 10 can be obtained.
  • the second crystallization step (step S20) is a step of performing mainly particle growth subsequent to the particle growth step (step S12).
  • a method for producing a nickel composite hydroxide including such a two-step crystallization process is disclosed in, for example, Patent Documents 2 and 3, and for detailed conditions, refer to these documents. The conditions can be adjusted accordingly. Further, in the method for producing a metal composite hydroxide according to the present embodiment, the tungsten concentrated layer 3 having a desired film thickness can be formed by using the conditions of a known crystallization method, as described below. , Can be easily applied to industrial scale production.
  • step S11 a nucleation step
  • step S12 a particle growth step
  • step S10 (Nucleation process)
  • the first raw material aqueous solution and the ammonium ion supplier are supplied, the pH of the reaction aqueous solution (nucleation aqueous solution) in the reaction tank is controlled within a predetermined range, and nucleation is performed (step S11).
  • the first raw material aqueous solution is prepared by, for example, dissolving a compound containing a transition metal as a raw material in water.
  • the composition ratio of the metal composite hydroxide formed by crystallization in each step is the same as the composition ratio of each metal in the raw material aqueous solution
  • the composition ratio of each metal in the raw material aqueous solution can be the composition ratio of the transition metal of the target metal composite hydroxide.
  • the first raw material aqueous solution may contain a small amount of tungsten or may not contain tungsten.
  • an aqueous solution containing an alkaline aqueous solution and an ammonium ion supplier is supplied and mixed into the reaction tank, and the pH value measured at a liquid temperature of 25 ° C. is 12.0 or more and 14.0 or less and the ammonium ion concentration is It is preferable to prepare a pre-reaction aqueous solution of 3 g / L or more and 25 g / L or less.
  • the reaction atmosphere in the reaction tank can be appropriately adjusted depending on the intended structure of the secondary particles 2.
  • a non-oxidizing atmosphere is preferable.
  • an oxidizing atmosphere is preferable.
  • the atmosphere is controlled by introducing nitrogen gas, for example.
  • the pH value of the pre-reaction aqueous solution can be measured with a pH meter, and the ammonium ion concentration can be measured with an ion meter.
  • the first raw material aqueous solution is supplied into the reaction tank to form a reaction aqueous solution (nucleation aqueous solution).
  • the pH value of the aqueous solution for nucleation and the concentration of ammonium ions change with the nucleation in the reaction aqueous solution. It is preferable to control such that the pH value of the liquid is maintained in the range of pH 12.0 or more and 14.0 or less and the concentration of ammonium ion is in the range of 3 g / L or more and 25 g / L or less based on the liquid temperature of 25 ° C.
  • the pH value of the aqueous reaction solution aqueous solution for nucleation
  • nuclei hardly grow and nucleation occurs preferentially.
  • the pH value of the reaction aqueous solution (aqueous solution for nucleation) measured at a liquid temperature of 25 ° C. is preferably 12.0 or more and 14.0 or less, more preferably 12.3 or more and 13.5 or less, and further preferably 12.
  • the range is 5 or more and 13.3 or less.
  • the pH value is less than 12.0
  • the growth of nuclei proceeds along with the nucleation, so that the particle size of the obtained metal composite hydroxide becomes non-uniform and the particle size distribution deteriorates.
  • the pH value exceeds 14.0, the nuclei formed may become too fine and the reaction aqueous solution (nucleation aqueous solution) may gel.
  • the fluctuation range of pH value in the reaction aqueous solution is preferably within ⁇ 0.2.
  • the fluctuation range of the pH value is large, the nucleation amount and the particle growth ratio are not constant, and it becomes difficult to obtain a metal composite hydroxide having a narrow particle size distribution.
  • the ammonium ion concentration of the reaction aqueous solution is preferably adjusted within the range of 3 g / L or more and 25 g / L or less, and more preferably 5 g / L or more and 20 g / L or less. Since ammonium ions function as a complexing agent in the reaction aqueous solution, when the ammonium ion concentration is less than 3 g / L, the solubility of the metal ions cannot be kept constant, or the reaction aqueous solution easily gels. Then, it becomes difficult to obtain a metal composite hydroxide having a uniform shape and particle size.
  • the fluctuation range of the ammonium ion concentration within a certain range through the nucleation step (step S11) and the particle growth step (step S12). Specifically, the fluctuation range is ⁇ 5 g / L. It is preferable to control.
  • the reaction solution (nucleation aqueous solution) is supplied with the first raw material aqueous solution, the alkaline aqueous solution, and the aqueous solution containing the ammonium ion supplier to continuously generate new nuclei. To be done. Then, when a predetermined amount of nuclei are generated in the nucleation aqueous solution, the nucleation step (step S11) is ended. At this time, the amount of nucleation can be determined from the amount of the metal compound contained in the raw material aqueous solution supplied to the nucleation aqueous solution.
  • the amount of nuclei generated in the nucleation step (step S11) is not particularly limited, but from the viewpoint of obtaining a metal composite hydroxide having a narrow particle size distribution, the crystallization step (first crystallization step and second crystallization step). 0.1 atomic% or more and 2 atomic% or less, preferably 0.1 atomic% or more and 1.5 atomic% or less, with respect to the metal element in the metal compound contained in the raw material aqueous solution supplied through Is more preferable.
  • the upper limit of the temperature of the reaction aqueous solution is not particularly limited, but is preferably 60 ° C. or lower, more preferably 50 ° C. or lower. This is because when the temperature of the reaction aqueous solution (nucleation aqueous solution) exceeds 60 ° C., the primary crystal may be distorted and the tap density may start to decrease.
  • the reaction aqueous solution (aqueous solution for particle growth) is formed by supplying the reaction aqueous solution containing the generated nuclei with the first raw material aqueous solution, the alkaline aqueous solution, and the aqueous solution containing the ammonium ion supplier. It is preferable that the reaction aqueous solution (aqueous solution for particle growth) has a pH value measured at a liquid temperature of 25 ° C. of 10.5 to 12.0 and an ammonium ion concentration of 3 g / L to 25 g / L. As a result, in the reaction aqueous solution (aqueous solution for particle growth), particle growth is dominantly performed over nucleation.
  • reaction atmosphere in the reaction tank when obtaining the metal composite hydroxide 10 mainly containing the secondary particles 2 having a multilayer structure in which the density of the primary particles 1 is adjusted, non-oxidation with an oxygen concentration of 5% by volume or less is performed. It is preferable to carry out by appropriately switching the oxidizing atmosphere and the oxidizing atmosphere having an oxygen concentration higher than that of the non-oxidizing atmosphere.
  • the atmosphere is controlled by introducing nitrogen gas, for example.
  • the pH value of the aqueous solution for nucleation in the reaction tank is adjusted to 10.5 or more and 12.0 or less based on the liquid temperature of 25 ° C., and the reaction aqueous solution in the particle growth step is used.
  • the pH value can be adjusted by stopping the supply of only the alkaline aqueous solution, but from the viewpoint of improving the uniformity of the particle size, it is possible to temporarily stop the supply of all the aqueous solutions and adjust the pH value. preferable.
  • the pH value is adjusted when the reaction aqueous solution (aqueous solution for nucleation) uses an inorganic acid of the same kind as the acid forming the compound containing the transition metal as the raw material, for example, a transition metal sulfate as the raw material. May be performed by supplying sulfuric acid.
  • the supply of the first raw material aqueous solution is restarted while stirring the reaction aqueous solution (particle growth aqueous solution).
  • the pH value of the aqueous solution for particle growth is within the above-mentioned range, almost no new nuclei are formed, the growth of nuclei (particles) proceeds, and the first metal composite hydroxide having a predetermined particle size. Particles can be formed.
  • the particle growth step (step S12) the pH value and the ammonium ion concentration of the particle growth aqueous solution change with the particle growth. Therefore, an alkaline aqueous solution and an ammonia aqueous solution are appropriately supplied to adjust the pH value and the ammonium ion concentration. It is necessary to maintain the above range.
  • the pH value of the reaction aqueous solution is 10.5 or more and 12.0 or less, preferably 11.0 or more and 12.0 or less, and more preferably 11.5 or more and 11.9, based on the liquid temperature of 25 ° C. Control within the following range.
  • the pH value is less than 10.5
  • the ammonium ion concentration increases and the metal ion solubility increases, which not only slows down the crystallization reaction rate, but also the amount of metal ion remaining in the reaction aqueous solution. May increase and productivity may deteriorate.
  • the pH value exceeds 12.0 the amount of nucleation during the particle growth step increases, the particle size of the obtained metal composite hydroxide particles becomes non-uniform, and the particle size distribution may deteriorate.
  • the fluctuation range of the pH value in the reaction aqueous solution is preferably within ⁇ 0.2.
  • the fluctuation range of the pH value is large, the nucleation amount and the particle growth ratio are not constant, and it becomes difficult to obtain a metal composite hydroxide having a narrow particle size distribution.
  • the pH value in the particle growth step (step S12) is preferably adjusted to a value lower than the pH value in the nucleation step (step S11).
  • the particle growth The pH value of the step (step S12) is preferably lower than the pH value of the nucleation step (step S11) by 0.5 or more, more preferably 0.8 or more.
  • the pH value of the reaction aqueous solution is 12.0
  • nucleation step when the pH value in the nucleation step is set to 12.0, nucleation occurs preferentially because there are no nuclei that grow in the reaction aqueous solution, and the pH value in the particle growth step should be smaller than 12.0. Then, the generated nuclei grow and good metal composite hydroxide particles can be obtained.
  • the ammonium ion concentration of the reaction aqueous solution can be the same as the preferable range of the ammonium ion concentration of the reaction aqueous solution (nucleation aqueous solution). Further, the fluctuation range of the ammonium ion concentration can be set to the same range as the preferable range in the above reaction aqueous solution (nucleation aqueous solution).
  • the reaction atmosphere of the particle growth step (step S12) and the second crystallization step (step S20) described later may be appropriately switched by adjusting the oxygen concentration, and the oxygen concentration is 5% by volume or less.
  • the reaction atmosphere may be switched twice or more from one atmosphere of the non-oxidizing atmosphere and the oxidizing atmosphere having an oxygen concentration higher than that of the non-oxidizing atmosphere to the other atmosphere.
  • the density of the primary particles 1 in the obtained secondary particles 2 can be controlled within a desired range.
  • the switching of the reaction atmosphere in the grain growth step (step S12) and the second crystallization step (step S20) may be performed twice, three times, or four times or more. .
  • By changing the reaction atmosphere it is possible to obtain the secondary particles 2 in which the density of the primary particles 1 is controlled.
  • step S11 in the case where the central portion of the secondary particles has a solid structure, in the nucleation step (step S11), after grain growth is performed in a non-oxidizing atmosphere, switching to the oxidizing atmosphere (first switching), Particle growth may be performed, and then the particle growth may be performed by switching to a non-oxidizing atmosphere (second switching) (see FIG. 4A). Further, as described later, after switching to the oxidizing atmosphere (third switching time), the atmosphere may be switched to the non-oxidizing atmosphere (fourth switching time).
  • the secondary particles 2 in which the plurality of primary particles 1 are aggregated grow as nuclei so in the second crystallization step (step S20), the particle growth step (step S12) is continuously performed.
  • the second crystallization step (step S20) can be performed by supplying the second raw material aqueous solution containing more tungsten than the first raw material aqueous solution and the reaction aqueous solution containing the ammonium ion supplier. As a result, the tungsten concentrated layer 3 is formed on the outer peripheral portion of the particles obtained in the first crystallization step (step S10).
  • the first crystal is adjusted. It is possible to easily control the thickness, characteristics, etc. of the tungsten concentrated layer 3 formed on the outer periphery of the particles obtained in the deposition step (step S10).
  • the present inventors supply the second raw material aqueous solution containing a large amount of tungsten to the reaction aqueous solution under a non-oxidizing atmosphere, so that the yield of tungsten is significantly improved.
  • the charged amount (supplied amount) of tungsten is introduced into the secondary particles 2 of the metal composite hydroxide 10. It becomes possible to deposit efficiently, the yield of tungsten is significantly improved, and the productivity can be improved.
  • the time for supplying the second raw material aqueous solution in the non-oxidizing atmosphere to the reaction tank is It is preferably 50% or more, more preferably 70% or more, still more preferably 90% or more, and further preferably 100% with respect to the entire supply time.
  • the content of tungsten contained in the finally obtained metal composite hydroxide 10 (the yield of tungsten) is preferable with respect to the supply amount (charged amount) of tungsten to the reaction tank. Is 70 mol% or more, more preferably 80 mol% or more, more preferably 90 mol% or more, and further preferably 100 mol%.
  • the metal element in the first raw material aqueous solution is added to the total amount of metal added in the first crystallization step and the second crystallization step, for example, It can be started by supplying the second raw material aqueous solution at the time when 10% by mass or more of the solution is supplied to the reaction tank. Thereby, the tungsten concentrated layer can be easily formed on the surface of the first metal composite hydroxide particles.
  • the metal element in the first raw material aqueous solution is added to the first crystallization.
  • the second raw material aqueous solution is supplied at the time of supplying to the reaction tank in a range of preferably 30% by mass or more and 95% by mass or less, The second crystallization step (step S20) can be started.
  • the second crystallization step (step S20) is a step in which particle growth is carried out similarly to the particle growth step (step S12), the pH, temperature, ammonium ion concentration of the reaction aqueous solution, the atmosphere in the reaction tank, etc. And the like can be the same conditions as in the particle growth step (step S12).
  • the second crystallization step (step S20) By continuously performing the second crystallization step (step S20) under the same conditions as the particle growth step (step S12), it is possible to easily and highly productively deposit tungsten on the surface of the first metal composite hydroxide particles. Formation of a concentrated layer can be performed.
  • the supply of the second raw material aqueous solution may be performed by separately preparing a raw material aqueous solution containing a metal element other than tungsten and an aqueous solution containing tungsten and supplying each to the reaction tank.
  • the second raw material aqueous solution may include the first raw material aqueous solution and an aqueous solution containing tungsten (W), and each aqueous solution may be separately supplied to the reaction aqueous solution.
  • a concentrated layer of tungsten can be formed uniformly and the tungsten can be easily concentrated. It is possible to control the layer thickness.
  • the aqueous solution containing tungsten can be prepared, for example, by dissolving a tungsten compound in water.
  • the tungsten compound used is not particularly limited, and a compound containing tungsten without containing lithium can be used, but sodium tungstate can be preferably used.
  • the concentration of tungsten (W) in the aqueous solution containing tungsten is not particularly limited, but is, for example, 0.1 mol / l or more and 0.5 mol / l or less, preferably 0.2 mol / l or more and 0.4 mol / l or less.
  • the addition flow rate of the aqueous solution containing tungsten is not particularly limited, but is, for example, 5 L / min or more and 20 L / min or less, preferably 10 L / min or more and 15 L / min or less.
  • the thickness of the tungsten concentrated layer can also be controlled by adjusting the concentration of the aqueous solution containing tungsten or adjusting the addition flow rate of the aqueous solution. For example, when the concentration and the addition flow rate of the aqueous solution containing tungsten are constant, the thickness and concentration of the tungsten concentrated layer to be formed can be adjusted more accurately and easily by adjusting the time when the addition of the aqueous solution containing tungsten is started. be able to.
  • the first crystallization step (step S10) includes a nucleation step (step S11) and a particle growth step (step S12) separately, and An example of the timing of switching the reaction atmosphere when the second raw material aqueous solution is supplied and the second crystallization step (step S20) is performed continuously with the particle growth step (step S12) is shown.
  • FIG. 2 is a diagram showing an example in which the reaction atmosphere is switched four times in the grain growth in the first crystallization step (step S10) and the second crystallization step (step S20).
  • a secondary particle having a multi-layer structure in which two void layers 5 in which the primary particles 1 are arranged more sparsely than the central portion 4 and solid portions 6 in which the primary particles 1 are densely arranged are alternately included.
  • 2 metal composite hydroxide 10) can be obtained. Since the positive electrode active material obtained by using the secondary particles 2 (metal composite hydroxide 10) having such a porous structure has a high specific surface area, when used in the positive electrode of the secondary battery, the reaction resistance ( The positive electrode resistance) can be further reduced.
  • the second raw material aqueous solution is used for the entire time during which the particle growth is performed from the start time of the particle growth step (step S12) to the end time of the particle growth (end time of the crystallization step). It is supplied from the time when 75% has passed until the end of grain growth.
  • the tungsten concentrated layer 3 is formed as a single layer on the surface layer (outer periphery) of the secondary particles 2 (metal composite hydroxide 10). It should be noted that the tungsten concentrated layer 3 is not formed when the aqueous solution of the tungsten compound is added in the entire process from the start time to the end time of the particle growth.
  • the time for supplying the second raw material aqueous solution in the non-oxidizing atmosphere is 20% with respect to the entire time during which particle growth is performed, and the time for supplying the second raw material aqueous solution in the oxidizing atmosphere is 5% for the total time during which grain growth takes place. Therefore, the time for supplying the second raw material aqueous solution in the non-oxidizing atmosphere is 80% of the total time for supplying the second raw material aqueous solution.
  • the time for supplying the second raw material aqueous solution in the non-oxidizing atmosphere is 50% or more of the entire time for supplying the second raw material aqueous solution, the yield of tungsten in the metal composite hydroxide 10 is improved. (See Example 4). Further, as the time for supplying the second raw material aqueous solution in the non-oxidizing atmosphere approaches 100%, the yield of tungsten is further improved.
  • the supply of the aqueous solution containing tungsten (second raw material aqueous solution) (second crystallization step: step S20) may be performed plural times.
  • the supply of the aqueous solution containing tungsten (second raw material aqueous solution) is performed a plurality of times, as shown in FIG. 3, in addition to the tungsten concentrated layer 3 formed on the surface layer of the secondary particles 2, tungsten is further concentrated inside.
  • the layer 3 can be formed.
  • the reaction resistance positive electrode resistance
  • the reaction resistance positive electrode resistance
  • FIG. 3 shows another example in which the atmosphere is switched four times in the grain growth of the first crystallization step (step S10) and the second crystallization step (step S20).
  • the first crystallization step (step S10) and the second crystallization step (step S20) are performed multiple times, and the supply of the second raw material aqueous solution is performed over the entire time period during which particle growth is performed.
  • it is performed twice from the time when 40% has passed to the time when 60% has passed, and from the time when 80% has passed to the time point (100%) of the end of particle growth.
  • the time for supplying the second raw material aqueous solution in the non-oxidizing atmosphere is 40% with respect to the entire time during which particle growth is performed, and the time for supplying the second raw material aqueous solution in the oxidizing atmosphere is It is 0% with respect to the total time when grain growth is performed. Therefore, the time for supplying the second raw material aqueous solution in the non-oxidizing atmosphere in FIG. 3 is 100% of the total time for supplying the second raw material aqueous solution.
  • the yield of tungsten is extremely high.
  • the positive electrode active material obtained by using the metal composite hydroxide 10 is used in a secondary battery, the reaction resistance (positive electrode resistance) can be further reduced (see Examples 1 and 2). .
  • the second raw material aqueous solution is supplied from the viewpoint of suitably forming the tungsten concentrated layer 3 on the surface layer of the secondary particles 2 in the whole particle growth from the time when the last non-oxidizing atmosphere is switched to the particle growth. It is preferable to continue until the end of.
  • the supply of the aqueous solution containing tungsten is performed, for example, when 10% or more has elapsed with respect to the entire time from the start to the end of grain growth in the first and second crystallization steps, Preferably, it can be performed from the time when 30% or more and 95% or less have passed.
  • the time for which supply is disclosed is within the above range, the tungsten concentrated layer 3 can be easily obtained with high productivity. Further, in the above range, if the time point at which the addition of the aqueous solution containing tungsten is disclosed is later, there is a tendency that the crystallite diameter of the obtained positive electrode active material can be increased.
  • the lower limit of the time for supplying the second raw material aqueous solution may be 5% or more, 10% or more, and 20% or more with respect to the entire time from the start to the end of particle growth. Or may be 30% or more.
  • the upper limit of the time for supplying the second raw material aqueous solution may be 90% or less, 80% or less, or 60% or less with respect to the entire time from the start to the end of particle growth. Or may be 50% or less.
  • the first raw material aqueous solution and the second raw material aqueous solution contain nickel and manganese, and optionally cobalt, the element M, and tungsten. Moreover, the first raw material aqueous solution may not contain tungsten.
  • the ratio of the metal elements in the first raw material aqueous solution is the metal composite finally obtained. It becomes the composition ratio of the hydroxide (excluding tungsten).
  • the content of each metal element in the first raw material aqueous solution can be appropriately adjusted according to the composition of the intended metal composite hydroxide.
  • compositions of the first raw material aqueous solution and the second raw material aqueous solution used in the first crystallization step and the second crystallization step may be different.
  • the total content of each metal element in the raw material aqueous solution used in each crystallization step can be the composition ratio of the obtained metal composite hydroxide.
  • the compound of the metal element (transition metal) used for preparing the first raw material aqueous solution and the second raw material aqueous solution is not particularly limited, but water-soluble nitrates, sulfates, hydrochlorides, etc. are easy to handle. Is preferable, and from the viewpoint of cost and prevention of halogen contamination, it is particularly preferable to use sulfate.
  • the element M in the metal composite hydroxide is one or more elements selected from Mg, Ca, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W.
  • a water-soluble compound is preferable, and examples thereof include magnesium sulfate, calcium sulfate, aluminum sulfate, titanium sulfate, ammonium peroxotitanate, potassium titanium oxalate, and sulfuric acid.
  • Vanadium, ammonium vanadate, chromium sulfate, potassium chromate, zirconium sulfate, niobium oxalate, ammonium molybdate, hafnium sulfate, sodium tantalate, sodium tungstate, ammonium tungstate and the like can be preferably used.
  • the concentrations of the first raw material aqueous solution and the second raw material aqueous solution are the total of the metal compounds, preferably 1 mol / L or more and 2.6 mol / L or less, and more preferably 1.5 mol / L or more and 2.2 mol / L.
  • concentration of the raw material aqueous solution is less than 1 mol / L, the amount of crystallized substances per reaction tank is small, and the productivity is reduced.
  • the concentration of the mixed aqueous solution exceeds 2.6 mol / L, the saturated concentration at room temperature will be exceeded, and crystals of each metal compound may re-precipitate and clog pipes and the like.
  • the above metal compound does not necessarily have to be supplied to the reaction tank as one kind of raw material aqueous solution.
  • the total concentration of the aqueous solutions of all metal compounds is individually adjusted so as to fall within the above range. You may prepare the aqueous solution of a metal compound, and you may supply it as an aqueous solution of each metal compound in a predetermined ratio in a reaction tank.
  • the amounts of the first raw material aqueous solution and the second raw material aqueous solution supplied are such that the products (second metal composite hydroxide particles) in the reaction solution (particle growth aqueous solution) at the end of the crystallization step.
  • the concentration is preferably 30 g / L or more and 200 g / L or less, more preferably 80 g / L or more and 150 g / L or less.
  • the concentration of the product is less than 30 g / L, the aggregation of the primary particles may be insufficient.
  • the concentration of the product is more than 200 g / L, the aqueous solution for nucleation or the aqueous solution for particle growth may not be sufficiently diffused in the reaction tank, which may cause uneven particle growth.
  • the alkali aqueous solution for adjusting the pH value in the reaction aqueous solution is not particularly limited, and a general alkali metal hydroxide aqueous solution such as sodium hydroxide or potassium hydroxide can be used.
  • a general alkali metal hydroxide aqueous solution such as sodium hydroxide or potassium hydroxide can be used.
  • the alkali metal hydroxide can be added directly to the reaction aqueous solution, it is preferable to add it as an aqueous solution from the viewpoint of easy pH control.
  • the concentration of the aqueous alkali metal hydroxide solution is preferably 20% by mass to 50% by mass, more preferably 20% by mass to 30% by mass.
  • the method for supplying the alkaline aqueous solution is not particularly limited as long as the pH value of the reaction aqueous solution does not locally increase and is maintained within a predetermined range.
  • the reaction aqueous solution may be supplied by a pump capable of controlling the flow rate such as a metering pump while being sufficiently stirred.
  • the aqueous solution containing the ammonium ion supplier is also not particularly limited, and for example, aqueous ammonia or an aqueous solution of ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium fluoride or the like can be used.
  • ammonia water When ammonia water is used as the ammonium ion supplier, its concentration is preferably 20% by mass to 30% by mass, more preferably 22% by mass to 28% by mass. By controlling the concentration of the ammonia water in such a range, the loss of ammonia due to volatilization or the like can be suppressed to the minimum, and thus the production efficiency can be improved.
  • the method of supplying an aqueous solution containing an ammonium ion supplier can be supplied by a pump whose flow rate can be controlled, similar to the alkaline aqueous solution.
  • reaction atmosphere The reaction atmosphere in the manufacturing method of the present embodiment can be appropriately adjusted according to the intended structure of the secondary particles 2.
  • the structure is such that the primary particles 1 are densely arranged, it is preferable to control to a non-oxidizing atmosphere having an oxygen concentration of 5% by volume or less, preferably an oxygen concentration of 1% by volume or less.
  • the oxidizing atmosphere can have an oxygen concentration higher than that of the non-oxidizing atmosphere.
  • the first crystallization step In the step (S10) and the second crystallization step (step S20) in the particle growth, a non-oxidizing atmosphere having an oxygen concentration of 1% by volume or less and an oxidizing agent having an oxygen concentration higher than that of the non-oxidizing atmosphere are used. It is preferable that the atmosphere is appropriately switched.
  • the non-oxidizing atmosphere is an atmosphere in which the oxygen concentration in the reaction atmosphere is 5% by volume or less, preferably 1% by volume or less.
  • the non-oxidizing atmosphere can be adjusted to the above range by controlling the mixed atmosphere of oxygen and inert gas.
  • the oxidizing atmosphere may be one in which the oxygen concentration in the reaction atmosphere is higher than that in the non-oxidizing atmosphere.
  • the oxygen concentration may be an atmosphere exceeding 1% by volume, or an atmosphere having an oxygen concentration exceeding 5% by volume. Or may be in the atmosphere.
  • the metal composite hydroxide As described above, by controlling the reaction atmosphere (atmosphere in the reaction tank) to an oxidizing atmosphere or a non-oxidizing atmosphere, and controlling the number of times the reaction atmosphere is switched, the metal composite hydroxide
  • the particle structure, specific surface area, and tap density are controlled.
  • the reaction atmosphere is preferably switched 4 times or more, and from the viewpoint of productivity, it is preferably 4 times. Further, the timing of switching the reaction atmosphere can be appropriately adjusted according to the desired thickness of each layer in the multilayer structure.
  • reaction temperature The temperature of the reaction aqueous solution (reaction temperature) is preferably 20 ° C. or higher, more preferably 20 ° C. or higher and 60 ° C. or lower throughout the crystallization process (nucleation process and particle growth process, second crystallization process). Control. When the reaction temperature is lower than 20 ° C., the solubility of the reaction aqueous solution becomes low, so that nucleation is likely to occur, and it becomes difficult to control the average particle size and particle size distribution of the obtained metal composite hydroxide. There is.
  • the upper limit of the reaction temperature is not particularly limited, but when it exceeds 60 ° C., the volatilization of ammonia is promoted, and the ammonium ion supply body supplied for controlling the ammonium ions in the reaction aqueous solution within a certain range. The amount of aqueous solution containing is increased, and the production cost is increased. Further, if the temperature exceeds 60 ° C., as described above, in the nucleation step, distortion may occur in the primary crystal and the tap density may start to decrease.
  • the method for producing a metal composite hydroxide according to the present embodiment it is preferable to use an apparatus that does not collect the product until the reaction is completed, for example, a batch reaction tank.
  • a batch reaction tank With such a device, unlike the continuous crystallizer that collects the product by the overflow method, the growing particles are not collected at the same time as the overflow liquid, so that the metal composite hydroxide having a narrow particle size distribution is used. The particles can be easily obtained.
  • the reaction atmosphere during the crystallization reaction it is preferable to control the reaction atmosphere during the crystallization reaction, so it is preferable to use an apparatus capable of controlling the atmosphere such as a closed-type apparatus.
  • an apparatus capable of controlling the atmosphere such as a closed-type apparatus.
  • the metal composite hydroxide 10 (secondary particles 2) has a tungsten concentrated layer 3 in which tungsten is concentrated on the surface layer (surface side) thereof, as shown in FIGS. 1 to 3.
  • the tungsten-concentrated layer 3 is a layered region disposed on the surface side of the secondary particles 2 in which the tungsten is concentrated and present as compared with the inside of the secondary particles 2.
  • the positive electrode active material obtained by using the metal composite hydroxide 10 having the tungsten concentrated layer 3 as a precursor has high crystallinity and has a reaction resistance (positive electrode resistance) when used as a positive electrode of a secondary battery. ) Is reduced and has a high output.
  • the tungsten concentrated layer 3 can be confirmed by detecting the W distribution by surface analysis using an energy dispersive X-ray analyzer (EDX) as shown in FIG. 7, for example.
  • EDX energy dispersive X-ray analyzer
  • the tungsten concentrated layer 3 forms a compound 23 (for example, lithium tungstate) containing tungsten and lithium in the lithium metal composite oxide 20 (see FIG. 5B).
  • the compound 23 containing tungsten and lithium is formed in the step of mixing the metal composite hydroxide 10 (precursor) and the lithium compound and firing to obtain the lithium metal composite oxide 20 (step S40, see FIG. 6).
  • the compound 23 containing tungsten and lithium is formed in the surface layer of the primary particles 21 or in the grain boundary between the primary particles 21. Since the compound 23 containing tungsten and lithium has high ionic conductivity, when the lithium metal composite oxide 20 (positive electrode active material) is used for the positive electrode of the secondary battery, the surface layer of the primary particles 21 that comes into contact with the electrolytic solution, Alternatively, the presence of the compound 23 containing tungsten and lithium at the grain boundaries between the primary particles 21 can reduce the reaction resistance of the positive electrode active material and can greatly contribute to the improvement in output.
  • the tungsten contained in the metal composite hydroxide may suppress sintering between the primary particles 1 during firing. Therefore, in the conventional precursor containing tungsten, the tungsten in the obtained positive electrode active material contributes to the reduction of the reaction resistance, while the crystallinity of the lithium metal composite oxide constituting the positive electrode active material decreases. There was a contrary problem. Therefore, when used as a positive electrode of a secondary battery, it was difficult to realize a lithium metal composite oxide having excellent output characteristics and high crystallinity.
  • the metal composite hydroxide 10 since the tungsten concentrated layer 3 is formed on the surface layer, there is almost no effect of suppressing the sintering of tungsten during the firing (step S40), and the reaction does not occur. The resistance can be reduced and the crystallinity of the obtained lithium metal composite oxide 20 can be improved.
  • step S20 refer to FIG. 2
  • the charged amount of tungsten is added to the metal composite hydroxide 10 (secondary particles 2). It is possible to efficiently precipitate the inside of the).
  • the thickness of the tungsten concentrated layer 3 can be, for example, 200 nm or less, preferably 100 nm or less, and more preferably 10 nm or more and 100 nm or less in the direction from the surface of the metal composite hydroxide 10 toward the central portion. is there.
  • the thickness of the tungsten concentrated layer 3 is 100 nm or less, the crystallinity of the lithium metal composite oxide 20 can be further increased, and when the lithium metal composite oxide 20 is used for the positive electrode of the secondary battery, It is possible to further reduce the reaction resistance and improve the output characteristics.
  • the thickness of the tungsten concentrated layer 3 is obtained by cutting a metal composite hydroxide 10 embedded in a resin or the like to prepare a sample of a cross section of a secondary particle 2 and analyzing the distribution of W using EDX. And measure. Specifically, in the sample of the secondary particle 2 cross section, the secondary particle 2 cross section having a volume average particle size (MV) of 80% or more measured by using a laser light diffraction scattering type particle size analyzer is randomly selected. In each of the 20 selected secondary particles 2, in the direction from the surface of the metal composite hydroxide 10 toward the central portion, the thickness (width of the tungsten concentrated layer 3) where W is detected is dense (width).
  • MV volume average particle size
  • the thickness of the tungsten concentrated layer 3 in each secondary particle 2 is obtained. Then, the thickness of the tungsten concentrated layer 3 can be obtained by calculating the average value of the thickness of each of the 20 selected secondary particles 2.
  • the thickness of the tungsten concentrated layer 3 exceeds 100 nm, the effect of suppressing the sintering by tungsten becomes large during firing, and the growth of primary particles may be hindered. Therefore, in the obtained lithium metal composite oxide, many primary particles having a small crystallite size are formed and many crystal grain boundaries are generated, so that the reaction resistance in the positive electrode may increase. In addition, the crystallinity of the lithium metal composite oxide 20 may decrease as the growth of the primary particles is suppressed.
  • the thickness of the tungsten concentrated layer 3 is less than 10 nm, the specific surface area increases, and the metal composite hydroxides 10 easily aggregate with each other during firing, so that the packing density of the obtained positive electrode active material decreases. , The battery capacity per volume may decrease. Further, the compound 23 containing tungsten and lithium is not sufficiently formed in the lithium metal composite oxide 20, and the lithium ion conductivity may not be sufficient.
  • the thickness of the tungsten concentrated layer 3 is, for example, 3% or less with respect to the average particle diameter of the metal composite hydroxide 10 in the direction from the surface of the secondary particles 2 toward the center of the secondary particles 2. be able to.
  • the thickness of the tungsten concentrated layer 3 is preferably 2% or less, and more preferably 0.1% from the viewpoint of further improving the crystallinity of the lithium metal composite oxide 20 and further reducing the reaction resistance. It is 2% or less, preferably 0.1% or more and 1% or less, more preferably 0.1% or more and 0.5% or less.
  • the average particle size of the metal composite hydroxide 10 refers to the volume average particle size (MV).
  • FIGS. 4 (A) to 4 (C) are schematic views showing an example of the particle structure of the metal composite hydroxide 10 according to the present embodiment
  • FIG. 4 (C) is a metal composite water having a multilayer structure. It is a drawing substitute photograph which shows an example of the cross-section SEM image which shows an oxide.
  • the metal composite hydroxide 10 includes secondary particles 2 formed by aggregating a plurality of primary particles 1.
  • the metal composite hydroxide 10 may contain a small amount of the single primary particles 1.
  • FIGS. 4 (A) to 4 (C) details of the metal composite hydroxide 10 will be described with reference to FIGS. 4 (A) to 4 (C).
  • the metal composite hydroxide 10 includes secondary particles 2 in which a plurality of primary particles 1 are aggregated, as shown in FIG. 4 (C).
  • the shape of the primary particles 1 is not particularly limited, but may be, for example, a plate shape, a needle shape, or the like, and fine primary particles smaller than these may be used.
  • the particle structure of the secondary particles 2 is not particularly limited, and includes a solid structure having almost no voids in the particles, a hollow structure having a hollow portion in the center of the particle, and a void having a plurality of voids. It may have a conventionally known particle structure such as a structure or a multilayer structure having a layered void as in the present embodiment.
  • the primary particles 1 are densely arranged from the center C of the secondary particles 2 toward the surface. It is preferable to have a multilayer structure including at least a central portion 4, voids 5 in which the primary particles 1 are arranged sparsely than the central portion 4, and a solid portion 6 in which the primary particles are densely arranged.
  • the secondary particles 2 may have at least one void portion 5 and at least one solid portion 6 from the center C of the secondary particles 2 toward the surface, As shown in FIG. 4B, two layers may be alternately provided.
  • the specific surface area of the obtained lithium metal composite oxide 20 (positive electrode active material) can be increased to improve the output characteristics.
  • the tungsten concentrated layer 3 is formed at least on the surface portion of the solid portion 6 arranged on the outermost surface of the secondary particles 2. Further, the tungsten concentrated layer 3 may be formed not only on the surface of the secondary particles 2 but also on the void portion 5 and the solid portion 6 existing therein, and also on the solid portion 6. When the tungsten concentrated layer 3 is formed, the positive electrode active material obtained by using the metal composite hydroxide 10 can further reduce the reaction resistance (positive electrode resistance) in the secondary battery.
  • the solid portion 6 can contain a higher concentration of tungsten than the void portion 5.
  • the particle structure of the secondary particles 2 can be a multilayer structure by switching the reaction atmosphere in the particle growth step a plurality of times in the crystallization reaction.
  • the tap density of the metal composite hydroxide 10 is not particularly limited, but for example, when the secondary particles 2 have a multilayer structure, it is preferably 0.75 g / cm 3 or more and 1.35 g / cm 3 or less, and more preferably Is 1 g / cm 3 or more and 1.35 g / cm 3 or less.
  • the tap density of the metal composite hydroxide 10 correlates with the tap density of the lithium metal composite oxide 20 (positive electrode active material) using the metal composite hydroxide 10 as a precursor, and the metal composite hydroxide 10 has a multilayer structure. When it has, the tap density of the obtained lithium metal composite oxide 20 tends to be higher than the tap density of the metal composite hydroxide 10.
  • the tap density of the metal composite hydroxide 10 within the above range, the tap density of the lithium metal composite oxide 20 (see FIG. 5A) using the metal composite hydroxide 10 as a precursor. Can be controlled within the range described below.
  • this lithium metal composite oxide 20 is used for the positive electrode, a secondary battery having a high battery capacity can be obtained.
  • the tap density of the metal composite hydroxide 10 is less than 0.75 g / cm 3 , for example, in the baking step (step S40, see FIG. 6) in manufacturing the positive electrode active material, when the metal composite hydroxide 10 is placed in a sagger. In particular, the height of the heap becomes high, and the crystallinity may be lowered due to insufficient firing.
  • the average particle size of the metal composite hydroxide 10 is not particularly limited, but is preferably 4.0 ⁇ m or more, more preferably 4 ⁇ m or more and 9.0 ⁇ m or less, and preferably 4.0 ⁇ m or more and 7 ⁇ m or less.
  • the average particle size of the metal composite hydroxide 10 correlates with the average particle size of the lithium metal composite oxide 20 (positive electrode active material) using the metal composite hydroxide 10 as a precursor. Therefore, by controlling the average particle size of the metal composite hydroxide 10 within the above range, the average of the lithium metal composite oxide 20 (see FIG. 5 (A)) having the metal composite hydroxide 10 as a precursor is obtained.
  • the particle size can also be controlled within the above range.
  • the average particle size of the metal composite hydroxide 10 is less than 4 ⁇ m, the specific surface area increases, and in the firing step (step S40, see FIG. 6) in manufacturing the positive electrode active material, the metal composite hydroxide 10 In some cases, the particles easily aggregate, the packing density of the obtained positive electrode active material decreases, and the battery capacity per volume decreases.
  • the average particle diameter means a volume average particle diameter (MV), and can be calculated from, for example, an integrated volume value measured by a laser light diffraction / scattering particle size analyzer.
  • the metal composite hydroxide 10 has an index [(d90-d10) / average particle size] of 0.65 or less, which is an index showing the spread of the particle size distribution.
  • the particle size distribution of the lithium metal composite oxide 20 (positive electrode active material) is strongly influenced by the precursor metal composite hydroxide 10. Therefore, when the metal composite hydroxide 10 containing many fine particles and coarse particles is used as a precursor, the lithium metal composite oxide 20 also contains many fine particles and coarse particles. In a secondary battery using such a lithium metal composite oxide 20 as a positive electrode active material, battery characteristics such as thermal stability, cycle characteristics and output characteristics may deteriorate.
  • the particle size distribution of the lithium metal composite oxide 20 obtained by using this as a precursor is narrowed to obtain a fine particle. Mixing of particles and coarse particles can be suppressed.
  • the lower limit of [(d90-d10) / average particle size] of the metal composite hydroxide 10 is not particularly limited, but it is preferably about 0.25 or more from the viewpoint of cost and productivity. On the premise of industrial scale production, it is not realistic to use the metal composite hydroxide 10 having an excessively small [(d90-d10) / average particle size].
  • d10 means a particle size in which the number of particles in each particle size is accumulated from the smaller particle size side, and the cumulative volume is 10% of the total volume of all particles, and d90 is the cumulative number of particles similarly.
  • the cumulative volume means a particle diameter of 90% of the total volume of all particles.
  • d10 and d90 can be obtained from the volume integrated value measured by a laser light diffraction / scattering type particle size analyzer in the same manner as the average particle size.
  • composition The composition of the metal composite hydroxide 10 is not particularly limited, but for example, the metal composite hydroxide 10 contains Ni, Mn and W, and optionally Co and M, and has the atomic number of each metal element.
  • M is Mg, Ca, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, and Ta. It is preferably one or more metal elements selected from
  • the metal composite hydroxide 10 Since the ratio (A) of the number of atoms of each metal element in the metal composite hydroxide 10 is maintained in the lithium metal composite oxide 20, the metal composite represented by the ratio (A) of the above metal elements.
  • the composition range of nickel, manganese, cobalt, tungsten, and the element M constituting the hydroxide 10 and their critical significance are the same as those of the positive electrode active material represented by the ratio (B) described later. Therefore, description of these items is omitted here.
  • the value of x in the general formula (A2) is 0.7 ⁇ x ⁇ 0.9, and 0.7 ⁇ x ⁇ 0.9. It is more preferable that x ⁇ 0.85.
  • the positive electrode active material contains lithium, nickel, manganese, and tungsten, and optionally cobalt and element M, and the material amount of each metal element.
  • M is Mg, Ca, Al , Ti, V, Cr, Zr, Nb, Mo, Hf, Ta (one or more elements selected from the following), and contains a lithium metal composite oxide (hereinafter referred to as "lithium metal composite oxide"). To do. Moreover, the lithium metal composite oxide has a hexagonal layered crystal structure.
  • FIG. 5 (A) and FIG. 5 (B) are schematic views showing an example of the lithium metal composite oxide 20 according to the present embodiment.
  • the lithium metal composite oxide 20 includes secondary particles 22 formed by aggregating a plurality of primary particles 21.
  • the lithium metal composite oxide 20 may include a small amount of the single primary particles 21.
  • the details of the lithium metal composite oxide 20 will be described with reference to FIGS. 5A and 5B.
  • the lithium metal composite oxide 20 contains tungsten and lithium in the surface layer of the primary particles 21 existing on the surface or inside of the secondary particles 22 and the grain boundary between the primary particles 21.
  • Compound 23 containing is present in concentrated form.
  • the existence site of the compound 23 containing tungsten and lithium can be confirmed by detecting the W distribution by surface analysis using an energy dispersive X-ray analyzer (EDX), for example.
  • EDX energy dispersive X-ray analyzer
  • the compound 23 containing tungsten and lithium is preferably present in a larger amount on the surface (surface layer) than inside the secondary particles 22.
  • the compound 23 containing tungsten and lithium (for example, lithium tungstate) has the effect of accelerating the movement of lithium ions due to the high conductivity of lithium ions, and thus the lithium metal composite oxide according to the present embodiment.
  • the substance 20 forms a compound 23 containing tungsten and lithium at the surface layer of the primary particles 21 near the surface thereof and at the grain boundaries between the primary particles 21, thereby forming a Li conduction path at the interface with the electrolytic solution. By doing so, the reaction resistance of the positive electrode active material can be reduced and the output characteristics can be improved.
  • the compound 23 containing tungsten and lithium can be present in the form of fine particles near the surface of the lithium metal composite oxide 20, for example.
  • the compound 23 containing tungsten and lithium is not particularly limited, and examples thereof include lithium tungstate such as Li 2 WO 4 , Li 4 WO 5 , and Li 2 W 2 O 7 . These lithium tungstates are concentrated and formed on the surface layer of the primary particles 21 existing on the surface or inside of the secondary particles 22 and the grain boundaries between the primary particles 21, so that the lithium metal composite oxide 20 The lithium ion conductivity is further increased, and when it is used for the positive electrode of the secondary battery, the reaction resistance is further reduced.
  • lithium tungstate such as Li 2 WO 4 , Li 4 WO 5 , and Li 2 W 2 O 7 .
  • the lithium metal composite oxide 20 in the present embodiment inherits the multi-layer structure which is the characteristic of the metal composite hydroxide 10, and increases the contact area with the electrolytic solution while maintaining a sufficient particle strength. It also has excellent characteristics.
  • the structure of the secondary particles 22 of the lithium metal composite oxide 20 is not particularly limited, but as shown in FIG. 5A, the primary particles 21 are densely arranged from the center of the secondary particles 22 toward the surface. It is preferable to have a multilayer structure including at least the central portion 24, the void portion 26 in which the primary particles 21 are arranged more sparsely than the central portion 24, and the substantial portion 25 in which the primary particles 21 are densely arranged. Moreover, it is preferable that the substantial portion 25 be electrically conductive with the central portion 24.
  • the electrolytic solution permeates into the secondary particles 22 and the primary particles 21 inside the secondary particles 22 and electrolyzes. Since the contact area with the liquid increases, lithium can be desorbed and inserted not only on the surface of the secondary particles 22 but also inside the secondary particles 22. In addition, since there are a large number of electrically conductive paths inside the secondary particles 22, the resistance inside the secondary particles 22 can be reduced and the output characteristics can be improved. Therefore, when the positive electrode of the secondary battery is configured by using the lithium metal composite oxide 20, the output characteristics can be significantly improved without impairing the capacity characteristics and the cycle characteristics.
  • the void portion 26 may be entirely formed in a layer shape between the central portion 24 and the substantial portion 25, or between a plurality of substantial portions 25, or may be partially formed. May be done. Further, the central portion may be in a state in which a plurality of agglomerated portions formed by aggregating the plate-like primary particles are connected.
  • electrically conducting means that the high-density portions of the lithium metal composite oxide are directly and structurally connected to each other and are electrically conductive. means.
  • the secondary particles having a multi-layered structure can be formed by appropriately adjusting the conditions in the nucleation step (step S11) and the particle growth step (step S12) described above, for example, Patent Documents 2 and 3. You may use the conditions as described in. It should be noted that there may be a plurality of substantial parts 25, and for example, as described in Patent Document 3, the substantial part 25 may be composed of an outer shell part or an outer shell part and an inner shell part. Further, the central portion 24 may have a hollow structure.
  • the compound 23 containing lithium and tungsten is present in the surface layer of the primary particles 21 and the grain boundaries between the primary particles 21 by using the metal composite hydroxide 10 described above as a precursor.
  • the lithium metal composite oxide 20 can be obtained.
  • the lithium metal composite oxide 20 can further improve the output characteristics while maintaining the crystallinity of the positive electrode active material including the secondary particles 22 having a multilayer structure.
  • the BET specific surface area of the positive electrode active material is not particularly limited, but is, for example, preferably 1.45 m 2 / g or more and 5.40 m 2 / g or less, and 2 m 2 / g or more and 5.40 m 2 / g or less. It is more preferable that it is 2.5 m 2 / g or more and 5.40 m 2 / g or less.
  • the BET specific surface area is in the above range, the contact area with the electrolytic solution can be increased when the positive electrode of the secondary battery is used, the positive electrode resistance can be reduced, and the output characteristics can be improved.
  • the tap density of the positive electrode active material is not particularly limited, but for example, when the secondary particles 2 have a multilayer structure, it is preferably 1 g / cm 3 or more and 2 g / cm 3 or less, more preferably 1.2 g / cm 3. It is 2 g / cm 3 or less.
  • the tap density of the positive electrode active material is within the above range, the output characteristics are improved by increasing the contact area with the electrolytic solution while improving the battery capacity per unit volume.
  • the tap density exceeds 2 g / cm 3 , there are few voids in the particle structure, and the average particle size tends to increase, so that the output characteristics deteriorate as the reaction area decreases.
  • the tap density tends to increase, but in this case, the fine particles may be selectively deteriorated to deteriorate the cycle characteristics.
  • the tap density is less than 1 g / cm 3 , the number of voids in the particle structure increases and the particle strength decreases, so the cycle characteristics may decrease. Further, the filling property of the positive electrode active material is lowered, and it is difficult to increase the battery capacity per unit volume.
  • the average particle size (MV) of the positive electrode active material of the present embodiment is not particularly limited, but can be adjusted to, for example, 3 ⁇ m or more and 9 ⁇ m or less.
  • the average particle size is in the above range, not only can the battery capacity per unit volume of the secondary battery using this positive electrode active material be increased, but also thermal stability and output characteristics can be improved.
  • the average particle size is less than 4 ⁇ m, the filling property of the positive electrode active material is lowered, and it is difficult to increase the battery capacity per unit volume.
  • the average particle size exceeds 9 ⁇ m the reaction area of the positive electrode active material begins to decrease, and the output characteristics may not be sufficient.
  • the average particle diameter of the positive electrode active material means the volume average diameter (MV) similarly to the above-mentioned metal composite hydroxide, and, for example, from the integrated volume value measured by the laser light diffraction scattering type particle size analyzer. You can ask.
  • the positive electrode active material of this embodiment preferably has an index [(d90-d10) / average particle size] of 0.65 or less, which is an index showing the spread of the particle size distribution.
  • [(d90-d10) / average particle size] is within the above range, the lithium metal composite oxide 20 having a very narrow particle size distribution can be used.
  • Such a positive electrode active material has a small proportion of fine particles and coarse particles, and a secondary battery using this as a positive electrode has excellent thermal stability, cycle characteristics, and output characteristics.
  • the lower limit value of [(d90-d10) / average particle size] is preferably about 0.25. Further, the meanings of d10 and d90 in [(d90-d10) / average particle size] and how to obtain these are the same as those of the metal composite hydroxide described above.
  • the positive electrode active material according to the present embodiment like a conventional manufacturing method, compared with a positive electrode active material using a metal composite hydroxide precursor obtained by uniformly adding tungsten throughout the crystallization step,
  • the crystallite diameter of the (003) plane obtained by powder X-ray diffraction measurement can be increased.
  • the crystallite diameter of the (003) plane of the positive electrode active material can be, for example, 110 nm or more, and is preferably adjusted to 120 nm or more.
  • the crystallite diameter of the (003) plane of the positive electrode active material is 120 nm or more, the crystallinity is high, and the secondary battery using this positive electrode active material as the positive electrode has a low reaction resistance and thus an output characteristic.
  • the thermal stability is also improved.
  • the thermal stability of the secondary battery may be reduced.
  • the upper limit of the crystallite size of the (003) plane is not particularly limited, but can be, for example, 200 nm or less, and is preferably 110 nm or more and 150 nm or less.
  • high crystallinity can be maintained by using the metal composite hydroxide 10 having the tungsten-enriched layer 3 on the surface as described above, and therefore, the crystallite of the (003) plane can be maintained.
  • the diameter can be in the above range.
  • the value of u indicating the amount of lithium (Li) is preferably ⁇ 0.05 or more and 0.50 or less, more preferably 0 or more and 0.50 or less, and further preferably 0 or more and 0.35. It is the following.
  • the value of u is in the above range, it is possible to improve the output characteristics and the capacity characteristics of the secondary battery using this positive electrode active material as the positive electrode material.
  • the value of u is less than ⁇ 0.05, the positive electrode resistance of the secondary battery becomes large and the output characteristics cannot be improved.
  • the value of u exceeds 0.50, the initial discharge capacity may decrease or the positive electrode resistance may increase.
  • the value of x indicating the content of nickel (Ni) is preferably 0.3 or more and 0.95 or less, and more preferably 0.3 or more and 0.9 or less.
  • Nickel is an element that contributes to higher potential and higher capacity of the secondary battery.
  • the value of x is less than 0.3, the capacity characteristics of the secondary battery using this positive electrode active material cannot be improved.
  • the value of x exceeds 0.95, the contents of other elements decrease, and the effect of other elements cannot be obtained.
  • the value of y indicating the content of manganese (Mn) is preferably 0.05 or more and 0.55 or less, and more preferably 0.10 or more and 0.40 or less.
  • Manganese is an element that contributes to the improvement of thermal stability.
  • the value of y is less than 0.05, the thermal stability of the secondary battery using this positive electrode active material cannot be improved.
  • the value of y exceeds 0.55, Mn may be eluted from the positive electrode active material during high temperature operation, and the charge / discharge cycle characteristics may deteriorate.
  • the value of z indicating the content of cobalt (Co) is preferably 0 or more and 0.4 or less, more preferably 0.10 or more and 0.35 or less.
  • Cobalt is an element that contributes to improvement of charge / discharge cycle characteristics. When the value of z exceeds 0.4, the initial discharge capacity of the secondary battery using this positive electrode active material may be significantly reduced.
  • the value of a indicating the content of tungsten (W) is more than 0 and 0.1 or less, preferably 1 when the total number of moles of Ni, Co and Mn is 1. It is 0.001 or more and 0.01 or less, and more preferably 0.0045 or more and 0.006 or less.
  • W is contained mainly in the surface layer of the primary particles 21 near the surface of the secondary particles 22 or in the grain boundary between the primary particles 21 in the positive electrode active material.
  • an element M may be contained in addition to the above metal element.
  • the element M include magnesium (Mg), calcium (Ca), aluminum (Al), titanium (Ti), vanadium (V), chromium (Cr), zirconium (Zr), niobium (Nb), molybdenum ( One or more selected from Mo), hafnium (Hf), and tantalum (Ta) can be used.
  • the value of b indicating the content of the element M is preferably 0 or more and 0.1 or less, and more preferably 0.1 or less when the total number of moles of Ni, Co and Mn is 1. It is 001 or more and 0.05 or less.
  • the value of b exceeds 0.1, the metal element that contributes to the Redox reaction decreases, and the battery capacity may decrease.
  • the value of x in the general formula (B1) is more preferably 0.7 ⁇ x ⁇ 0.9, and 0.7 ⁇ x It is more preferable that ⁇ 0.85.
  • FIG. 6 is a diagram showing an example of a method for manufacturing the positive electrode active material according to the present embodiment.
  • the manufacturing method of the present embodiment can easily manufacture the positive electrode active material containing the above-described lithium metal composite oxide 20 on an industrial scale.
  • the positive electrode active material containing the lithium metal composite oxide 20 is not particularly limited as long as it has the above-described specific structure, average particle size and particle size distribution, and can be obtained using a known manufacturing method.
  • a step of mixing the metal composite hydroxide obtained by the above-described production method and a lithium compound to obtain a lithium mixture step S30.
  • a step of firing the lithium mixture to obtain a lithium metal composite oxide step S40.
  • steps such as a heat treatment step and a calcination step may be added if necessary.
  • Tungsten in the tungsten concentrated layer formed on the surface layer of the metal composite hydroxide reacts with the lithium compound in the step of mixing with the lithium compound (step S30) and the firing step (step S40) to form the lithium metal composite oxide.
  • the compound 23 containing tungsten and lithium is formed in the surface layer of the primary particles in 20 and the grain boundary between the primary particles.
  • a lithium compound is mixed with at least one of the metal composite hydroxide and the metal composite oxide obtained by heat-treating the metal composite hydroxide (hereinafter collectively referred to as “precursor”). Then, a lithium mixture is obtained (step S30).
  • the ratio (Li) of the sum of atomic numbers (Me) of metal atoms other than lithium in the lithium mixture, specifically, nickel, cobalt, manganese, and element M, to Li (Li). / Me) is 0.95 or more and 1.5 or less, preferably 1.0 or more and 1.5 or less, more preferably 1.0 or more and 1.35 or less, and still more preferably 1.0 or more and 1.2 or less.
  • the precursor and the lithium compound are mixed. That is, since Li / Me does not change before and after the firing step, the precursor and the lithium compound are mixed so that Li / Me in the mixing step becomes the target positive electrode active material Li / Me.
  • Li / Me may exceed 1 or may exceed 1.1 from the viewpoint of sufficiently forming the compound 23 containing tungsten and lithium.
  • the lithium compound used in the mixing step is not particularly limited, but from the viewpoint of easy availability, it is preferable to use lithium hydroxide, lithium nitrate, lithium carbonate or a mixture thereof. In particular, it is preferable to use lithium hydroxide or lithium carbonate in consideration of easy handling and stability of quality.
  • the precursor and the lithium compound are mixed sufficiently so that fine powder is not generated. Insufficient mixing may cause variations in Li / Me among individual particles, and it may not be possible to obtain sufficient battery characteristics.
  • a general mixer can be used for mixing. For example, a shaker mixer, a Rödege mixer, a Julia mixer, a V blender, or the like can be used.
  • a step (heat treatment step) of heat-treating the metal composite hydroxide may be optionally provided before the mixing step (step S30).
  • the precursor obtained by the heat treatment may be mixed with a lithium compound (not shown).
  • a metal composite hydroxide in which at least a part of surplus water is removed in the heat treatment step a precursor in which the metal composite hydroxide is converted into an oxide by the heat treatment step ( A metal complex oxide) or a mixture thereof may be included.
  • the heat treatment step is a step of removing at least a part of water contained in the metal composite hydroxide by heating and heat treating the metal composite hydroxide. This makes it possible to reduce the amount of water remaining until after the firing step (step S40) to a certain amount, and suppress variations in the composition of the obtained positive electrode active material.
  • the heat treatment temperature is, for example, 105 ° C or higher and 750 ° C or lower.
  • the heat treatment temperature is lower than 105 ° C., excess water in the metal composite hydroxide cannot be sufficiently removed, and variation may not be sufficiently suppressed.
  • the heat treatment temperature is higher than 700 ° C., no further effect can be expected and the production cost increases.
  • heat treatment step since it is sufficient to remove water to the extent that the number of atoms of each metal component in the positive electrode active material and the ratio of the number of Li atoms do not vary, it is not necessary to remove all metal complex hydroxides by complex oxidation. There is no need to convert it into a thing. However, from the viewpoint of reducing the variation in the number of atoms of each metal component and the ratio of the number of atoms of Li, heat treatment is performed at 400 ° C. or higher to convert all metal composite hydroxides into composite oxides. It is preferable.
  • the atmosphere in which the heat treatment is performed is not particularly limited as long as it is a non-reducing atmosphere, but it is preferably an air stream from the viewpoint of simple operation.
  • the heat treatment time is not particularly limited, but is preferably 1 hour or more, more preferably 5 hours or more and 15 hours or less, from the viewpoint of sufficiently removing water in the metal composite hydroxide.
  • step S40 the lithium mixture obtained in the mixing step (step S30) is fired to obtain a lithium metal composite oxide (step S40).
  • This step is a step of firing under predetermined conditions to diffuse lithium in the precursor to obtain a lithium metal composite oxide.
  • the obtained lithium metal composite oxide may be used as a positive electrode active material as it is, or may be used as a positive electrode active material after the particle size distribution is adjusted by a crushing step as described later.
  • the firing temperature of the lithium mixture is preferably 650 ° C or higher and 980 ° C or lower.
  • the calcination temperature is lower than 650 ° C.
  • lithium does not sufficiently diffuse in the precursor, surplus lithium, unreacted metal composite hydroxide or metal composite oxide remains, or the obtained lithium metal composite oxide is obtained.
  • the crystallinity of the product may become insufficient.
  • the firing temperature exceeds 980 ° C, the lithium composite oxide particles may be vigorously sintered to cause abnormal grain growth and the proportion of coarse irregular particles may increase.
  • the firing temperature is preferably 650 ° C or higher and 900 ° C or lower.
  • the firing temperature is preferably 800 ° C. or higher and 980 ° C. or lower.
  • the rate of temperature increase to the firing temperature is preferably 2 ° C./min or more and 10 ° C./min or less, and may be 5 ° C./min or more and 9 ° C./min or less.
  • the temperature may be maintained at a temperature near the melting point of the used lithium compound, preferably for 1 hour or more and 5 hours or less, more preferably for 2 hours or more and 5 hours or less. Thereby, the precursor and the lithium compound can be reacted more uniformly.
  • the holding time (firing time) at the firing temperature is preferably at least 2 hours or more, and more preferably 4 hours or more and 24 hours or less.
  • the holding time (baking time) of the baking temperature may be 2 hours or more and 15 hours or less, or may be 2 hours or more and 10 hours or less.
  • the cooling rate from the firing temperature to at least 200 ° C is preferably 2 ° C / min or more and 10 ° C / min or less, and 3 ° C / min or more and 7 ° C / min or less. Is more preferable.
  • the atmosphere during firing is preferably an oxidizing atmosphere, more preferably an atmosphere having an oxygen concentration of 18% by volume to 100% by volume, and a mixed atmosphere of oxygen and an inert gas having the above oxygen concentration. Particularly preferred. That is, the firing is preferably performed in the air or an oxygen stream. If the oxygen concentration is less than 18% by volume, the crystallinity of the lithium composite oxide particles may be insufficient.
  • the furnace used in the firing step (step S40) is not particularly limited as long as it can heat the lithium mixture in the air or an oxygen stream. Further, from the viewpoint of maintaining a uniform atmosphere in the furnace, an electric furnace that does not generate gas is preferable, and a batch type or a continuous type electric furnace may be used. Further, as for the furnace used for the heat treatment step and the calcination step, the same furnace can be selected from the viewpoint of keeping the atmosphere in the furnace uniform.
  • calcination may be performed after the mixing step (step S30) and before the firing step (step S40).
  • the calcination is a step of calcining the lithium mixture at a temperature lower than the firing temperature described below and at 350 ° C. or higher and 800 ° C. or lower, preferably 450 ° C. or higher and 780 ° C. or lower. Thereby, lithium can be sufficiently diffused in the precursor, and more uniform lithium composite oxide particles can be obtained.
  • the holding time at the above temperature is preferably 1 hour or more and 10 hours or less, and more preferably 3 hours or more and 6 hours or less.
  • the atmosphere in the calcination step is preferably an oxidizing atmosphere, more preferably an atmosphere having an oxygen concentration of 18% by volume or more and 100% by volume or less, as in the above-described firing step (step S40).
  • the lithium metal composite oxide 20 obtained by the firing step (step S40) may be agglomerated or slightly sintered. In such a case, it is preferable to crush the aggregate or sintered body of the secondary particles 22 of the lithium metal composite oxide 20. This makes it possible to adjust the volume average particle size (MV) and particle size distribution of the obtained positive electrode active material within a suitable range.
  • crushing means that mechanical energy is applied to an agglomerate composed of a plurality of secondary particles 22 generated by sintering necking between the secondary particles 22 during firing, so that the secondary particles 22 themselves are almost destroyed. It means the operation of loosening the aggregates by separating them without doing.
  • known means can be used, for example, a pin mill or hammer mill can be used. At this time, it is preferable to adjust the crushing force to an appropriate range so as not to destroy the secondary particles.
  • a lithium ion secondary battery according to this embodiment includes a positive electrode including the positive electrode active material described above, a negative electrode, and an electrolyte.
  • the lithium ion secondary battery can be configured by the same constituent elements as a conventionally known lithium ion secondary battery, and for example, a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte solution.
  • the secondary battery may be, for example, an all-solid secondary battery including a positive electrode, a negative electrode, and a solid electrolyte.
  • each component will be described.
  • the lithium-ion secondary battery of the present embodiment is based on the embodiments described in the present specification and various modifications based on the knowledge of those skilled in the art. It can be implemented in an improved form.
  • the use of the lithium-ion secondary battery of this embodiment is not particularly limited.
  • a positive electrode of a lithium ion secondary battery may be manufactured, for example, as follows using a positive electrode mixture paste containing a positive electrode active material.
  • the positive electrode mixture paste is applied to the surface of a current collector made of aluminum foil, for example, and dried to scatter the solvent. If necessary, pressure may be applied by a roll press or the like in order to increase the electrode density. In this way, a sheet-shaped positive electrode can be manufactured.
  • the sheet-shaped positive electrode can be cut into an appropriate size according to the intended battery and used for the production of the battery.
  • the method for producing the positive electrode is not limited to the example, and other methods may be used.
  • Niobium electrode metallic lithium, a lithium alloy, or the like, or a negative electrode active material capable of absorbing and desorbing lithium ions, mixed with a binder, and a suitable solvent is added to form a paste-like negative electrode mixture, such as copper.
  • the metal foil current collector is used by applying it to the surface of the current collector, drying it, and compressing it to increase the electrode density if necessary.
  • the negative electrode active material for example, natural graphite, artificial graphite, a fired body of an organic compound such as phenol resin, or a powdery body of a carbon material such as coke can be used.
  • a fluorine-containing resin such as PVDF can be used as the negative electrode binder as in the positive electrode, and a solvent for dispersing these active materials and the binder can be N-methyl-2-pyrrolidone or the like.
  • Organic solvents can be used.
  • a separator is sandwiched between the positive electrode and the negative electrode.
  • the separator separates the positive electrode and the negative electrode and retains the electrolyte, and may be a thin film of polyethylene, polypropylene, or the like and a film having a large number of minute holes.
  • Non-aqueous electrolyte As the non-aqueous electrolyte, a non-aqueous electrolytic solution, a solid electrolyte or the like is used.
  • the non-aqueous electrolyte is a solution of a lithium salt as a supporting salt in an organic solvent.
  • organic solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate and trifluoropropylene carbonate, chain carbonates such as diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate and dipropyl carbonate, and tetrahydrofuran and 2-
  • ether compounds such as methyltetrahydrofuran and dimethoxyethane
  • sulfur compounds such as ethylmethylsulfone and butanesultone
  • phosphorus compounds such as triethyl phosphate and trioctyl phosphate, or a mixture of two or more thereof is used. be able to.
  • the non-aqueous electrolyte solution may contain a radical scavenger, a surfactant, a flame retardant, and the like.
  • solid electrolyte oxide-based solid electrolyte, sulfide-based solid electrolyte, etc. are used.
  • the oxide-based solid electrolyte is not particularly limited, and any oxide-containing solid electrolyte containing oxygen (O) and having lithium ion conductivity and electronic insulation can be used.
  • the oxide-based solid electrolyte include lithium phosphate (Li 3 PO 4 ), Li 3 PO 4 N X , LiBO 2 N X , LiNbO 3 , LiTaO 3 , Li 2 SiO 3 , Li 4 SiO 4 -Li 3 PO 4 , Li 4 SiO 4 —Li 3 VO 4 , Li 2 O—B 2 O 3 —P 2 O 5 , Li 2 O—SiO 2 , Li 2 O—B 2 O 3 —ZnO, Li 1 + X Al X Ti 2-X (PO 4 ) 3 (0 ⁇ X ⁇ 1), Li 1 + X Al X Ge 2-X (PO 4 ) 3 (0 ⁇ X ⁇ 1), LiTi 2 (PO 4 ) 3 , Li 3X La 2 / 3-X TiO 3 (0
  • the sulfide-based solid electrolyte is not particularly limited, and any one containing sulfur (S) and having lithium ion conductivity and electronic insulation can be used.
  • Examples of the sulfide-based solid electrolyte include Li 2 S-P 2 S 5 , Li 2 S-SiS 2 , LiI-Li 2 S-SiS 2 , LiI-Li 2 SP- 2 S 5 , LiI-Li 2 S-B 2 S 3 , Li 3 PO 4 -Li 2 S-Si 2 S, Li 3 PO 4 -Li 2 S-SiS 2 , LiPO 4 -Li 2 S-SiS, LiI-Li 2 S-P 2 O 5 , LiI—Li 3 PO 4 —P 2 S 5 and the like.
  • inorganic solid electrolyte those other than the above may be used, and for example, Li 3 N, LiI, Li 3 N-LiI-LiOH, etc. may be used.
  • the organic solid electrolyte is not particularly limited as long as it is a polymer compound exhibiting ionic conductivity, and for example, polyethylene oxide, polypropylene oxide, copolymers thereof, and the like can be used. Further, the organic solid electrolyte may contain a supporting salt (lithium salt). When the solid electrolyte is used, the solid electrolyte may be mixed in the positive electrode material in order to ensure contact between the electrolyte and the positive electrode active material.
  • the lithium-ion secondary battery of the present embodiment which is composed of the positive electrode, the negative electrode, the separator, and the non-aqueous electrolyte described above, can have various shapes such as a cylindrical shape and a laminated shape. Whichever shape is adopted, the positive electrode and the negative electrode are laminated to form an electrode body through a separator, and the obtained electrode body is impregnated with a non-aqueous electrolytic solution and communicated with the positive electrode current collector and the outside.
  • the lithium ion secondary battery is completed by connecting the positive electrode terminal and the negative electrode current collector to the negative electrode terminal communicating with the outside by using a current collecting lead or the like and sealing the battery case.
  • the positive electrode and the negative electrode are stacked with the solid electrolyte interposed between the positive electrode current collector and the positive electrode terminal communicating with the outside, and between the negative electrode current collector and the negative electrode terminal communicating with the outside.
  • the positive electrode and the negative electrode are stacked with the solid electrolyte interposed between the positive electrode current collector and the positive electrode terminal communicating with the outside, and between the negative electrode current collector and the negative electrode terminal communicating with the outside.
  • the lithium ion secondary battery of the present invention uses the positive electrode active material of the present invention as a positive electrode material as described above, it has excellent capacity characteristics, output characteristics and cycle characteristics. . In addition, it can be said that the thermal stability is excellent even in comparison with a secondary battery using a conventional positive electrode active material made of lithium nickel oxide particles.
  • the lithium-ion secondary battery of the present invention is excellent in capacity characteristics, output characteristics, and cycle characteristics as described above, and these small-sized portable electronic devices (notebook personal computers) are required at a high level. It can be suitably used as a power source for computers and prefecture telephone terminals. Further, the lithium-ion secondary battery of the present invention is excellent in thermal stability, not only can be miniaturized and increased in output, but can also simplify an expensive protection circuit, so that it can be installed in a mounting space. It can be suitably used as a power source for transportation equipment subject to restrictions.
  • Example 1 Production of metal composite hydroxide [first crystallization step] (Nucleation process) First, 1.2 L of water was put into the reaction tank, and the temperature inside the tank was set to 40 ° C. while stirring at 790 rpm. At this time, nitrogen gas was introduced into the reaction tank and allowed to flow for 30 minutes, and the reaction atmosphere was a non-oxidizing atmosphere having an oxygen concentration of 1% by volume or less. Then, an appropriate amount of 25 mass% sodium hydroxide aqueous solution and 25 mass% ammonia water is supplied into the reaction tank so that the pH value becomes 12.5 based on the liquid temperature of 25 ° C. and the ammonium ion concentration becomes 10 g / L. A pre-reaction aqueous solution was formed by adjusting to.
  • the second raw material aqueous solution As the second raw material aqueous solution, the first raw material aqueous solution and an aqueous solution containing tungsten were used.
  • Sodium tungstate aqueous solution was prepared by dissolving it in water so as to be 6.
  • the sodium tungstate aqueous solution was supplied to the reaction tank (supply of the second raw material aqueous solution) in the following two times (see FIG. 3).
  • the particle growth process was completed by stopping the supply of all aqueous solutions. Then, the obtained product was washed with water, filtered, and dried to obtain a powdery metal composite hydroxide.
  • the particle growth step in the first crystallization step and the second crystallization step 25 mass% sodium hydroxide aqueous solution and 25 mass% ammonia water are appropriately supplied through these steps to grow the particles.
  • the pH value and ammonium ion concentration of the working aqueous solution were maintained in the ranges described above.
  • the supply rate of the first raw material aqueous solution was constant (13 ml / min) throughout the crystallization process.
  • the average particle size of the metal composite hydroxide was measured, and d10 and d90 were measured to determine the spread of the particle size distribution.
  • the index [(d90-d10) / average particle size] shown was calculated. As a result, it was confirmed that the average particle size of the metal composite hydroxide was 5.4 ⁇ m and [(d90 ⁇ d10) / average particle size] was 0.45.
  • the energy mounted on the scanning transmission electron microscope (HD-2300A manufactured by Hitachi High-Technologies Corporation) Using a dispersion type X-ray analyzer (EDX), surface analysis of the cross section of the metal composite hydroxide was performed. As a result, it was confirmed that tungsten was concentrated and existed in the surface layer of the metal composite hydroxide (tungsten concentrated layer), and the average thickness thereof was in the range of 65 to 70 nm.
  • the tap density was measured by using a shaking specific gravity measuring instrument (KRS-409, manufactured by Kuramochi Kagaku Kikai Seisakusho Co., Ltd.) and filling the obtained metal composite hydroxide into a 20 ml graduated cylinder. The measurement was carried out after the sample was densely packed by a method of repeating the free fall from a length of 2 cm 500 times. As a result, it was confirmed that the tap density was 1.15 g / cm 3 .
  • KRS-409 manufactured by Kuramochi Kagaku Kikai Seisakusho Co., Ltd.
  • the lithium mixture was heated to 900 ° C. at a temperature rising rate of 2.5 ° C./minute in an air stream (oxygen concentration: 21% by volume), and baked at this temperature for 4 hours to cool at a cooling rate. It was cooled to room temperature at about 4 ° C./min.
  • the positive electrode active material thus obtained had aggregation or slight sintering. Therefore, this positive electrode active material was crushed to adjust the average particle size and particle size distribution.
  • the positive electrode active material was found to have the general formula: Li 1.14 Ni 0.38 Mn 0.30 Co 0.32 Zr 0.002 W 0. It was confirmed to be represented by 006 O 2 .
  • the average particle size of the lithium metal composite oxide is measured using a laser light diffraction / scattering particle size analyzer, and d10 and d90 are measured, which is an index showing the spread of the particle size distribution [(d90-d10). / Average particle size] was calculated. As a result, it was confirmed that the average particle size of the lithium metal composite oxide was 5.3 ⁇ m and [(d90 ⁇ d10) / average particle size] was 0.43.
  • the crystallite diameter of the (003) plane was measured using an X-ray diffractometer (Spectris Co., Ltd., X'Pert PRO), and it was 1,185 ⁇ (118.5 nm). Further, in order to confirm the distribution of tungsten in the lithium metal composite oxide using a scanning transmission electron microscope, surface analysis of the cross section of the lithium metal composite oxide was performed using an energy dispersive X-ray analyzer (EDX). . As a result, it was confirmed that in the lithium metal composite oxide, a large amount of tungsten was contained in the surface layer of the primary particles near the surface of the secondary particles and in the grain boundaries between the primary particles.
  • EDX energy dispersive X-ray analyzer
  • the tap density is evaluated under the same conditions as the metal composite hydroxide, and the BET specific surface area is evaluated by a specific surface area measuring device (Mctech 1200 series manufactured by Mountech Co., Ltd.) adopting a flow method-nitrogen gas adsorption method. did.
  • FIG. 8 is a diagram showing a 2032 type coin battery CBA used for evaluation of battery characteristics.
  • a method for manufacturing a secondary battery will be described with reference to FIGS.
  • a positive electrode PE was produced by drying in a dryer at 120 ° C. for 12 hours.
  • a 2032 type coin battery CBA was produced in a glove box in an Ar atmosphere with a dew point controlled at ⁇ 80 ° C.
  • a lithium metal having a diameter of 17 mm and a thickness of 1 mm is used for the negative electrode NE of this 2032 type coin battery, and the electrolyte solution is ethylene carbonate (EC) or diethyl carbonate (DEC) having 1 M LiClO 4 as a supporting electrolyte.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • a mixed solution manufactured by Toyama Pharmaceutical Co., Ltd.
  • a polyethylene porous film having a thickness of 25 ⁇ m was used as the separator SE.
  • the 2032 type coin battery CBA has a gasket GA and is assembled into a coin-shaped battery by the positive electrode can PC and the negative electrode can NC.
  • a metal composite hydroxide was obtained under the same conditions as in Example 1 except that the metal complex hydroxide was prepared to be 5.
  • Table 1 shows the evaluation results of the obtained metal composite hydroxide.
  • a positive electrode active material and a secondary battery were obtained under the same conditions as in Example 1 except that the obtained metal composite hydroxide was used as a precursor.
  • Table 2 shows the evaluation results of the obtained positive electrode active material.
  • Examples 3 to 5 As shown in Table 1, a metal composite hydroxide was obtained under the same conditions as in Example 1 except that the timing (addition time) of adding the aqueous solution containing tungsten was changed during grain growth. Table 1 shows the evaluation results of the obtained metal composite hydroxide.
  • a positive electrode active material and a secondary battery were obtained under the same conditions as in Example 1 except that the obtained metal composite hydroxide was used as a precursor.
  • Table 2 shows the evaluation results of the obtained metal composite hydroxide and the positive electrode active material.
  • the lithium metal composite oxides obtained in Examples 2 to 8 were obtained by using an energy dispersive X-ray analyzer (EDX) mounted on a scanning transmission electron microscope (HD-2300A manufactured by Hitachi High-Technologies Corporation). The surface of the cross section was analyzed and the obtained W distribution was analyzed. As a result, it was confirmed that in the lithium metal composite oxides obtained in Examples, a large amount of tungsten was present in the surface layer of the primary particles near the surface of the secondary particles and the grain boundary between the primary particles.
  • EDX energy dispersive X-ray analyzer
  • Example 1 A metal composite hydroxide was obtained under the same conditions as in Example 1 except that the tungsten compound was added from the start of the grain growth step (addition range was 100%). Table 1 shows the evaluation results of the obtained metal composite hydroxide. Next, a positive electrode active material and a secondary battery were produced under the same conditions as in Example 1 except that the obtained metal composite hydroxide was used as a precursor. Table 1 shows the evaluation results of the obtained positive electrode active material and secondary battery.
  • the metal composite hydroxides obtained in the examples formed a tungsten concentrated layer on the surface thereof.
  • the positive electrode active material obtained in Example has a larger crystallite size as compared with Comparative Example 1 in which tungsten is added in the entire crystallization step, and when used as a positive electrode of a secondary battery. Showed a low positive electrode resistance value.
  • the metal composite hydroxides obtained in Examples have a tungsten concentrated layer with a thickness of 100 nm or less, and the positive electrode active material obtained by using these metal composite hydroxides as a precursor contains a tungsten compound.
  • the crystallite size was about the same, and when used as the positive electrode of the secondary battery, the positive electrode resistance value was lower.
  • the metal composite hydroxide obtained in Example 1 not only a tungsten concentrated layer having a thickness of 100 nm or less is formed, but also the yield of W with respect to the charged amount of W is good and the metal composite hydroxide Since the W concentration was high, the positive electrode active material obtained by using these metal composite hydroxides as precursors showed a low positive electrode resistance value even when compared with other examples.
  • the positive electrode active material obtained in Comparative Example 3 without addition of tungsten has a relatively large crystallite size as compared with other Examples and Comparative Examples in which tungsten is added, but is used as a positive electrode of a secondary battery. It was shown that the positive electrode resistance was large and the output characteristics were inferior.

Abstract

タングステンの歩留まりが良好な金属複合水酸化物の製造方法を提供する。 反応槽に金属元素を含む第1の原料水溶液と、アンモニウムイオン供給体とを供給し、反応槽内の反応水溶液のpHを調整して晶析反応を行う、第1の晶析工程と、第1の原料水溶液よりもタングステンを多く含む第2の原料水溶液と、アンモニウムイオン供給体とを供給し、反応水溶液のpHを調整して晶析反応を行い、タングステン濃縮層を形成する、第2の晶析工程と、を備え、粒子成長において、酸素濃度が5容量%以下の非酸化性雰囲気、及び、非酸化性雰囲気よりも高い酸素濃度を有する酸化性雰囲気のいずれか一方の雰囲気から他方の雰囲気へ、反応雰囲気を切り替えることを2回以上行い、非酸化性雰囲気における第2の原料水溶液を反応槽へ供給する時間が、第2の原料水溶液を反応槽へ供給する時間全体に対して50%以上である、金属複合水酸化物の製造方法。

Description

金属複合水酸化物とその製造方法、リチウムイオン二次電池用正極活物質とその製造方法、及び、それを用いたリチウムイオン二次電池
 本発明は、金属複合水酸化物とその製造方法、リチウムイオン二次電池用正極活物質とその製造方法、及び、それを用いたリチウムイオン二次電池に関する。
 近年、スマートフォンやタブレットPCなどの小型情報端末の普及に伴い、高いエネルギー密度を有する小型で軽量な二次電池の開発が強く望まれている。また、ハイブリット電気自動車、プラグインハイブリッド電気自動車、電池式電気自動車などの車両駆動用電源として、高出力の二次電池の開発が強く望まれている。
 このような要求を満たす二次電池として、非水電解質二次電池の一種であるリチウムイオン二次電池がある。リチウムイオン二次電池は、負極、正極、電解液などで構成され、その負極および正極の材料として用いられる活物質には、リチウムを脱離および挿入することが可能な材料が使用される。
 リチウムイオン二次電池のうち、層状またはスピネル型のリチウム金属複合酸化物を正極活物質に用いたリチウムイオン二次電池は、4V級の電圧が得られるため、高エネルギー密度を有する電池として、現在、研究開発が盛んに行われており、一部では実用化も進んでいる。
 このようなリチウムイオン二次電池の正極活物質として、合成が比較的容易なリチウムコバルト複合酸化物(LiCoO)や、コバルトよりも安価なニッケルを用いたリチウムニッケル複合酸化物(LiNiO)、リチウムニッケルコバルトマンガン複合酸化物(LiNi1/3Co1/3Mn1/3)、マンガンを用いたリチウムマンガン複合酸化物(LiMn)、リチウムニッケルマンガン複合酸化物(LiNi0.5Mn0.5)などのリチウム金属複合酸化物が提案されている。
 ところで、リチウムイオン二次電池の出力特性をより向上させるため、正極活物質の比表面積を大きくする方法が一般的に知られている。正極活物質の比表面積を大きくした場合、正極活物質を二次電池に組み込んだ際に電解液との反応面積を十分に確保することができる。そこで、正極活物質の粒子構造を制御することにより、出力特性を向上させる技術がいくつか提案されている。
 例えば、特許文献1~3では、二段階に分けて行う晶析工程により得られた複合水酸化物を前駆体として、正極活物質を製造する方法が提案されている。これらの特許文献に記載される正極活物質は、小粒径で粒度分布が狭く、粒子内部に中空構造又は空間部を有することにより、高い比表面積を有し、出力特性に優れるとされている。しかしながら、例えば、ハイブリット自動車などの車両駆動用電源としては、より高い出力特性を有する正極活物質が要求されている。
 一方、より反応抵抗を低減して、より高い出力特性を有する正極活物質を実現する手段として、正極活物質を構成するリチウム金属複合酸化物への異種元素の添加が検討されている。このような異種元素として、例えば、Mo、Nb、W、Taなどの高価数を取ることのできる遷移金属が提案されている。
 例えば、特許文献4では、リチウムイオンの挿入・脱離が可能な機能を有するリチウム遷移金属系化合物を主成分とし、該主成分原料に、焼成時の粒成長や焼結を抑制する添加剤の少なくとも1種以上を、主成分原料中の遷移金属元素の合計モル量に対して0.01モル%以上、2モル%未満の割合で添加した後、焼成されて得られるリチウム遷移金属系化合物粉体が記載されている。また、上記添加剤が、Mo、W、Nb、Ta、及びReから選ばれる少なくとも一種以上の元素を含有する酸化物であり、一次粒子の表面部分のLi及び前記添加元素以外の金属元素の合計に対する該添加元素の合計の原子数比が、粒子全体の該原子数比の5倍以上であることが記載されている。
 また、特許文献5では、リチウム金属複合酸化物粉末に、特定割合のタングステン化合物を溶解させたアルカリ水溶液を添加して混合することにより、この粉末の一次粒子の表面にWを分散させる工程と、混合したタングステン化合物を溶解させたアルカリ水溶液とリチウム金属複合酸化物粉末を100~700℃の範囲で熱処理することによりLiWO、LiWO、Liのいずれかで表せられるタングステン酸リチウムを含む微粒子を、前記リチウム金属複合酸化物粉末の表面もしくは該粉末の一次粒子の表面に形成する製造方法が提案されている。
 また、特許文献6では、リチウム金属複合酸化物からなる正極活物質であって、一次粒子及び一次粒子が凝集して構成された二次粒子からなり、電解液が浸透可能な空隙を二次粒子の表面近傍及び内部に有するとともに、リチウム金属複合酸化物の表面又は粒界にタングステンが濃縮されたリチウムを含む層厚が20nm以下の化合物層を有する正極活物質が提案されている。そして、該粉末を得るための好ましい方法としては複合水酸化物あるいは複合酸化物とリチウム化合物を混合する際にタングステン化合物を合わせて混合し、焼成することでリチウム金属複合酸化物を得ることができるが、当該方法ではタングステン化合物の粒径がマンガン複合水酸化物、あるいはマンガン複合水酸化物の平均粒径に対して1/5倍以下にすることが好ましいとされている。
 また、特許文献7では、晶析反応において、pH制御により核生成工程と粒子成長段階を分離して、複合水酸化物粒子を製造する工程と、得られた複合水酸化物粒子の表面にタングステンを含む被覆物を形成する被覆工程とを備えた遷移金属複合水酸化物の製造方法、及び、その水酸化物を前駆体として用いた正極活物質が提案されている。
 また、特許文献8には、集電体の表面にLix1Nia1Mnb1Coc1で表される第一の正極活物質の層が付設され、前記第一の正極活物質の表面にLix2Nia2Mnb2Coc2(MはMo、W、及びNb)で表される第二の正極活物質の層が付設されたリチウム二次電池用正極が提案されている。
 また、特許文献9には、ニッケルコバルト複合水酸化物の製造方法であって、ニッケル、コバルト及びマンガンを含む溶液と、錯イオン形成剤と塩基性溶液と、を別々に且つ同時に一つの反応容器に供給することにより、ニッケルコバルト複合水酸化物粒子を得る第一晶析工程と、前記第一晶析工程後さらに、ニッケル、コバルト及びマンガンを含む溶液と、錯イオン形成剤と、塩基性溶液と、元素Mを含む溶液と、を別々に且つ同時に供給することにより、前記ニッケルコバルト複合水酸化物粒子にニッケル、コバルト、マンガン及び元素M(Al、Mg、Ca、Ti、Zr、Nb、Ta、Cr、Mo、W、Fe,Cu、Si、Sn、Bi、Ga、Y、Sm、Er、Ce、Nd、La、Cd、Luからなる群より選択される少なくとも一種以上元素)を含む複合水酸化物粒子を晶析する第二晶析工程を含み、前記第一晶析工程において供給するニッケル、コバルト及びマンガンの合計のモルをMOL(1)、前記第二晶析工程において供給するニッケル、コバルト及びマンガンの合計のモルをMOL(2)としたとき、0.30≦MOL(1)/{MOL(1)+MOL(2)}<0.95である製造方法が提案されている。
特開2012-246199号公報 特開2013-147416号公報 特開2016-094307号公報 特開2008-305777号公報 特開2013-125732号公報 特開2014-197556号公報 特開2012-252844号公報 特開2012-079608号公報 特開2016-210674号公報
 しかし、特許文献4に記載される方法では、Mo,Ta,Wなどの添加元素の一部が、結晶中において、層状に配置されているNiと置換してしまい、電池容量やサイクル特性などの電池特性が悪化してしまう問題があった。
 また、特許文献5に記載の製造方法で作製されたリチウム金属複合酸化物は、出力特性が向上されるものの、粒子表面に形成されるタングステン微粒子の厚みが均一でない場合、サイクル特性が十分でないことがあった。
 また、特許文献6に記載の方法は、ナノオーダーのタングステン化合物を得るためにはタングステン化合物を一度粉砕する必要があるため工業的には適してはおらず、また、扱いが容易ではない。また、得られる微粒子の粒径に不均一が生じることで化合物層の厚さにはバラつきが出来るため、反応抵抗の低減が不十分であり出力特性の向上の効果は限定的である。また、該粉末を得るためにタングステンをマンガン複合水酸化物に添加元素として含有させることも記載されているが、当該方法ではタングステンが濃縮した化合物層をナノオーダーで形成させることは難しい。
 また、特許文献7に記載の方法は、タングステンを被覆させる工程が追加されるため、ステップ数が増加し、工業的には好ましくない。また、当該被覆工程においてpHを制御することでタングステンを析出させているが、制御するpHの変動により被覆層の厚さは均一ではないため、均一に被覆するのは困難である。また、不均一にタングステンが被覆された複合水酸化物とリチウムとを混合して得られた複合酸化物を用いた場合においては抵抗となるため、かえって出力は低下する問題があった。
 また、特許文献8に記載の方法で構成された正極活物質は、第一の正極活物質と第二の正極活物質とが異相であることから、二次電池に用いられた際、充放電反応時の構造変化に乖離があり、充放電を繰り返すうちにクラックが発生し、サイクル特性が悪化するという問題があった。
 また、特許文献9に記載の方法で得られた複合水酸化物及び正極活物質は、半径方向への深さの割合が5%以上50%未満に存在する第二層に、SEM―EDXのスペクトルによる元素Mのピークを有することが記載されており、正極活物質中、タングステンを含む元素Mが二次粒子の表層より内部に含まれるため、結晶性が低下して、二次電池に用いられた際、電池特性が低下する可能性がある。
 また、本発明者らは、鋭意検討した結果、晶析工程において、タングステンを含む原料水溶液を供給した場合、タングステンの供給量(仕込み量)に対して、得られる金属複合水酸化物(前駆体)に含まれるタングステン量が十分でない(タングステンの歩留まりが十分でない)ことがあるという問題を見出した。
 本発明は係る問題点に鑑み、二次電池の正極に用いた場合、反応抵抗(正極抵抗)が低減され、より高出力であり、かつ、結晶性の高い正極活物質、及び、その前駆体である金属複合水酸化物とその製造方法を提供することを目的とする。また、本発明の金属複合水酸化物の製造方法は、タングステンの歩留まりが向上した金属複合水酸化物を製造する方法を提供することを目的とする。
 本発明の第1の実施形態では、ニッケル、マンガン、及び、タングステンと、任意にコバルト、及び、元素Mと、を含み、かつ、それぞれの金属元素の物質量比が、Ni:Mn:Co:W:M=x:y:z:a:b(x+y+z=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0<a≦0.1、0≦b≦0.1、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、及び、Taから選択される1種以上の元素)で示される金属複合水酸化物の製造方法であって、反応槽に金属元素を含む第1の原料水溶液と、アンモニウムイオン供給体とを供給し、反応槽内の反応水溶液のpHを調整して晶析反応を行う、第1の晶析工程と、反応槽に金属元素を含み、かつ、第1の原料水溶液よりもタングステンを多く含む第2の原料水溶液と、アンモニウムイオン供給体とを供給し、反応水溶液のpHを調整して晶析反応を行い、タングステン濃縮層を形成する、第2の晶析工程と、を備え、第1の晶析工程と第2の晶析工程とをこの順で、1回以上行い、1回目の第1の晶析工程は、核生成を行う核生成工程と、粒子成長を行う粒子成長工程とを備え、第2の晶析工程は、粒子成長工程に引き続き、粒子成長を行うことを含み、第1及び第2の晶析工程の粒子成長において、酸素濃度が5容量%以下の非酸化性雰囲気、及び、非酸化性雰囲気よりも高い酸素濃度を有する酸化性雰囲気のいずれか一方の雰囲気から他方の雰囲気へ、反応雰囲気を切り替えることを2回以上行い、非酸化性雰囲気における第2の原料水溶液を反応槽へ供給する時間が、第2の原料水溶液を反応槽へ供給する時間全体に対して、50%以上である、金属複合水酸化物の製造方法が提供される。
 また、第1の晶析工程における核生成は、非酸化性雰囲気で行い、第1及び第2の晶析工程における粒子成長は、反応水溶液のpHを、核生成工程における反応水溶液のpH値より低くなるように調整し、かつ、非酸化性雰囲気から酸化性雰囲気への雰囲気の切り替えを2回以上行う、ことが好ましい。また、非酸化性雰囲気から酸化性雰囲気への反応雰囲気の切り替えを4回行う、ことが好ましい。また、金属複合水酸化物は、複数の一次粒子が凝集した二次粒子を含み、二次粒子は、二次粒子の中心から表面に向かって、一次粒子が密に配置された中心部と、一次粒子が中心部よりも疎に配置された空隙部と、一次粒子が密に配置された中実部とを含む、多層構造を有し、金属複合水酸化物のタップ密度が0.75g/cm以上1.35g/cm以下である、ことが好ましい。また、第2の晶析工程は、タングステン濃縮層を、金属複合水酸化物の表面から中心部に向かう方向において、厚さを100nm以下となるように形成することを含む、ことが好ましい。また、第2の晶析工程における第2の原料水溶液の添加は、第1及び第2の晶析工程において、粒子成長が行われる時間全体に対して、30%以上95%以下経過した時点で行う、ことが好ましい。また、第2の原料水溶液は、第1の原料水溶液と、タングステンを含む水溶液とを含み、第2の原料水溶液の供給は、第1の原料水溶液と、タングステンを含む水溶液とを別々に反応水溶液に供給して行う、ことが好ましい。また、タングステンを含む水溶液中のタングステン濃度は、タングステンを含む水溶液の全体に対して、18質量%以上である、ことが好ましい。また、反応槽へのタングステンの供給量に対して、金属複合水酸化物に含まれるタングステンの含有量が70モル%以上である、ことが好ましい。
 本発明の第2の実施形態では、ニッケル、マンガン、及び、タングステン、並びに、任意にコバルト、及び、元素Mを含み、かつ、それぞれの金属元素の物質量比が、Ni:Mn:Co:W:M=x:y:z:a:b(x+y+z=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0<a≦0.1、0≦b≦0.1、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、及び、Taから選択される1種以上の元素)で示される金属複合水酸化物であって、複数の一次粒子が凝集した二次粒子を含み、二次粒子の表層にタングステン濃縮層を有し、二次粒子は、二次粒子の中心から表面に向かって、一次粒子が密に配置された中心部と、一次粒子が中心部よりも疎に配置された空隙部と、一次粒子が密に配置された中実部とを含む、多層構造を有し、タップ密度が0.75g/cm以上1.35g/cm以下であり、かつ、タングステンが、空隙部より、実質部に高濃度で含有される、金属複合水酸化物が提供される。
 また、タングステン濃縮層の厚みが100nm以下であることが好ましい。また、金属複合水酸化物の平均粒径が4.0μm以上9.0μm以下であり、かつ、粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕が0.65以下であることが好ましい。
 本発明の第3の実施形態では、上記製造方法により得られる金属複合水酸化物及び金属複合水酸化物を熱処理して得られる金属複合酸化物の少なくとも一方と、リチウム化合物とを混合してリチウム混合物を得る工程と、リチウム混合物を焼成して、リチウム金属複合酸化物を得る工程と、を備える、リチウムイオン二次電池用正極活物質の製造方法が提供される。
 本発明の第4の実施形態では、リチウム、ニッケル、マンガン、及び、タングステンと、任意にコバルト、及び、元素Mと、を含み、それぞれの金属元素の物質量比が、Li:Ni:Mn:Co:W:M=1+u:x:y:z:a:b(x+y+z=1、-0.05≦u≦0.50、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0<a≦0.1、0≦b≦0.1、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Taから選択される1種以上の元素)で表されるリチウム金属複合酸化物を含有し、リチウム金属複合酸化物は、複数の一次粒子が凝集した二次粒子を含み、二次粒子は、二次粒子の中心から表面に向かって、一次粒子が密に配置された中心部と、一次粒子が中心部よりも疎に配置された空隙部と、一次粒子が密に配置された中実部とを少なくとも含む、多層構造を有し、二次粒子の表面又は内部に存在する一次粒子の表層、及び、一次粒子間の粒界に、タングステン及びリチウムを含む化合物が濃縮されて存在し、タップ密度が1g/cm以上2g/cm以下であり、かつ、BET比表面積が1.45m/g以上5.4m/g以下である、非水電解質二次電池用正極活物質が提供される。
 また、上記正極活物質は、粉末X線回折測定によって得られた(003)面の結晶子径が110nm以上であることが好ましい。
 本発明の第5の実施形態では、正極と、負極と、セパレータと、非水電解質とを備え、正極の正極材料として、上記リチウムイオン二次電池用正極活物質が用いられる、リチウムイオン二次電池が提供される。
 本発明によれば、二次電池の正極に用いられた場合、反応抵抗が低減され、高出力であり、かつ、結晶性の高い正極活物質、及び、その前駆体である金属複合水酸化物とその製造方法を提供することができる。また、本発明の金属複合水酸化物の製造方法は、タングステンの歩留まりが良好な金属複合水酸化物を製造する方法を提供することができる。また、本発明によれば、このような正極活物質を含む二次電池を提供することができる。さらに、本発明によれば、このような正極活物質および金属複合水酸化物を、工業的規模で、容易に製造可能な方法を提供することができる。このため、本発明の工業的意義はきわめて大きい。
図1は、金属複合水酸化物の製造方法の一例を示す図である。 図2は、金属複合水酸化物の製造方法の一例を示す図である。 図3は、金属複合水酸化物の製造方法の一例を示す図である。 図4(A)~図4(B)は、金属複合水酸化物の一例を示す模式図であり、図4(C)は、金属複合水酸化物の断面SEM画像の一例である。 図5(A)、図5(B)は、リチウム金属複合酸化物の一例を示す模式図である。 図6は、リチウム金属複合酸化物の製造方法の一例を示す図である。 図7は、タングステン濃縮層を有する金属複合水酸化物のEDXを用いた面分析によるWの分布の一例を示す図面代用写真(上図)と、図面代用写真中のタングステン濃縮層を説明する説明図(下図)である。 図8は、実施例で用いた評価用コイン電池を示す模式図である。
 以下、図面を参照して、実施形態に係る金属複合水酸化物とその製造方法、リチウムイオン二次電池用正極活物質とその製造方法、及び、リチウムイオン二次電池について説明する。なお、本発明は以下説明する実施形態に限定されるものではない。また、図面においては、各構成をわかりやすくするために、一部を強調して、あるいは一部を簡略化して表しており、実際の構造または形状、縮尺等が異なっている場合がある。
1.金属複合水酸化物の製造方法
 本実施形態に係る製造方法は、ニッケル、マンガン、及び、タングステンと、任意にコバルト、及び、元素Mと、を含み、かつ、それぞれの金属元素の物質量比(モル比)が、Ni:Mn:Co:W:M=x:y:z:a:b(x+y+z=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0<a≦0.1、0≦b≦0.1、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、及び、Taから選択される1種以上の元素)で示される金属複合水酸化物を製造する方法である。図1~図3は、本実施形態に係る金属複合水酸化物の製造方法の一例を示す図である。
 図1~3に示すように、本実施形態に係る製造方法により得られる金属複合水酸化物10(二次粒子2)は、その表層(表面側)にタングステンが濃縮したタングステン濃縮層3を有する。また、金属複合水酸化物10は、複数の一次粒子1が凝集した二次粒子2を含む(図4(C)参照)。金属複合水酸化物10中にタングステン濃縮層3が存在することにより、二次電池の正極に用いた際、反応抵抗(正極抵抗)が非常に低減された、二次電池を得ることができる。また、本実施形態に係る製造方法により、このような金属複合水酸化物10を工業的規模で容易に製造することができる。
 また、後述するように、本実施形態に係る製造方法は、第2の晶析工程(ステップS20)において、タングステンを非酸化性雰囲気下でより多く添加することによって、仕込み量分(供給した量分)のタングステンを二次粒子2(金属複合水酸化物10)の内部に効率よく析出させることが可能となり、タングステンの歩留まりが大幅に向上し、工業的規模の生産により適する。なお、第1の晶析工程(ステップS10)と第2の晶析工程(ステップS20)とは、この順で、1回のみ行ってもよく、2回以上繰り返し行ってもよい。以下、各工程について説明する。
[晶析反応]
 図1に示すように、金属複合水酸化物10の製造方法では、反応槽内に、ニッケル(Ni)、及び、マンガン(Mn)と、任意に、コバルト(Co)、及び/又は、金属元素(M)とを含む第1の原料水溶液と、アンモニウムイオン供給体と、を供給し、反応槽内の反応水溶液のpHを調整して晶析反応を行う、第1の晶析工程(ステップS10)と、反応槽に、ニッケル(Ni)、及び、マンガン(Mn)と、任意に、コバルト(Co)、及び/又は、金属元素(M)とを含み、かつ、第1の原料水溶液よりもタングステンを多く含む第2の原料水溶液と、アンモニウムイオン供給体と、を供給し、反応水溶液のpHを調整して晶析反応を行い、タングステン濃縮層を形成する、第2の晶析工程(ステップS20)と、を備える。
 第1の晶析工程(ステップS10)により得られる粒子(以下、「第1の金属複合水酸化物粒子」ともいう。)は、タングステンを含まない、又は、タングステンの含有量が低い一次粒子で構成される。よって、第1の金属複合水酸化物粒子に由来する部位を有する金属複合水酸化物10を前駆体として用いたリチウム金属複合酸化物20(図5(A)、図5(B)参照)は、高い結晶性を得ることができる。また、第2の晶析工程(ステップS20)により形成されるタングステン濃縮層3に由来するタングステン及びリチウムを含む化合物23が、リチウム金属複合酸化物20中の一次粒子21の表面、又は、一次粒子21間の粒界に存在することで出力特性に優れる。
 図1に示すように、第1の晶析工程(ステップS10)は、さらに、主として核生成を行う核生成工程(ステップS11)と、主として粒子成長を行う粒子成長工程(ステップS12)とを含むことが好ましい。核生成工程(ステップS11)と粒子成長工程(ステップS12)とは、例えば、反応水溶液のpHを制御することにより、明確に分離することができ、粒度分布が狭く均一な粒子径を有する金属複合水酸化物10を得ることができる。なお、第2の晶析工程(ステップS20)は、粒子成長工程(ステップS12)に引き続き、主として粒子成長を行う工程である。
 なお、このような2段階の晶析工程を含むニッケル複合水酸化物の製造方法については、例えば、特許文献2、特許文献3などに開示されており、詳細な条件についてはこれらの文献を参照して条件を適宜、調整することができる。また、本実施形態に係る金属複合水酸化物の製造方法は、後述するように、公知の晶析方法の条件を用いて、所望の膜厚を有するタングステン濃縮層3を形成することができるため、工業的規模の生産に容易に適用することができる。
 以下、図1を参照して、核生成工程(ステップS11)と粒子成長工程(ステップS12)とを含む製造方法の一例について、説明する。なお、以下の説明は、金属複合水酸化物10の製造方法の一例であって、この方法に限定するものではない。
(1)第1の晶析工程(ステップS10)
(核生成工程)
 まず、第1の原料水溶液とアンモニウムイオン供給体とを供給して、反応槽内の反応水溶液(核生成用水溶液)のpHを所定の範囲に制御して、核生成を行う(ステップS11)。第1の原料水溶液は、例えば、原料となる遷移金属を含む化合物を、水に溶解して調整される。なお、以下に説明する金属複合水酸化物の製造方法では、各工程で晶析により形成される金属複合水酸化物の組成比は、原料水溶液中の各金属の組成比と同様であるため、原料水溶液中の各金属の組成比は、目的とする金属複合水酸化物の遷移金属の組成比とすることができる。また、第1の原料水溶液は、少量のタングステンを含んでもよいし、タングステンを含まなくてもよい。
 まず、反応槽内に、アルカリ水溶液と、アンモニウムイオン供給体とを含む水溶液を供給および混合して、液温25℃基準で測定するpH値が12.0以上14.0以下、アンモニウムイオン濃度が3g/L以上25g/L以下である反応前水溶液を調製することが好ましい。
 反応槽内の反応雰囲気については、目的とする二次粒子2の構造により適宜調整することができる。二次粒子2の中心部を中実構造とする場合(一次粒子1を密に配置する場合)、非酸化性雰囲気とすることが好ましい。一方、二次粒子2の中心部を中空構造とする場合(一次粒子1を疎に配置する場合)、酸化性雰囲気とすることが好ましい。雰囲気の制御は、例えば、窒素ガスを導入して調整する。なお、反応前水溶液のpH値はpH計により、アンモニウムイオン濃度はイオンメータにより測定することができる。
 次いで、反応槽内の反応前水溶液を撹拌しながら、第1の原料水溶液を反応槽内に供給して、反応水溶液(核生用成水溶液)が形成される。なお、核生成工程(ステップS11)では、反応水溶液中の核生成に伴い、核生成用水溶液のpH値およびアンモニウムイオンの濃度が変化するので、アルカリ水溶液およびアンモニア水溶液を適時供給し、反応槽内液のpH値が液温25℃基準でpH12.0以上14.0以下の範囲に、アンモニウムイオンの濃度が3g/L以上25g/L以下の範囲に維持されるように制御することが好ましい。反応水溶液(核生成用水溶液)のpH値が上記範囲にある場合、核はほとんど成長することなく、核生成が優先的に起こる。
 反応水溶液(核生成用水溶液)の液温25℃基準で測定されるpH値は、好ましくは12.0以上14.0以下、より好ましくは12.3以上13.5以下、さらに好ましくは12.5以上13.3以下の範囲である。pHが上記範囲である場合、核の成長を抑制し、核生成を優先させることができ、核生成工程で生成する核を均質かつ粒度分布の狭いものとすることができる。一方、pH値が12.0未満である場合、核生成とともに核(粒子)の成長が進行するため、得られる金属複合水酸化物の粒径が不均一となり、粒度分布が悪化する。また、pH値が14.0を超える場合、生成する核が微細になりすぎて、反応水溶液(核生成用水溶液)がゲル化することがある。
 なお、反応水溶液(核生成用水溶液)中のpH値の変動幅は、±0.2以内とすることが好ましい。pH値の変動幅が大きい場合、核生成量と粒子成長の割合が一定とならず、粒度分布の狭い金属複合水酸化物を得ることが困難となる。
 反応水溶液(核生成用水溶液)のアンモニウムイオン濃度は、好ましくは3g/L以上25g/L以下、より好ましくは5g/L以上20g/L以下の範囲内に調整される。反応水溶液中においてアンモニウムイオンは錯化剤として機能するため、アンモニウムイオン濃度が3g/L未満である場合、金属イオンの溶解度を一定に保持することができなかったり、反応水溶液がゲル化しやすくなったりして、形状や粒径の整った金属複合水酸化物を得ることが困難となる。一方、アンモニウムイオン濃度が25g/Lを超える場合、金属イオンの溶解度が大きくなりすぎるため、反応水溶液中に残存する金属イオン量が増加し、組成ずれなどの原因となることがある。
 なお、晶析反応中にアンモニウムイオン濃度が変動すると、金属イオンの溶解度が変動し、均一な金属複合水酸化物が形成されなくなる。このため、核生成工程(ステップS11)と粒子成長工程(ステップS12)を通じて、アンモニウムイオン濃度の変動幅を一定の範囲に制御することが好ましく、具体的には、±5g/Lの変動幅に制御することが好ましい。
 核生成工程(ステップS11)では、反応水溶液(核生成用水溶液)に、第1の原料水溶液、アルカリ水溶液およびアンモニウムイオン供給体を含む水溶液を供給することにより、連続して新しい核の生成が継続される。そして、核生成用水溶液中に、所定量の核が生成した時点で、核生成工程(ステップS11)を終了する。この際、核の生成量は、核生成用水溶液に供給した原料水溶液に含まれる金属化合物の量から判断することができる。
 核生成工程(ステップS11)における核の生成量は、特に限定されないが、粒度分布の狭い金属複合水酸化物を得るという観点から、晶析工程(第1の晶析工程及び第2の晶析工程を含む)を通じて供給する原料水溶液に含まれる金属化合物中の金属元素に対して、0.1原子%以上2原子%以下とすることが好ましく、0.1原子%以上1.5原子%以下とすることがより好ましい。
 また、核生成工程において、反応水溶液(核生用成水溶液)の温度の上限は特に限定されないが、例えば60℃以下であることが好ましく、50℃以下であることがより好ましい。反応水溶液(核生用成水溶液)の温度が60℃を超えると、一次結晶に歪が生じタップ密度が低くなり始める恐れがあるからである。
(粒子成長工程)
 次いで、pHを特定の範囲に調整した反応水溶液(粒子成長用水溶液)中で粒子成長を行う(ステップS12)。反応水溶液(粒子成長用水溶液)は、生成された核を含む反応水溶液に、第1の原料水溶液と、アルカリ水溶液と、アンモニウムイオン供給体を含む水溶液とを供給して形成される。反応水溶液(粒子成長用水溶液)は、液温25℃基準で測定するpH値が10.5以上12.0以下、アンモニウムイオン濃度が3g/L以上25g/L以下に調整されることが好ましい。これにより、反応水溶液(粒子成長用水溶液)中で、核生成よりも、粒子成長が優位に行われる。
 反応槽内の反応雰囲気については、一次粒子1の疎密が調整された多層構造を有する二次粒子2を主として含有する金属複合水酸化物10を得る場合、酸素濃度が5容量%以下の非酸化性雰囲気と、この非酸化性雰囲気よりも高い酸素濃度を有する酸化性雰囲気とを、適宜切り替えながら行うことが好ましい。雰囲気の制御は、例えば、窒素ガスを導入して調整する。
 例えば、核生成工程(ステップS11)終了後、反応槽内の核生成用水溶液のpH値を、液温25℃基準で10.5以上12.0以下に調整し、粒子成長工程における反応水溶液である粒子成長用水溶液を形成する。pH値の調整は、アルカリ水溶液のみ供給を停止することにより行うことができるが、粒径の均一性を高めるという観点から、一旦、すべての水溶液の供給を停止してpH値を調整することが好ましい。また、pH値の調整は、反応水溶液(核生成用水溶液)に、原料となる遷移金属を含む化合物を構成する酸と同種の無機酸、例えば、原料として遷移金属の硫酸塩を使用する場合には、硫酸を供給することで行ってもよい。
 次に、反応水溶液(粒子成長用水溶液)を撹拌しながら、第1の原料水溶液の供給を再開する。この際、粒子成長用水溶液のpH値は上述した範囲にあるため、新たな核はほとんど生成せず、核(粒子)成長が進行し、所定の粒径を有する第1の金属複合水酸化物粒子を形成することができる。なお、粒子成長工程(ステップS12)においても、粒子成長に伴い、粒子成長用水溶液のpH値およびアンモニウムイオン濃度が変化するので、アルカリ水溶液およびアンモニア水溶液を適時供給し、pH値およびアンモニウムイオン濃度を上記範囲に維持することが必要となる。
 反応水溶液(粒子成長用水溶液)のpH値は、液温25℃基準で、10.5以上12.0以下、好ましくは11.0以上12.0以下、より好ましくは11.5以上11.9以下の範囲に制御する。pHが上記範囲である場合、新たな核の生成が抑制され、粒子成長を優先させることができ、得られる金属複合水酸化物を均質かつ粒度分布が狭いものとすることができる。一方、pH値が10.5未満である場合、アンモニウムイオン濃度が上昇し、金属イオンの溶解度が高くなるため、晶析反応の速度が遅くなるばかりでなく、反応水溶液中に残存する金属イオン量が増加し、生産性が悪化することがある。また、pH値が12.0を超える場合、粒子成長工程中の核生成量が増加し、得られる金属複合水酸化物粒子の粒径が不均一となり、粒度分布が悪化することがある。
 なお、反応水溶液(粒子成長水溶液)中のpH値の変動幅は、±0.2以内とすることが好ましい。pH値の変動幅が大きい場合、核生成量と粒子成長の割合が一定とならず、粒度分布の狭い金属複合水酸化物を得ることが困難となる。
 また、粒子成長工程(ステップS12)のpH値は、核生成工程(ステップS11)のpH値より低い値に調整することが好ましく、核生成と粒子成長を明確に分離するためには、粒子成長工程(ステップS12)のpH値を、核生成工程(ステップS11)のpH値より0.5以上低くすることが好ましく、0.8以上低くすることがより好ましい。
 例えば、反応水溶液(核生成工程及び/又は粒子成長工程)のpH値が12.0である場合、核生成と粒子成長の境界条件であるため、反応水溶液中に存在する核の有無により、核生成工程または粒子成長工程のいずれかの条件とすることができる。すなわち、核生成工程のpH値を12.0より高くして多量に核生成させた後、粒子成長工程のpH値を12.0とした場合、反応水溶液中に多量の核が存在するため、粒子成長が優先して起こり、粒径分布が狭い金属複合水酸化物粒子を得ることができる。一方、核生成工程のpH値を12.0とした場合、反応水溶液中に成長する核が存在しないため、核生成が優先して起こり、粒子成長工程のpH値を12.0より小さくすることで、生成した核が成長して良好な金属複合水酸化物粒子を得ることができる。
 反応水溶液(粒子成長用水溶液)のアンモニウムイオン濃度は、上記反応水溶液(核生成用水溶液)中のアンモニウムイオン濃度の好ましい範囲と同様とすることができる。また、アンモニウムイオン濃度の変動幅も上記反応水溶液(核生成用水溶液)中の好ましい範囲と同様とすることができる。
 粒子成長工程(ステップS12)、及び、後述する第2の晶析工程(ステップS20)の反応雰囲気は、酸素濃度を調整することにより、適宜、切り替えてもよく、酸素濃度が5容量%以下の非酸化性雰囲気、及び、この非酸化性雰囲気よりも高い酸素濃度を有する酸化性雰囲気のいずれか一方の雰囲気から他方の雰囲気へ、反応雰囲気を切り替えることを2回以上行ってもよい。反応雰囲気を切り替えることにより、得られる二次粒子2において、一次粒子1の疎密を所望の範囲に制御することができる。例えば、粒子成長工程(ステップS12)、及び、第2の晶析工程(ステップS20)における反応雰囲気の切り替えは、2回行ってもよく、3回行ってもよく、4回以上行ってもよい。反応雰囲気を切り替えることにより、一次粒子1の疎密が制御された二次粒子2を得ることができる。
 例えば、二次粒子の中心部を中実構造とする場合、核生成工程(ステップS11)において、非酸化性雰囲気下で粒子成長を行った後、酸化性雰囲気に切り替えて(切り替え1回目)、粒子成長を行い、さらに、非酸化性雰囲気に切り替えて(切り替え2回目)、粒子成長を行ってもよい(図4(A)参照)。また、後述するように、さらに、酸化性雰囲気に切り替えた後(切り替え3回目)、非酸化性雰囲気に切り替え(切り替え4回目)てもよい。
(2)第2の晶析工程
 次いで、第1の金属複合水酸化物粒子を含む反応水溶液に、金属元素を含み、かつ、第1の原料水溶液よりタングステンを多く含む第2の原料水溶液と、アンモニウムイオン供給体とを供給して、晶析反応を行い、タングステン濃縮層3を形成する(ステップS20)。
 粒子成長は、複数の一次粒子1が凝集した二次粒子2を核にして成長していくため、第2の晶析工程(ステップS20)においては、粒子成長工程(ステップS12)から連続して、第1の原料水溶液よりタングステンを多く含む第2の原料水溶液、及び、アンモニウムイオン供給体を含む反応水溶液に供給して、第2の晶析工程(ステップS20)を行うことができる。これにより、第1の晶析工程(ステップS10)により得られる粒子の外周部分にタングステン濃縮層3が形成される。
 本実施形態の金属複合水酸化物の製造方法は、例えば、第2の原料水溶液を添加し始めるタイミング(すなわち、第2の晶析工程を開示するタイミング)を調整することで、第1の晶析工程(ステップS10)で得られる粒子の外周に形成されるタングステン濃縮層3の厚み、特性等を、容易に制御することができる。
 本発明者らは、第2の晶析工程(ステップS20)において、タングステンを多く含む第2の原料水溶液を、非酸化性雰囲気下で反応水溶液に供給することにより、タングステンの歩留まりが非常に向上することを見出した。例えば、第2の原料水溶液を非酸化性雰囲気下でより多く反応水溶液に供給することによって、仕込み量分(供給した量分)のタングステンを金属複合水酸化物10の二次粒子2の内部に効率よく析出させることが可能となり、タングステンの歩留まりが大幅に向上し、生産性を向上させることができる。
 例えば、タングステンの歩留まりをより向上させるという観点から、第2の晶析工程(ステップS20)において、非酸化性雰囲気における第2の原料水溶液を反応槽へ供給する時間が、第2の原料水溶液を供給する時間全体に対して、50%以上であることが好ましく、70%以上であることがより好ましく、90%以上であることがより好ましく、100%であることがさらに好ましい。
 また、本実施形態に係る製造方法では、反応槽へのタングステンの供給量(仕込み量)に対する、最終的に得られる金属複合水酸化物10に含まれるタングステンの含有量(タングステンの歩留まり)が好ましくは70モル%以上であり、より好ましくは80モル%以上であり、より好ましくは90モル%以上、さらに好ましくは100モル%である。
 また、第2の晶析反応(ステップS20)は、第1の原料水溶液中の金属元素を、第1の晶析工程及び第2の晶析工程において添加される全金属量に対して、例えば、10質量%以上の反応槽へ供給した時点で、第2の原料水溶液の供給を行うことにより、開始することができる。これにより、第1の金属複合水酸化物粒子の表面にタングステン濃縮層を容易に形成することができる。
 また、より結晶性が高く、二次電池の正極に用いられた場合、反応抵抗をより低減する正極活物質を得るという観点から、第1の原料水溶液中の金属元素を、第1の晶析工程及び第2の晶析工程において添加される全金属量に対して、好ましくは30質量%以上95質量%以下の範囲で反応槽へ供給した時点で、第2の原料水溶液の供給を行い、第2の晶析工程(ステップS20)を開始することができる。
 第2の晶析工程(ステップS20)は、粒子成長工程(ステップS12)と同様に、粒子成長が行われる工程であるため、反応水溶液のpH、温度、アンモニウムイオン濃度や、反応槽内の雰囲気などは、粒子成長工程(ステップS12)と同様の条件とすることができる。粒子成長工程(ステップS12)と同様の条件で、連続して第2の晶析工程(ステップS20)を行うことにより、簡便に生産性高く、第1の金属複合水酸化物粒子の表面にタングステン濃縮層の形成を行うことができる。
 また、第2の原料水溶液の供給は、タングステン以外の金属元素を含む原料水溶液と、タングステンを含む水溶液とを別々に準備して、それぞれを反応槽に供給して行ってもよい。タングステンを含む水溶液を別に供給することにより、より簡便に、かつ、均一にタングステン濃縮層を形成することができる。また、図1に示すように、第2の原料水溶液は、第1の原料水溶液と、タングステン(W)とを含む水溶液とを含み、それぞれの水溶液を別々に反応水溶液に供給してもよい。これにより、タングステンを含む水溶液の濃度や、タングステンを含む水溶液を反応槽へ供給する際の流速を変更することで、タングステンの濃縮層を均一に形成することができ、且つ、容易にタングステンの濃縮層の厚さを調節することが可能となる。
 タングステンを含む水溶液は、例えば、タングステン化合物を水に溶かして調整することができる。用いられるタングステン化合物は、特に限定されず、リチウムを含まずに、タングステンを含む化合物を用いることができるが、好ましくはタングステン酸ナトリウムを用いることができる。
 タングステンを含む水溶液のタングステン(W)濃度は、特に限定されないが、例えば、0.1mol/l以上0.5mol/l以下、好ましくは0.2mol/l以上0.4mol/l以下である。また、タングステンを含む水溶液の添加流量は、特に限定されないが、例えば、5L/min以上20L/min以下、好ましくは10L/min以上15L/min以下である。
 タングステン濃縮層の厚みは、タングステンを含む水溶液の濃度を調整したり、前記水溶液の添加流量を調整したりすることによっても、制御することができる。例えば、タングステンを含む水溶液の濃度及び添加流量を一定とした場合、タングステンを含む水溶液の添加開始の時点を調整することにより、形成されるタングステン濃縮層の厚みや濃度をより正確かつ容易に調整することができる。
 図2、3は、本実施形態の製造方法の好適な一例を示す図である。以下、図2、3を参照して、第1の晶析工程(ステップS10)が、核生成工程(ステップS11)と、粒子成長工程(ステップS12)とを、分離して備え、かつ、上記粒子成長工程(ステップS12)と連続して、第2の原料水溶液を供給して第2の晶析工程(ステップS20)を行う場合における、反応雰囲気の切り替えのタイミング一例を示す。
 図2は、第1の晶析工程(ステップS10)及び第2の晶析工程(ステップS20)の粒子成長において、反応雰囲気の切り替えを4回行った場合の一例を示す図である。このように反応雰囲気の切り替えを4回行うことにより、例えば、図4(B)に示すような、二次粒子2の中心から表面に向かって、一次粒子1が密に配置された中心部4、及び、一次粒子1が中心部4よりも疎に配置された空隙部5と、一次粒子1が密に配置された中実部6とを交互に2層含む、多層構造を有する二次粒子2(金属複合水酸化物10)を得ることができる。このような多孔構造を有する二次粒子2(金属複合水酸化物10)を用いて得られた正極活物質は、高い比表面積を有するため、二次電池の正極に用いた際、反応抵抗(正極抵抗)をより低減することができる。
 また、図2において、第2の原料水溶液は、粒子成長工程(ステップS12)の開始時点から粒子成長の終了時点(晶析工程の終了時点)までの粒子成長が行われる時間全体に対して、75%経過した時点から粒子成長の終了時点まで、供給される。この場合、図2の下方に示すように、タングステン濃縮層3は、二次粒子2(金属複合水酸化物10)の表層(外周)に一層として形成される。なお、粒子成長の開始時点から終了時点までの全体の工程で、タングステン化合物の水溶液を添加した場合は、タングステン濃縮層3は形成されない。
 図2において、非酸化性雰囲気における第2の原料水溶液を供給する時間は、粒子成長が行われる時間全体に対して20%であり、酸化性雰囲気における第2の原料水溶液を供給する時間は、粒子成長が行われる時間全体に対して5%である。よって、非酸化性雰囲気における第2の原料水溶液を供給する時間は、第2の原料水溶液を供給する時間全体に対して80%となる。
 非酸化性雰囲気における第2の原料水溶液を供給する時間が、第2の原料水溶液を供給する時間全体に対して50%以上である場合、金属複合水酸化物10における、タングステンの歩留まりが向上する(実施例4参照)。また、非酸化性雰囲気における第2の原料水溶液を供給する時間が、100%に近くなるほど、タングステンの歩留まりはより向上する。
 タングステンを含む水溶液(第2の原料水溶液)の供給(第2の晶析工程:ステップS20)は、複数回に分けて行ってもよい。タングステンを含む水溶液(第2の原料水溶液)の供給を複数回行った場合、図3に示すように、二次粒子2の表層に形成されるタングステン濃縮層3以外に、さらに、内部にタングステン濃縮層3を形成することができる。例えば、二次粒子2の表層以外に、二次粒子2の内部にも、少なくとも一層のタングステン濃縮層3が形成される場合、金属複合水酸化物10を用いて得られる正極活物質を二次電池に用いた際、反応抵抗(正極抵抗)をより低減することができる。
 図3は、図2と同様に、第1の晶析工程(ステップS10)及び第2の晶析工程(ステップS20)の粒子成長において、4回雰囲気の切り替えを行った場合の他の例を示す図である。図3においては、第1の晶析工程(ステップS10)と第2の晶析工程(ステップS20)とを複数回行っており、第2の原料水溶液の供給は、粒子成長が行われる時間全体に対して、40%経過した時点から60%経過した時点まで、及び、80%経過した時点から粒子成長の終了(100%)時点までの2回行っている。
 図3では、非酸化性雰囲気における第2の原料水溶液を供給する時間は、粒子成長が行われる時間全体に対して40%であり、酸化性雰囲気における第2の原料水溶液を供給する時間が、粒子成長が行われる時間全体に対して0%である。よって、図3における非酸化性雰囲気における第2の原料水溶液を供給する時間は、第2の原料水溶液を供給する時間全体に対して100%となる。
 また、図3に示すように、タングステンを含む第2の原料水溶液の供給を、非酸化性雰囲気の時のみ、かつ、複数回(例、2回)に分けて行う場合、タングステンの歩留まりが非常に良好となり、かつ、金属複合水酸化物10を用いて得られる正極活物質を二次電池に用いた際、反応抵抗(正極抵抗)をより低減することができる(実施例1、2参照)。
 なお、第2の原料水溶液の供給は、二次粒子2の表層にタングステン濃縮層3を好適に形成するという観点から、粒子成長全体おいて、最後に非酸化性雰囲気へ切り替えた時点から粒子成長が終了する時点まで、継続することが好ましい。
 また、タングステンを含む水溶液(第2の原料水溶液)の供給は、第1及び第2の晶析工程における粒子成長の開始から終了までの時間全体に対して、例えば、10%以上経過した時点、好ましくは30%以上95%以下経過した時点から行うことができる。供給を開示する時間が上記範囲である場合、タングステン濃縮層3を容易に、生産性よく得ることができる。また、上記範囲内において、タングステンを含む水溶液の添加を開示する時点がより遅い場合、得られる正極活物質の結晶子径を大きくすることができる傾向がある。
 また、第2の原料水溶液を供給する時間の下限は、粒子成長の開始から終了までの時間全体に対して、5%以上であってもよく、10%以上であってもよく、20%以上であってもよく、30%以上であってもよい。また、第2の原料水溶液を供給する時間の上限は、粒子成長の開始から終了までの時間全体に対して、90%以下であってもよく、80%以下であってもよく、60%以下であってもよく、50%以下であってもよい。
 以下、上記晶析工程に好ましく用いられる各原料、条件について、説明する。
(第1及び第2の原料水溶液)
 第1の原料水溶液、及び、第2の原料水溶液は、ニッケル、及び、マンガンと、任意にコバルト、元素M、及び、タングステンを含む。また、第1の原料水溶液は、タングステンを含まなくてもよい。第2の晶析工程において、第2の原料水溶液として、第1の原料水溶液とタングステンを含む水溶液とを用いる場合、第1の原料水溶液中の金属元素の比率が、最終的に得られる金属複合水酸化物の組成比(タングステンを除く)となる。このため、第1の原料水溶液は、目的とする金属複合水酸化物の組成に応じて、各金属元素の含有量を適宜調整することができる。たとえば、上述した比(A)で表される金属複合水酸化物粒子を得ようとする場合、原料水溶液中の金属元素の比率を、Ni:Mn:Co:M=x:y:z:b(ただし、x+y+z=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦b≦0.1)となるように調整することができる。なお、第1の晶析工程及び第2の晶析工程で用いられる第1の原料水溶液及び第2の原料水溶液の組成は、異なってもよい。この場合、それぞれの晶析工程で用いられる原料水溶液中の各金属元素の含有量の合計が、得られる金属複合水酸化物の組成比とすることができる。
 第1の原料水溶液、及び、第2の原料水溶液の調整に用いられる金属元素(遷移金属)の化合物は、特に限定されないが、取扱いの容易性から、水溶性の硝酸塩、硫酸塩および塩酸塩などを用いることが好ましく、コストやハロゲンの混入を防止する観点から、硫酸塩を好適に用いることが特に好ましい。
 また、金属複合水酸化物中に元素M(Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、及び、Wから選択される1種以上の元素)を含有させる場合、元素Mを供給するための化合物としては、同様に水溶性の化合物が好ましく、たとえば、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム、硫酸チタン、ペルオキソチタン酸アンモニウム、シュウ酸チタンカリウム、硫酸バナジウム、バナジン酸アンモニウム、硫酸クロム、クロム酸カリウム、硫酸ジルコニウム、シュウ酸ニオブ、モリブデン酸アンモニウム、硫酸ハフニウム、タンタル酸ナトリウム、タングステン酸ナトリウム、タングステン酸アンモニウムなどを好適に用いることができる。
 第1の原料水溶液、及び、第2の原料水溶液の濃度は、金属化合物の合計で、好ましくは1mol/L以上2.6mol/L以下、より好ましくは1.5mol/L以上2.2mol/L以下とする。原料水溶液の濃度が1mol/L未満では、反応槽当たりの晶析物量が少なくなるため、生産性が低下する。一方、混合水溶液の濃度が2.6mol/Lを超えると、常温での飽和濃度を超えるため、各金属化合物の結晶が再析出して、配管などを詰まらせるおそれがある。
 なお、上述した金属化合物は、必ずしも1種類の原料水溶液として反応槽に供給しなくてもよい。たとえば、混合すると反応して目的とする化合物以外の化合物が生成されてしまう金属化合物を用いて晶析反応を行う場合、全金属化合物の水溶液の合計の濃度が上記範囲となるように、個別に金属化合物の水溶液を調製して、個々の金属化合物の水溶液として、所定の割合で反応槽内に供給してもよい。
 また、第1の原料水溶液、及び、第2の原料水溶液の供給量は、晶析工程の終了時点において、反応溶液(粒子成長水溶液)中の生成物(第2の金属複合水酸化物粒子)の濃度が、好ましくは30g/L以上200g/L以下、より好ましくは80g/L以上150g/L以下となるようにする。生成物の濃度が30g/L未満である場合、一次粒子の凝集が不十分になる場合がある。一方、生成物の濃度が200g/Lを超える場合、反応槽内に、核生成用水溶液または粒子成長用水溶液が十分に拡散せず、粒子成長に偏りが生じる場合がある。
(アルカリ水溶液)
 反応水溶液中のpH値を調整するアルカリ水溶液は、特に制限されることはなく、水酸化ナトリウムや水酸化カリウムなどの一般的なアルカリ金属水酸化物水溶液を用いることができる。なお、アルカリ金属水酸化物を、直接、反応水溶液に添加することもできるが、pH制御の容易さから、水溶液として添加することが好ましい。この場合、アルカリ金属水酸化物水溶液の濃度を、20質量%~50質量%とすることが好ましく、20質量%~30質量%とすることがより好ましい。アルカリ金属水溶液の濃度をこのような範囲に規制することにより、反応系に供給する溶媒量(水量)を抑制しつつ、添加位置で局所的にpH値が高くなることを防止することができるため、粒度分布の狭い金属複合水酸化物粒子を効率的に得ることができる。
 なお、アルカリ水溶液の供給方法は、反応水溶液のpH値が局所的に高くならず、かつ、所定の範囲に維持される限り、特に制限されることはない。たとえば、反応水溶液を十分に撹拌しながら、定量ポンプなどの流量制御が可能なポンプにより供給すればよい。
(アンモニウムイオン供給体を含む水溶液)
 アンモニウムイオン供給体を含む水溶液も、特に制限されることはなく、たとえば、アンモニア水、または、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウムもしくはフッ化アンモニウムなどの水溶液を使用することができる。
 アンモニウムイオン供給体として、アンモニア水を使用する場合、その濃度は、好ましくは20質量%~30質量%、より好ましくは22質量%~28質量%とする。アンモニア水の濃度をこのような範囲に規制することにより、揮発などによるアンモニアの損失を最小限に抑制することができるため、生産効率の向上を図ることができる。
 なお、アンモニウムイオン供給体を含む水溶液の供給方法も、アルカリ水溶液と同様に、流量制御が可能なポンプにより供給することができる。
(反応雰囲気)
 本実施形態の製造方法における反応雰囲気は、目的とする二次粒子2の構造に応じて、適宜調整することができる。例えば、一次粒子1が密に配置された構造とする場合、酸素濃度が5容量%以下、好ましくは酸素濃度が1容量%以下の非酸化性雰囲気に制御することが好ましい。一方、一次粒子1が疎に配置された構造とする場合、上記の非酸化性雰囲気よりも高い酸素濃度を有する酸化性雰囲気とすることができる。
 例えば、金属複合水酸化物のタップ密度が0.75g/cm以上1.35g/cm以下であり、かつ、多層構造を有する二次粒子2を主として形成する場合、第1の晶析工程(ステップS10)、及び、第2の晶析工程(ステップS20)における、粒子成長では、酸素濃度が1容量%以下の非酸化性雰囲気と、非酸化性雰囲気よりも高い酸素濃度を有する酸化性雰囲気とを、適宜切り替えながら行うことが好ましい。
 非酸化性雰囲気とは、反応雰囲気中における酸素濃度が5容量%以下、好ましくは1容量%以下の雰囲気である。非酸化性雰囲気は、酸素と不活性ガスの混合雰囲気に制御することにより、上記範囲に調整できる。また、酸化性雰囲気は、反応雰囲気中における酸素濃度が非酸化性雰囲気よりも高ければよく、例えば、酸素濃度が1容量%を超える雰囲気であってもよく、酸素濃度が5容量%を超える雰囲気であってもよく、大気雰囲気であってもよい。
 上述のように、反応雰囲気(反応槽内の雰囲気)を、酸化性雰囲気、又は、非酸化性雰囲気に制御すること、及び、反応雰囲気の切り替え回数を制御することで、金属複合水酸化物の粒子構造、比表面積、及びタップ密度が制御される。例えば、より大きなBET比表面積を有する正極活物質を得るという観点から、反応雰囲気の切り替えは、4回以上であることが好ましく、生産性の観点から、4回であることが好ましい。また、反応雰囲気の切り替えのタイミングは、多層構造における各層の所望する厚さに応じて、適宜、調整することができる。
(反応温度)
 反応水溶液の温度(反応温度)は、晶析工程(核生成工程と粒子成長工程、第2の晶析工程)全体を通じて、好ましくは20℃以上、より好ましくは20℃以上60℃以下の範囲に制御する。反応温度が20℃未満の場合、反応水溶液の溶解度が低くなることに起因して、核生成が起こりやすくなり、得られる金属複合水酸化物の平均粒径や粒度分布の制御が困難となることがある。なお、反応温度の上限は、特に制限されることはないが、60℃を超えると、アンモニアの揮発が促進され、反応水溶液中のアンモニウムイオンを一定範囲に制御するために供給するアンモニウムイオン供給体を含む水溶液の量が増加し、生産コストが増加する。更に、60℃を超えると、先述した通り、核生成工程において、一次結晶に歪が生じタップ密度が低くなり始める恐れがある。
(製造装置)
 本実施形態に係る金属複合水酸化物の製造方法では、反応が完了するまで生成物を回収しない方式の装置、たとえば、バッチ反応槽を用いることが好ましい。このような装置であれば、オーバーフロー方式によって生成物を回収する連続晶析装置のように、成長中の粒子がオーバーフロー液と同時に回収されることがないため、粒度分布が狭い金属複合水酸化物粒子を容易に得ることができる。
 また、本実施形態の金属複合水酸化物の製造方法では、晶析反応中の反応雰囲気を制御することが好ましいため、密閉式の装置などの雰囲気制御可能な装置を使用することが好ましい。このような装置であれば、核生成工程(ステップS11)や粒子成長工程(ステップS12、S20)における反応雰囲気を適切に制御することができるため、上述した粒子構造を有し、かつ、粒度分布が狭い金属複合水酸化物10を容易に得ることができる。
 以下、本実施形態の製造方法により得ることができる金属複合水酸化物10の一例について説明する。
2.金属複合水酸化物
 金属複合水酸化物10(二次粒子2)は、図1~図3に示すように、その表層(表面側)にタングステンが濃縮したタングステン濃縮層3を有する。タングステン濃縮層3は、二次粒子2の内部よりもタングステンが濃縮されて存在する、二次粒子2の表面側に配置される層状の領域をいう。タングステン濃縮層3を有する金属複合水酸化物10を前駆体として用いて得られる正極活物質は、高い結晶性を有し、かつ、二次電池の正極に用いられた際、反応抵抗(正極抵抗)が低減されて、高出力を有する。タングステン濃縮層3は、例えば、図7に示すように、エネルギー分散型X線分析装置(EDX)を用いた面分析で、W分布を検出することにより確認できる。
 タングステン濃縮層3は、後述するように、リチウム金属複合酸化物20(図5(B)参照)において、タングステン及びリチウムを含む化合物23(例えば、タングステン酸リチウムなど)を形成する。タングステン及びリチウムを含む化合物23は、金属複合水酸化物10(前駆体)とリチウム化合物とを混合し、焼成してリチウム金属複合酸化物20を得る工程(ステップS40、図6参照)で形成される。
 リチウム金属複合酸化物20(正極活物質)において、タングステン及びリチウムを含む化合物23は、一次粒子21の表層、又は、一次粒子21間の粒界に形成される。タングステン及びリチウムを含む化合物23は、イオン伝導度が高いため、リチウム金属複合酸化物20(正極活物質)が二次電池の正極に用いられた場合、電解液と接触する一次粒子21の表層、又は、一次粒子21間の粒界にタングステン及びリチウムを含む化合物23が存在することにより、正極活物質の反応抵抗を低減させて、出力向上に大きく寄与することができる。
 なお、従来の金属複合水酸化物の製造方法を用いた場合、金属複合水酸化物(前駆体)に含有されるタングステンが、焼成時に、一次粒子1間の焼結を抑制することがある。このため、従来のタングステンを含む前駆体は、得られる正極活物質中のタングステンが反応抵抗の低減に寄与する一方で、正極活物質を構成するリチウム金属複合酸化物の結晶性が低下するといった背反する問題があった。よって、二次電池の正極に用いた場合、出力特性に優れ、かつ、高い結晶性を有するリチウム金属複合酸化物の実現は困難であった。
 一方、本実施形態に係る金属複合水酸化物10は、表層にタングステン濃縮層3を形成するため、焼成(ステップS40)の際、タングステンの焼結を抑制する影響は殆ど発生することなく、反応抵抗を低減させ、かつ、得られるリチウム金属複合酸化物20の結晶性を高めることができる。
 また、第2の晶析工程(ステップS20、図2参照)において、タングステンを非酸化性雰囲気下でより多く添加することによって、仕込み量分のタングステンを金属複合水酸化物10(二次粒子2)内に効率よく析出させることが可能となる。
(タングステン濃縮層)
 タングステン濃縮層3の厚さは、金属複合水酸化物10の表面から中心部に向かう方向において、例えば、200nm以下とすることができ、好ましくは100nm以下であり、より好ましくは10nm以上100nm以下である。タングステン濃縮層3の厚さが100nm以下である場合、リチウム金属複合酸化物20の結晶性をより高くすることができ、かつ、リチウム金属複合酸化物20を二次電池の正極に用いた場合、より反応抵抗を低減し、出力特性を向上させることができる。
 なお、タングステン濃縮層3の厚さは、金属複合水酸化物10を樹脂などに埋め込んだものを切断して、二次粒子2断面の試料を作製し、EDXを用いたWの分布の面分析を行って測定する。具体的には、二次粒子2断面の試料において、レーザ光回折散乱式粒度分析計を用いて測定された体積平均粒径(MV)の80%以上となる二次粒子2断面を無作為に20個選択して、選択したそれぞれの二次粒子2において、金属複合水酸化物10の表面から中心部に向かう方向において、Wが濃く検出される部位(タングステン濃縮層3)の厚さ(幅)を5箇所以上で測定して、それぞれの二次粒子2における、タングステン濃縮層3の厚さの平均を求める。そして、選択した20個の二次粒子2のそれぞれの厚さの平均値を算出することにより、タングステン濃縮層3の厚さを得ることができる。
 タングステン濃縮層3の厚さが100nmを超える場合、焼成の際に、タングステンによる焼結抑制の効果が大きくなり、一次粒子の成長が阻害されることがある。よって、得られるリチウム金属複合酸化物は、結晶子径の小さい一次粒子が多数形成され、結晶粒界が多く発生するため、正極における反応抵抗が増加することがある。また、一次粒子の成長が抑制されることに伴い、リチウム金属複合酸化物20の結晶性が低下することがある。
 一方、タングステン濃縮層3の厚さが10nm未満である場合、比表面積が高くなり、焼成時に金属複合水酸化物10同士が容易に凝集するため、得られる正極活物質の充填密度が低下して、容積当りの電池容量が低下することがある。また、リチウム金属複合酸化物20中にタングステン及びリチウムを含む化合物23が十分に形成されずリチウムイオン伝導性が十分ではないことがある。
 また、タングステン濃縮層3の厚さは、金属複合水酸化物10の平均粒径に対して、二次粒子2表面から二次粒子2の中心部に向かう方向において、例えば、3%以下とすることができる。タングステン濃縮層3の厚さは、リチウム金属複合酸化物20の結晶性をより向上させ、かつ、より反応抵抗を低減させるという観点から、好ましくは2%以下であり、より好ましくは0.1%以上2%以下であり、より好ましくは0.1%以上1%以下あり、さらに好ましくは0.1%以上0.5%以下である。なお、金属複合水酸化物10の平均粒径は、体積平均粒径(MV)をいう。
(二次粒子の構造)
 図4(A)~図4(C)は、本実施形態に係る金属複合水酸化物10の粒子構造の一例を示す模式図であり、図4(C)は、多層構造を有する金属複合水酸化物を示す断面SEM画像の一例を示す図面代用写真である。金属複合水酸化物10は、図4(C)に示すように、複数の一次粒子1が凝集して形成された二次粒子2を含む。なお、金属複合水酸化物10は、単独の一次粒子1を少量含んでもよい。以下、金属複合水酸化物10の詳細について、図4(A)~図4(C)を参照して、説明する。
 金属複合水酸化物10は、図4(C)に示すように、複数の一次粒子1が凝集した二次粒子2を含む。一次粒子1の形状は、特に限定されないが、例えば、板状、針状などの形状であってもよく、これらよりも小さな微細一次粒子であってもよい。また、二次粒子2の粒子構造は、特に限定されず、粒子に空隙が殆ど見られない中実構造をはじめ、粒子の中央部に中空部を有する中空構造のほか、複数の空隙を有する空隙構造や、本実施形態のように層状の空隙を有する多層構造など、従来公知の粒子構造を有することができる。
 以下、図4(A)、(B)を参照して、二次粒子2の粒子構造の好ましい例について説明する。二次粒子2(金属複合水酸化物10)は、図4(A)、(B)に示すように、二次粒子2の中心Cから表面に向かって、一次粒子1が密に配置された中心部4と、一次粒子1が中心部4よりも疎に配置された空隙部5と、一次粒子が密に配置された中実部6とを少なくとも含む、多層構造を有することが好ましい。
 また、二次粒子2は、図4(A)に示すように、二次粒子2の中心Cから表面に向かって、空隙部5と中実部6とを、少なくとも一層を有すればよく、図4(B)に示すように、交互に2層有してもよい。二次粒子2が多層構造を有する場合、得られるリチウム金属複合酸化物20(正極活物質)の比表面積を大きくして、出力特性を向上させることができる。
 タングステン濃縮層3は、少なくとも、二次粒子2の最表面に配置される中実部6の表面部分に形成される。また、タングステン濃縮層3は、二次粒子2の表面に形成されるだけでなく、その内部に存在する空隙部5や、中実部6にも形成されてもよく、中実部6にもタングステン濃縮層3が形成される場合、この金属複合水酸化物10を用いて得られた正極活物質は、二次電池における反応抵抗(正極抵抗)をより低減することができる。
 上述したように、タングステンを含む第2の原料水溶液を、非酸化性雰囲気において、より多く添加することにより、空隙部5よりも中実部6にタングステンを高濃度で含有することができる。なお、二次粒子2の粒子構造は、晶析反応において、粒子成長工程における反応雰囲気を複数回、切り替えることにより、多層構造とすることができる。
(タップ密度)
 金属複合水酸化物10のタップ密度は、特に限定されないが、例えば、二次粒子2が多層構造を有する場合、好ましくは0.75g/cm以上1.35g/cm以下であり、より好ましくは1g/cm以上1.35g/cm以下である。金属複合水酸化物10のタップ密度は、金属複合水酸化物10を前駆体としてリチウム金属複合酸化物20(正極活物質)のタップ密度と相関し、金属複合水酸化物10が、多層構造を有する場合、得られるリチウム金属複合酸化物20のタップ密度は、金属複合水酸化物10のタップ密度より上昇する傾向がある。このため、金属複合水酸化物10のタップ密度を、上記範囲に制御することで、金属複合水酸化物10を前駆体とするリチウム金属複合酸化物20(図5(A)参照)のタップ密度を後述する範囲に制御することが可能となる。このリチウム金属複合酸化物20を正極に用いた場合、高い電池容量を有する二次電池を得ることができる。一方、金属複合水酸化物10のタップ密度が0.75g/cm未満である場合、例えば、正極活物質を製造する際の焼成工程(ステップS40、図6参照)において、匣鉢に盛る際に盛り高さが高くなり、十分に焼成されずに結晶性を低下することがある。
(平均粒径)
 金属複合水酸化物10の平均粒径は、特に限定されないが、好ましくは4.0μm以上であり、より好ましくは4μm以上9.0μm以下であり、好ましくは4.0μm以上7μm以下である。金属複合水酸化物10の平均粒径は、金属複合水酸化物10を前駆体とするリチウム金属複合酸化物20(正極活物質)の平均粒径と相関する。このため、金属複合水酸化物10の平均粒径を、上記範囲に制御することで、金属複合水酸化物10を前駆体とするリチウム金属複合酸化物20(図5(A)参照)の平均粒径も上記範囲に制御することが可能となる。
 金属複合水酸化物10の平均粒径が4μm未満である場合、比表面積が高くなり、正極活物質を製造する際の焼成工程(ステップS40、図6参照)において、金属複合水酸化物10の粒子同士が容易に凝集し、得られる正極活物質の充填密度が低下して、容積当りの電池容量が低下することがある。なお、本明細書において、平均粒径とは、体積平均粒径(MV)を意味し、例えば、レーザ光回折散乱式粒度分析計で測定した体積積算値から求めることができる。
 金属複合水酸化物10は、粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕が0.65以下である。リチウム金属複合酸化物20(正極活物質)の粒度分布は、その前駆体である金属複合水酸化物10の影響を強く受ける。このため、微細粒子や粗大粒子を多く含む金属複合水酸化物10を前駆体とした場合、リチウム金属複合酸化物20にも微細粒子や粗大粒子が多く含まれる。このようなリチウム金属複合酸化物20を正極活物質として用いた二次電池では、熱安定性、サイクル特性、出力特性などの電池特性が低下することがある。そこで、金属複合水酸化物10の〔(d90-d10)/平均粒径〕を上記範囲に調整した場合、これを前駆体として得られるリチウム金属複合酸化物20の粒度分布を狭くして、微細粒子や粗大粒子の混入を抑制することができる。
 また、金属複合水酸化物10の〔(d90-d10)/平均粒径〕の下限値は、特に限定されないが、コストや生産性の観点から、0.25以上程度とすることが好ましい。工業的規模の生産を前提とした場合、〔(d90-d10)/平均粒径〕が過度に小さい金属複合水酸化物10を使用することは現実的ではない。
 なお、d10は、各粒径における粒子数を粒径の小さい側から累積し、その累積体積が全粒子の合計体積の10%となる粒径を意味し、d90は、同様に粒子数を累積し、その累積体積が全粒子の合計体積の90%となる粒径を意味する。また、d10およびd90は、平均粒径と同様に、レーザ光回折散乱式粒度分析計で測定した体積積算値から求めることができる。
(組成)
 金属複合水酸化物10の組成は、特に限定されないが、例えば、金属複合水酸化物10が、Ni、Mn及びW、並びに、任意にCo、及びMを含み、それぞれの金属元素の原子数の比(A)が、Ni:Mn:Co:W:M=x:y:z:a:b(x+y+z=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0<a≦0.1、0≦b≦0.1、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、及び、Taから選択される1種以上の金属元素)であることが好ましい。
 なお、金属複合水酸化物10中のそれぞれの金属元素の原子数の比(A)は、リチウム金属複合酸化物20中でも維持されるため、上記金属元素の比(A)で表される金属複合水酸化物10において、これを構成するニッケル、マンガン、コバルト、タングステンおよび元素Mの組成範囲およびその臨界的意義は、後述する、比(B)で表される正極活物質と同様である。このため、これらの事項について、ここでの説明は省略する。
 また、金属複合水酸化物10は、一般式(A1):NiMnCo(OH)2+α(x+y+z=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0<a≦0.1、0≦b≦0.1、0≦α≦0.5、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、及び、Taから選択される1種以上の金属元素)で表されてもよい。
 上記一般式(A1)中、得られる正極活物質を用いた二次電池の容量特性のさらなる改善を図るという観点から、その組成を、一般式(A2):NiMnCo(OH)2+α(x+y+z=1、0.7<x≦0.95、0.05≦y≦0.1、0≦z≦0.2、0<a≦0.1、0≦b≦0.1、0≦α≦0.5、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、及び、Moから選択される1種以上の元素)とすることが好ましい。さらに、熱安定性と電池容量との両立を図るという観点から、上記一般式(A2)中、xの値を、0.7<x≦0.9とすることがより好ましく、0.7<x≦0.85とすることがさらに好ましい。
 上記一般式(A1)中、得られる正極活物質を用いた二次電池の熱安定性のさらなる改善を図るという観点から、その組成を、一般式(A3):NiMnCo(OH)2+α(x+y+z=1、0.3≦x≦0.7、0.1≦y≦0.55、0≦z≦0.4、0<a≦0.1、0≦b≦0.1、0≦α≦0.5、Mは、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、及び、Taから選択される1種以上の元素)とすることが好ましい。
3.リチウムイオン二次電池用正極活物質
 本実施形態に係る正極活物質は、リチウム、ニッケル、マンガン、及び、タングステンと、任意にコバルト、及び、元素Mと、を含み、それぞれの金属元素の物質量比(モル比)が、Li:Ni:Mn:Co:W:M=(1+u):x:y:z:a:b(x+y+z=1、-0.05≦u≦0.50、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0<a≦0.1、0≦b≦0.1、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Taから選択される1種以上の元素)で表されるリチウム金属複合酸化物(以下、「リチウム金属複合酸化物」という。)を含有する。また、リチウム金属複合酸化物は、六方晶系の層状結晶構造を有する。
 図5(A)、図5(B)は、本実施形態に係るリチウム金属複合酸化物20の一例を示す模式図である。リチウム金属複合酸化物20は、図5(A)に示すように、複数の一次粒子21が凝集して形成された二次粒子22を含む。なお、リチウム金属複合酸化物20は、単独の一次粒子21を少量含んでもよい。以下、リチウム金属複合酸化物20の詳細について、図5(A)及び図5(B)を参照して、説明する。
(タングステン及びリチウムを含む化合物)
 リチウム金属複合酸化物20は、図5(B)に示すように、二次粒子22の表面又は内部に存在する一次粒子21の表層、及び、一次粒子21間の粒界に、タングステン及びリチウムを含む化合物23が濃縮されて存在する。タングステン及びリチウムを含む化合物23の存在部位は、例えば、エネルギー分散型X線分析装置(EDX)を用いた面分析でW分布を検出することにより確認できる。また、タングステン及びリチウム含む化合物23は、二次粒子22の内部よりも表面(表層)により多く存在することが好ましい。
 正極活物質の表層を異種化合物が被覆する場合、リチウムイオンの移動(インターカレーション)が大きく制限されるため、結果的にリチウム金属複合酸化物の持つ高容量という長所が十分に発揮できないことがある。これに対して、タングステン及びリチウムを含む化合物23(例えば、タングステン酸リチウムなど)は、リチウムイオンの伝導性が高いためリチウムイオンの移動を促す効果があるため、本実施形態に係るリチウム金属複合酸化物20は、その表面付近の一次粒子21の表層、及び、一次粒子21間の粒界に、タングステン及びリチウムを含む化合物23を形成させることで、電解液との界面でLiの伝導パスを形成することにより、正極活物質の反応抵抗を低減して出力特性を向上させることができる。タングステン及びリチウムを含む化合物23は、例えば、リチウム金属複合酸化物20の表面付近に微粒子の形態で存在することができる。
 タングステン及びリチウム含む化合物23としては、特に限定されず、例えば、LiWO、LiWO、Liなどのタングステン酸リチウムが挙げられる。これらのタングステン酸リチウムが、二次粒子22の表面又は内部に存在する一次粒子21の表層、及び、一次粒子21間の粒界に濃縮して形成されることにより、リチウム金属複合酸化物20のリチウムイオン伝導度がさらに高まり、二次電池の正極に用いられた場合、反応抵抗の低減がより大きなものとなる。
(粒子構造)
 本実施形態におけるリチウム金属複合酸化物20は、金属複合水酸化物10の特徴である多層構造を引き継いでおり、十分な粒子強度を維持しつつ、電解液との接触面積を増加させており出力特性にも優れている。
 リチウム金属複合酸化物20の二次粒子22の構造は、特に限定されないが、図5(A)に示すように、二次粒子22の中心から表面に向かって、一次粒子21が密に配置された中心部24と、一次粒子21が中心部24よりも疎に配置された空隙部26と、一次粒子21が密に配置された実質部25とを少なくとも含む、多層構造を有することが好ましい。また、実質部25は、中心部24と電気的に導通可能であることが好ましい。
 上記のような空隙部26を有するリチウム金属複合酸化物20を二次電池の正極として用いた場合、二次粒子22内部に電解液が浸透して、二次粒子22内部の一次粒子21と電解液との接触面積が増加するため、二次粒子22の表面ばかりでなく、二次粒子22の内部においても、リチウムの脱離および挿入が可能となる。また、二次粒子22の内部に電気的に導通可能な経路を多数有するため、二次粒子22内部の抵抗を低減し、出力特性を向上させることができる。したがって、このリチウム金属複合酸化物20を用いて二次電池の正極を構成した場合、容量特性やサイクル特性を損なうことなく、出力特性を大幅に向上させることが可能となる。
 また、リチウム金属複合酸化物20において、空隙部26は、中心部24と実質部25との間や、複数の実質部25の間に全体的に層状に形成されてもよく、部分的に形成されてもよい。また、中心部は、板状一次粒子が凝集して形成された凝集部が複数連結した状態であってもよい。なお、本明細書において、「電気的に導通する」とは、リチウム金属複合酸化物の高密度部同士が、直接的に、構造的に接続され、電気的に導通可能な状態であることを意味する。
 なお、多層構造を有する二次粒子は、上述した核生成工程(ステップS11)、粒子成長工程(ステップS12)における各条件を適宜調整することにより形成することができ、例えば、特許文献2、3などに記載の条件を用いてもよい。なお、実質部25は、複数存在してもよく、例えば、特許文献3に記載されるように、外殻部、又は、外殻部と内殻部とから構成されてもよい。また、中心部24は、中空構造を有してもよい。
 本実施形態に係る正極活物質は、上述した金属複合水酸化物10を前駆体として用いることにより、一次粒子21の表層及び一次粒子21間の粒界にリチウム及びタングステンを含む化合物23が存在するリチウム金属複合酸化物20を得ることができる。リチウム金属複合酸化物20は、多層構造を有する二次粒子22を含む正極活物質の結晶性を維持したまま、出力特性のさらなる向上を実現することができる。
(BET比表面積)
 正極活物質のBET比表面積は、特に限定されないが、例えば、1.45m/g以上5.40m/g以下であることが好ましく、2m/g以上5.40m/g以下であることがより好ましく、2.5m/g以上5.40m/g以下であることがさらに好ましい。BET比表面積が上記範囲である場合、二次電池の正極用いた際に電解液との接触面積を増加させることができ、正極抵抗を低減させ、出力特性も向上することができる。
(タップ密度)
 正極活物質のタップ密度は、特に限定されないが、例えば、二次粒子2が多層構造を有する場合、好ましくは1g/cm以上2g/cm以下であり、より好ましくは1.2g/cm以上2g/cm以下である。正極活物質のタップ密度が上記範囲である場合、単位容積あたりの電池容量を向上させつつ、電解液との接触面積が増えることによって出力特性が向上される。一方で、タップ密度が2g/cmを超える場合は、粒子構造において空隙を有する部分が少なく、また、平均粒径が大きくなる傾向があり、反応面積の低下にともない出力特性が低下する。また、粒度分布の広がりが大きい場合、タップ密度が大きくなる傾向があるが、この場合、微細粒子が選択的に劣化してサイクル特性が低下することがある。一方で、タップ密度が1g/cm未満である場合、粒子構造において空隙を有する部分が多くなり粒子強度が低下するためサイクル特性は低下することがある。また、正極活物質の充填性が低下し、単位容積あたりの電池容量を増加することが難しい。
(平均粒径)
 本実施形態の正極活物質の平均粒径(MV)は、特に限定されないが、例えば、3μm以上9μm以下となるように調整することができる。平均粒径が上記範囲である場合、この正極活物質を用いた二次電池の単位容積あたりの電池容量を増加させることができるばかりでなく、熱安定性や出力特性も改善することができる。これに対して、平均粒径が4μm未満である場合、正極活物質の充填性が低下し、単位容積あたりの電池容量を増加することが難しい。一方、平均粒径が9μmを超える場合、正極活物質の反応面積が低下し始めるので、出力特性が十分とならないことがある。
 なお、正極活物質の平均粒径とは、上述した金属複合水酸化物と同様に、体積平均径(MV)を意味し、たとえば、レーザ光回折散乱式粒度分析計で測定した体積積算値から求めることができる。
(粒度分布)
 本実施形態の正極活物質は、粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕が、0.65以下であることが好ましい。〔(d90-d10)/平均粒径〕が上記範囲である場合、粒度分布が非常に狭いリチウム金属複合酸化物20により構成されることができる。このような正極活物質は、微細粒子や粗大粒子の割合が少なく、これを正極に用いた二次電池は、熱安定性、サイクル特性および出力特性が優れたものとなる。
 一方、〔(d90-d10)/平均粒径〕が0.65を超える場合、正極活物質中の微細粒子や粗大粒子の割合が増加する。粒度分布の広がりの大きい正極活物質を用いた二次電池は、例えば、微細粒子の局所的な反応に起因して、発熱し、熱安定性が低下するとともに、微細粒子が選択的に劣化し、サイクル特性が低下することがある。また、粒度分布の広がりの大きい正極活物質を用いた二次電池は、粗大粒子の割合が多いため、電解液と正極活物質の反応面積を十分に確保することができず、出力特性が低下することがある。
 なお、工業的規模の生産を前提とした場合、正極活物質として、〔(d90-d10)/平均粒径〕が過度に小さいものを用いることは現実的でではない。したがって、コストや生産性を考慮すると、〔(d90-d10)/平均粒径〕の下限値は、0.25程度とすることが好ましい。また、〔(d90-d10)/平均粒径〕におけるd10およびd90の意味、ならびに、これらの求め方は、上述した金属複合水酸化物と同様である。
(結晶子径)
 本実施形態に係る正極活物質は、従来の製造方法のように、晶析工程全体でタングステンを均一に添加して得られる金属複合水酸化物を前駆体とした正極活物質と比較して、粉末X線回折測定により得られる(003)面の結晶子径をより大きくすることができる。正極活物質の(003)面の結晶子径は、例えば、110nm以上とすることができ、好ましくは、120nm以上に調整される。正極活物質の(003)面の結晶子径が120nm以上である場合、結晶性が高く、かつ、この正極活物質を正極として用いた二次電池は、反応抵抗が少なくなるために出力特性が向上し、また、熱安定性も合わせて向上する。一方、(003)面の結晶子径が110nm未満である場合、二次電池の熱安定性が低下することがある。なお、(003)面の結晶子径の上限は、特に限定されないが、例えば、200nm以下とすることができ、110nm以上150nm以下であることが好ましい。本実施形態の正極活物質では、上述のようにタングステン濃縮層3を表面に有する金属複合水酸化物10を前駆体として用いることにより、高い結晶性を維持できるため、(003)面の結晶子径を上記範囲とすることができる。
(組成)
 本実施形態の正極活物質は、上述した特性を有する限り、その組成は、特に限定されないが、例えば、一般式(B):Li1+uNiMnCozW(-0.05≦u≦0.50、x+y+z=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0<a≦0.1、0≦b≦0.1、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、及び、Taから選択される1種以上の元素)で示される。
 上記一般式(B)中、リチウム(Li)の量を示すuの値は、好ましくは-0.05以上0.50以下、より好ましく0以上0.50以下、さらに好ましくは0以上0.35以下である。uの値が上記範囲である場合、この正極活物質を正極材料として用いた二次電池の出力特性および容量特性を向上させることができる。これに対して、uの値が-0.05未満である場合、二次電池の正極抵抗が大きくなり、出力特性を向上させることができない。一方、uの値が0.50を超える場合、初期放電容量が低下したり、正極抵抗が大きくなったりすることがある。
 上記一般式(B)中、ニッケル(Ni)の含有量を示すxの値は、好ましくは0.3以上0.95以下、より好ましくは0.3以上0.9以下である。ニッケルは、二次電池の高電位化および高容量化に寄与する元素である。xの値が0.3未満である場合、この正極活物質を用いた二次電池の容量特性を向上させることができない。一方、xの値が0.95を超える場合、他の元素の含有量が減少し、他の元素の効果を得ることができない。
 上記一般式(B)中、マンガン(Mn)の含有量を示すyの値は、好ましくは0.05以上0.55以下、より好ましくは0.10以上0.40以下である。マンガンは、熱安定性の向上に寄与する元素である。yの値が0.05未満である場合、この正極活物質を用いた二次電池の熱安定性を向上させることができない。一方、yの値が0.55を超える場合、高温作動時に正極活物質からMnが溶出し、充放電サイクル特性が劣化することがある。
 上記一般式(B)中、コバルト(Co)の含有量を示すzの値は、好ましくは0以上0.4以下、より好ましくは0.10以上0.35以下である。コバルトは、充放電サイクル特性の向上に寄与する元素である。zの値が0.4を超える場合、この正極活物質を用いた二次電池の初期放電容量が大幅に低下することがある。
 上記一般式(B)中、タングステン(W)の含有量を示すaの値は、Ni、Co及びMnのモル数の合計を1とした場合、0を超え0.1以下であり、好ましくは0.001以上0.01以下、より好ましくは、0.0045以上0.006以下である。aの値が上記範囲である場合、正極活物質は、結晶性を高く維持したまま、より出力特性、サイクル特性に優れる。また、Wは、上述したように、正極活物質中、主に二次粒子22の表面付近の一次粒子21の表層、又は一次粒子21間の粒界に含まれる。
 本実施形態の正極活物質では、二次電池の耐久性や出力特性をさらに改善するため、上述した金属元素に加えて、元素Mを含有してもよい。このような元素Mとしては、マグネシウム(Mg)、カルシウム(Ca)、アルミニウム(Al)、チタン(Ti)、バナジウム(V)、クロム(Cr)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、ハフニウム(Hf)、及び、タンタル(Ta)から選択される1種以上を用いることができる。
 上記一般式(B)中、元素Mの含有量を示すbの値は、Ni、Co及びMnのモル数の合計を1とした場合、好ましくは0以上0.1以下、より好ましくは0.001以上0.05以下である。bの値が0.1を超える場合、Redox反応に貢献する金属元素が減少するため、電池容量が低下することがある。
 上記一般式(B)で表される正極活物質において、二次電池の容量特性のさらなる改善を図るという観点から、その組成を、一般式(B1):Li1+uNiMnCoMbO(-0.05≦u≦0.20、x+y+z=1、0.7<x≦0.95、0.05≦y≦0.1、0≦z≦0.2、0<a≦0.1、0≦b≦0.1、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、及び、Taら選択される1種以上の元素)とすることが好ましい。中でも、熱安定性と電池容量との両立を図るという観点から、上記一般式(B1)におけるxの値を、0.7<x≦0.9とすることがより好ましく、0.7<x≦0.85とすることがさらに好ましい。
 また、熱安定性のさらなる改善を図るという観点から、その組成を、一般式(B2):Li1+uNiMnCo(-0.05≦u≦0.50、x+y+z=1、0.3≦x≦0.7、0.1≦y≦0.55、0≦z≦0.4、0<a≦0.1、0≦b≦0.1、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、及び、Taから選択される1種以上の元素)とすることが好ましい。
4.リチウムイオン二次電池用正極活物質の製造方法
 図6は、本実施形態に係る正極活物質の製造方法の一例を示す図である。本実施形態の製造方法は、上述したリチウム金属複合酸化物20を含む正極活物質を工業的規模で、容易に製造することができる。なお、リチウム金属複合酸化物20を含む正極活物質は、上記の特定の構造、平均粒径および粒度分布を備える限り、特に限定されず、公知の製造方法を用いて得ることができる。
 図6に示すように、本実施形態に係る正極活物質の製造方法は、上述の製造方法により得られた金属複合水酸化物と、リチウム化合物とを混合してリチウム混合物を得る工程(ステップS30)と、リチウム混合物を焼成して、リチウム金属複合酸化物を得る工程(ステップS40)と、を備える。なお、必要に応じて、上述した工程以外に、熱処理工程や仮焼工程などの工程を追加してもよい。
 金属複合水酸化物の表層に形成されたタングステン濃縮層中のタングステンは、リチウム化合物との混合工程(ステップS30)及び焼成工程(ステップS40)において、リチウム化合物と反応して、リチウム金属複合酸化物20中の一次粒子の表層、及び、一次粒子間の粒界にタングステンとリチウムとを含む化合物23を形成する。以下、図6を参照して、本実施形態に係る正極活物質の製造方法について説明する。
(混合工程)
 まず、金属複合水酸化物、及び、金属複合水酸化物を熱処理して得られる金属複合酸化物の少なくとも一方(以下、これらをまとめて「前駆体」ともいう。)と、リチウム化合物とを混合して、リチウム混合物を得る(ステップS30)。
 ステップS30では、リチウム混合物中のリチウム以外の金属原子、具体的には、ニッケル、コバルト、マンガンおよび元素Mとの原子数の和(Me)と、リチウムの原子数(Li)との比(Li/Me)が、0.95以上1.5以下、好ましくは1.0以上1.5以下、より好ましくは1.0以上1.35以下、さらに好ましくは1.0以上1.2以下となるように、前駆体とリチウム化合物を混合する。すなわち、焼成工程の前後ではLi/Meは変化しないので、混合工程におけるLi/Meが、目的とする正極活物質のLi/Meとなるように、前駆体とリチウム化合物を混合する。なお、Li/Meは、タングステン及びリチウムを含む化合物23を十分に形成させるという観点から、1を超えてもよく、1.1を超えてもよい。
 混合工程で使用するリチウム化合物は、特に限定されないが、入手の容易性の観点から、水酸化リチウム、硝酸リチウム、炭酸リチウムまたはこれらの混合物を用いることが好ましい。特に、取り扱いの容易さや品質の安定性を考慮すると、水酸化リチウムまたは炭酸リチウムを用いることが好ましい。
 前駆体とリチウム化合物とは、微粉が生じない程度に、十分に混合することが好ましい。混合が不十分であると、個々の粒子間でLi/Meにばらつきが生じ、十分な電池特性を得ることができない場合がある。なお、混合には、一般的な混合機を使用することができる。例えば、シェーカーミキサ、レーディゲミキサ、ジュリアミキサ、Vブレンダなどを用いることができる。
(熱処理工程)
 また、混合工程(ステップS30)の前に、任意に、金属複合水酸化物を熱処理する工程(熱処理工程)を設けてもよい。熱処理により得られた前駆体と、リチウム化合物と混合してもよい(不図示)。ここで、熱処理後に得られる前駆体としては、熱処理工程において余剰水分の少なくも一部が除去された金属複合水酸化物、熱処理工程により金属複合水酸化物が酸化物に転換された前駆体(金属複合酸化物)、又は、これらの混合物が含まれてもよい。
 熱処理工程は、金属複合水酸化物を、加熱して熱処理することにより、金属複合水酸化物に含有される水分の少なくとも一部を除去する工程である。これにより、焼成工程(ステップS40)後まで残留する水分を一定量まで減少させることができ、得られる正極活物質の組成がばらつくことを抑制できる。
 熱処理温度は、例えば、105℃以上750℃以下である。熱処理温度が105℃未満である場合、金属複合水酸化物中の余剰水分が十分に除去できず、ばらつきを十分に抑制することができないことがある。一方、熱処理温度が700℃を超える場合、それ以上の効果は期待できないばかりか、生産コストが増加してしまう。
 なお、熱処理工程では、正極活物質中の各金属成分の原子数や、Liの原子数の割合にばらつきが生じない程度に水分が除去できればよいので、必ずしもすべての金属複合水酸化物を複合酸化物に転換する必要はない。しかしながら、各金属成分の原子数やLiの原子数の割合のばらつきをより少ないものとするという観点から、400℃以上で熱処理して、すべての金属複合水酸化物を、複合酸化物に転換することが好ましい。なお、熱処理条件による金属複合水酸化物に含有される金属成分の原子数を分析によって予め求めておき、リチウム化合物との混合比を決めておくことで、上述したばらつきをより抑制することができる。
 なお、熱処理を行う雰囲気は、特に制限されず、非還元性雰囲気であればよいが、簡易的に行えるという観点から、空気気流中が好ましい。
 また、熱処理時間は、特に制限されないが、金属複合水酸化物中の水分を十分に除去するという観点から、好ましくは1時間以上であり、より好ましくは5時間以上15時間以下である。
(焼成工程)
 次いで、混合工程(ステップS30)で得られたリチウム混合物を、焼成して、リチウム金属複合酸化物を得る(ステップS40)。本工程では、所定条件の下で焼成し、前駆体中にリチウムを拡散させて、リチウム金属複合酸化物を得る工程である。得られたリチウム金属複合酸化物は、そのまま正極活物質として用いてもよく、後述するように、解砕工程により、粒度分布を調整した後、正極活物質として用いてもよい。
[焼成温度]
 リチウム混合物の焼成温度は、650℃以上980℃以下とすることが好ましい。焼成温度が650℃未満である場合、前駆体中にリチウムが十分に拡散せず、余剰のリチウムや未反応の金属複合水酸化物または金属複合酸化物が残存したり、得られるリチウム金属複合酸化物の結晶性が不十分になったりする。一方、焼成温度が980℃を超える場合、リチウム複合酸化物粒子間が激しく焼結し、異常粒成長が引き起こされ、不定形な粗大粒子の割合が増加することがある。
 なお、上述した一般式(B1)で表される正極活物質を得ようとする場合には、焼成温度を650℃以上900℃以下とすることが好ましい。一方、一般式(B2)で表される正極活物質を得ようとする場合には、焼成温度を800℃以上980℃以下とすることが好ましい。
 焼成温度までの昇温速度は、2℃/分以上10℃/分以下とすることが好ましく、5℃/分以上9℃/分以下であってもよい。さらに、焼成工程(ステップS40)において、用いたリチウム化合物の融点付近の温度で、好ましくは1時間以上5時間以下、より好ましくは2時間以上5時間以下保持してもよい。これにより、前駆体とリチウム化合物とをより均一に反応させることができる。
[焼成時間]
 上記焼成温度での保持時間(焼成時間)は、少なくとも2時間以上とすることが好ましく、4時間以上24時間以下とすることがより好ましい。また、焼成温度の保持時間(焼成時間)は、2時間以上15時間以下であってもよく、2時間以上10時間以下であってもよい。焼成温度における保持時間が2時間未満である場合、前駆体中にリチウムが十分に拡散せず、余剰のリチウムや未反応の金属複合水酸化物または金属複合酸化物が残存したり、得られるリチウム金属複合酸化物の結晶性が十分でなかったりすることがある。
[冷却速度]
 焼成時間(保持時間)終了後、焼成温度から少なくとも200℃までの冷却速度は、2℃/分以上10℃/分以下とすることが好ましく、3℃/分以上7℃/分以下とすることがより好ましい。冷却速度を上記範囲に制御することにより、生産性を確保しつつ、匣鉢などの設備が、急冷により破損することを防止することができる。
[焼成雰囲気]
 焼成時の雰囲気は、酸化性雰囲気とすることが好ましく、酸素濃度が18容量%~100容量%の雰囲気とすることがより好ましく、上記酸素濃度の酸素と不活性ガスの混合雰囲気とすることが特に好ましい。すなわち、焼成は、大気ないしは酸素気流中で行うことが好ましい。酸素濃度が18容量%未満では、リチウム複合酸化物粒子の結晶性が不十分なものとなるおそれがある。
[焼成炉]
 焼成工程(ステップS40)に用いられる炉は、特に限定されず、大気、又は、酸素気流中でリチウム混合物を加熱できるものであればよい。また、炉内の雰囲気を均一に保つという観点から、ガス発生がない電気炉が好ましく、バッチ式、又は、連続式の電気炉であってもよい。また、熱処理工程および仮焼工程に用いる炉についても、炉内の雰囲気を均一に保つという観点から、同様の炉を選択することができる。
(仮焼工程)
 なお、リチウム化合物として、水酸化リチウムや炭酸リチウムを使用する場合には、混合工程(ステップS30)後、焼成工程(ステップS40)の前に、仮焼を行ってもよい。仮焼は、リチウム混合物を、後述する焼成温度よりも低温、かつ、350℃以上800℃以下、好ましくは450℃以上780℃以下で仮焼する工程である。これにより、前駆体中に、リチウムを十分に拡散させることができ、より均一なリチウム複合酸化物粒子を得ることができる。
 なお、上記温度での保持時間は、1時間以上10時間以下とすることが好ましく、3時間以上6時間以下とすることが好ましい。また、仮焼工程における雰囲気は、前述した焼成工程(ステップS40)と同様に、酸化性雰囲気とすることが好ましく、酸素濃度が18容量%以上100容量%以下の雰囲気とすることがより好ましい。
(解砕工程)
 焼成工程(ステップS40)によって得られたリチウム金属複合酸化物20は、凝集または軽度の焼結が生じている場合がある。このような場合、リチウム金属複合酸化物20の二次粒子22の凝集体または焼結体を解砕することが好ましい。これによって、得られる正極活物質の体積平均粒径(MV)や粒度分布を好適な範囲に調整することができる。なお、解砕とは、焼成時に二次粒子22間の焼結ネッキングなどにより生じた複数の二次粒子22からなる凝集体に、機械的エネルギーを投入して、二次粒子22自体をほとんど破壊することなく分離させて、凝集体をほぐす操作を意味する。
 解砕の方法としては、公知の手段を用いることができ、例えば、ピンミルやハンマーミルなどを使用することができる。なお、この際、二次粒子を破壊しないように解砕力を適切な範囲に調整することが好ましい。
5.リチウムイオン二次電池
 本実施形態に係るリチウムイオン二次電池(以下、「二次電池」ともいう。)は、上述した正極活物質を含む正極と、負極と、電解質とを備える。リチウムイオン二次電池は、従来公知のリチウムイオン二次電池と同様の構成要素により構成されることができ、例えば、正極、負極、及び、非水系電解液を備えた非水電解液二次電池であってもよい。また、二次電池は、例えば、正極、負極、及び、固体電解質を備えた全固体二次電池であってもよい。以下、各構成要素について、説明する。
 なお、以下で説明する実施形態は例示に過ぎず、本実施形態のリチウムイオン二次電池は、本明細書に記載されている実施形態を基に、当業者の知識に基づいて種々の変更、改良した形態で実施することができる。また、本実施形態のリチウムイオン二次電池は、その用途を特に限定するものではない。
(正極)
 正極活物質を含む正極合剤ペーストを用いて、例えば、以下のようにして、リチウムイオン二次電池の正極を作製してもよい。
 正極合剤ペーストを、例えば、アルミニウム箔製の集電体の表面に塗布し、乾燥して、溶剤を飛散させる。必要に応じ、電極密度を高めるべく、ロールプレス等により加圧することもある。このようにして、シート状の正極を作製することができる。シート状の正極は、目的とする電池に応じて適当な大きさに裁断等をして、電池の作製に供することができる。ただし、正極の作製方法は、例示のものに限られることなく、他の方法によってもよい。
(負極)
 負極には、金属リチウムやリチウム合金等、あるいは、リチウムイオンを吸蔵および脱離できる負極活物質に、結着剤を混合し、適当な溶剤を加えてペースト状にした負極合剤を、銅等の金属箔集電体の表面に塗布し、乾燥し、必要に応じて電極密度を高めるべく圧縮して形成したものを使用する。
 負極活物質としては、例えば、天然黒鉛、人造黒鉛、フェノール樹脂等の有機化合物焼成体、コークス等の炭素物質の粉状体を用いることができる。この場合、負極結着剤としては、正極同様、PVDF等の含フッ素樹脂等を用いることができ、これらの活物質および結着剤を分散させる溶剤としては、N-メチル-2-ピロリドン等の有機溶剤を用いることができる。
(セパレータ)
 正極と負極との間には、セパレータを挟み込んで配置する。セパレータは、正極と負極とを分離し、電解質を保持するものであり、ポリエチレン、ポリプロピレン等の薄い膜で、微少な孔を多数有する膜を用いることができる。
(非水系電解質)
 非水系電解質としては、非水系電解液、固体電解質などが用いられる。
 非水系電解液は、支持塩としてのリチウム塩を有機溶媒に溶解したものである。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネート等の環状カーボネート、また、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート、さらに、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジメトキシエタン等のエーテル化合物、エチルメチルスルホン、ブタンスルトン等の硫黄化合物、リン酸トリエチル、リン酸トリオクチル等のリン化合物等から選ばれる1種を単独で、あるいは2種以上を混合して用いることができる。
 支持塩としては、LiPF、LiBF、LiClO、LiAsF、LiN(CFSO等、およびそれらの複合塩を用いることができる。さらに、非水系電解液は、ラジカル捕捉剤、界面活性剤および難燃剤等を含んでいてもよい。
 固体電解質としては、酸化物系固体電解質、硫化物系固体電解質などが用いられる。
 酸化物系固体電解質としては、特に限定されず、酸素(O)を含有し、かつ、リチウムイオン伝導性と電子絶縁性とを有するものであれば用いることができる。酸化物系固体電解質としては、例えば、リン酸リチウム(LiPO)、LiPO、LiBO、LiNbO、LiTaO、LiSiO、LiSiO-LiPO、LiSiO-LiVO、LiO-B-P、LiO-SiO、LiO-B-ZnO、Li1+XAlTi2-X(PO(0≦X≦1)、Li1+XAlGe2-X(PO(0≦X≦1)、LiTi(PO、Li3XLa2/3-XTiO(0≦X≦2/3)、LiLaTa12、LiLaZr12、LiBaLaTa12、Li3.6Si0.60.4等が挙げられる。
 硫化物系固体電解質としては、特に限定されず、硫黄(S)を含有し、かつ、リチウムイオン伝導性と電子絶縁性とを有するものであれば用いることができる。硫化物系固体電解質としては、例えば、LiS-P、LiS-SiS、LiI-LiS-SiS、LiI-LiS-P、LiI-LiS-B、LiPO-LiS-SiS、LiPO-LiS-SiS、LiPO-LiS-SiS、LiI-LiS-P、LiI-LiPO-P等が挙げられる。
 なお、無機固体電解質としては、上記以外のものを用いてよく、例えば、LiN、LiI、LiN-LiI-LiOH等を用いてもよい。
 有機固体電解質としては、イオン電導性を示す高分子化合物であれば、特に限定されず、例えば、ポリエチレンオキシド、ポリプロピレンオキシド、これらの共重合体などを用いることができる。また、有機固体電解質は、支持塩(リチウム塩)を含んでいてもよい。なお、固体電解質を用いる場合は、電解質と正極活物質の接触を確保するため、正極材中にも固体電解質を混合させてもよい。
(電池の形状、構成)
 以上のように説明してきた正極、負極、セパレータおよび非水系電解質で構成される本実施形態のリチウムイオン二次電池の形状は、円筒型、積層型等、種々のものとすることができる。いずれの形状を採る場合であっても、正極および負極を、セパレータを介して積層させて電極体とし、得られた電極体に、非水系電解液を含浸させ、正極集電体と外部に通ずる正極端子との間、および、負極集電体と外部に通ずる負極端子との間を、集電用リード等を用いて接続し、電池ケースに密閉して、リチウムイオン二次電池を完成させる。
 また、固体電解質を用いる場合には、正極および負極を、固体電解質を介して積層させて、正極集電体と外部に通ずる正極端子との間、および、負極集電体と外部に通ずる負極端子との間を、集電用リード等を用いて接続し、電池ケースに密閉して、リチウムイオン二次電池を完成させる。
 (3)リチウムイオン二次電池の特性
 本発明のリチウムイオン二次電池は、上述したように、本発明の正極活物質を正極材料として用いているため、容量特性、出力特性およびサイクル特性に優れる。しかも、従来のリチウムニッケル系酸化物粒子からなる正極活物質を用いた二次電池との比較においても、熱安定性において優れているといえる。
 (4)用途
 本発明のリチウムイオン二次電池は、上述のように、容量特性、出力特性およびサイクル特性に優れており、これらの特性が高いレベルで要求される小型携帯電子機器(ノート型パーソナルコンピュータや県電話端末など)の電源に好適に利用することができる。また、本発明のリチウムイオン二次電池は、熱安定性にも優れており、小型化および高出力化が可能であるばかりでなく、高価な保護回路を簡略することができるため、搭載スペースに制約を受ける輸送用機器の電源としても好適に利用することができる。
 以下、実施例および比較例を用いて、本発明を詳細に説明する。なお、以下の実施例および比較例では、特に断りがない限り、金属複合水酸化物および正極活物質の作製には、和光純薬工業株式会社製試薬特級の各試料を使用した。また、核生成工程および粒子成長工程を通じて、反応水溶液のpH値は、pHコントローラ(日伸理化製、NPH-690D)により測定し、この測定値に基づき、水酸化ナトリウム水溶液の供給量を調整することで、各工程における反応水溶液のpH値の変動幅を±0.2の範囲に制御した。
(実施例1)
(a)金属複合水酸化物の製造
[第1の晶析工程]
(核生成工程)
 はじめに、反応槽内に、水を1.2L入れて790rpmで撹拌しながら、槽内温度を40℃に設定した。この際、反応槽内に、窒素ガスを導入し、30分間流通させ、反応雰囲気を、酸素濃度が1容量%以下の非酸化性雰囲気とした。続いて、反応槽内に、25質量%水酸化ナトリウム水溶液と25質量%アンモニア水を適量供給し、pH値が、液温25℃基準で12.5、アンモニウムイオン濃度が10g/Lとなるように調整することで反応前水溶液を形成した。
 同時に、硫酸ニッケル、硫酸コバルト、硫酸マンガン、硫酸ジルコニウムを、各金属元素のモル比がNi:Mn:Co:Zr=38:30:32:0.2となるように水に溶解し、2mol/Lの第1の原料水溶液を調製した。
 次に、第1の原料水溶液を、反応前水溶液に13ml/分で供給することで、核生成工程用水溶液を形成し、2.5分間の核生成を行った。この際、25質量%の水酸化ナトリウム水溶液と25質量%のアンモニア水を適時供給し、核生成用水溶液のpH値およびアンモニウムイオン濃度を上述した範囲に維持した。
(粒子成長工程)
 核生成終了後、一旦、すべての水溶液の供給を一旦停止するとともに、硫酸を反応槽へ加えて、pH値が、液温25℃基準で11.6となるように調整することで、粒子成長用水溶液を形成した。pH値が所定の値になったことを確認した後、第1の原料水溶液を反応槽へ供給し、核生成工程で生成した核(粒子)を成長させた。
[雰囲気の切り替え]
 第1の晶析工程、及び、第2の晶析工程の粒子成長工程において、非酸化性雰囲気と酸化性雰囲気との切り替えを4回行った。具体的には、非酸化性雰囲気から酸化性雰囲気へ切り替えた後(1回目)、非酸化性雰囲気へ切り替えた(2回目)。さらに、酸化性雰囲気へ切り替えた後(3回目)、非酸化性雰囲気へ切り替えた(4回目)。非酸化雰囲気としては、窒素ガスを導入し、酸素濃度が1容量%以下の雰囲気を用い、酸化性雰囲気としては、大気雰囲気を用いた。また、反応雰囲気の切り替えのタイミングは、粒子成長が行われる時間全体に対して、20%、40%、60%、及び、80%経過した時点で行った。
[第2の晶析工程]
 第2の原料水溶液として、第1の原料水溶液とタングステンを含む水溶液とを用いた。タングステンを含む水溶液として、タングステン酸ナトリウム二水和物を、得られる水酸化物の各金属元素のモル比がNi:Mn:Co:Zr:W=38:30:32:0.2:0.6となるように水に溶解し、タングステン酸ナトリウム水溶液を調製した。
 第1の水溶液を供給するとともに、前記タングステン酸ナトリウム水溶液の反応槽への供給(第2の原料水溶液の供給)を以下の2回に分けて行った(図3参照)。
 (i)粒子成長を行う時間全体に対して、2/5時間(40%)経過した時点から3/5時間(60%)経過した時点まで
 (ii)粒子成長を行う時間全体に対して、4/5時間(80%)経過した時点から5/5時間(100%)経過した時点(粒子成長終了時点)まで
 すべての水溶液の供給を停止することで、粒子成長工程を終了した。その後、得られた生成物を、水洗、ろ過および乾燥させることにより、粉末状の金属複合水酸化物を得た。
 なお、第1の晶析工程における粒子成長工程、及び、第2の晶析工程において、これらの工程を通じて、25質量%の水酸化ナトリウム水溶液と25質量%のアンモニア水を適時供給し、粒子成長用水溶液のpH値およびアンモニウムイオン濃度を上述した範囲に維持した。なお、第1の原料水溶液の供給速度は、晶析工程の全体において、一定(13ml/分)とした。
(b)金属複合水酸化物の評価
 ICP発光分光分析装置(株式会社島津製作所製、ICPE-9000ICPE-9000)を用いた分析により、この金属複合水酸化物は、一般式:Ni0.38Mn0.30Co0.32Zr0.0020.006(OH)で表されることが確認された。
 また、レーザ光回折散乱式粒度分析計(日機装株式会社製、マイクロトラックHRA)を用いて、金属複合水酸化物の平均粒径を測定するとともに、d10およびd90を測定し、粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕を算出した。その結果、金属複合水酸化物の平均粒径は5.4μmであり、〔(d90-d10)/平均粒径〕は0.45であることを確認した。
 また、金属複合水酸化物中のタングステン濃縮層の存在の有無、及び、その厚さを確認するため、走査型透過電子顕微鏡(株式会社日立ハイテクノロジーズ社製、HD-2300A)に搭載されたエネルギー分散型X線分析装置(EDX)を用いて、金属複合水酸化物断面の面分析を行った。その結果、金属複合水酸化物の表層においてタングステンが濃縮して存在する部位(タングステン濃縮層)の形成を確認し、その平均厚さは65~70nmの範囲であることを確認した。
 また、タップ密度は、振とう比重測定器(株式会社蔵持科学器械製作所製、KRS-409)を用いて、得られた金属複合水酸化物を20mlメスシリンダーに充填後、該メスシリンダーについて、高さ2cmからの自由落下を500回繰り返す方法で密に充填させてから測定を行った。その結果、タップ密度は、1.15g/cmであることを確認した。
(c)正極活物質の作製
 上述のようにして得られた金属複合水酸化物をLi/Meが1.14となるように、シェーカーミキサ装置(ウィリー・エ・バッコーフェン(WAB)社製TURBULA TypeT2C)を用いて炭酸リチウムと十分に混合し、リチウム混合物を得た。
 このリチウム混合物を、空気(酸素濃度:21容量%)気流中、昇温速度を2.5℃/分として900℃まで昇温し、この温度で4時間保持することにより焼成し、冷却速度を約4℃/分として室温まで冷却した。このようにして得られた正極活物質は、凝集または軽度の焼結が生じていた。このため、この正極活物質を解砕し、平均粒径および粒度分布を調整した。
(d)正極活物質の評価
 ICP発光分析装置を用いた分析により、この正極活物質は、一般式:Li1.14Ni0.38Mn0.30Co0.32Zr0.0020.006で表されるものであることが確認された。また、レーザ光回折散乱式粒度分析計を用いて、リチウム金属複合酸化物の平均粒径を測定するとともに、d10およびd90を測定し、粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕を算出した。その結果、リチウム金属複合酸化物の平均粒径は5.3μmであり、〔(d90-d10)/平均粒径〕は0.43であることを確認した。
 また、X線回折装置(スペクトリス株式会社製、X‘Pert PRO)を用いて、(003)面の結晶子径の測定を行ったところ1,185Å(118.5nm)であった。また、走査型透過電子顕微鏡を用いてリチウム金属複合酸化物におけるタングステンの分布を確認するため、エネルギー分散型X線分析装置(EDX)を用いて、リチウム金属複合酸化物断面の面分析を行った。その結果、リチウム金属複合酸化物においてタングステンが、二次粒子の表面付近の一次粒子の表層及び一次粒子間の粒界に多く含有していることを確認した。
 また、タップ密度は、金属複合水酸化物と同様の条件で評価し、BET比表面積は、流動方式-窒素ガス吸着法を採用した比表面積測定装置(株式会社マウンテック製、マックソーブ1200シリーズ)によって評価した。
 (e)二次電池の作製
 図8は、電池特性の評価に用いた2032型コイン電池CBAを示す図である。以下、図8を参照して、二次電池の作製方法について説明する。
 上述のようにして得られた正極活物質:52.5mgと、アセチレンブラック:15mgと、PTEE:7.5mgを混合し、100MPaの圧力で、直径11mm、厚さ100μmにプレス成形した後、真空乾燥機中、120℃で12時間乾燥することにより、正極PEを作製した。
 次に、この正極PEを用いて2032型コイン電池CBAを、露点が-80℃に管理されたAr雰囲気のグローブボックス内で作製した。この2032型コイン電池の負極NEには、直径17mm、厚さ1mmのリチウム金属を用い、電解液には、1MのLiClOを支持電解質とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合液(富山薬品工業株式会社製)を用いた。また、セパレータSEには、膜厚25μmのポリエチレン多孔膜を用いた。なお、2032型コイン電池CBAは、ガスケットGAを有し、正極缶PCと負極缶NCとでコイン状の電池に組み立てられたものである。
 (f)電池評価
 [抵抗]
 上記で組み立てたコイン電池CBAを用いてSOC20%における交流インピーダンス法による抵抗値を測定し、比較例1を基準とした相対値を、Reference(Ref.)に対する抵抗値として算出したところ70.0%であった。これらの結果を表1に示す。
(実施例2)
 タングステンを含む水溶液として、タングステン酸ナトリウム二水和物を、得られる水酸化物の各金属元素のモル比がNi:Mn:Co:Zr:W=38:30:32:0.2:0.5となるように調製した以外は実施例1と同様の条件で、金属複合水酸化物を得た。得られた金属複合水酸化物の評価結果を表1に示す。次に、得られた金属複合水酸化物を前駆体としたこと以外は、実施例1と同様の条件で、正極活物質および二次電池を得た。得られた正極活物質の評価結果を表2に示す。
(実施例3~5)
 表1に示すように、粒子成長中におけるタングステンを含む水溶液の添加のタイミング(添加時間)を変更した以外は実施例1と同様の条件で、金属複合水酸化物を得た。得られた金属複合水酸化物の評価結果を表1に示す。
 また、走査型透過電子顕微鏡(日立ハイテクノロジーズ社製、HD-2300A)に搭載されたエネルギー分散型X線分析装置(EDX)を用いて、実施例で得られた金属複合水酸化物の断面の面分析を行い、得られたWの分布を解析した。その結果、実施例で得られた金属複合水酸化物は、二次粒子の表層にタングステンが濃縮して存在する部位(タングステン濃縮層)が検出され、その厚さは、20nm以上100nm以下であることが確認された。
 次に、得られた金属複合水酸化物を前駆体としたこと以外は、実施例1と同様の条件で、正極活物質および二次電池を得た。得られた金属複合水酸化物、及び、正極活物質の評価結果を表2に示す。また、走査型透過電子顕微鏡(日立ハイテクノロジーズ社製、HD-2300A)に搭載されたエネルギー分散型X線分析装置(EDX)を用いて、実施例2~8で得られたリチウム金属複合酸化物の断面の面分析を行い、得られたWの分布を解析した。その結果、実施例で得られたリチウム金属複合酸化物は、二次粒子の表面付近の一次粒子の表層、及び、一次粒子間の粒界にタングステンが多く存在していることが確認された。
(比較例1)
 粒子成長工程開始時点からタングステン化合物を添加した(添加範囲は100%となる)以外は実施例1と同様の条件で、金属複合水酸化物を得た。得られた金属複合水酸化物の評価結果を表1に示す。次に、得られた金属複合水酸化物を前駆体としたこと以外は、実施例1と同様の条件で、正極活物質および二次電池を作製した。得られた正極活物質及び二次電池の評価結果を表1に示す。
(比較例2)
 タングステンを含有しない金属複合水酸化物(Ni0.38Mn0.30Co0.32Zr0.002(OH))を用いたこと、及び、金属複合水酸化物と炭酸リチウムと混合する際に、酸化タングステンをあわせて添加して、混合して、リチウム混合物を得たこと(外添)以下は、実施例1と同様の条件で、正極活物質(Li1.14Ni0.38Mn0.30Co0.32Zr0.0020.005)、及び、二次電池を作製した。得られた正極活物質及び二次電池の評価結果を表1に示す。
(比較例3)
 晶析工程の際、第2の晶析工程において、タングステン酸ナトリウム水溶液を供給しない以外は、実施例1と同様の条件で、金属複合水酸化物、正極活物質及び二次電池を作製した。得られた金属複合水酸化物、正極活物質及び二次電池の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
(評価結果)
 実施例で得られた金属複合水酸化物は、その表面にタングステン濃縮層を形成することが確認された。また、実施例で得られた正極活物質は、晶析工程全体でタングステンを添加した比較例1と比較して、より大きな結晶子径を有し、かつ、二次電池の正極として用いた際、低い正極抵抗値を示した。
 また、実施例で得られた金属複合水酸化物は、厚さが100nm以下のタングステン濃縮層が形成され、これらの金属複合水酸化物を前駆体として得られた正極活物質は、タングステン化合物を外添した比較例2と比較して同程度の結晶子径を有し、かつ、二次電池の正極として用いた際、より低い正極抵抗値を示した。
 さらに、実施例1で得られた金属複合水酸化物は、厚さが100nm以下のタングステン濃縮層が形成されるだけでなく、Wの仕込み量に対するWの歩留まりが良く金属複合水酸化物中のW濃度が高いため、これらの金属複合水酸化物を前駆体として得られて正極活物質は、他の実施例と比較しても低い正極抵抗値を示した。
 一方、タングステンを添加しない比較例3で得られた正極活物質は、タングステンを添加した他の実施例及び比較例と比較して、結晶子径は比較的大きいものの、二次電池の正極として用いた際、正極抵抗値が大きく、出力特性に劣ることが示された。
 なお、本発明の技術範囲は、上述の実施形態などで説明した態様に限定されるものではない。上述の実施形態などで説明した要件の1つ以上は、省略されることがある。また、上述の実施形態などで説明した要件は、適宜組み合わせることができる。また、法令で許容される限りにおいて、日本特許出願である特願2018-201708、及び本明細書で引用した全ての文献の内容を援用して本文の記載の一部とする。
10…金属複合水酸化物
1…一次粒子
2…二次粒子
3…タングステン濃縮層
4…中心部
5…空隙部
6…中実部
20…リチウム金属複合酸化物
21…一次粒子
22…二次粒子
23…タングステン及びリチウムを含む化合物
24…中心部
25…実質部
26…空隙部
CBA……コイン電池
CA……ケース
PC……正極缶
NC……負極缶
GA……ガスケット
PE……正極
NE……負極
SE……セパレータ

Claims (16)

  1.  ニッケル、マンガン、及び、タングステンと、任意にコバルト、及び、元素Mと、を含み、かつ、それぞれの金属元素の物質量比が、Ni:Mn:Co:W:M=x:y:z:a:b(x+y+z=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0<a≦0.1、0≦b≦0.1、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、及び、Taから選択される1種以上の元素)で示される金属複合水酸化物の製造方法であって、
     反応槽に前記金属元素を含む第1の原料水溶液と、アンモニウムイオン供給体とを供給し、前記反応槽内の反応水溶液のpHを調整して晶析反応を行う、第1の晶析工程と、
     前記反応槽に前記金属元素を含み、かつ、前記第1の原料水溶液よりもタングステンを多く含む第2の原料水溶液と、アンモニウムイオン供給体とを供給し、前記反応水溶液のpHを調整して晶析反応を行い、タングステン濃縮層を形成する、第2の晶析工程と、を備え、
     前記第1の晶析工程と前記第2の晶析工程とをこの順で、1回以上行い、
     1回目の前記第1の晶析工程は、核生成を行う核生成工程と、粒子成長を行う粒子成長工程とを備え、前記第2の晶析工程は、前記粒子成長工程に引き続き、粒子成長を行うことを含み、
     前記第1及び第2の晶析工程の粒子成長において、酸素濃度が5容量%以下の非酸化性雰囲気、及び、前記非酸化性雰囲気よりも高い酸素濃度を有する酸化性雰囲気のいずれか一方の雰囲気から他方の雰囲気へ、反応雰囲気を切り替えることを2回以上行い、
     前記非酸化性雰囲気における前記第2の原料水溶液を反応槽へ供給する時間が、前記第2の原料水溶液を反応槽へ供給する時間全体に対して、50%以上である、
    金属複合水酸化物の製造方法。
  2.  前記第1の晶析工程における核生成は、前記非酸化性雰囲気で行い、
     前記第1及び第2の晶析工程における粒子成長は、前記反応水溶液のpHを、前記核生成工程における前記反応水溶液のpH値より低くなるように調整し、かつ、前記非酸化性雰囲気から前記酸化性雰囲気への雰囲気の切り替えを2回以上行う、請求項1に記載の金属複合水酸化物の製造方法。
  3.  前記非酸化性雰囲気から前記酸化性雰囲気への反応雰囲気の切り替えを4回行う、請求項1又は請求項2に記載の金属複合水酸化物の製造方法。
  4.  前記金属複合水酸化物は、複数の一次粒子が凝集した二次粒子を含み、前記二次粒子は、前記二次粒子の中心から表面に向かって、前記一次粒子が密に配置された中心部と、前記一次粒子が前記中心部よりも疎に配置された空隙部と、前記一次粒子が密に配置された中実部とを含む、多層構造を有し、
     前記金属複合水酸化物のタップ密度が0.75g/cm以上1.35g/cm以下である、請求項1~請求項3のいずれか一項に記載の金属複合水酸化物の製造方法。
  5.  前記第2の晶析工程は、前記タングステン濃縮層を、前記金属複合水酸化物の表面から中心部に向かう方向において、厚さを100nm以下となるように形成することを含む、請求項1~請求項4のいずれか一項に記載の金属複合水酸化物の製造方法。
  6.  前記第2の晶析工程における第2の原料水溶液の添加は、前記第1及び第2の晶析工程において、粒子成長が行われる時間全体に対して、30%以上95%以下経過した時点で行う、請求項1~請求項5のいずれか一項に記載の金属複合水酸化物の製造方法。
  7.  前記第2の原料水溶液は、前記第1の原料水溶液と、タングステンを含む水溶液とを含み、前記第2の原料水溶液の供給は、前記第1の原料水溶液と、タングステンを含む水溶液とを別々に前記反応水溶液に供給して行う、請求項1~請求項6のいずれか一項に記載の金属複合水酸化物の製造方法。
  8.  前記タングステンを含む水溶液中のタングステン濃度は、前記タングステンを含む水溶液の全体に対して、18質量%以上である、請求項7に記載の金属複合水酸化物の製造方法。
  9.  前記反応槽へのタングステンの供給量に対して、前記金属複合水酸化物に含まれるタングステンの含有量が70モル%以上である、請求項1~請求項8のいずれか一項に記載の金属複合水酸化物の製造方法。
  10.  ニッケル、マンガン、及び、タングステン、並びに、任意にコバルト、及び、元素Mを含み、かつ、それぞれの金属元素の物質量比が、Ni:Mn:Co:W:M=x:y:z:a:b(x+y+z=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0<a≦0.1、0≦b≦0.1、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、及び、Taから選択される1種以上の元素)で示される金属複合水酸化物であって、
     複数の一次粒子が凝集した二次粒子を含み、
     前記二次粒子の表層にタングステン濃縮層を有し、
     前記二次粒子は、前記二次粒子の中心から表面に向かって、前記一次粒子が密に配置された中心部と、前記一次粒子が前記中心部よりも疎に配置された空隙部と、前記一次粒子が密に配置された中実部とを含む、多層構造を有し、
     タップ密度が0.75g/cm以上1.35g/cm以下であり、かつ、
     タングステンが、前記空隙部より、前記中実部に高濃度で含有される、
     金属複合水酸化物。
  11.  前記タングステン濃縮層の厚みが100nm以下である、請求項10に記載の金属複合水酸化物。
  12.  前記複合水酸化物の平均粒径が4.0μm以上9.0μm以下であり、かつ、粒度分布の広がりを示す指標である[(d90-d10)/平均粒径]が0.65以下である、請求項10または請求項11に記載の金属複合水酸化物。
  13.  請求項1~9のいずれか一項に記載の製造方法により得られる金属複合水酸化物及び前記金属複合水酸化物を熱処理して得られる金属複合酸化物の少なくとも一方と、リチウム化合物とを混合してリチウム混合物を得る工程と、
     前記リチウム混合物を焼成して、リチウム金属複合酸化物を得る工程と、を備える、リチウムイオン二次電池用正極活物質の製造方法。
  14.  リチウム、ニッケル、マンガン、及び、タングステンと、任意にコバルト、及び、元素Mと、を含み、それぞれの金属元素の物質量比が、Li:Ni:Mn:Co:W:M=1+u:x:y:z:a:b(x+y+z=1、-0.05≦u≦0.50、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0<a≦0.1、0≦b≦0.1、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Taから選択される1種以上の元素)で表されるリチウム金属複合酸化物を含有し、
     前記リチウム金属複合酸化物は、複数の一次粒子が凝集した二次粒子を含み、
     前記二次粒子は、前記二次粒子の中心から表面に向かって、前記一次粒子が密に配置された中心部と、前記一次粒子が前記中心部よりも疎に配置された空隙部と、前記一次粒子が密に配置された実質部とを少なくとも含む、多層構造を有し、
     前記二次粒子の表面又は内部に存在する一次粒子の表層、及び、前記一次粒子間の粒界に、タングステン及びリチウムを含む化合物が濃縮されて存在し、
     タップ密度が1g/cm以上2g/cm以下であり、かつ、
     BET比表面積が1.45m/g以上5.4m/g以下である、
    リチウムイオン二次電池用正極活物質。
  15.  粉末X線回折測定によって得られた(003)面の結晶子径が110nm以上である、請求項14に記載のリチウムイオン二次電池用正極活物質。
  16.  正極と、負極と、セパレータと、非水電解質とを備え、前記正極の正極材料として、請求項14又は請求項15に記載のリチウムイオン二次電池用正極活物質が用いられる、リチウムイオン二次電池。
PCT/JP2019/041267 2018-10-26 2019-10-21 金属複合水酸化物とその製造方法、リチウムイオン二次電池用正極活物質とその製造方法、及び、それを用いたリチウムイオン二次電池 WO2020085283A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/287,726 US20210395105A1 (en) 2018-10-26 2019-10-21 Metal composite hydroxide and method for producing the same, positive electrode active material for lithium ion secondary battery and method for producing the same, and lithium ion secondary battery using the same
CN201980070086.6A CN112912343B (zh) 2018-10-26 2019-10-21 金属复合氢氧化物及其制造方法、锂离子二次电池用正极活性物质及其制造方法及使用其的锂离子二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018201708A JP7310117B2 (ja) 2018-10-26 2018-10-26 金属複合水酸化物とその製造方法、リチウムイオン二次電池用正極活物質とその製造方法、及び、それを用いたリチウムイオン二次電池
JP2018-201708 2018-10-26

Publications (1)

Publication Number Publication Date
WO2020085283A1 true WO2020085283A1 (ja) 2020-04-30

Family

ID=70331469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041267 WO2020085283A1 (ja) 2018-10-26 2019-10-21 金属複合水酸化物とその製造方法、リチウムイオン二次電池用正極活物質とその製造方法、及び、それを用いたリチウムイオン二次電池

Country Status (4)

Country Link
US (1) US20210395105A1 (ja)
JP (1) JP7310117B2 (ja)
CN (1) CN112912343B (ja)
WO (1) WO2020085283A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7181982B1 (ja) 2021-11-22 2022-12-01 住友化学株式会社 前駆体粉末、正極活物質粉末、正極活物質粉末の製造方法、正極及びリチウム二次電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114772657B (zh) * 2022-03-29 2024-05-07 兰州金通储能动力新材料有限公司 一种锂离子电池的正极材料前驱体及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016210674A (ja) * 2015-04-28 2016-12-15 日亜化学工業株式会社 ニッケルコバルト複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに、非水系電解質二次電池
JP2018104274A (ja) * 2016-12-27 2018-07-05 住友金属鉱山株式会社 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法
JP2019189489A (ja) * 2018-04-26 2019-10-31 住友金属鉱山株式会社 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、及び、それを用いた非水電解質二次電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5971109B2 (ja) * 2011-12-20 2016-08-17 住友金属鉱山株式会社 ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
JP6596978B2 (ja) 2015-06-26 2019-10-30 住友金属鉱山株式会社 遷移金属複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016210674A (ja) * 2015-04-28 2016-12-15 日亜化学工業株式会社 ニッケルコバルト複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに、非水系電解質二次電池
JP2018104274A (ja) * 2016-12-27 2018-07-05 住友金属鉱山株式会社 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法
JP2019189489A (ja) * 2018-04-26 2019-10-31 住友金属鉱山株式会社 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、及び、それを用いた非水電解質二次電池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7181982B1 (ja) 2021-11-22 2022-12-01 住友化学株式会社 前駆体粉末、正極活物質粉末、正極活物質粉末の製造方法、正極及びリチウム二次電池
WO2023090452A1 (ja) * 2021-11-22 2023-05-25 住友化学株式会社 前駆体粉末、正極活物質粉末、正極活物質粉末の製造方法、正極及びリチウム二次電池
JP2023076015A (ja) * 2021-11-22 2023-06-01 住友化学株式会社 前駆体粉末、正極活物質粉末、正極活物質粉末の製造方法、正極及びリチウム二次電池

Also Published As

Publication number Publication date
CN112912343B (zh) 2023-07-11
JP2020066560A (ja) 2020-04-30
JP7310117B2 (ja) 2023-07-19
CN112912343A (zh) 2021-06-04
US20210395105A1 (en) 2021-12-23

Similar Documents

Publication Publication Date Title
JP6244713B2 (ja) 非水電解質二次電池用正極活物質の製造方法
KR101644252B1 (ko) 니켈 복합 수산화물과 그의 제조 방법, 비수계 전해질 이차 전지용 정극 활물질과 그의 제조 방법, 및 비수계 전해질 이차 전지
JP6252010B2 (ja) 非水電解質二次電池用正極活物質およびその製造方法、並びに、非水電解質二次電池
JP5880426B2 (ja) ニッケル複合水酸化物及びその製造方法、並びに正極活物質の製造方法
JP5590337B2 (ja) マンガン複合水酸化物粒子、非水系電解質二次電池用正極活物質、および非水系電解質二次電池と、それらの製造方法
WO2012164763A1 (ja) 非水系電解質二次電池用正極活物質の前駆体となる遷移金属複合水酸化物とその製造方法、その非水系電解質二次電池用正極活物質とその製造方法、ならびに該正極活物質を用いた非水系電解質二次電池
JP7464102B2 (ja) 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、及び、それを用いた非水電解質二次電池
JP7159639B2 (ja) 遷移金属複合水酸化物の粒子の製造方法、及び、リチウムイオン二次電池用正極活物質の製造方法
WO2019163845A1 (ja) 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
WO2019163846A1 (ja) 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
JP2023040082A (ja) 金属複合水酸化物とその製造方法、リチウムイオン二次電池用正極活物質とその製造方法、及び、それを用いたリチウムイオン二次電池
JP7206819B2 (ja) リチウムイオン二次電池用正極活物質とその製造方法、及び、リチウムイオン二次電池
KR102532481B1 (ko) 금속 복합 수산화물과 그의 제조 방법, 비수전해질 이차 전지용 정극 활물질과 그의 제조 방법, 및 그것을 사용한 비수전해질 이차 전지
JP7167540B2 (ja) リチウムイオン二次電池用正極活物質とその製造方法およびリチウムイオン二次電池
WO2020085283A1 (ja) 金属複合水酸化物とその製造方法、リチウムイオン二次電池用正極活物質とその製造方法、及び、それを用いたリチウムイオン二次電池
JP2021147314A (ja) 遷移金属複合水酸化物粒子、遷移金属複合水酸化物粒子の製造方法、リチウムイオン二次電池用正極活物質、及びリチウムイオン二次電池
US20230135908A1 (en) Metal composite hydroxide, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing said positive electrode active material, and nonaqueous electrolyte secondary battery using said positive electrode active material
JP2020119786A (ja) ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
WO2019163847A1 (ja) 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
JP7408912B2 (ja) リチウムイオン二次電池用正極活物質の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19875501

Country of ref document: EP

Kind code of ref document: A1