WO2020082289A1 - 一种影像传感器及其感测方法 - Google Patents

一种影像传感器及其感测方法 Download PDF

Info

Publication number
WO2020082289A1
WO2020082289A1 PCT/CN2018/111838 CN2018111838W WO2020082289A1 WO 2020082289 A1 WO2020082289 A1 WO 2020082289A1 CN 2018111838 W CN2018111838 W CN 2018111838W WO 2020082289 A1 WO2020082289 A1 WO 2020082289A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
pixel
voltage
reset
image sensor
Prior art date
Application number
PCT/CN2018/111838
Other languages
English (en)
French (fr)
Inventor
曾千鉴
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2018/111838 priority Critical patent/WO2020082289A1/zh
Priority to CN201880002085.3A priority patent/CN109496427B/zh
Publication of WO2020082289A1 publication Critical patent/WO2020082289A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof

Definitions

  • the invention relates to an image sensor, in particular to an image sensor with super pixels and a sensing method thereof.
  • image sensors are still affected by many different process factors to affect their overall signal-to-noise ratio (SNR). Therefore, in order to reduce noise interference in the sensing signal, multiple pixels can be combined into a super pixel (super pixel), for example, 2 * 2
  • super pixel for example, 2 * 2
  • the 4 arranged pixels are combined into a super pixel, and the average value of the voltage values sensed by multiple pixels in the super pixel is used to represent the overall super pixel sensing result to improve the signal-to-noise ratio of the image sensor .
  • each pixel must still be connected to the signal reading circuit through a transmission line, and the overall transmission line occupies a large wiring space, and further solutions are necessary.
  • One of the objects of the present invention is to disclose an image sensor and its sensing method to solve the above problems.
  • An embodiment of the present application discloses an image sensor.
  • the image sensor includes: super-pixels, including: a plurality of pixels, wherein each of the pixels includes: a light-sensing component; and sub-driving units, respectively connected to the light-sensing component, to drive the light-sensing component And a main driving unit connected to the sub-driving units of the plurality of pixels to simultaneously read the sensing signals after the sub-driving units drive the light sensing components; and a signal reading circuit connected to the The main driving unit of the super pixel reads the average sensing voltage of the light sensing components of the plurality of pixels.
  • a capacitor is connected between the main driving unit and each of the sub-driving units, so the light sensing components can be reset first, and then the voltage values sensed by the light sensing components can be read to be closer to the actual Average output voltage; Furthermore, because the average output voltage directly read by the signal reading circuit does not need to perform complicated calculations, it also helps to reduce the number of transmission lines and the layout area of the transmission lines.
  • An embodiment of the present application discloses a sensing method of an image sensor, wherein the image sensor includes a super pixel, the super pixel includes a plurality of pixels, and each of the pixels includes a light sensing component, a sub-driving unit, and a capacitor
  • the sensing method includes: (a) resetting the light-sensing component and capacitance of each pixel; (b) allowing the light-sensing component in each pixel to sense; (c) changing each The voltage of the light sensing component in the pixel is output to the capacitor, and the average voltage of the capacitor in each pixel is read out; (d) The capacitor in each pixel is reset, and the reset voltage is read out; and (e) According to the average voltage and the reset voltage, calculate the average sensing voltage of the light sensing element in each pixel.
  • the light-sensing components can be reset first, and then the voltage values sensed by the light-sensing components can be read to be closer to the actual average output voltage; moreover, because the signal reading circuit directly reads
  • the average output voltage does not need to perform complicated calculations, but also helps reduce the number of transmission lines and the layout area of the transmission line.
  • An embodiment of the present application discloses another sensing method of an image sensor.
  • the image sensor includes a super pixel, the super pixel includes a plurality of pixels, each pixel includes a light sensing component, a sub-driving unit, and a capacitor
  • the sensing method includes: (a) resetting each pixel Of the light-sensing component; (b) enable the light-sensing component in each of the pixels to sense; (c) read the reset voltage during the sensing; (d) after the sensing is completed, the The voltage of the light sensing element in each pixel is output to the capacitor, and the average voltage of the capacitor in each pixel is read out; and (e) each pixel is calculated according to the average voltage and the reset voltage The average sensing voltage of the light sensing component in.
  • the light-sensing components can be reset first, and then the voltage values sensed by the light-sensing components can be read to be closer to the actual average output voltage; moreover, because the signal reading circuit directly reads
  • the average output voltage does not need to perform complicated calculations, but also helps reduce the number of transmission lines and the layout area of the transmission line.
  • FIG. 1 is a schematic structural diagram of an image sensor of the present application.
  • FIG. 2 is a schematic structural diagram of a first embodiment of a superpixel in the image sensor of the present application.
  • FIG. 3 is a control timing chart in conjunction with FIG. 2.
  • FIG. 4 is a schematic structural diagram of a second embodiment of a superpixel in the image sensor of the present application.
  • FIG. 5 is a control timing chart in conjunction with FIG. 4.
  • FIG. 6 is a schematic structural diagram of a third embodiment of a superpixel in the image sensor of the present application.
  • FIG. 7 is a control timing chart in conjunction with FIG. 6.
  • the first reset switch is the first reset switch
  • the first selection switch is the first selection switch
  • the second reset switch is the second reset switch
  • the drive circuit of each super pixel of the image sensor can directly average the sensing voltage of the light sensing components of the multiple pixels it contains, so It is only necessary to output the average output voltage of a plurality of pixels through a transmission line corresponding to a superpixel, and there is no need to read out the sensing voltages of the plurality of pixels separately through the transmission line.
  • the image sensor 1 of the present application includes a plurality of super pixels 10 arranged in a matrix, a signal reading circuit 20 and a controller 30; wherein the super pixel 10 is connected to the signal reading Take the circuit 20 and the controller 30.
  • each super-pixel 10 includes 4 pixels 14 arranged in a matrix of 2 * 2.
  • the super-pixel 10 can directly obtain the average sensing voltage of the 4 pixels 14 through appropriate control A transmission line L is read.
  • the present invention does not limit the number or arrangement of multiple superpixels 10, and the present invention does not limit the number or arrangement of pixels 14 included in each superpixel 10.
  • each superpixel 10 may include any number of pixels 14 arranged in any manner.
  • each pixel 14 in the super pixel 10 includes a light sensing element 11 , The sub-driving unit 12 and the capacitor C; wherein the sub-driving unit 12 is connected between the light sensing component 11 and the capacitor C.
  • the super pixel 10 uses a main driving unit 13 to read the average sensing voltage of the pixels 14 in the super pixel 10.
  • the main driving unit 13 is connected to the sub driving unit 12 of each pixel 14 through the capacitor C in each pixel 14, ie
  • a capacitor C is connected between the main driving unit 13 and each sub driving unit 12.
  • the light sensing component 11 is a photodiode.
  • the sub-drive unit 12 includes a first reset switch Q1, a first output switch Q2, a first selection switch Q3, and a second reset switch Q4.
  • the first reset switch Q1, the first output switch Q2, the first selection switch Q3, and the second reset switch Q4 are NMOS transistors, and the first reset switch Q1 is connected in series to a first reference voltage Between the VCCR and the negative terminal of the corresponding light sensing element 11, the gate of the first reset switch Q1 is connected to a reset control signal RST, and the positive end of the light sensing element 11 is connected to the ground voltage.
  • the first output switch Q2 is configured as a source follower to push the voltage of the negative terminal of the light sensing component 11 to the subsequent stage.
  • the gate of the first output switch Q2 is connected to the negative terminal of the light sensing component 11 At the terminal, the first output switch Q2, the first selection switch Q3, and the second reset switch Q4 are serially connected in series between a second reference voltage VCCP and the ground voltage.
  • the first selection switch Q3 is connected between the first output switch Q2 as a source follower and the capacitor C, and the gate of the first selection switch Q3 is connected to a first selection control signal SELP.
  • the second reset switch Q4 is connected between the capacitor C and the ground voltage, and the gate of the second reset switch Q4 is connected to a bias control signal Vb.
  • the main driving unit 13 includes a first switch Q5, a second output switch Q6, and a second selection switch Q7.
  • the first switch Q5, the second output switch Q6, and the second selection switch Q7 are NMOS transistors.
  • the first switch Q5 is connected between a third reference voltage VREF and each pixel 14, specifically The capacitor C of each pixel 14 is connected between the sub-driving unit 12 of the same pixel 14 and the first switch Q5.
  • the gate of the first switch Q5 is connected to a first control signal REF.
  • the second output switch Q6 is configured as a source follower to push the voltage of the P2 terminal of the capacitor C to the subsequent stage.
  • the second output switch Q6 and the second selection switch Q7 are serially connected in series to the second reference voltage VCCP and the transmission line Between L, and the gate of the second output switch Q6 is connected to the sub-driving unit 12 of each pixel 14 through the capacitor C of each pixel 14.
  • the gate of the second selection switch Q7 is connected to a second selection control signal SEL.
  • first reference voltage VCCR the second reference voltage VCCP, and the third reference voltage VREF may be the same or different voltages from each other.
  • the controller 30 generates a reset control signal RST, a first selection control signal SELP, a bias control signal Vb, a first control signal REF, and a second selection control signal SEL to each sub-drive unit 12 and main drive Unit 13.
  • the controller 30 controls the superpixel 10 according to the timing diagram shown in the figure, so that the signal reading circuit 20 can obtain the average output voltage of the superpixel 10 through the transmission line L.
  • the steps of the controller 30 controlling the superpixel 10 and the signal reading circuit 20 include: (a) entering an initial phase PH1; (b) ending the initial phase PH1 and entering an exposure phase Texp; (c) after the exposure phase Texp ends, Enter a first reading phase PH2; (d) After the first reading phase PH2 ends, enter a second reading phase PH3; and (e) Calculate the average sensing voltage.
  • step (a) In the initial stage PH1, the controller 30 controls the first reset switch Q1, the first selection switch Q3 and the second reset switch Q4 of each sub-drive unit 12, and the first switch of the main drive unit 13 Q5 is turned on to reset the light sensing element 11 and the capacitor C, so that the voltage of one end P1 of the capacitor C close to the light sensing element 11 is reset to a reset voltage VRST, and the capacitor C is close to the light sensing element 11 The voltage at one end of P2 is reset to the third reference voltage VREF.
  • step (b) during the exposure stage Texp, the light-sensing component 11 will be exposed to sense the image intensity, that is, the light-sensing component 11 will convert the intensity of external light into a corresponding voltage level.
  • the controller 30 controls the first selection switch Q3 of each sub-driving unit 12 to be turned on, so that the voltage of the light sensing component 11 is instantly converted into the voltage by the first output switch Q2 Charge accumulates at the P1 terminal of the capacitor C, so that the voltage at the P1 terminal of the capacitor C becomes the sensing voltage VSIG in response to the corresponding sensing voltage of the photo-sensing device 11, because a voltage difference (sensing voltage VSIG-reset voltage VRST), this voltage difference will be reflected on the existing third reference voltage VREF at the P2 terminal of the capacitor C, forming VREF + (VSIG-VRST).
  • the values of the P2 terminal of the capacitor C of each pixel 14 in the superpixel 10 are automatically averaged with each other. That is, in the first reading phase PH2, the second selection switch Q7 is turned on, and the P2 terminal of the capacitor C of each pixel 14 in the superpixel 10 is switched through the second output switch Q6 as the source follower The average value is pushed to the signal reading circuit 20, so that the controller 30 can drive the signal reading circuit 20 to read the average output voltage Vout of all four light sensing elements 11 in the superpixel 10, as shown in the following formula (1 ) As shown:
  • Step (d) In the second reading phase PH3, the controller 30 controls the first switch Q5 of the main drive unit 13 to turn on again to reset the P2 terminal of the capacitor C to the third reference voltage VREF; the controller 30 controls the first The second selection switch Q7 is turned on and the driving signal reading circuit 20 reads the third reference voltage VREF.
  • the average sensing voltage Vout 'of some light sensing elements 11 of the superpixel 10 is calculated. From the above formula, the average output obtained The voltage Vout minus the third reference voltage VREF is the average sensing voltage Vout 'of the sensing pixel 10, as shown in the following formula (2). Therefore, the signal reading circuit 20 of the present application only performs simple operations, does not occupy excessive computing resources, and can reduce the number of transmission lines and the hardware area.
  • each sub-drive unit 12a in the image sensor 1a further includes a transmission switch Q8.
  • the transmission switch Q8 is connected in series between the first reset switch Q1 and the corresponding negative terminal of the light sensing element 11, and the gate of the transmission switch Q8 is connected to a transmission control signal TX.
  • the controller 30a provides a transmission control terminal TX.
  • the controller 30a controls the super pixel 10 shown in FIG. 4 in accordance with the timing chart shown in the figure.
  • the steps of the controller 30a controlling the superpixel 10 and the signal reading circuit 20 include: (a) entering a reset phase PH1; (b) ending the reset phase PH1 and entering an exposure phase Texp; (c) during the exposure phase Texp During the period, enter a first reading phase PH2; (d) after the first reading phase ends, end the exposure time Texp, enter a second reading phase PH3; and (e) calculate the average sensing voltage.
  • step (a) in the reset phase PH1, the controller 30a controls the first reset switch Q1 and the transfer switch Q8 of each sub-driving unit 12a to be turned on, so as to reset the light sensing element 11.
  • step (b) the light-sensing component 11 starts exposure to sense the image intensity, that is, the light-sensing component 11 converts the intensity of external light into a corresponding voltage.
  • the controller 30a controls the first reset switch Q1, the first selection switch Q3 and the second reset switch Q4 of each sub-drive unit 12a, and the main drive unit 13
  • the first switch Q5 is turned on, so that the voltage of the end P1 of the capacitor C close to the light sensing element 11 is reset to a reset voltage VRST, and the voltage of the end P2 of the capacitor C close to the light sensing element 11 is reset to The third reference voltage VREF; at the same time, the second selection switch Q7 of the main driving unit 13 is controlled to turn on and the driving signal reading circuit 20 to read the reference voltage VREF.
  • step (d) in the second reading phase PH3, the controller 30a controls the transfer switch Q8 and the first selection switch Q3 of each sub-drive unit 12a to be turned on; the voltage of the light sensing element 11 passes through the transfer switch Q8 and The first output switch Q2 is instantaneously converted into a charge accumulated at the P1 terminal of the capacitor C, so that the voltage at the P1 terminal of the capacitor C becomes the sensing voltage VSIG in response to the corresponding sensing voltage of the photo-sensing component 11, because the P1 terminal of the capacitor C A voltage difference (sensing voltage VSIG-reset voltage VRST) is generated.
  • the second selection switch Q7 is turned on, and the P2 terminal of the capacitor C of each pixel 14 in the superpixel 10 is switched through the second output switch Q6 as a source follower
  • the average value is pushed to the signal reading circuit 20, so that the controller 30 can drive the signal reading circuit 20 to read the average output voltage Vout of all four light sensing elements 11 in the superpixel 10, as shown in the above formula (1) ) As shown.
  • the average sensing voltage Vout 'of the light sensing elements 11 of the superpixel 10 is calculated. From the above equation (2), the obtained The average output voltage Vout minus the reference voltage VREF is the average sensing voltage Vout ′ of the sensing pixel 10. Therefore, the signal reading circuit 20 of the present application only performs simple calculations, accelerates the sensing speed without occupying too many calculation resources, and can reduce the number of transmission lines and the hardware area.
  • each sub-driving unit 12b in the image sensor 1b includes an amplifier OP, a The feedback capacitor CNT and a reset switch Q1.
  • the input terminal of the amplifier OP is connected to the negative terminal of the corresponding light-sensing component 11, and the output terminal is connected to the first terminal P1 of the capacitor C; wherein the positive terminal of the light-sensing component 11 is connected to the ground voltage.
  • the feedback capacitor CNT is connected across the input and output of the amplifier OP.
  • the reset switch Q1 is connected in parallel to the feedback capacitor CNT, and the gate of the reset switch Q1 is connected to a reset control signal RST.
  • the controller 30b generates a reset control signal RST, a first control signal REF, and a second selection control signal SEL to each sub driving unit 12b and the main driving unit 13.
  • the controller 30b controls the superpixel 10 shown in FIG. 6 according to the timing diagram shown in the figure, and the steps of the controller 30b controlling the superpixel 10 and the signal reading circuit 20 include: (a ) Enter an initial stage PH1; (b) End the initial stage PH1 and enter an exposure stage Texp; (c) After the exposure stage Texp ends, enter a first reading stage PH2; (d) At the first reading stage PH2 After the end, enter a second reading phase PH3; and (e) calculate the average sensing voltage.
  • step (a) In the initial stage PH1, the controller 30b controls the reset switch Q1 of each sub-driving unit 12b, and the first switch Q5 of the main driving unit 13 to be turned on to reset the light sensing element 11 and the capacitor C
  • the voltage at the end P1 of the capacitor C close to the light sensing element 11 is reset to a reset voltage VRST, and the voltage at the end P2 of the capacitor C close to the light sensing element 11 is reset to the third reference voltage VREF.
  • step (b) during the exposure stage Texp, the light-sensing component 11 will be exposed to sense the image intensity, that is, the light-sensing component 11 will convert the intensity of external light into a corresponding voltage level.
  • step (c) in the first reading phase PH2, the voltage of the light sensing element 11 is instantaneously converted into charge by the feedback capacitor CNT and accumulated at the terminal P1 of the capacitor C, so that the voltage of the terminal P1 of the capacitor C becomes the sensing voltage VSIG responds to the sensing voltage of the corresponding light-sensing component 11. Since the P1 terminal of the capacitor C instantaneously generates a voltage difference (sensing voltage VSIG-reset voltage VRST), this voltage difference will be reflected on the P2 terminal of the capacitor C. Above some third reference voltage VREF, VREF + (VSIG-VRST) is formed.
  • the values of the P2 terminal of the capacitor C of each pixel 14 in the superpixel 10 are automatically averaged with each other. That is, in the first reading phase PH2, the selection switch Q7 is turned on, and the average value of the P2 terminal of the capacitor C of each pixel 14 in the superpixel 10 is pushed to the output switch Q6 as the source follower The signal reading circuit 20, so that the controller 30 can drive the signal reading circuit 20 to read the average output voltage Vout of all four light sensing elements 11 in the superpixel 10, as shown in the above formula (1).
  • the controller 30b controls the first switch Q5 of the main driving unit 13 to turn on again to reset the P2 terminal of the capacitor C to the third reference voltage VREF; the controller 30b controls The selection switch Q7 is turned on and the driving signal reading circuit 20 is read to read the reference voltage VREF.
  • the average sensing voltage Vout 'of the light sensing element 11 of the superpixel 10 is calculated. From the above equation (2), the obtained The average output voltage Vout minus the reference voltage VREF is the average sensing voltage Vout 'of the sensing pixel. Therefore, the signal reading circuit 202 of the present application only performs simple calculations, accelerates the sensing speed without occupying too many calculation resources, and can reduce the number of transmission lines and the hardware area.
  • a capacitor is connected between the main driving unit and all the sub-driving units in the superpixel of the present application, so the light sensing components and capacitors can be reset before reading each light sensing component
  • the voltage value after sensing can be known from the above formula (2), which can be closer to the actual average output voltage; moreover, because the average output voltage directly read by the signal reading circuit, there is no need to perform complicated calculations, which also helps Reduce the number of transmission lines and the layout area of transmission lines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Facsimile Heads (AREA)

Abstract

本发明公开了一种影像传感器及其感测方法,包括多个超像素及一信号读取电路;其中超像素包括多个像素,每一像素包括:光感测组件及子驱动单元。主驱动单元连接至所述些子驱动单元,以读取出所述每一像素中的光感测组件的平均感测信号,来获得更贴近实际平均感测信号;且每一超像素也由仅单一传输线与信号读取电路连接来读取平均感测信号,能减缩传输线数量,缩小传输线的布局面积。

Description

一种影像传感器及其感测方法 技术领域
本发明涉及影像传感器,尤其涉及一种具有超像素的影像传感器及其感测方法。
背景技术
目前影像传感器仍受到诸多不同制程因素而影响其整体信噪比(SNR),因此为了降低感测讯号中的噪声干扰,可将多个像素组合成一个超像素(super pixel),例如将以2*2排列的4个像素组合成一个超像素,并以超像素中的多个像素所感测到的电压值的平均值来代表超像素的整体感测结果以提升所述影像传感器的信噪比。
然而,虽然前揭影像传感器的信噪比可提升,但每一个像素仍必须通过一条传输线连接至信号读取电路,整体传输线所占的布线空间仍大,有必要进一步提出解决方案。
发明内容
本发明的目的之一在于公开一种影像传感器及其感测方法,来解决上述问题。
本申请的一实施例公开了一种影像传感器。所述影像传感器包含:超像素,包括:多个像素,其中各所述像素包括:光感测组件;以及子驱动单元,分别连接至所述光感测组件,以驱动所述光感测组件;及主驱动单元,连接至所述多个像素的子驱动单元,以同时读取该些子驱动单元驱动该些光感测组件后的感测讯号;以及信号读取电路,连接至所述超像素的主驱动单元,以读取所述多个像素的光感测组件的平均感测电压。
本申请主驱动单元与各所述子驱动单元之间连接有一电容,故可先重置所 述光感测组件后,再读取各光感测组件感测后的电压值,可更贴近实际平均输出电压;再者,由于所述信号读取电路直接读取的平均输出电压,不必进行复杂的运算,也有助于减缩传输线数量,缩小传输线的布局面积。
本申请的一实施例公开了一种影像传感器的感测方法,其中所述影像传感器包括超像素,所述超像素包括多个像素,各所述像素包括光感测组件、子驱动单元以及电容,所述感测方法包括:(a)重置各所述像素的光感测组件以及电容;(b)令各所述像素中的光感测组件进行感测;(c)将各所述像素中的光感测组件的电压输出至电容,并读取出各所述像素中的电容的平均电压;(d)重置各所述像素中的电容,并读取出重置电压;以及(e)依据所述平均电压及重置电压,计算各所述像素中的光感测组件的平均感测电压。
本申请可先重置所述光感测组件后,再读取各光感测组件感测后的电压值,可更贴近实际平均输出电压;再者,由于所述信号读取电路直接读取的平均输出电压,不必进行复杂的运算,也有助于减缩传输线数量,缩小传输线的布局面积。
本申请的一实施例公开了另一种影像传感器的感测方法。其中所述影像传感器包括超像素,所述超像素包括多个像素,各所述像素包括光感测组件、子驱动单元以及电容,所述感测方法包括:(a)重置各所述像素的光感测组件;(b)令各所述像素中的光感测组件进行感测;(c)于感测期间读取出重置电压;(d)于感测结束后,将所述各所述像素中的光感测组件的电压输出至电容,并读取出各所述像素中的电容的平均电压;以及(e)依据所述平均电压及重置电压,计算各所述像素中的光感测组件的平均感测电压。
本申请可先重置所述光感测组件后,再读取各光感测组件感测后的电压值,可更贴近实际平均输出电压;再者,由于所述信号读取电路直接读取的平均输出电压,不必进行复杂的运算,也有助于减缩传输线数量,缩小传输线的布局面积。
附图说明
图1是本申请影像传感器的结构示意图。
图2是本申请影像传感器中一超像素的第一实施例的结构示意图。
图3是配合图2的控制时序图。
图4是本申请影像传感器中一超像素的第二实施例的结构示意图。
图5是配合图4的控制时序图。
图6是本申请影像传感器中一超像素的第三实施例的结构示意图。
图7是配合图6的控制时序图。
其中,附图标记说明如下:
1、1a、1b                             影像传感器
10                                    超像素
11                                    光感测组件
12、12a、12b                          子驱动单元
13                                    主驱动单元
20                                    信号读取电路
30、30a、30b                          控制器
VCCR                                  第一参考电压
VCCP                                  第二参考电压
VREF                                  第三参考电压
RST                                   重置控制信号
SELP                                  第一选择控制信号
REF                                   第一控制信号
Vb                                    偏压控制信号
Q1                                    第一重置开关
Q2                                    第一输出开关
Q3                                    第一选择开关
Q4                                    第二重置开关
Q5                                    第一开关
Q6                                    第二输出开关
Q7                                    第二选择开关
C                                     电容
P1                                    电容一端
P2                                    电容另一端
PH1、PH2、PH3                         阶段
Texp                                  曝光阶段
CNT                                   回授电容
OP                                    放大器
具体实施方式
在说明书及的前的权利要求书当中使用了某些词汇来指称特定的组件。本领域的技术人员应可理解,制造商可能会用不同的名词来称呼同样的组件。本说明书及的前的权利要求书并不以名称的差异来作为区分组件的方式,而是以组件在功能上的差异来作为区分的基准。在通篇说明书及的前的权利要求书当中所提及的“包括”为一开放式的用语,故应解释成“包括但不限定于”。
本申请所公开的影像传感器及其感测方法,所述影像传感器的每一超像素(super pixel)的驱动电路可直接平均其所包含的多个像素的光感测组件的感测电压,故可要只要通过一条对应超像素的传输线输出多个像素的平均输出电压即可,不需再以传输线分别读出多个像素的感测电压。以下配合多个实施例及图式,详细说明本申请影像传感器及其感测方法的技术内容。
首先请参阅图1及图2所示,本申请影像传感器1包含有多个呈矩阵排列的超像素10、一信号读取电路20及一控制器30;其中超像素10连接至所述信号读取电路20及所述控制器30。在本实施例中,每一超像素10包括以2*2的矩阵形式排列的4个像素14,超像素10可经由适当的控制,直接得到4个像素14的平均感测电压,并一次由一传输线L读取。请注意,本发明对于多个超像素10的数目或是排列方式不加以限制,且本发明对于每一超像素10所包含的像素14数目或是排列方式不加以限制,实际上每一超像素10可包括以任意方式排列的任意数目的像素14。
再请参阅图2所示,为本申请影像传感器1的第一实施例,图中仅表示上述多个超像素10的其中之一,超像素10中的每一像素14包含光感测组件11、子驱动单元12以及电容C;其中子驱动单元12连接于光感测组件11和电容C之间。超像素10利用一主驱动单元13来读取超像素10中的像素14的平均感测电压,主驱动单元13通过每一像素14中的电容C连接每一像素14的子驱动单元12,即主驱动单元13与每一个子驱动单元12之间连接有电容C。较佳地,光感测组件11为一光电二极管。
子驱动单元12包含有一第一重置开关Q1、一第一输出开关Q2、一第一选择开关Q3及一第二重置开关Q4。于本实施例中,第一重置开关Q1、第一输出开关Q2、第一选择开关Q3及第二重置开关Q4为NMOS型晶体管,第一重置开关Q1串接于一第一参考电压VCCR与对应的光感测组件11的负端之间,第一重置开关Q1的闸极连接至一重置控制信号RST,而光感测组件11的正端连接至地电压。第一输出开关Q2被设置为源极跟随器,用以将光感测组件11负端的电压往后级推动,具体来说,第一输出开关Q2的闸极连接至光感测组件11的负端,第一输出开关Q2、第一选择开关Q3及第二重置开关Q4一并依序串接于一第二参考电压VCCP与地电压之间。第一选择开关Q3连接于作为源极跟随器的第一输出开关Q2和电容C之间,第一选择开关Q3的闸极连接至一第一选择控制信号SELP。第二重置开关Q4连接于电容C及地电压之间,第二重置开关Q4的闸极连接至一偏压控制信号Vb。
主驱动单元13包含一第一开关Q5、一第二输出开关Q6及一第二选择开关Q7。于本实施例中,第一开关Q5、第二输出开关Q6及第二选择开关Q7为NMOS型晶体管,第一开关Q5连接于一第三参考电压VREF及每一像素14之间,具体来说,每一像素14的电容C连接于同一像素14的子驱动单元12和第一开关Q5之间。第一开关Q5的闸极连接至一第一控制信号REF。第二输出开关Q6被设置为源极跟随器,用以将电容C的P2端的电压往后级推动,第二输出开关Q6和第二选择开关Q7依序串接于第二参考电压VCCP和传输线L之间,且第二输出开关Q6的闸极通过每一像素14的电容C连接至每一像素14的子驱动单元12。第二选择开关Q7的闸极连接至一第二选择控制信号SEL。
应注意的是,第一参考电压VCCR、第二参考电压VCCP以及第三参考电压 VREF可以是彼此相同或不同的电压。
于本实施例,控制器30产生重置控制信号RST、第一选择控制信号SELP、偏压控制信号Vb、第一控制信号REF以及第二选择控制信号SEL至每一子驱动单元12及主驱动单元13。
请配合参阅图3所示,控制器30依据图中所示的时序图,对超像素10加以控制,令信号读取电路20可通过传输线L获得超像素10的平均输出电压。控制器30控制超像素10和信号读取电路20的步骤包括:(a)进入一初始阶段PH1;(b)结束初始阶段PH1,进入一曝光阶段Texp;(c)于曝光阶段Texp结束后,进入一第一读取阶段PH2;(d)于第一读取阶段PH2结束后,进入一第二读取阶段PH3;以及(e)计算平均感测电压。
上述步骤(a)在初始阶段PH1中,控制器30控制每一子驱动单元12的第一重置开关Q1、第一选择开关Q3与第二重置开关Q4、主驱动单元13的第一开关Q5导通,以重置光感测组件11及电容C,使电容C靠近光感测组件11的一端P1的电压被重置为一重置电压VRST,以及使电容C靠近光感测组件11的一端P2的电压被重置为第三参考电压VREF。接着步骤(b),在曝光阶段Texp,光感测组件11会进行曝光以感测影像强度,即光感测组件11会将外在光线强弱转换为对应的电压大小。
上述步骤(c)在第一读取阶段PH2中,控制器30控制每一子驱动单元12的第一选择开关Q3导通,使光感测组件11的电压通过第一输出开关Q2瞬间转换为电荷聚集在电容C的P1端,使电容C的P1端的电压成为感测电压VSIG以反应对应的光感测组件11的感测电压,由于电容C的P1端瞬间产生一电压差(感测电压VSIG-重置电压VRST),此电压差会反应在电容C的P2端的既有的第三参考电压VREF之上,形成VREF+(VSIG-VRST)。又由于超像素10中的每一像素14的电容C的P2端都彼此连接,故超像素10中每一像素14的电容C的P2端的值会自动地彼此平均。也就是说,在第一读取阶段PH2中,第二选择开关Q7导通,并通过作为源极跟随器的第二输出开关Q6来将超像素10中每一像素14的电容C的P2端的平均值推到信号读取电路20,如此一来,控制器30便可驱动信号读取电路20读取到超像素10中所有4个光感测组件11的平均输出电压Vout,如下式(1)所示:
Figure PCTCN2018111838-appb-000001
步骤(d)在第二读取阶段PH3中,控制器30再次控制主驱动单元13的第一开关Q5导通以重置电容C的P2端为第三参考电压VREF;控制器30并控制第二选择开关Q7导通以及驱动信号读取电路20读取第三参考电压VREF。
上述步骤(e)中,依据平均输出电压Vout及第三参考电压VREF,计算出超像素10的些光感测组件11的平均感测电压Vout',由上式可知,将所获得的平均输出电压Vout减去第三参考电压VREF,即为感测像素10的平均感测电压Vout',如下式(2)所示。因此,本申请的信号读取电路20只是进行简单运算,不占用过多运算资源,并可减少传输线数目与硬件面积。
Figure PCTCN2018111838-appb-000002
再请配合参阅图4所示,为本申请影像传感器的第二实施例,其与图2所示的第一实施例大致相同,惟影像传感器1a中每一子驱动单元12a进一步包括一传输开关Q8,传输开关Q8串接在所述第一重置开关Q1与对应的所述光感测组件11的负端之间,传输开关Q8的闸极连接至一传输控制信号TX。控制器30a提供传输控制端TX。
请配合参阅图5所示,控制器30a配合图中所示的时序图控制图4所示的超像素10。控制器30a控制超像素10和信号读取电路20的的步骤包括:(a)进入一重置阶段PH1;(b)结束重置阶段PH1,进入一曝光阶段Texp;(c)于曝光阶段Texp期间进入一进入一第一读取阶段PH2;(d)于第一读取阶段结束后,结束曝光时间Texp,进入一第二读取阶段PH3;以及(e)计算平均感测电压。
上述步骤(a)在重置阶段PH1中,控制器30a控制每一子驱动单元12a的第一重置开关Q1及传输开关Q8导通,以重置光感测组件11。接着步骤(b),光感测组件11就开始进行曝光以感测影像强度,即光感测组件11会将外在光线强弱转换为对应的电压大小。
上述步骤(c)在第一读取阶段PH2中,控制器30a控制每一子驱动单元12a的第一重置开关Q1、第一选择开关Q3与第二重置开关Q4以及主驱动单元13的第一开关Q5导通,使电容C靠近光感测组件11的一端P1的电压被重置为一重置电压VRST,以及使电容C靠近光感测组件11的一端P2的电压被重置为第三参考电压VREF;同时控制主驱动单元13的第二选择开关Q7导通及驱动信号读取电路20,以读取参考电压VREF。
上述步骤(d)在第二读取阶段PH3中,控制器30a控制每一子驱动单元12a的传送开关Q8及第一选择开关Q3导通;使光感测组件11的电压通过传送开关Q8及第一输出开关Q2瞬间转换为电荷聚集在电容C的P1端,使电容C的P1端的电压成为感测电压VSIG以反应对应的光感测组件11的感测电压,由于电容C的P1端瞬间产生一电压差(感测电压VSIG-重置电压VRST),此电压差会反应在电容C的P2端的既有的第三参考电压VREF之上,形成VREF+(VSIG-VRST)。又由于超像素10中的每一像素14的电容C的P2端都彼此连接,故超像素10中每一像素14的电容C的P2端的值会自动地彼此平均。也就是说,在第二读取阶段PH3中,第二选择开关Q7导通,并通过作为源极跟随器的第二输出开关Q6来将超像素10中每一像素14的电容C的P2端的平均值推到信号读取电路20,如此一来,控制器30便可驱动信号读取电路20读取到超像素10中所有4个光感测组件11的平均输出电压Vout,如上式(1)所示。
上述步骤(e)中,依据平均输出电压Vout及第三参考电压VREF,计算出超像素10的些光感测组件11的平均感测电压Vout’,由上式(2)可知,将所获得的平均输出电压Vout减去参考电压VREF,即为感测像素10的平均感测电压Vout’。因此,本申请的信号读取电路20只是进行简单运算,加速感测速度且不占用过多运算资源,并可减少传输线数目与硬件面积。
再请参阅图6所示,为本申请影像传感器的第三实施例,其与图2所示的第一实施例大致相同,惟影像传感器1b中每一子驱动单元12b包含有一放大器OP、一回授电容CNT、一重置开关Q1。放大器OP的输入端连接至对应的光感测组件11的负端,而其输出端连接至电容C的第一端P1;其中光感测组件11的正端连接至地电压。回授电容CNT是跨接于放大器OP的输入端及输出端。 重置开关Q1则并联于回授电容CNT,且重置开关Q1的闸极连接至一重置控制信号RST。控制器30b产生重置控制信号RST、第一控制信号REF以及第二选择控制信号SEL至每一子驱动单元12b及主驱动单元13。
请配合参阅图7所示,控制器30b配合图中所示的时序图,控制图6所示的超像素10,且控制器30b控制超像素10和信号读取电路20的步骤包括:(a)进入一初始阶段PH1;(b)结束初始阶段PH1,进入一曝光阶段Texp;(c)于曝光阶段Texp结束后,进入一第一读取阶段PH2;(d)于第一读取阶段PH2结束后,进入一第二读取阶段PH3;以及(e)计算平均感测电压。
上述步骤(a)在初始阶段PH1中,控制器30b控制每一子驱动单元12b的重置开关Q1、主驱动单元13的第一开关Q5导通,以重置光感测组件11及电容C,使电容C靠近光感测组件11的一端P1的电压被重置为一重置电压VRST,以及使电容C靠近光感测组件11的一端P2的电压被重置为第三参考电压VREF。接着步骤(b),在曝光阶段Texp,光感测组件11会进行曝光以感测影像强度,即光感测组件11会将外在光线强弱转换为对应的电压大小。
上述步骤(c)在第一读取阶段PH2中,使光感测组件11的电压通过回授电容CNT瞬间转换为电荷聚集在电容C的P1端,使电容C的P1端的电压成为感测电压VSIG以反应对应的光感测组件11的感测电压,由于电容C的P1端瞬间产生一电压差(感测电压VSIG-重置电压VRST),此电压差会反应在电容C的P2端的既有的第三参考电压VREF之上,形成VREF+(VSIG-VRST)。又由于超像素10中的每一像素14的电容C的P2端都彼此连接,故超像素10中每一像素14的电容C的P2端的值会自动地彼此平均。也就是说,在第一读取阶段PH2中,选择开关Q7导通,并通过作为源极跟随器的输出开关Q6来将超像素10中每一像素14的电容C的P2端的平均值推到信号读取电路20,如此一来,控制器30便可驱动信号读取电路20读取到超像素10中所有4个光感测组件11的平均输出电压Vout,上式(1)所示。
上述步骤(d)在第二读取阶段PH3中,控制器30b再次控制主驱动单元13的第一开关Q5导通以重置电容C的P2端为第三参考电压VREF;控制器30b并控制选择开关Q7导通以及驱动信号读取电路20,以读取参考电压VREF。
上述步骤(e)中,依据平均输出电压Vout及第三参考电压VREF,计算出超像素10的光感测组件11的平均感测电压Vout’,由上式(2)可知,将所获得的平均输出电压Vout减去参考电压VREF,即为感测像素的平均感测电压Vout’。因此,本申请的信号读取电路202只是进行简单运算,加速感测速度且不占用过多运算资源,并可减少传输线数目与硬件面积。
由上述所举第一及第三实施例可知,本申请影像传感器的感测方法包含有:
(a)重置超像素中每一像素中的光感测组件以及电容;
(b)令所述每一像素中的光感测组件进行感测;
(c)将所述每一像素中的光感测组件的感测电压输出至电容,并读取出所述每一像素中的光感测组件的平均输出电压;
(d)重置所述每一像素中的电容,并读取出第三参考电压;以及
(e)依据所述每一像素中的光感测组件的平均输出电压及第三参考电压,计算平均感测电压。
由上述所举第二实施例可知,本申请影像传感器的感测方法包含有:
(a)重置超像素中每一像素中的光感测组件;
(b)令所述每一像素中的光感测组件进行感测;
(c)于感测期间中,读取出第三参考电压;
(d)于感测结束后,将所述每一像素中的光感测组件的感测电压输出至电容,并读取出所述每一像素中的光感测组件的平均输出电压;以及
(e)依据所述每一像素中的光感测组件的所述平均输出电压及第三参考电压,计算平均感测电压。
综上所述,本申请超像素中的主驱动单元与所有子驱动单元之间都连接有一电容,故可先重置所述光感测组件及电容后,再读取每一光感测组件感测后的电压值,由上式(2)可知,可更贴近实际平均输出电压;再者,由于所述信号读取电路直接读取的平均输出电压,不必进行复杂的运算,也有助于减缩传输线数量,缩小传输线的布局面积。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (27)

  1. 一种影像传感器,其特征在于,包括:
    超像素,包括:
    多个像素,其中各所述像素包括:
    光感测组件;以及
    子驱动单元,分别连接至所述光感测组件,以驱动所述光感测组件;
    主驱动单元,连接至所述多个像素的子驱动单元,以同时读取该些子驱动单元驱动该些光感测组件后的感测讯号;以及
    信号读取电路,连接至所述超像素的主驱动单元,以读取所述多个像素的光感测组件的平均感测电压。
  2. 如权利要求1所述的影像传感器,其中各所述像素的子驱动单元还包括电容,其中,所述主驱动单元通过所述多个像素的电容分别连接至所述多个像素的子驱动单元。
  3. 如权利要求2所述的影像传感器,其中各所述像素的子驱动单元包括:
    第一重置开关,串接于第一参考电压与对应的所述光感测组件的负端之间,所述第一重置开关的闸极连接重置控制信号;其中所述光感测组件的正端连接至地电压;
    第一输出开关,其闸极连接至所述光感测组件的负端;
    第一选择开关,其闸极连接至第一选择控制信号;以及
    第二重置开关,其闸极连接至偏压控制信号;
    其中所述第一输出开关、所述第一选择开关及所述第二重置开关依序串接于第二参考电压与地电压之间。
  4. 如权利要求2所述的影像传感器,其中各所述像素的子驱动单元包括:
    第一重置开关,其闸极连接至重置控制端;
    传输开关,其闸极连接至传输控制信号,其中所述第一重置开关与所述传 输开关依序串接于第一电压与所述光感测组件的负端,且所述光感测组件的正端连接至地电压;
    第一输出开关,其闸极连接至所述光感测组件的负端;
    第一选择开关,其闸极连接至第一选择控制信号;以及
    第二重置开关,其闸极连接至偏压控制信号;
    其中所述第一输出开关、所述第一选择开关及所述第二重置开关依序串接于第二参考电压与地电压之间。
  5. 如权利要求2所述的影像传感器,其中各所述像素的子驱动单元包括:
    放大器,其输入端连接至对应的所述光感测组件的负端,而其输出端连接至所述电容的第一端;其中所述光感测组件的正端连接至地电压;
    回授电容,跨接于所述放大器的输入端及输出端;以及
    重置开关,并联于所述回授电容,且所述重置开关的闸极连接至重置控制信号。
  6. 如权利要求3所述的影像传感器,其中所述主驱动单元包括:
    第一开关,连接于第三参考电压与各所述像素之间,所述第一开关的闸极连接至第一控制信号;
    第二输出开关,其闸极通过各所述像素的电容连接至各所述像素的子驱动单元;以及
    第二选择开关,其闸极连接至第二选择控制信号;
    其中所述第二输出开关及所述第二选择开关依序串接于所述第二参考电压和所述信号读取电路之间。
  7. 如权利要求6所述的影像传感器,其中所述第一开关、所述第二输出开关及所述第二选择开关为NMOS型晶体管。
  8. 如权利要求6所述的影像传感器,进一步包括控制器,所述控制器产生所述重置控制信号、所述第一选择控制信号、所述偏压控制信号、所述第一控制信号以及所述第二选择控制信号至各所述像素的子驱动单元及所述主驱动单元。
  9. 如权利要求8所述的影像传感器,其中,所述控制器用于:
    在初始阶段,控制各所述像素的子驱动单元的第一重置开关、第一选择开关、第二重置开关、以及所述主驱动单元的第一开关导通,以重置各所述像素的光感测组件及电容;
    在所述初始阶段结束后进入曝光阶段,并控制各所述像素的光感测组件开始感测。
  10. 如权利要求9所述的影像传感器,其中,所述控制器还用于:
    在所述曝光阶段结束后进入第一读取阶段,控制各所述像素的子驱动单元的第一选择开关导通,使各所述像素的光感测组件的电压通过第一输出开关输出至所述电容,并控制所述主驱动单元的第二选择开关导通,将各所述像素的电容的平均电压输出至所述信号读取电路;
    在所述第一读取阶段结束后进入第二读取阶段,再次控制所述主驱动单元的第一开关导通以重置各所述像素的电容,以及控制所述主驱动单元的第二选择开关导通并驱动所述信号读取电路,以读取所述第三参考电压;以及
    依据所述平均电压及所述第三参考电压,计算出所述超像素的各所述像素的光感测组件的平均感测电压。
  11. 如权利要求4所述的影像传感器,其中所述主驱动单元包括:
    第一开关,连接于第三参考电压与各所述像素之间,所述第一开关的闸极连接至第一控制信号;
    第二输出开关,其闸极通过各所述像素的电容连接至各所述像素的子驱动单元;以及
    第二选择开关,其闸极连接至第二选择控制信号;
    其中所述第二输出开关及所述第二选择开关依序串接于所述第二参考电压和所述信号读取电路之间。
  12. 如权利要求11所述的影像传感器,其中所述第一开关、所述第二输出开关及所述第二选择开关为NMOS型晶体管。
  13. 如权利要求11所述的影像传感器,进一步包括控制器,所述控制器产生所述重置控制信号、所述传输控制信号、所述第一选择控制信号、所述偏压控制信号、所述第一控制信号以及所述第二选择控制信号至各所述像素的子驱动单元及所述主驱动单元。
  14. 如权利要求13所述的影像传感器,其中,所述控制器用于:
    在重置阶段,控制各所述像素的子驱动单元的第一重置开关及传输开关导通,以重置各所述像素的光感测组件;
    在所述重置阶段结束后进入曝光阶段,并控制各所述像素的光感测组件开始感测。
  15. 如权利要求14所述的影像传感器,其中,所述控制器还用于:
    在所述曝光阶段期间进入第一读取阶段:于所述第一读取阶段中,控制各所述像素的子驱动单元的第一重置开关、第一选择开关与第二重置开关导通,以重置各所述像素的电容;同时控制所述主驱动单元的第二选择开关导通并驱动所述信号读取电路,以读取第三参考电压;
    在所述曝光阶段及第一读取阶段结束后,进入第二读取阶段,控制各所述像素的子驱动单元的传送开关及第一选择开关导通,使各所述像素的光感测组件的电压通过传送开关及第一输出开关输出至电容;同时控制所述主驱动单元的第二选择开关导通,将各所述像素的电容的平均电压输出至所述信号读取电路;以及
    依据所述平均电压及所述第三参考电压,计算出所述超像素的所有像素的光感测组件的平均感测电压。
  16. 如权利要求5所述的影像传感器,其中所述主驱动单元包括:
    第一开关,连接于第三参考电压与各所述像素之间,所述第一开关的闸极连接至第一控制信号;
    第二输出开关,其闸极通过各所述像素的电容连接至各所述像素的子驱动单元;以及
    第二选择开关,其闸极连接至第二选择控制信号;
    其中所述第二输出开关及所述第二选择开关依序串接于所述第二参考电压和所述信号读取电路之间。
  17. 如权利要求16所述的影像传感器,其中所述第一开关、所述第二输出开关及所述第二选择开关为NMOS型晶体管。
  18. 如权利要求17所述的影像传感器,进一步包括控制器,所述控制器产生所述重置控制信号、所述第一控制信号以及所述选择控制信号至各所述像素的子驱动单元及所述主驱动单元。
  19. 如权利要求13所述的影像传感器,其中,所述控制器用于:
    在初始阶段,控制各所述像素的子驱动单元的重置开关、所述主驱动单元的第一开关导通,以重置各所述像素的光感测组件及电容;
    在所述初始阶段结束后进入曝光阶段,并控制各所述像素的光感测组件开始感测。
  20. 如权利要求13所述的影像传感器,其中,所述控制器还用于:
    在所述曝光阶段结束后进入第一读取阶段,控制各所述像素的光感测组件的电压输出至电容,并控制所述主驱动单元的选择开关导通,将各所述像素的电容的平均电压输出至所述信号读取电路;
    在所述第一读取阶段结束后进入第二读取阶段,控制所述主驱动单元的第一开关导通以重置各所述像素的电容,以及控制所述主驱动单元的选择开关导通并驱动所述信号读取电路,以读取所述参考电压;以及
    依据所述平均电压及所述参考电压,计算出所述超像素的各所述像素的光感测组件的平均感测电压。
  21. 如权利要求1至20中任一项所述的影像传感器,其中所述光感测组件为一光电二极管。
  22. 一种影像传感器的感测方法,其中所述影像传感器包括超像素,所述超像素包括多个像素,各所述像素包括光感测组件、子驱动单元以及电容,其特征在于,所述感测方法包括:
    (a)重置各所述像素的光感测组件以及电容;
    (b)令各所述像素中的光感测组件进行感测;
    (c)将各所述像素中的光感测组件的电压输出至电容,并读取出各所述像素中的电容的平均电压;
    (d)重置各所述像素中的电容,并读取出重置电压;以及
    (e)依据所述平均电压及重置电压,计算各所述像素中的光感测组件的平均感测电压。
  23. 如权利要求22所述的感测方法,于步骤(e)中,包括:
    将所述平均电压减去重置电压获得所述平均感测电压。
  24. 如权利要求22或23所述的影像传感器,其中各所述像素中的光感测组件为一光电二极管。
  25. 一种影像传感器的感测方法,其中所述影像传感器包括超像素,所述超像素包括多个像素,各所述像素包括光感测组件、子驱动单元以及电容,其特征在于,所述感测方法包括:
    (a)重置各所述像素的光感测组件;
    (b)令各所述像素中的光感测组件进行感测;
    (c)于感测期间读取出重置电压;
    (d)于感测结束后,将所述各所述像素中的光感测组件的电压输出至电容,并读取出各所述像素中的电容的平均电压;以及
    (e)依据所述平均电压及重置电压,计算各所述像素中的光感测组件的平均感测电压。
  26. 如权利要求25所述的感测方法,于步骤(e)中,包括:
    将所述平均电压减去重置电压获得所述平均感测电压。
  27. 如权利要求25或26所述的影像传感器,其中各所述像素中的光感测组件为一光电二极管。
PCT/CN2018/111838 2018-10-25 2018-10-25 一种影像传感器及其感测方法 WO2020082289A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/111838 WO2020082289A1 (zh) 2018-10-25 2018-10-25 一种影像传感器及其感测方法
CN201880002085.3A CN109496427B (zh) 2018-10-25 2018-10-25 一种影像传感器及其感测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/111838 WO2020082289A1 (zh) 2018-10-25 2018-10-25 一种影像传感器及其感测方法

Publications (1)

Publication Number Publication Date
WO2020082289A1 true WO2020082289A1 (zh) 2020-04-30

Family

ID=65713870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111838 WO2020082289A1 (zh) 2018-10-25 2018-10-25 一种影像传感器及其感测方法

Country Status (2)

Country Link
CN (1) CN109496427B (zh)
WO (1) WO2020082289A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220058364A1 (en) * 2020-08-21 2022-02-24 Shenzhen GOODIX Technology Co., Ltd. Image sensor, fingerprint detection apparatus and electronic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102510450A (zh) * 2011-10-17 2012-06-20 北京瑞澜联合通信技术有限公司 图像传感器、摄像装置及图像数据生成方法
US20140015025A1 (en) * 2012-07-13 2014-01-16 Samsung Electronics Co., Ltd. Image sensors including channel stop regions surrounding photodiodes and methods of fabricating the same
US20150049230A1 (en) * 2012-10-12 2015-02-19 Samsung Electronics Co., Ltd. Image sensor and method of operating the same
CN107278329A (zh) * 2017-05-26 2017-10-20 深圳市汇顶科技股份有限公司 像素传感单元及图像撷取装置
CN107333074A (zh) * 2016-04-29 2017-11-07 江苏思特威电子科技有限公司 成像装置及其成像方法
CN108064446A (zh) * 2017-10-20 2018-05-22 深圳市汇顶科技股份有限公司 模拟读取电路及影像传感模块

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI254899B (en) * 2002-06-21 2006-05-11 Himax Tech Inc Method and related apparatus for driving an LCD monitor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102510450A (zh) * 2011-10-17 2012-06-20 北京瑞澜联合通信技术有限公司 图像传感器、摄像装置及图像数据生成方法
US20140015025A1 (en) * 2012-07-13 2014-01-16 Samsung Electronics Co., Ltd. Image sensors including channel stop regions surrounding photodiodes and methods of fabricating the same
US20150049230A1 (en) * 2012-10-12 2015-02-19 Samsung Electronics Co., Ltd. Image sensor and method of operating the same
CN107333074A (zh) * 2016-04-29 2017-11-07 江苏思特威电子科技有限公司 成像装置及其成像方法
CN107278329A (zh) * 2017-05-26 2017-10-20 深圳市汇顶科技股份有限公司 像素传感单元及图像撷取装置
CN108064446A (zh) * 2017-10-20 2018-05-22 深圳市汇顶科技股份有限公司 模拟读取电路及影像传感模块

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220058364A1 (en) * 2020-08-21 2022-02-24 Shenzhen GOODIX Technology Co., Ltd. Image sensor, fingerprint detection apparatus and electronic device
US11837013B2 (en) * 2020-08-21 2023-12-05 Shenzhen GOODIX Technology Co., Ltd. Image sensor, fingerprint detection apparatus and electronic device

Also Published As

Publication number Publication date
CN109496427A (zh) 2019-03-19
CN109496427B (zh) 2021-04-27

Similar Documents

Publication Publication Date Title
JP6319946B2 (ja) 固体撮像装置及び撮像システム
US8289431B2 (en) Image sensing device and image sensing system
CN102780858B (zh) 固态成像设备、其驱动方法及固态成像系统
KR101934696B1 (ko) 촬상소자
US9270905B2 (en) Readout circuit, solid-state imaging apparatus, and method for driving readout circuit
JP2020205646A (ja) 撮像装置
JP4893042B2 (ja) 撮像装置
JP6100443B2 (ja) Cmos撮像センサのために適合された増幅器
KR20090121356A (ko) 화상 센서 판독 방법 및 디지털 카메라의 화상 센서 판독 방법
JP6635027B2 (ja) 撮像素子、ゲイン制御方法、プログラム、および電子機器
KR20200113817A (ko) 이미지 센서
CN104243861A (zh) 高速全局快门像素结构及其信号控制方法
CN112584069A (zh) 图像传感器及其操作方法
JP4770563B2 (ja) 撮像装置
WO2020082289A1 (zh) 一种影像传感器及其感测方法
KR20050025115A (ko) 화상검출 처리장치
JP6463002B2 (ja) 撮像装置の駆動方法、撮像システムの駆動方法
JP6245856B2 (ja) 光電変換装置、光電変換システム
JP6532224B2 (ja) 撮像装置、撮像システム、及び撮像装置の駆動方法
KR100749261B1 (ko) 시모스 이미지센서
US10455175B2 (en) Solid state imaging device and imaging apparatus including clipping sections clipping the voltage of vertical signal line to a predetermined value
JPS6387874A (ja) 固体撮像装置
KR100865111B1 (ko) 넓은 동작 범위의 cmos형 이미지 센서용 화소 회로
JP5106596B2 (ja) 撮像装置
JP6580111B2 (ja) 撮像素子および撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18937758

Country of ref document: EP

Kind code of ref document: A1