WO2020083310A1 - 旋转机械的供油机构以及旋转机械 - Google Patents

旋转机械的供油机构以及旋转机械 Download PDF

Info

Publication number
WO2020083310A1
WO2020083310A1 PCT/CN2019/112756 CN2019112756W WO2020083310A1 WO 2020083310 A1 WO2020083310 A1 WO 2020083310A1 CN 2019112756 W CN2019112756 W CN 2019112756W WO 2020083310 A1 WO2020083310 A1 WO 2020083310A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
oil supply
supply mechanism
passage
bypass
Prior art date
Application number
PCT/CN2019/112756
Other languages
English (en)
French (fr)
Inventor
胡小伟
王石
倪凌枫
Original Assignee
艾默生环境优化技术(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811247160.0A external-priority patent/CN111089058A/zh
Priority claimed from CN201821732949.0U external-priority patent/CN208934930U/zh
Application filed by 艾默生环境优化技术(苏州)有限公司 filed Critical 艾默生环境优化技术(苏州)有限公司
Publication of WO2020083310A1 publication Critical patent/WO2020083310A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • the invention relates to an oil supply mechanism of a rotary machine and a rotary machine including the oil supply mechanism, and more particularly, to a scroll compressor capable of adjusting oil circulation rate under different compression working conditions.
  • Compressors can be used in, for example, refrigeration systems, air conditioning systems, and heat pump systems.
  • the scroll compressor includes a compression mechanism for compressing a working fluid (for example, refrigerant) and a rotating shaft for driving the compression mechanism.
  • a working fluid for example, refrigerant
  • the rotating shaft rotates to drive the compression mechanism to compress the working fluid
  • lubricant for example, lubricating oil
  • various moving parts of the compressor including bearings, linings
  • lubricant needs to be supplied between the movable scroll member and the fixed scroll member of the compression mechanism to improve the friction between the movable scroll member and the fixed scroll member, thereby reducing wear and reducing power consumption.
  • oil circulation rate is introduced. If the oil circulation rate is too large or too small, it is not conducive to the normal operation of the compressor and the compressor system and affects its performance.
  • the oil circulation rate also becomes larger, for example, it may cause the efficiency of the heat exchanger to decrease, thereby affecting the operation and performance of the compressor system; vice versa
  • the oil circulation rate becomes smaller, for example, it may result in insufficient amount of lubricant supplied to the compression mechanism, thereby causing serious wear on the movable scroll member and the fixed scroll member.
  • Another object of the present invention is to provide a scroll compressor which can cause a part of the lubricant in the internal through hole of the rotary shaft to flow out of the rotary shaft when the rotary shaft rotates at a high speed to adjust or control the oil circulation rate .
  • Another object of the present invention is to provide a scroll compressor that can not only adjust or control the oil circulation rate under different compression conditions, but also maintain the dynamic balance of the rotating shaft when the rotating shaft rotates.
  • the present disclosure provides an oil supply mechanism for a rotating machine, the rotating machine including a rotating shaft.
  • the oil supply mechanism includes a main oil supply passage, a bypass oil passage and a bypass component.
  • the main oil supply passage is formed in the rotating shaft generally along the axial direction of the rotating shaft.
  • the bypass oil passage communicates with the main oil supply passage to allow a part of the lubricating oil in the main oil supply passage to flow out through the bypass oil passage.
  • the bypass member includes an elastic valve plate having a first fixed portion and a second movable portion, the second movable portion can be opened and closed at a first position where the bypass oil passage is closed Between the second position of the bypass passage.
  • the bypass oil passage and the bypass member are provided, part of the lubricating oil can be discharged to the outside under the action of centrifugal force when the rotating shaft rotates at a high speed. In this way, it is possible to well prevent an excessively high oil circulation rate when rotating at a high speed, while ensuring a sufficient supply of lubricating oil when rotating at a low speed.
  • the rotating shaft is configured to form a mounting base for mounting the elastic valve plate.
  • the elastic valve plate can be directly mounted on the rotating shaft, thereby simplifying the structure and saving installation space, and also reducing the number of parts and thus simplifying the assembly and reducing the cost.
  • a separate mounting base for mounting the elastic valve plate is provided between the elastic valve plate and the rotating shaft.
  • the mounting base is independent of the rotation axis, there is no need to make too many changes to the rotation axis.
  • the design of the independent mounting base can be more flexible and more suitable for rotating shafts of various structures.
  • the mounting base has a ring shape or an arc shape.
  • the shape or size of the mounting base can be changed according to specific application requirements, for example, to reduce flow resistance or balance weight.
  • the mounting base is in the form of a weight.
  • the mounting base may be used as a balance weight.
  • the bypass component according to the present disclosure can be integrated in the balance weight, whereby the dynamic balance of the rotary shaft can be achieved without advancement, while also controlling the oil circulation rate.
  • the mounting base has an interference fit on the rotating shaft or is attached to the rotating shaft by fasteners.
  • the mounting base includes a flat portion including a first flat portion and a second flat portion, the first flat portion is used for fixedly mounting the first fixing of the elastic valve plate In part, the second flat portion is adapted to be abutted by the second movable portion of the elastic valve plate.
  • the bypass oil passage has an inlet at the main oil supply passage and an outlet at the second plane portion.
  • the bypass oil passage is formed in a stepped form, and includes a first portion having a smaller cross-sectional area extending from the inlet and a portion having a larger cross-sectional area extending from the first portion toward the outlet the second part.
  • the bypass oil passage in the form of a step is beneficial to the stability of the action of the elastic valve plate.
  • the oil discharge capacity of the bypass oil passage can be controlled.
  • the length of the first portion is greater than or equal to the length of the second portion in the direction of fluid flow in the bypass passage.
  • the second planar portion is inclined at an angle relative to the first planar portion, so that the second movable portion of the elastic valve plate applies a pre-compression force to the second planar portion, This reliably closes the outlet.
  • the elastic valve plate can apply a pre-pressing force to the second plane portion, thereby reliably closing the outlet during low-speed rotation.
  • the angle ⁇ By designing the angle ⁇ , the rotation speed when the elastic valve plate is opened can be effectively controlled, thereby optimizing the oil circulation rate of a rotating machine (such as a compressor).
  • the outlet of the bypass oil passage is located away from the first planar portion and toward the outer edge of the second planar portion. In this way, the length of the bypass oil passage can be increased, and the limit portion or the oil discharge passage can be optimized.
  • the oil supply mechanism further includes a guard plate disposed outside the elastic valve plate, the guard plate includes a fixed mounting portion for mounting the guard plate, and The limit part of the second position.
  • an oil drain channel for lubricating oil to flow out is defined between the limit portion of the guard plate and the mounting base, the fixed mounting portion of the guard plate is located on the windward side, and the The outlet is located on the leeward side opposite to the windward side.
  • the limit portion of the guard plate is configured such that when the elastic valve plate is in the maximum open position against the limit portion, the flow area of the oil discharge passage is greater than or equal to the bypass oil The circulation area of the road.
  • the outer peripheral surface of the shield and the outer peripheral surface of the surrounding structure form a smooth transition arc-shaped contour or circular contour to reduce the airflow resistance and reduce the interference of the airflow on the elastic valve plate.
  • the fixed mounting portion of the guard plate is detachably mounted to the mounting base by fasteners.
  • a weight is provided on the second movable portion of the elastic valve plate. The rotation speed and interval when the elastic valve plate is opened can be further adjusted through the counterweight.
  • the oil supply mechanism further includes a pump oil device installed at an end of the rotary shaft where the lubricating oil is introduced.
  • the oil pumping device is a quantitative oil pumping device.
  • the main oil supply passage includes a central oil passage extending from one end of the rotating shaft and an eccentric oil passage extending eccentrically from the central oil passage toward the other end of the rotating shaft.
  • the bypass oil passage is provided at the center oil passage, or is provided at the eccentric oil passage and is located on a side opposite to the center axis of the rotary shaft with respect to the center axis of the eccentric oil passage.
  • the present disclosure also provides a rotating machine including the above oil supply mechanism.
  • the rotating machine includes a scroll compression mechanism, and the rotating shaft is used to drive the scroll compression mechanism.
  • FIG. 1 is a schematic cross-sectional view of an oil supply mechanism according to an embodiment of the present disclosure
  • FIG. 2 is a schematic perspective view of a part of the oil supply mechanism of FIG. 1;
  • FIG. 3 is an exploded schematic view of a part of the oil supply mechanism of FIG. 2;
  • FIGS. 1 to 3 is a schematic cross-sectional view of the bypass member of the oil supply mechanism shown in FIGS. 1 to 3, wherein the elastic valve plate is in a closed position;
  • FIG. 5 is a schematic cross-sectional view similar to FIG. 4, wherein the elastic valve plate is in an open position
  • FIG. 6 is a schematic diagram of a bypass oil passage according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a bypass oil passage according to another embodiment of the present invention.
  • FIG. 8 is a schematic perspective view of an oil supply mechanism according to another embodiment of the present disclosure.
  • FIG. 9 is a schematic cross-sectional view of the bypass member of the oil supply mechanism shown in FIG. 8;
  • FIG. 10 is a longitudinal sectional view of a bypass member used as a weight according to an embodiment of the present disclosure.
  • FIG. 11 is a longitudinal sectional view showing a scroll compressor to which the oil supply mechanism according to the present disclosure is applied.
  • the oil supply mechanism 100 includes a rotating shaft 10.
  • the rotating shaft 10 is a longitudinal member and includes a longitudinal center axis.
  • the rotating shaft 10 can rotate around the longitudinal center axis.
  • the rotating shaft 10 is suitable for use in various rotating machines, for example, as a rotation driving member.
  • the rotating shaft is often referred to as the crankshaft.
  • rotating machinery refers to a mechanical device or system having a rotating shaft, a crankshaft, or a rotating drive shaft.
  • a main oil supply passage 12 is provided in the rotating shaft 10.
  • the main oil supply passage 12 generally extends in the axial direction of the rotating shaft 10. Lubricating oil can be supplied to each part to be lubricated through the main oil supply passage 12.
  • the main oil supply passage 12 includes a center oil passage 12a extending from one end of the rotary shaft 10 and an eccentric oil passage 12b extending eccentrically from the center oil passage 12a toward the other end of the rotary shaft 10 .
  • the center oil passage 12a is adjacent to or immersed in an oil sump (for example, the oil sump OR in FIG. 11) so as to supply the lubricating oil in the oil sump into the rotating shaft 10.
  • a pump oil device (not shown) may be provided between the rotating shaft 10 (specifically, the end of the rotating shaft 10 into which lubricating oil is introduced) and an oil sump, for example, a fixed displacement pump with a constant theoretical displacement per revolution Oil device.
  • the quantitative pumping device may include a volumetric quantitative pumping device, a differential quantitative pumping device, a diaphragm quantitative pumping device, and the like.
  • the amount of lubricating oil that is pumped into the rotating shaft 10 and thus pumped to the movable part is also greater. This will cause the oil circulation rate to be too high, which is undesirable in some cases.
  • the oil supply mechanism further includes a bypass oil passage 20 and a bypass member 90.
  • the bypass oil passage 20 is configured to be able to discharge a part of the lubricating oil in the main oil supply passage 12 through the bypass oil passage 20, for example, to return to the oil sump OR.
  • the bypass oil passage 20 is provided at the center oil passage 12 a and is in fluid communication with the center oil passage 12 a.
  • the bypass oil passage 20 is substantially transverse to the center oil passage 12a.
  • the bypass oil passage 20 may be in the form of a round hole, or may be in any other suitable form.
  • bypass oil passage 20 may be disposed at the eccentric oil passage 12b, and is located on the opposite side to the center axis of the rotary shaft 10 with respect to the center axis of the eccentric oil passage 12b, which facilitates the effect of centrifugal force A part of the lubricating oil in the eccentric oil passage is discharged to the outside of the rotating shaft.
  • the bypass member 90 is configured to be able to close and open the bypass oil passage 20.
  • a part of the lubricating oil in the main oil supply passage 12 overcomes the force of the bypass member 90 under the action of the centrifugal force to open the bypass oil passage 20, so that the lubricating oil can pass through the bypass oil
  • the duct 20 and the bypass member 90 are discharged to the outside of the rotary shaft 10 and can be returned to the oil sump, thereby preventing the oil circulation rate from being too high.
  • the bypass member 90 may be fixed to the outer peripheral surface 11 of the rotary shaft 10 by interference fit or by a fastener such as a screw. It should be understood that the bypass member 90 can also be fixed to the rotating shaft 10 in any other suitable manner. In the examples of FIGS. 1 to 5, the bypass member 90 can be independent of the rotating shaft 10, therefore, the rotating shaft 10 does not need to be improved too much, and the independent bypass member 90 has better versatility.
  • the bypass member 90 is attached to the outer peripheral surface 11 of the rotating shaft 10. Referring to FIGS. 1 and 5, the bypass member 90 has a substantially arc shape.
  • the bypass member 90 includes a mounting base 60 fixed to the outer peripheral surface 11 of the rotating shaft 10, an elastic valve piece 30 provided on the mounting base 60, and a shield 50 provided outside the elastic valve piece 30.
  • the mounting base 60 is configured to be attached to the rotating shaft 10 and facilitates the installation of the elastic valve plate 30 and the guard plate 50.
  • the elastic valve plate 30 has a first fixed portion (first end) 31 sandwiched between the mounting base 60 and the shield 50 and a second movable portion (second) movable between the mounting base 60 and the shield 50 ⁇ ) 33.
  • the second movable portion 33 can move between a first position where the bypass oil passage 20 is closed (as shown in FIG. 4) and a second position where the bypass oil passage 20 is opened as shown in FIG. 5.
  • the mounting base 60 is substantially arc-shaped, and is detachably mounted to the rotating shaft 10 by a fastener such as a screw.
  • a fastener such as a screw.
  • the mounting base may be formed in any form, for example, ring-shaped; or may be fixed to the rotating shaft 10 in any other suitable manner, for example, by interference fit, welding, gluing, or the like.
  • the mounting base includes a flat portion 19.
  • the flat portion 19 includes a first flat portion 19 a and a second flat portion 19 b.
  • the first flat portion 19a is used to fixedly mount the first fixed portion 31 of the elastic valve piece, and the second flat portion 19b abuts on the second movable portion 33 of the elastic valve piece 30, thereby closing the bypass Oil passage 20.
  • the second flat portion 19b may be inclined at a certain angle ⁇ with respect to the first flat portion 19a.
  • the second movable portion 33 of the elastic valve piece 30 can apply a pre-pressing force to the second flat portion 19b, thereby reliably closing the bypass oil passage 20.
  • the angle ⁇ By setting the angle ⁇ , the rotation speed when the elastic valve plate 30 is opened can be effectively controlled, thereby adapting to various working conditions.
  • a weight 32 may be provided on the second movable portion 33 of the elastic valve plate 30 to urge the elastic valve plate 30 to open the bypass oil passage under the action of centrifugal force.
  • the position and structure of the weight 32 are not limited as long as it can realize the above-mentioned functions.
  • the bypass oil passage 20 has an inlet 13 located at the main oil supply passage 12 and an outlet 14 located at the second plane portion 19b.
  • the bypass oil passage 20 includes a first bypass oil passage 22 provided in the rotating shaft 10 and a second bypass oil passage 24 provided in the mounting base 60.
  • the first bypass oil passage 22 and the second bypass oil passage 24 are in fluid communication and aligned.
  • the first bypass oil passage 22 has substantially the same size (for example, diameter) as the second bypass oil passage 24.
  • the structure and shape of the bypass oil passage 20 may be changed, for example, to promote the discharge of lubricating oil or to facilitate stable discharge of lubricating oil.
  • 6 and 7 show such examples of the bypass oil passage 20. 6 and 7 show the bypass oil passage 20 in the form of steps.
  • the first bypass oil passage 22 is formed in a stepped form.
  • the first bypass oil passage 22 includes a portion having a smaller cross-sectional area extending from the inlet 13 and a portion having a larger cross-sectional area adjacent to the second bypass oil passage 24.
  • the portion of the first bypass oil passage 22 having a smaller cross-sectional area forms the first portion 20 a of the bypass oil passage 22.
  • the portion of the first bypass oil passage 22 having a larger cross-sectional area is substantially the same as the cross-sectional area of the second bypass oil passage 24, and thus forms the second portion of the bypass oil passage 22 together with the second bypass oil passage 24 20b.
  • the bypass oil passage 20 includes the first portion 20a having a smaller cross-sectional area and the second portion 20b having a larger cross-sectional area.
  • the second bypass oil passage 24 is formed in a stepped form.
  • the second bypass oil passage 24 includes a portion having a larger cross-sectional area extending from the outlet 14 toward the inlet 13 and a portion having a smaller cross-sectional area adjacent to the first bypass oil passage 22.
  • the portion of the second bypass oil passage 24 having a larger cross-sectional area is substantially the same as the cross-sectional area of the first bypass oil passage 22, and thus forms the first portion 20a of the bypass oil passage 20 together with the first bypass oil passage 22 .
  • the bypass oil passage 20 includes the first portion 20a having a smaller cross-sectional area and the second portion 20b having a larger cross-sectional area.
  • the first portion 20 a of the bypass oil passage 20 has an axial length h, that is, a length in the direction in which fluid flows in the bypass oil passage.
  • the greater the axial length h of the first portion 20a the greater the oil draining capacity of the bypass oil passage 20. Therefore, the oil discharge capacity of the bypass oil passage 20 can be controlled by setting the axial length h of the first portion 20a of the bypass oil passage 20.
  • Such a bypass oil passage 20 in the form of a step can facilitate the stability of the movement of the elastic valve plate.
  • the outlet 14 of the bypass oil passage 20 may be located away from the first planar portion 19a and toward the outer edge of the second planar portion 19b. In this way, the length of the bypass oil passage 20 can be increased, and at the same time it is advantageous to drain the lubricating oil.
  • the structure of the bypass oil passage 20 is not limited to the illustrated example, and can be modified in various ways as long as it can achieve the functions described herein.
  • the bypass oil passage 20 may have a shape tapered toward the inlet 13.
  • the bypass member 90 may further include a shield 50 provided outside the elastic valve plate 30.
  • the guard 50 includes a fixed mounting portion 51 and a limit portion 53.
  • the fixed mounting portion 51 is used to attach the shield 50 to the mounting base 60, wherein the first fixed portion 31 of the elastic valve piece 30 is sandwiched between the fixed mounting portion 51 and the mounting base 60.
  • the limit portion 53 is configured to limit the maximum opening position (second position) of the elastic valve disc 30.
  • the fixed mounting portion 51 is detachably attached to the mounting base 60 by a fastener (not shown) such as a screw.
  • the fixed mounting portion 51 is provided with a counterbore 57 for mounting a fastener. It should be understood that the fixed mounting portion 51 may be attached to the elastic valve plate 30 and / or the mounting base 60 by any other suitable means known in the art.
  • the structure of the fixed mounting portion 51 is not limited to the illustrated example as long as it can realize the above-mentioned functions.
  • a space allowing movement of the second movable portion 33 of the elastic valve plate 30 is defined between the limit portion 53 of the guard 50 and the mounting base 60.
  • the restricting portion 53 of the guard plate 50 also provides an oil discharge passage 55 that allows lubricating oil to flow out.
  • the limit portion 53 of the guard 50 may be configured such that when the elastic valve plate 30 is in the maximum open position against the limit portion 53, the flow area of the oil discharge passage 55 is greater than or equal to the bypass oil passage 20 Circulation area.
  • the outlet of the oil discharge passage 55 of the guard plate 50 may be located on the leeward side, and accordingly, the fixed mounting portion 51 may be located on the windward side opposite to the leeward side.
  • the fixed mounting portion 51 becomes the front portion (ie, on the windward side) of the guard 50 along the rotation direction D1
  • the stop portion 53 becomes the rear Department (ie, on the lee side).
  • the lubricating oil discharged through the bypass oil passage 20 flows out in the direction F1, which is away from the direction D1.
  • the outer peripheral surface 52 of the shield 50 and the outer peripheral surface of the mounting base 60 form a smooth transition arc-shaped contour or circular contour to reduce the airflow resistance and reduce the airflow to the elastic valve plate 30 interference.
  • the mounting base 60 extends 180 degrees in the circumferential direction, and the outer peripheral surface 52 of the shield and the outer peripheral surface 62 of the mounting base 60 form a semicircular outline.
  • the mounting base 60 may have a ring shape, that is, extend 360 degrees in the circumferential direction.
  • the outer peripheral surface 52 of the shield and the outer peripheral surface 62 of the mounting base 60 may form a circular outline together. It should be understood that the structure of the mounting base 60 and the guard 50 may be changed as long as it can achieve the above-mentioned functions, for example, to facilitate the discharge of lubricating oil and reduce the fluid resistance.
  • FIGS. 8 and 9 show an oil supply mechanism according to another embodiment of the present disclosure. Compared with the oil supply mechanism shown in FIGS. 1 to 5, the oil supply mechanism shown in FIGS. 8 and 9 is different in that the rotating shaft 10 is configured to form an installation base for installing the elastic valve plate 30, and A separate mounting base 60 is provided between the elastic valve plate 30 and the rotating shaft 10.
  • the outer peripheral surface 11 of the rotary shaft 10 is processed to form a mounting base for mounting the elastic valve piece 30.
  • the outer peripheral surface 11 of the rotating shaft 10 includes a flat portion 19 for mounting the elastic valve piece 30.
  • the outer peripheral surface 52 of the guard 50 together with the outer peripheral surface 11 of the rotating shaft 10 forms a substantially circular outline extending 360 degrees in the circumferential direction, thereby reducing the rotating shaft 10 The fluid resistance generated during rotation and reduces the disturbance of the air flow on the elastic valve plate.
  • the elastic valve plate 30 and the guard plate 50 are directly attached to the rotating shaft 10, and therefore have a smaller number Parts, thereby simplifying the assembly process and reducing costs.
  • the oil supply mechanism shown in FIGS. 8 and 9 occupies less installation space, which can improve the utilization rate of the internal space of the compressor.
  • the elastic valve plate 30 when the rotating shaft 10 rotates at a low speed, the elastic valve plate 30 is in the first position (closed position) for closing the bypass oil passage 20 under the action of its elastic force, at which time the main oil supply The lubricating oil in the passage 12 is not discharged through the bypass oil passage 20, so that a sufficient amount of lubricating oil can be supplied to the corresponding parts for lubrication.
  • the lubricating oil entering the bypass oil passage 20 overcomes the elastic force of the elastic valve piece 30 under the action of centrifugal force to open the elastic valve piece 30, so that the elastic valve piece 30 is in the open bypass oil passage
  • the second position open position
  • a part of the lubricating oil in the main oil supply passage 12 is discharged through the bypass oil passage 20, for example, to return to the oil sump, so that the oil circulation rate can be appropriately reduced.
  • the bypass member 90 may be formed in the form of a weight.
  • the mounting base 60 of the bypass member 90 may be formed in the form of a weight.
  • the base 60 and thus the bypass member 90 can be used as a balance weight mounted on the rotating shaft 10 to achieve dynamic balance when the rotating shaft 10 rotates.
  • the structure of the bypass member 90, particularly the mounting base 60 is not limited to the illustrated example, and it may have any other suitable form as long as it can function as a balance weight.
  • FIG. 11 shows an example of application of the oil supply mechanism according to the present disclosure.
  • the oil supply mechanism according to the present disclosure is used in the scroll compressor 200.
  • the scroll compressor 200 includes a housing 212, a compression mechanism CM provided in the housing 212, and a rotating shaft 10 for driving the compression mechanism CM.
  • An oil sump OR is provided at the bottom of the housing 212.
  • the bypass member 90 according to the present disclosure is attached to the outer circumferential surface of the rotating shaft 10 at the bypass oil passage 20.
  • the scroll compressor 200 since the scroll compressor 200 has the rotary shaft 10, it also belongs to the rotary machine described herein.
  • the oil supply mechanism according to the present disclosure may be applied to any other suitable type of rotary machine, and is not limited to the vertical scroll compressor shown in FIG. 11.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种旋转机械的供油机构(100)以及一种包括该供油机构(100)的旋转机械。旋转机械包括旋转轴(10),供油机构(100)包括主供油道(12)、旁通油道(20)和旁通部件(90),主供油道(12)大体沿旋转轴(10)的轴向形成在旋转轴(10)内,旁通油道(20)与主供油道(12)连通以允许主供油道(12)中的一部分润滑油经旁通油道(20)流出,旁通部件(90)包括弹性阀片(30),弹性阀片(30)具有第一固定部分(31)和第二可动部分(33),第二可动部分(33)能够在关闭旁通油道(20)的第一位置与打开旁通油道(20)的第二位置之间运动。该供油机构(100)和旋转机械可以良好地防止油循环率过高。

Description

旋转机械的供油机构以及旋转机械
本申请要求于2018年10月24日提交中国专利局的发明名称为“旋转机械的供油机构以及旋转机械”、申请号分别为201811247160.0和201821732949.0的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种旋转机械的供油机构以及一种包括该供油机构的旋转机械,更具体地,涉及一种在不同压缩工况下能够调节油循环率的涡旋压缩机。
背景技术
压缩机(例如涡旋压缩机)可以应用于例如制冷系统、空调系统和热泵系统中。涡旋压缩机包括用于压缩工作流体(例如制冷剂)的压缩机构和用于驱动压缩机构的旋转轴。通常,在压缩机运行时,旋转轴旋转以驱动压缩机构对工作流体进行压缩,同时润滑剂(例如,润滑油)经由旋转轴的内部通孔供给至压缩机的各个运动部件(包括轴承、衬套、涡旋等)或止推面。例如,需要将润滑剂供给至压缩机构的动涡旋部件与定涡旋部件之间,以改善动涡旋部件与定涡旋部件之间的摩擦,从而减小磨损和降低功耗。
然而,一部分润滑剂会随着压缩的工作流体一起排出压缩机而进入系统中进行循环。为了对润滑剂的量进行评价和分析,引入了“油循环率”的概念。油循环率过大或过小均不利于压缩机以及压缩机系统的正常运行并影响其性能。
特别地,对于变频涡旋压缩机而言,随着旋转轴的转速变大,油循环率也变大,例如,可能导致热交换器的效率下降,从而影响压缩机系 统的运行和性能;反之,随着旋转轴的转速减小,油循环率变小,例如,可能导致供给至压缩机构的润滑剂的量不足,从而使动涡旋部件和定涡旋部件的磨损严重。
因此,本领域中期望提供一种在不同压缩工况下能够调节或控制油循环率的涡旋压缩机。
发明内容
在本部分中提供本发明的总概要,而不是本发明完全范围或本发明所有特征的全面公开。
本发明的另一目的是提供一种涡旋压缩机,该涡旋压缩机在其旋转轴高速旋转时能够使旋转轴的内部通孔中的一部分润滑剂流出旋转轴以调节或控制油循环率。
本发明的另一目的是提供一种涡旋压缩机,该涡旋压缩机不仅能够在不同压缩工况下调节或控制油循环率,而且还能够在旋转轴旋转时保持旋转轴的动平衡。
为了实现上述目的中的一个或多个,本公开提供一种旋转机械的供油机构,旋转机械包括旋转轴。供油机构包括主供油道、旁通油道和旁通部件。所述主供油道大体沿所述旋转轴的轴向形成在所述旋转轴内。所述旁通油道与所述主供油道连通以允许所述主供油道中的一部分润滑油经所述旁通油道流出。所述旁通部件包括弹性阀片,所述弹性阀片具有第一固定部分和第二可动部分,所述第二可动部分能够在关闭所述旁通油道的第一位置与打开所述旁通油道的第二位置之间运动。
根据本公开的旋转机械的供油机构,由于设置有旁通油道和旁通部件,因此可以在旋转轴以高速旋转时将其中的一部分润滑油在离心力的作用下排出至外部。以这种方式,可以在高速旋转时良好地防止油循环率过高,同时在低速旋转时确保足够的润滑油供给。
在一些示例中,所述旋转轴构造成形成有用于安装所述弹性阀片的安装基部。在该示例中,弹性阀片可以直接安装在旋转轴上,由此可以简化 结构和节省安装空间,并且还可以减少零部件的数量并因此简化组装而降低成本。
在一些示例中,在所述弹性阀片与所述旋转轴之间设置有用于安装所述弹性阀片的单独的安装基部。在该示例中,由于安装基部独立于旋转轴,因此无需对旋转轴做出过多改变。独立的安装基部的设计可以更加灵活,更加适于各种结构的旋转轴。
在一些示例中,所述安装基部具有环形形状或弧形形状。安装基部的形状或大小可以根据具体应用要求而改变,例如,为了减小流动阻力或平衡重量等。
在一些示例中,所述安装基部为平衡块的形式。在该示例中,安装基部可以用作平衡块。换言之,根据本公开的旁通部件可以集成在平衡块中,由此不进可以实现旋转轴的动平衡,同时还可以控制油循环率。
在一些示例中,所述安装基部过盈配合在所述旋转轴上或者通过紧固件附接至所述旋转轴上。
在一些示例中,所述安装基部包括平面部,所述平面部包括第一平面部和第二平面部,所述第一平面部用于固定地安装所述弹性阀片的所述第一固定部分,所述第二平面部适于被所述弹性阀片的所述第二可动部分抵接。
在一些示例中,所述旁通油道具有位于所述主供油道处的入口和位于所述第二平面部处的出口。
在一些示例中,所述旁通油道形成为台阶形式,并且包括从所述入口延伸的具有较小截面面积的第一部分和从所述第一部分朝向所述出口延伸的具有较大截面面积的第二部分。台阶形式的旁通油道有利于弹性阀片的动作的稳定性。此外,通过设定第一部分的轴向长度可以控制旁通油道的排油能力。
在一些示例中,在流体在所述旁通油道中流动的方向上,所述第一部分的长度大于等于所述第二部分的长度。
在一些示例中,所述第二平面部相对于所述第一平面部倾斜一定角度,使所述弹性阀片的所述第二可动部分对所述第二平面部施加预压紧力,由此可靠地关闭所述出口。通过使第二平面部相对于第一平面部倾斜一定角度θ,弹性阀片可以对第二平面部施加预压紧力,由此在低速旋转时能够可靠地关闭出口。通过设计角度θ,可以有效地控制弹性阀片打开时的转速,从而优化旋转机械(诸如压缩机)的油循环率。
在一些示例中,所述旁通油道的出口远离所述第一平面部而朝向所述第二平面部的外边缘定位。通过这种方式可以增加旁通油道的长度,优化限位部或排油通道。
在一些示例中,所述供油机构还包括设置在所述弹性阀片外侧的护板,所述护板包括用于安装所述护板的固定安装部以及用于限制所述弹性阀片的第二位置的限位部。
在一些示例中,在所述护板的限位部与所述安装基部之间限定有供润滑油流出的排油通道,所述护板的固定安装部位于迎风侧,所述排油通道的出口位于与所述迎风侧相反的背风侧。
在一些示例中,所述护板的限位部构造成当所述弹性阀片抵靠所述限位部而处于最大打开位置时所述排油通道的流通面积大于或等于所述旁通油道的流通面积。
在一些示例中,所述护板的外周面与周围结构的外周面一起形成平滑过渡的弧形轮廓或圆形轮廓,以减少气流阻力并且减小气流对所述弹性阀片的干扰。
在一些示例中,所述护板的固定安装部通过紧固件以可拆卸的方式安装至所述安装基部。
在一些示例中,所述弹性阀片的所述第二可动部分上设置有配重块。通过配重块可以进一步调整弹性阀片打开时的转速和区间。
在一些示例中,所述供油机构还包括泵油装置,所述泵油装置安装在所述旋转轴的引入润滑油的端部处。可选地,所述泵油装置为定量泵油装置。
在一些示例中,所述主供油道包括从所述旋转轴的一个端部延伸的中心油道以及从所述中心油道朝向所述旋转轴的另一端部偏心地延伸的偏心油道。所述旁通油道设置在所述中心油道处,或者设置在所述偏心油道处并且相对于所述偏心油道的中心轴线位于与所述旋转轴的中心轴线的相反的一侧。
本公开还提供一种包括上述供油机构的旋转机械。可选地,所述旋转机械包括涡旋压缩机构,所述旋转轴用于驱动所述涡旋压缩机构。
附图说明
通过以下参照附图的描述,本发明的一个或多个实施方式的特征和优点将变得更加容易理解,在附图中:
图1为根据本公开实施方式的供油机构的剖面示意图;
图2为图1的供油机构的一部分的立体示意图;
图3为图2的供油机构的一部分的分解示意图;
图4为图1至图3所示的供油机构的旁通部件的横截面示意图,其中,弹性阀片处于关闭位置;
图5为类似于图4的横截面示意图,其中,弹性阀片处于打开位置;
图6为根据本发明实施方式的旁通油道的示意图;
图7为根据本发明另一实施方式的旁通油道的示意图;
图8为根据本公开另一实施方式的供油机构的立体示意图;
图9为图8所示的供油机构的旁通部件的横截面示意图;
图10为根据本公开实施方式的旁通部件用作平衡块的纵剖视图;以及
图11为示出应用了根据本公开的供油机构的涡旋压缩机的纵剖视 图。
具体实施方式
下面参照附图、借助示例性实施方式对本发明进行详细描述。对本发明的以下详细描述仅仅是出于示范目的,而绝不是对本发明及其应用或用途的限制。
下面参照图1至图5来描述根据本公开实施方式的供油机构。如图所示,供油机构100包括旋转轴10。旋转轴10为纵长构件并且包括纵向中心轴线。旋转轴10能够围绕纵向中心轴线旋转。旋转轴10适于应用于各种旋转机械中,例如,作为旋转驱动部件。在某些旋转机械中,旋转轴常常也被称为曲轴。在本文中,旋转机械指的是具有旋转轴、曲轴或旋转驱动轴的机械设备或系统。
在旋转轴10内设置有主供油道12。主供油道12大体沿旋转轴10的轴向延伸。通过主供油道12可以将润滑油供给至各个待润滑的零部件处。在图示的示例中,主供油道12包括从旋转轴10的一个端部延伸的中心油道12a以及从该中心油道12a朝向旋转轴10的另一端部偏心地延伸的偏心油道12b。
通常,中心油道12a邻近油池或浸入油池(例如,图11中的油池OR)中,以便将油池中的润滑油供给至旋转轴10中。参见图1,可以在旋转轴10(具体为旋转轴10的引入润滑油的端部)与油池之间设置泵油装置(未示出),例如,每转的理论排量不变的定量泵油装置。定量泵油装置的示例可以包括容积式定量泵油装置、差动式定量泵油装置、隔膜式定量泵油装置等。当旋转轴10的转速越高,特别是在具有定量泵油装置的情况下,泵送至旋转轴10的内部并因此泵送至可动部件的润滑油的量也越多。这样会导致油循环率过高,在某些情况下并不期望这样。
为此,根据本公开的供油机构还包括旁通油道20和旁通部件90。旁通油道20构造成能够将主供油道12中的一部分润滑油经旁通油道20流出,例如,返回至油池OR。在图1所示的示例中,旁通油道20设置在中心油道12a处并且与中心油道12a流体连通。旁通油道20大体横向于中心油道12a。旁通油道20可以是圆孔的形式,或者可以是任何其他合适的形式。 在其他一些示例中,旁通油道20可以设置在偏心油道12b处,并且相对于偏心油道12b的中心轴线位于与旋转轴10的中心轴线的相反的一侧,这样便于在离心力的作用下将偏心油道中的一部分润滑油排出至旋转轴的外部。
旁通部件90构造成能够关闭以及打开旁通油道20。当旋转轴10的转速高达预定转速时,主供油道12中的一部分润滑油在离心力的作用下克服旁通部件90的作用力而打开旁通油道20,使得润滑油能够经由旁通油道20和旁通部件90排出至旋转轴10的外部,进而可以回流至油池中,由此可以防止油循环率过高。
旁通部件90可以通过过盈配合或者通过诸如螺钉的紧固件被固定于旋转轴10的外周面11上。应理解的是,还可以通过其他任何合适的方式将旁通部件90固定于旋转轴10上。在图1至图5的示例中,旁通部件90可以独立于旋转轴10,因此,无需对旋转轴10进行过多改进,而且独立的旁通部件90具有更好的通用性。
旁通部件90安装至旋转轴10的外周面11上。参见图1和图5,旁通部件90具有大致弧形形状。旁通部件90包括固定于旋转轴10的外周面11的安装基部60、设置在安装基部60上的弹性阀片30以及设置在弹性阀片30的外侧的护板50。安装基部60构造成附接至旋转轴10并且便于弹性阀片30和护板50的安装。弹性阀片30具有夹置在安装基部60与护板50之间的第一固定部分(第一端)31和能够在安装基部60与护板50之间移动的第二可动部分(第二端)33。第二可动部分33能够在关闭旁通油道20的第一位置(如图4所示)与打开旁通油道20的第二位置(如图5所示)之间运动。
在图示的示例中,安装基部60大致呈弧形,并且通过诸如螺钉的紧固件以可拆卸的方式安装至旋转轴10。然而,应理解的是,安装基部可以形成为任何形式,例如,环形;或者可以以任何其他合适的方式固定于旋转轴10,例如,通过过盈配合、焊接、胶粘等等。
为了便于安装弹性阀片30,所述安装基部包括平面部19。参见图3至图5,平面部19包括第一平面部19a和第二平面部19b。第一平面部19a用于固定地安装所述弹性阀片的所述第一固定部分31,而第二平面部19b与弹性阀片30的第二可动部分33抵接,由此关闭旁通油道20。
第二平面部19b可以相对于第一平面部19a倾斜一定角度θ。这样,弹性阀片30的第二可动部分33可以对第二平面部19b施加预压紧力,由此可靠地关闭旁通油道20。通过设定角度θ,可以有效地控制弹性阀片30打开时的转速,从而适应各种工况需求。
可选地,在弹性阀片30的第二可动部分33上可以设置有配重块32,以在离心力的作用下促使弹性阀片30打开所述旁通油道。配重块32的位置和结构不受限制,只要其能够实现上述功能即可。通过设置配重块32,可以进一步调整弹性阀片30打开时的转速和区间。
旁通油道20具有位于主供油道12处的入口13和位于第二平面部19b处的出口14。在图1至图5所示的示例中,旁通油道20包括设置在旋转轴10中的第一旁通油道22和设置在安装基部60中的第二旁通油道24。第一旁通油道22和第二旁通油道24流体连通并对齐。当流入旁通油道20内的润滑油在离心力的作用下克服弹性阀片30的第二可动部分33的弹性力时,将第二可动部分33推离旁通油道20的出口14,由此打开旁通油道20,从而使得润滑油能够从旁通油道20流出。
在图1所示的示例中,第一旁通油道22具有与第二旁通油道24基本相同的尺寸(例如,直径)。然而,应理解的是旁通油道20的结构和形状可以变化,例如,为了促进润滑油的排出或者有利于润滑油的稳定排出。图6和图7示出了旁通油道20的这样的示例。图6和图7示出了呈台阶形式的旁通油道20。
如图6所示,第一旁通油道22形成为台阶形式。第一旁通油道22包括从入口13延伸的具有较小截面面积的部分和邻近第二旁通油道24的具有较大截面面积的部分。第一旁通油道22的具有较小截面面积的部分形成了旁通油道22的第一部分20a。第一旁通油道22的具有较大截面面积的部分与第二旁通油道24的截面面积大致相同,因而与第二旁通油道24一起形成了旁通油道22的第二部分20b。这样,旁通油道20包括具有较小截面面积的第一部分20a和具有较大截面面积的第二部分20b。
如图7所示,第二旁通油道24形成为台阶形式。第二旁通油道24包括从出口14朝向入口13延伸的具有较大截面面积的部分和邻近第一旁通油道22的具有较小截面面积的部分。第二旁通油道24的具有较大截面面积的部分与第一旁通油道22的截面面积大致相同,因而与第一旁通油道 22一起形成了旁通油道20的第一部分20a。这样,旁通油道20包括具有较小截面面积的第一部分20a和具有较大截面面积的第二部分20b。
在图6和图7所示的示例中,旁通油道20的第一部分20a具有轴向长度h,即,具有在流体在旁通油道中流动的方向上的长度。通常,第一部分20a的轴向长度h越大,旁通油道20的排油能力也越大。因此,可以通过设定旁通油道20的第一部分20a的轴向长度h来控制旁通油道20的排油能力。这样的台阶形式的旁通油道20可以有利于弹性阀片的运动的稳定性。
再参见图4和图5,旁通油道20的出口14可以远离第一平面部19a而朝向第二平面部19b的外边缘定位。这样,可以增加旁通油道20的长度,同时有利于排出润滑油。应理解的是,旁通油道20的结构不局限于图示的示例,可以以各种方式变型,只要其能够实现本文中所述的功能即可。例如,旁通油道20可以具有朝向入口13渐缩的形状。
旁通部件90还可以包括设置在弹性阀片30外侧的护板50。护板50包括固定安装部51和限位部53。固定安装部51用于将护板50附接至安装基部60,其中,弹性阀片30的第一固定部分31夹置在固定安装部51与安装基部60之间。限位部53构造成用于限制弹性阀片30的最大打开位置(第二位置)。
在图示的示例中,通过诸如螺钉的紧固件(未示出)以可拆卸的方式将固定安装部51附接至安装基部60。固定安装部51上设置有用于安装紧固件的沉孔57。应理解的是,可以通过本领域已知的任何其他合适的方式将固定安装部51附接至弹性阀片30和/或安装基部60。固定安装部51的结构不局限于图示的示例,只要其可以实现上述功能即可。
在护板50的限位部53与安装基部60之间限定有允许弹性阀片30的第二可动部分33运动的空间。在弹性阀片30的第二可动部分33打开至第二位置时,护板50的限位部53还提供了允许润滑油流出的排油通道55。在一些示例中,护板50的限位部53可以构造成:当弹性阀片30抵靠限位部53而处于最大打开位置时,排油通道55的流通面积大于或等于旁通油道20的流通面积。
为了便于排出润滑油,护板50的排油通道55的出口可以位于背风侧, 相应地,固定安装部51可以位于与背风侧相反的迎风侧。如图5所示,当旋转轴10沿方向D1旋转时,固定安装部51沿旋转方向D1成为护板50的前部(即,处于迎风侧),而限位部53成为护板50的后部(即,处于背风侧)。经由旁通油道20排出的润滑油沿方向F1流出,方向F1与方向D1相背离。
优选地,护板50的外周面52与安装基部60(周围结构)的外周面一起形成平滑过渡的弧形轮廓或圆形轮廓,以减少气流阻力并且减小气流对所述弹性阀片30的干扰。在图1至图5的示例中,安装基部60沿圆周方向延伸180度,护板的外周面52与安装基部60的外周面62一起形成了半圆形轮廓。在一些示例中,安装基部60可以呈环形,即,沿着圆周方向延伸360度。在这种情况下,护板的外周面52与安装基部60的外周面62可以一起形成圆形轮廓。应理解的是,安装基部60和护板50的结构可以变化,只要其能够实现上述功能即可,例如,便于排出润滑油以及减小流体阻力等。
图8和图9示出了根据本公开另一实施方式的供油机构。与图1至图5所示的供油机构相比,图8和图9所示的供油机构的不同之处在于:旋转轴10构造成形成有用于安装弹性阀片30的安装基部,而非另外在弹性阀片30与旋转轴10之间设置独立的安装基部60。
如图8和图9所示,在旋转轴10的外周面11上进行加工而形成用于安装弹性阀片30的安装基部。旋转轴10的外周面11包括用于安装弹性阀片30的平面部19。在图8和图9的示例中,护板50的外周面52与旋转轴10(周围结构)的外周面11一起形成沿圆周方向延伸360度的大体圆形轮廓,由此可以减少旋转轴10转动时产生的流体阻力并且减小气流对弹性阀片的扰动。
图8和图9的示例中的弹性阀片30、平面部19、护板50的结构与图1至图5的示例相同,因而此处不再对其进行详细描述。
与图1至图5所示的供油机构相比,在图8和图9所示的供油机构中,弹性阀片30和护板50直接附接至旋转轴10,因此具有较少数量的零部件,由此简化装配过程并减低成本。此外,图8和图9所示的供油机构占用较小的安装空间,可以提高压缩机内部空间利用率。
对于根据本公开的供油机构,当旋转轴10以低速旋转时,弹性阀片30在其弹性力的作用下处于关闭旁通油道20的第一位置(关闭位置),此时主供油道12内的润滑油不会经由旁通油道20排出,因而可以保证足量的润滑油供给至相应零部件处以进行润滑。当旋转轴10以高速旋转时,进入旁通油道20的润滑油在离心力的作用下克服弹性阀片30的弹性力而打开弹性阀片30,使弹性阀片30处于打开旁通油道20的第二位置(打开位置),此时主供油道12内的一部分润滑油经由旁通油道20排出,例如,返回至油池,因而可以适当地降低油循环率。
图10为根据本公开实施方式的旁通部件用作平衡块的纵剖视图。结合图1至图5,根据本公开的旁通部件90可以形成为平衡块的形式。具体地,旁通部件90的安装基部60可以形成为平衡块的形式。这样,安装基部60并因此旁通部件90可以用作安装于旋转轴10上的平衡块,以实现旋转轴10旋转时的动平衡。应理解的是,旁通部件90、特别是安装基部60的结构不局限于图示的示例,其可以具有任何其他合适的形式,只要其能够起到平衡块的作用即可。
图11示出了根据本公开的供油机构的应用的一个示例。如图11所示,根据本公开的供油机构用于涡旋压缩机200中。涡旋压缩机200包括壳体212、设置在壳体212中的压缩机构CM以及用于驱动压缩机构CM的旋转轴10。在壳体212的底部具有油池OR。根据本公开的旁通部件90附接至旋转轴10的外周面上、位于旁通油道20处。如上面所定义,由于涡旋压缩机200具有旋转轴10,因此也属于本文中所述的旋转机械。然而,应理解的是,根据本公开的供油机构可以应用于其他任何合适类型的旋转机械,而不局限于图11所示的立式涡旋压缩机。
虽然已经参照示例性实施方式对本发明进行了描述,但是应当理解,本发明并不局限于文中详细描述和示出的具体实施方式,在不偏离权利要求书所限定的范围的情况下,本领域技术人员可以对示例性实施方式做出各种改变。此外,应理解的是,在技术方案不矛盾的情况下,各个实施方式中的技术特征可以相互结合、替换或者省去,而不局限于本文所述或所示的具体示例。

Claims (23)

  1. 一种旋转机械的供油机构,所述旋转机械包括旋转轴(10),所述供油机构(100)包括:
    主供油道(12),所述主供油道(12)大体沿所述旋转轴的轴向形成在所述旋转轴(10)内;
    旁通油道(20),所述旁通油道(20)与所述主供油道(12)连通以允许所述主供油道(12)中的一部分润滑油经所述旁通油道(20)流出,以及
    旁通部件(90),所述旁通部件包括弹性阀片(30),所述弹性阀片具有第一固定部分(31)和第二可动部分(33),所述第二可动部分(33)能够在关闭所述旁通油道的第一位置与打开所述旁通油道的第二位置之间运动。
  2. 根据权利要求1所述的供油机构,其中,所述旋转轴构造成形成有用于安装所述弹性阀片的安装基部。
  3. 根据权利要求1所述的供油机构,其中,在所述弹性阀片与所述旋转轴之间设置有用于安装所述弹性阀片的单独的安装基部(60)。
  4. 根据权利要求3所述的供油机构,其中,所述安装基部具有环形形状或弧形形状。
  5. 根据权利要求3所述的供油机构,其中,所述安装基部为平衡块的形式。
  6. 根据权利要求3所述的供油机构,其中,所述安装基部过盈配合在 所述旋转轴上或者通过紧固件附接至所述旋转轴上。
  7. 根据权利要求2至6中任一项所述的供油机构,其中,所述安装基部包括平面部(19),所述平面部(19)包括第一平面部(19a)和第二平面部(19b),所述第一平面部(19a)用于固定地安装所述弹性阀片的所述第一固定部分,所述第二平面部适于被所述弹性阀片的所述第二可动部分抵接。
  8. 根据权利要求7所述的供油机构,其中,所述旁通油道具有位于所述主供油道处的入口(13)和位于所述第二平面部处的出口(14)。
  9. 根据权利要求8所述的供油机构,其中,所述旁通油道形成为台阶形式,并且包括从所述入口延伸的具有较小截面面积的第一部分(20a)和从所述第一部分朝向所述出口延伸的具有较大截面面积的第二部分(20b)。
  10. 根据权利要求9所述的供油机构,其中,在流体在所述旁通油道中流动的方向上,所述第一部分(20a)的长度大于等于所述第二部分(20b)的长度。
  11. 根据权利要求8所述的供油机构,其中,所述第二平面部相对于所述第一平面部倾斜一定角度,使所述弹性阀片的所述第二可动部分对所述第二平面部施加预压紧力,由此可靠地关闭所述出口。
  12. 根据权利要求8所述的供油机构,其中,所述旁通油道的出口远离所述第一平面部(19a)而朝向所述第二平面部(19b)的外边缘定位。
  13. 根据权利要求2至6中任一项所述的供油机构,其中,所述供油机构还包括设置在所述弹性阀片外侧的护板(50),所述护板(50)包括用 于安装所述护板的固定安装部(51)以及用于限制所述弹性阀片的第二位置的限位部(53)。
  14. 根据权利要求13所述的供油机构,其中,在所述护板(50)的限位部与所述安装基部之间限定有供润滑油流出的排油通道(55),所述护板的固定安装部位于迎风侧,所述排油通道的出口位于与所述迎风侧相反的背风侧。
  15. 根据权利要求14所述的供油机构,其中,所述护板(50)的限位部构造成当所述弹性阀片抵靠所述限位部而处于最大打开位置时所述排油通道的流通面积大于或等于所述旁通油道的流通面积。
  16. 根据权利要求13所述的供油机构,其中,所述护板的外周面(52)与周围结构的外周面一起形成平滑过渡的弧形轮廓或圆形轮廓,以减少气流阻力并且减小气流对所述弹性阀片的干扰。
  17. 根据权利要求13所述的供油机构,其中,所述护板的固定安装部通过紧固件以可拆卸的方式安装至所述安装基部。
  18. 根据权利要求1至6中任一项所述的供油机构,其中,所述弹性阀片的所述第二可动部分上设置有配重块(32)。
  19. 根据权利要求1至6中任一项所述的供油机构,其中,所述供油机构(100)还包括泵油装置,所述泵油装置安装在所述旋转轴的引入润滑油的端部处。
  20. 根据权利要求19所述的供油机构,其中,所述泵油装置(70)为定量泵油装置。
  21. 根据权利要求1至6中任一项所述的供油机构,其中,所述主供油道包括从所述旋转轴的一个端部延伸的中心油道(12a)以及从所述中心油道朝向所述旋转轴的另一端部偏心地延伸的偏心油道(12b),所述旁通油道(20)设置在所述中心油道(12a)处,或者设置在所述偏心油道处并且相对于所述偏心油道的中心轴线位于与所述旋转轴的中心轴线的相反的一侧。
  22. 一种旋转机械,其中,所述旋转机械包括根据权利要求1-21中的任一项所述的供油机构(100)。
  23. 根据权利要求22所述的旋转机械,其中,所述旋转机械包括涡旋压缩机构,所述旋转轴用于驱动所述涡旋压缩机构。
PCT/CN2019/112756 2018-10-24 2019-10-23 旋转机械的供油机构以及旋转机械 WO2020083310A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811247160.0A CN111089058A (zh) 2018-10-24 2018-10-24 旋转机械的供油机构以及旋转机械
CN201821732949.0 2018-10-24
CN201811247160.0 2018-10-24
CN201821732949.0U CN208934930U (zh) 2018-10-24 2018-10-24 旋转机械的供油机构以及旋转机械

Publications (1)

Publication Number Publication Date
WO2020083310A1 true WO2020083310A1 (zh) 2020-04-30

Family

ID=70331734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112756 WO2020083310A1 (zh) 2018-10-24 2019-10-23 旋转机械的供油机构以及旋转机械

Country Status (1)

Country Link
WO (1) WO2020083310A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114215723A (zh) * 2021-12-23 2022-03-22 珠海格力电器股份有限公司 一种压缩机离心油泵及压缩机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6287099B1 (en) * 1999-01-19 2001-09-11 Lg Electronics, Inc. Scroll compressor
CN1963226A (zh) * 2005-11-10 2007-05-16 乐金电子(天津)电器有限公司 变频压缩机的供油量控制装置
WO2015182214A1 (ja) * 2014-05-26 2015-12-03 三菱電機株式会社 圧縮機
WO2016092688A1 (ja) * 2014-12-12 2016-06-16 三菱電機株式会社 圧縮機
CN105899808A (zh) * 2014-01-08 2016-08-24 三菱电机株式会社 旋转式压缩机
CN208934930U (zh) * 2018-10-24 2019-06-04 艾默生环境优化技术(苏州)有限公司 旋转机械的供油机构以及旋转机械

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6287099B1 (en) * 1999-01-19 2001-09-11 Lg Electronics, Inc. Scroll compressor
CN1963226A (zh) * 2005-11-10 2007-05-16 乐金电子(天津)电器有限公司 变频压缩机的供油量控制装置
CN105899808A (zh) * 2014-01-08 2016-08-24 三菱电机株式会社 旋转式压缩机
WO2015182214A1 (ja) * 2014-05-26 2015-12-03 三菱電機株式会社 圧縮機
WO2016092688A1 (ja) * 2014-12-12 2016-06-16 三菱電機株式会社 圧縮機
CN208934930U (zh) * 2018-10-24 2019-06-04 艾默生环境优化技术(苏州)有限公司 旋转机械的供油机构以及旋转机械

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114215723A (zh) * 2021-12-23 2022-03-22 珠海格力电器股份有限公司 一种压缩机离心油泵及压缩机

Similar Documents

Publication Publication Date Title
JP2585380Y2 (ja) ロータリコンプレッサ
US4561829A (en) Rotary compressor with tapered valve ports for lubricating pump
CN208934930U (zh) 旋转机械的供油机构以及旋转机械
CN112930442B (zh) 压缩机油管理系统
WO2020083310A1 (zh) 旋转机械的供油机构以及旋转机械
CN111089057A (zh) 旋转机械的供油机构以及旋转机械
JP7507961B2 (ja) クランクシャフト、インバータ圧縮機及び冷凍機器
WO2022242202A1 (zh) 压缩机及具有其的空调器
US4389170A (en) Rotary vane pump with passage to the rotor and housing interface
CN111089058A (zh) 旋转机械的供油机构以及旋转机械
CN103511254B (zh) 串联式叶片压缩机
WO2020143350A1 (zh) 用于涡旋压缩机的止推板和涡旋压缩机
JP2022502604A (ja) コンプレッサー
JP2015063895A (ja) 冷凍サイクルにおける脈動圧低減装置
CN214944832U (zh) 曲轴组件、变频压缩机及制冷设备
CN217582496U (zh) 旋转机械
CN218030610U (zh) 压缩机及制冷设备
JP7164724B2 (ja) 圧縮機
US11125233B2 (en) Compressor having oil allocation member
CN112610493B (zh) 一种限流器、压缩机及空调
CN215058136U (zh) 卧式压缩机
CN113833660B (zh) 供油组件、压缩机及控制方法
WO2023125810A1 (zh) 压缩机
KR20180039543A (ko) 용적형 안내깃 회전식 압축기
JPH036354B2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19876130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19876130

Country of ref document: EP

Kind code of ref document: A1