WO2020080713A1 - 유기산의 정제방법 - Google Patents

유기산의 정제방법 Download PDF

Info

Publication number
WO2020080713A1
WO2020080713A1 PCT/KR2019/013000 KR2019013000W WO2020080713A1 WO 2020080713 A1 WO2020080713 A1 WO 2020080713A1 KR 2019013000 W KR2019013000 W KR 2019013000W WO 2020080713 A1 WO2020080713 A1 WO 2020080713A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic acid
alcohol
organic
aqueous solution
extraction
Prior art date
Application number
PCT/KR2019/013000
Other languages
English (en)
French (fr)
Inventor
남현
이경무
임유경
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/976,049 priority Critical patent/US11420924B2/en
Publication of WO2020080713A1 publication Critical patent/WO2020080713A1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • B01D11/0492Applications, solvents used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • B01D11/0446Juxtaposition of mixers-settlers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • B01D11/0484Controlling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • B01D11/0488Flow sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/10Vacuum distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/48Separation; Purification; Stabilisation; Use of additives by liquid-liquid treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/01Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups
    • C07C59/06Glycolic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids

Definitions

  • the present invention relates to a method for purifying an organic acid, in purifying an organic acid aqueous solution, improving extraction efficiency and effectively recovering the organic acid at a high concentration from a low concentration organic acid aqueous solution.
  • 3-hydroxypropionic acid (3-HP), one of the organic acids, is a synthetic intermediate that can be used in various chemical processes and is a high value-added 1,3-propanediol, acrylic acid, methyl acrylate, acrylamide, ethyl It is an industrially important compound used as a synthetic raw material for various compounds such as 3-hydroxypropionate, malonic acid, propiolactone, and acrylonitrile.
  • organic acids can be produced by a pure chemical process, but recently, they are produced by a separation and purification process from a low concentration ( ⁇ 10 wt%) culture solution produced by a microorganism-based fermentation process.
  • a liquid-liquid extraction or reaction extraction technique is generally used instead of an energy-intensive water evaporation method.
  • the present invention is to provide a method for purifying an organic acid, which effectively recovers the organic acid at a high concentration from a low concentration organic acid aqueous solution.
  • It provides a method for purifying an organic acid, including a second extraction step of adding water to the first organic layer from which the alcohol has been removed to separate the second organic layer and the second aqueous layer.
  • a method for purifying an organic acid may be provided, which includes a second extraction step of adding water to the first organic layer from which the alcohol has been removed and separating it into a second organic layer and a second aqueous solution layer.
  • the present inventors include a first extraction step of separating the first organic layer and the first aqueous layer by adding a solvent containing amine and alcohol to the organic acid aqueous solution; Removing alcohol in the separated first organic layer; And a second extraction step in which water is added to the first organic layer from which the alcohol has been removed to separate the second organic layer and the second aqueous solution layer, thereby maximizing extraction efficiency to effectively recover the organic acid from the low concentration organic acid aqueous solution at a high concentration. It was confirmed through experiments that it could be completed the invention.
  • the alcohol acts as a component of the extraction solvent, thereby increasing the first extraction efficiency through the role of stabilizing the complex formed by meeting the organic acid and the amine.
  • the state of the stable complex was changed to also increase the second extraction efficiency through experiments to confirm that a high concentration of organic acid can be effectively obtained.
  • the organic acid aqueous solution may be a fermentation broth obtained in a microorganism-based fermentation process, or may be an aqueous solution containing an organic acid having 2 to 10 carbon atoms including a hydroxy group.
  • the organic acid having 2 to 10 carbon atoms containing the hydroxy group may be included in a concentration of 3 to 10% in the organic acid aqueous solution, when the concentration of the organic acid having 2 to 10 carbon atoms containing the hydroxyl group is less than 3%, excessive extraction solvent May not be economical due to increased use or extraction time
  • the organic acid having 2 to 10 carbon atoms including the hydroxy group is glycolic acid, 3-hydroxypropionic acid, lactic acid or 10-hydroxydecanoic acid ) May be one or more selected from the group consisting of, preferably, 3-hydroxypropionic acid.
  • a solvent containing both amine and alcohol may be used as the extraction solvent used for the extraction of the organic acid in the first extraction step.
  • the solvent containing the amine and alcohol When the solvent containing the amine and alcohol is added to the organic acid aqueous solution, the organic acid contained in the organic acid aqueous solution is dissolved in the solvent, and the solvent and water are separated into a first organic layer and a first aqueous solution layer. do.
  • the volume ratio of the organic acid aqueous solution and the solvent containing amine and alcohol may be 1: 0.5 to 1: 1.5.
  • the extraction solvent is increased while increasing the extraction efficiency. By minimizing the amount of used, it can have an optimum effect in the first extraction efficiency.
  • the volume ratio of the organic acid aqueous solution and the solvent containing amine and alcohol is less than 1: 0.5, the use of the extraction solvent may be small, and thus the extraction efficiency may be lowered. If it exceeds 1: 1.5, the extraction efficiency increases, but may be removed later. The amount of alcohol increases, which may cause a problem of increasing energy cost.
  • the weight ratio of amine and alcohol in the extraction solvent may be 15:85 to 45:55.
  • the weight ratio of the amine is less than 15%, the content of the amine is insufficient, and thus the complex is not formed smoothly, thus the extraction efficiency is reduced, and the content of alcohol is relatively large, so that the amount of energy required to remove the alcohol may be increased.
  • it is 45% or more, the extraction efficiency does not increase any more.
  • the amine is not particularly limited, and may be, for example, one or more amines selected from the group consisting of tri-n-octylamine, tridecylamine or Aliquat 336, and preferably tri-n-octylamine.
  • the alcohol is not particularly limited, for example, may be one or more alcohols selected from the group consisting of 1-hexanol, 1-heptanol or 1-octanol, preferably 1-hexanol.
  • the first extraction step may be performed at a temperature of 0 to 50 ° C, and preferably 20 to 30 ° C.
  • the stirring in the first extraction step may be performed in a manner of stirring at 500 to 700 rpm for 7 to 17 hours.
  • a step of removing alcohol in the separated first organic layer may be performed.
  • the state of the stable complex formed by the combination of the organic acid and the amine through the removal of the alcohol can be changed, so that the organic acid can be more smoothly extracted into the second aqueous solution layer in the second extraction step. 2
  • the extraction efficiency is increased and the organic acid can be effectively obtained at a high concentration.
  • the method for removing the alcohol is not particularly limited, but may be performed, for example, by distillation. However, in order to prevent deformation of the organic acid in the distillation process, it is most preferable to apply vacuum distillation.
  • a second extraction step of separating the second organic layer and the second aqueous layer by adding water to the first organic layer from which the alcohol has been removed may be performed.
  • the second extraction step may be performed at a temperature of 50 to 100 °C, preferably 70 to 90 °C.
  • the extraction efficiency may be lowered, and when it exceeds 100 ° C, evaporation of water as an extraction solvent occurs.
  • stirring in the second extraction step may be performed in a manner of stirring at 500 to 700 rpm for 5 to 7 hours.
  • the first extraction step Removal of alcohol; And a second extraction step, it is possible to effectively purify the organic acid from the low concentration organic acid aqueous solution to a high concentration.
  • the extraction efficiency of the second extraction step was increased by about 2 times or more than when purified without removing the alcohol.
  • the ratio of the concentration of the organic acid contained in the second aqueous layer to the concentration of the organic acid contained in the second organic layer also increased by about 2 times or more.
  • the present invention provides a method for purifying an organic acid, which effectively recovers the organic acid at a high concentration from an aqueous low concentration organic acid solution.
  • the first extraction efficiency was analyzed by varying the type and content of the extraction solvent compared to the organic acid aqueous solution.
  • the aqueous organic acid solution contains 7.2 wt% of 3-hydroxypropionic acid as a fermentation broth obtained in a microorganism-based fermentation process.
  • tri-n-octylamine (TOA) and Aliquat 336 were used as the amine, and 1-hexanol (1-hexanol) as the alcohol.
  • 3-hydroxypropionic acid was added to the organic acid aqueous solution containing 7.2 wt% of the alcohol and amine at the contents shown in Table 1, followed by stirring at 30 ° C for 7 hours, standing thereafter, and separating it into the first organic layer and the first aqueous solution layer. The first extraction was performed.
  • the total amount of the extraction solvent was kept constant, but the first extraction efficiency was analyzed while changing the ratio of amine and alcohol.
  • 3-hydroxypropionic acid was added to the organic acid aqueous solution containing 7.2 wt% of the amine and alcohol in the contents shown in Table 2, followed by stirring at 20 ° C. for 17 hours, and standing thereto as the first organic layer and the first aqueous solution layer. The separation was performed for the first extraction.
  • 3-hydroxypropionic acid was added to the organic acid aqueous solution containing 7.2 wt% of amine and alcohol at the contents shown in Table 3, stirred at 20 ° C. for 17 hours, left standing, and separated into a first organic layer and a first aqueous solution layer. First extraction was performed.
  • 1-hexanol in the separated first organic layer is removed by vacuum distillation at 70 ° C., water is added to the first organic layer from which the alcohol has been removed, stirred at 90 ° C. for 7 hours, and then left to stand for the second organic layer. And a second extraction was performed to separate into a second aqueous solution layer.
  • the content of the organic acid contained in the separated second aqueous solution layer was measured using HPLC, and the extraction efficiency of the second extraction step was analyzed, and the results are shown in Table 3 below.
  • 3-hydroxypropionic acid was added to the organic acid aqueous solution containing 7.2 wt% of amine and alcohol at the contents shown in Table 3, stirred at 20 ° C. for 17 hours, left standing, and separated into a first organic layer and a first aqueous solution layer. First extraction was performed.
  • the volume ratio of the organic acid aqueous solution and the solvent containing amine and alcohol is 1: 1.0, and the weight ratio of the amine and alcohol in the solvent is 30:70.
  • the content of the organic acid contained in the separated second aqueous solution layer was measured using HPLC, and the extraction efficiency of the second extraction step was analyzed, and the results are shown in Table 3 below.
  • the partition coefficient refers to a ratio of the concentration of the organic acid contained in the second aqueous layer to the concentration of the organic acid contained in the second organic layer.
  • aqueous solution containing 7.2 wt% of lactic acid as an organic acid aqueous solution was prepared.
  • tri-n-octylamine was used as the amine and 1-hexanol was used as the alcohol.
  • the content of the organic acid contained in the separated second aqueous solution layer was measured using HPLC to analyze the extraction efficiency of the second extraction step, and the results are shown in Table 5 below.
  • the first extraction was performed in the same manner as in the first extraction of Example 11. Thereafter, water was added to the first organic layer from which alcohol was not removed, stirred at 90 ° C. for 7 hours, and then left standing to perform a second extraction to separate into a second organic layer and a second aqueous layer.
  • the content of the organic acid contained in the separated second aqueous solution layer was measured using HPLC to analyze the extraction efficiency of the second extraction step, and the results are shown in Table 5 below.
  • the second extraction efficiency is about 2.2 times or more compared to Comparative Example 3
  • the distribution coefficient also has a value about 2.9 times higher than that of Comparative Example 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 저농도 유기산 수용액으로부터 유기산을 고농도로 효과적으로 회수하는, 유기산의 정제 방법을 제공한다.

Description

유기산의 정제방법
관련 출원(들)과의 상호 인용
본 출원은 2018년 10월 17일자 한국 특허 출원 제10-2018-0123888호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 유기산 수용액을 정제함에 있어, 추출 효율을 향상시켜 저농도 유기산 수용액으로부터 유기산을 고농도로 효과적으로 회수하는, 유기산의 정제 방법에 관한 것이다.
유기산 중 하나인 3-하이드록시프로피온산(3-hydroxypropionic acid; 3-HP)는 여러 화학 공정에 활용할 수 있는 합성 중간체로 고부가가치의 1,3-프로판디올, 아크릴산, 메틸아크릴레이트, 아크릴아미드, 에틸 3-하이드록시프로피오네이트, 말로닉산, 프로피오락톤, 아크로니트릴 등 다양한 화합물의 합성 원료로 사용되는, 산업적으로 중요한 화합물이다.
이러한 유기산은 순수 화학 공정으로도 제조할 수 있으나, 최근에는 미생물 기반 발효공정으로 생산된 저농도(<10wt%)의 배양액으로부터 분리 및 정제 공정으로 제조하고 있다. 이러한 분리 및 정제를 위하여, 일반적으로 에너지 사용량이 많은 물 증발 방법 대신 액-액 추출이나 반응 추출 기법이 많이 이용되고 있다.
발효공정으로 생산된 저농도 유기산 수용액에서 유기산을 고농도로 회수하기 위해서는 2단계의 추출 과정을 적용해야 하는데, 1단계로 유기 용매를 이용하여 수용액에 함유된 유기산을 1차 추출하고, 이후 다시 물을 이용하여 역 추출(2차 추출)하여 유기산을 정제하는 방법이 이용되고 있다.
그러나, 이러한 2단계의 추출 과정을 이용하는 경우, 1차 추출 시 이용한 유기 용매와 유기산이 안정한 착물(complex)을 형성하여 물을 이용한 2차 추출의 효율이 매우 좋지 않은 문제가 있다.
따라서, 미생물 발효에 의하여 제조된 저농도 유기산 수용액으로부터 유기산을 고농도로 회수하는 것은 본 발명이 속한 분야의 오랜 과제이며, 미생물 발효액으로부터 연속적으로 저농도의 유기산을 효과적으로 분리 정제할 수 있는 경제적인 정제 공정의 개발이 필요한 실정이다.
본 발명은, 저농도 유기산 수용액으로부터 유기산을 고농도로 효과적으로 회수하는, 유기산의 정제 방법을 제공하기 위한 것이다.
본 명세서에서는
유기산 수용액에 아민 및 알코올을 포함하는 용매를 첨가하여 제 1 유기층과 제 1 수용액층으로 분리하는 제 1 추출 단계;
상기 분리된 제 1 유기층 내의 알코올을 제거하는 단계; 및
상기 알코올이 제거된 제 1 유기층에 물을 첨가하여 제 2 유기층과 제 2 수용액층으로 분리하는 제 2 추출 단계를 포함하는, 유기산의 정제방법을 제공한다.
이하 발명의 구체적인 구현예에 따른 유기산의 정제방법에 관하여 보다 상세하게 설명하기로 한다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 상기 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
발명의 일 구현예에 따르면,
유기산 수용액에 아민 및 알코올을 포함하는 용매를 첨가하여 제 1 유기층과 제 1 수용액층으로 분리하는 제 1 추출 단계;
상기 분리된 제 1 유기층 내의 알코올을 제거하는 단계; 및
상기 알코올이 제거된 제 1 유기층에 물을 첨가하여 제 2 유기층과 제 2 수용액층으로 분리하는 제 2 추출 단계를 포함하는, 유기산의 정제방법이 제공될 수 있다.
본 발명자들은 유기산 수용액에 아민 및 알코올을 포함하는 용매를 첨가하여 제 1 유기층과 제 1 수용액층으로 분리하는 제 1 추출 단계; 상기 분리된 제 1 유기층 내의 알코올을 제거하는 단계; 및 상기 알코올이 제거된 제 1 유기층에 물을 첨가하여 제 2 유기층과 제 2 수용액층으로 분리하는 제 2 추출 단계를 포함하는 경우, 추출 효율을 극대화 하여 저농도 유기산 수용액으로부터 유기산을 고농도로 효과적으로 회수할 수 있다는 점을 실험을 통해서 확인하고 발명을 완성하였다.
구체적으로, 제 1 추출 단계에서 추출 용매로 아민 및 알코올을 포함하는 경우, 알코올이 추출 용매의 한 성분으로 작용하여, 유기산과 아민이 만나서 생성된 착물을 안정화시키는 역할을 통해 제 1 추출 효율을 상승시키고, 제 2 추출 전 상기 알코올의 제거를 통해, 안정한 착물의 상태를 변화시켜 제 2 추출 효율 또한 상승시켜 고농도의 유기산을 효과적으로 얻을 수 있음을 실험을 통하여 확인하였다.
이때, 상기 유기산 수용액은 미생물 기반의 발효 과정에서 얻어지는 발효액일 수 있으며, 하이드록시기를 포함한 탄소수 2 내지 10의 유기산을 포함하는 수용액일 수 있다.
한편, 상기 하이드록시기를 포함한 탄소수 2 내지 10의 유기산은 유기산 수용액 내에 3 내지 10%의 농도로 포함될 수 있는데, 상기 하이드록시기를 포함한 탄소수 2 내지 10의 유기산의 농도가 3% 미만인 경우, 과다한 추출 용매의 사용 내지 추출 시간의 증가로 인해 경제성이 없을 수 있다
상기 하이드록시기를 포함한 탄소수 2 내지 10의 유기산은 글리콜릭산(glycolic acid), 3-하이드록시프로피온산(3-hydroxypropionic acid), 락틱산(lactic acid) 또는 10-하이드록시데카노익산(10-hydroxydecanoic acid)으로 이루어진 군에서 선택된 1종 이상일 수 있으며, 바람직하게는 3-하이드록시프로피온산 일 수 있다.
한편, 상기 제 1 추출 단계에서 상기 유기산의 추출을 위하여 사용하는 추출 용매는 아민 및 알코올을 모두 포함하는 용매를 사용할 수 있다.
상기 아민 및 알코올을 포함하는 용매가 상기 유기산 수용액에 첨가되면, 상기 유기산 수용액에 포함되어 있던 유기산이 상기 용매에 용해되고, 상기 용매와 물이 상분리가 일어나 제 1 유기층과 제 1 수용액층으로 분리되게 된다.
이때, 상기 제 1 추출 단계에서 유기산 수용액과 아민 및 알코올을 포함하는 용매의 부피비는 1:0.5 내지 1:1.5일 수 있는데, 상기 부피비로 제 1 추출을 진행하는 경우, 추출 효율을 높이면서도 추출 용매의 사용량을 최소로 하여, 제 1 추출 효율에서 최적의 효과를 가질 수 있다. 상기 유기산 수용액과 아민 및 알코올을 포함하는 용매의 부피비가 1:0.5 미만인 경우 추출 용매의 사용량이 작아서 추출 효율이 낮아질 우려가 있으며, 1:1.5를 초과하는 경우, 추출 효율이 증가하지만 이후에 제거할 알코올의 양이 증가하여 에너지 비용이 증가하는 문제점이 나타날 수 있다.
한편, 상기 추출 용매 내의 아민과 알코올의 중량비는 15:85 내지 45:55일 수 있다. 상기 아민의 중량비가 15% 미만인 경우는 아민의 함량이 부족하여 착물의 생성이 원활하지 않아서 추출 효율이 감소되며, 상대적으로 알코올의 함량이 커져서 알코올 제거에 필요한 에너지 사용량이 증가할 수 있다. 반면에 45% 이상인 경우 더 이상의 추출 효율이 증가하지 않게 된다.
상기 아민은 특별히 제한되지 않으며, 일례로, 트리-n-옥틸아민, 트리데실아민 또는 Aliquat 336으로 이루어진 군에서 선택된 1종 이상의 아민일 수 있으며, 바람직하게는 트리-n-옥틸아민일 수 있다.
또한 상기 알코올은 특별히 제한되지 않으나, 일례로, 1-헥산올, 1-헵탄올 또는 1-옥탄올로 이루어진 군에서 선택된 1종 이상의 알코올일 수 있으며, 바람직하게는 1-헥산올일 수 있다.
한편, 상기 제 1 추출 단계는 0 내지 50℃ 의 온도에서 수행할 수 있으며, 바람직하게는 20 내지 30℃ 에서 수행할 수 있다.
상기 제 1 추출시의 온도가 0℃ 미만인 경우, 제 1 수용액층의 응고가 일어날 우려가 있으며, 50℃ 를 초과하는 경우, 반응 추출 효율의 저하를 가져올 수 있다.
또한, 상기 제 1 추출 단계에서 교반은 500 내지 700 rpm으로 7시간 내지 17시간 동안 교반하는 방식으로 수행할 수 있다.
상기 유기산 수용액에 아민 및 알코올을 포함하는 용매를 첨가하여 제 1 유기층과 제 1 수용액층으로 분리하는 제 1 추출 단계 이후, 상기 분리된 제 1 유기층 내에서 알코올을 제거하는 단계를 수행할 수 있다.
앞서 언급한 바와 같이, 상기 알코올의 제거를 통해 유기산과 아민이 만나 형성된 안정된 착물의 상태를 변화시켜, 제 2 추출 단계에서 유기산이 제 2 수용액 층으로 보다 원활하게 추출되도록 할 수 있으며, 이로 인해 제 2 추출 효율이 상승하고 유기산을 고농도로 효과적으로 얻을 수 있다.
이때, 상기 알코올을 제거하는 방법은 특별히 제한되지 않으나, 예를 들어 증류의 방법으로 수행할 수 있다. 다만 증류 과정에서 유기산의 변형을 막기 위해서는 진공 증류를 적용하는 것이 가장 바람직하다.
상기 분리된 제 1 유기층 내에서 알코올을 제거하는 단계 후, 상기 알코올이 제거된 제 1 유기층에 물을 첨가하여 제 2 유기층과 제 2 수용액층으로 분리하는 제 2 추출 단계를 수행할 수 있다.
상기 알코올이 제거된 제 1 유기층에 물이 첨가되면, 상기 제 1 유기층에 포함되어 있던 유기산이 물에 용해되고, 상기 용매와 물이 상분리가 일어나 제 2 유기층과 제 2 수용액층으로 분리되게 된다.
이때, 상기 제 2 추출 단계는 50 내지 100 ℃ 의 온도에서 수행할 수 있으며, 바람직하게는 70 내지 90 ℃ 에서 수행할 수 있다.
상기 제 2 추출시의 온도가 50℃ 미만인 경우, 추출 효율이 낮아질 수 있으며, 100℃를 초과하는 경우, 추출 용매인 물의 증발이 일어나게 된다.
또한, 상기 제 2 추출 단계에서 교반은 500 내지 700 rpm으로 5시간 내지 7시간 동안 교반하는 방식으로 수행할 수 있다.
이와 같이 상기 제 1 추출 단계; 알코올의 제거 단계; 및 제 2 추출 단계를 통해, 저농도 유기산 수용액으로부터 유기산을 고농도로 효과적으로 정제할 수 있다.
후술할 실시예에 의하면, 상기와 같이 제 2 추출 단계 전 알코올을 제거하는 경우, 제 2 추출 단계의 추출 효율은 알코올을 제거하지 않고 정제하는 경우보다 약 2배 이상 증가되는 효과를 나타내었다. 또한, 제 2 유기층에 함유된 유기산의 농도 대비 제 2 수용액층에 함유된 유기산의 농도의 비율 역시 약 2 배 이상 증가됨을 확인하였다.
이는 상기 정제 방법에 의할 때, 알코올의 제거를 통해 유기산과 아민이 만나 형성된 안정된 착물의 상태를 변화시켜, 제 2 추출 단계에서 유기산이 제 2 수용액 층으로 보다 원활하게 추출되도록 하고, 이로 인해 제 2 추출 효율이 상승하는 효과를 나타낼 수 있다.
본 발명은, 저농도 유기산 수용액으로부터 유기산을 고농도로 효과적으로 회수하는, 유기산의 정제 방법을 제공한다.
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.
[실험예 1]
실시예 1 내지 5
제 1 추출 단계에서 유기산 수용액 대비 추출 용매의 종류 및 함량을 달리하여 제 1 추출 효율을 분석하였다.
상기 유기산 수용액은 미생물 기반의 발효 과정에서 얻어지는 발효액으로서 3-하이드록시프로피온산을 7.2 wt%를 함유한다. 추출을 위해 아민으로는 트리-n-옥틸아민(tri-n-octylamine; TOA) 및 Aliquat 336을, 알코올로 1-헥산올(1-hexanol)을 사용하였다.
유기산 수용액에 하기 표 1에 기재된 알코올 및 아민을 첨가한 후 일정한 온도에서 일정 시간 교반 후 이를 정치하여 제 1유기층과 제 1 수용액층으로 분리하여 제 1추출을 실시하였다.
이후 분리된 제 1 유기층에 함유된 유기산의 함량을 HPLC를 이용해 분석하였고, 그 결과를 하기 표 1에 나타내었다.
비교예 1
3-하이드록시프로피온산을 7.2 wt%를 함유하는 유기산 수용액에 하기 표 1에 기재된 함량으로 알코올 및 아민을 첨가한 후 30℃ 에서 7시간 교반 후, 이를 정치하여 제 1 유기층과 제 1 수용액층으로 분리하여 제 1추출을 실시하였다.
이후 분리된 제 1 유기층에 함유된 유기산의 함량을 HPLC를 이용해 분석하였고, 그 결과를 하기 표 1에 나타내었다.
Figure PCTKR2019013000-appb-T000001
상기 표 1에 따르면, 3-하이드록시프로피온산 수용액의 정제에 있어서, 유기산 수용액과 아민 및 알코올을 포함하는 용매의 부피비가 1:0.5 내지 1:1.5인 실시예 1 내지 5는 제 1 추출 효율이 52.1% 이상임을 확인할 수 있었다.
[실험예 2]
실시예 4, 6 및 7
제 1 추출 단계에서 추출 용매의 전체 양은 일정하게 유지하되 아민 및 알코올의 비율을 변화시키면서 제 1 추출 효율을 분석하였다.
3-하이드록시프로피온산을 7.2 wt%를 함유하는 유기산 수용액에 하기 표 2에 기재된 함량으로 아민 및 알코올을 첨가한 후 20℃에서 17시간 동안 교반하고, 이를 정치하여 제 1 유기층과 제 1 수용액층으로 분리하여 제 1 추출을 실시하였다.
이후 분리된 제 1 유기층에 함유된 유기산의 함량을 HPLC을 이용하여 측정하여, 제 1 추출 단계의 추출 효율을 분석하였고, 그 결과를 하기 표 2에 나타내었다.
Figure PCTKR2019013000-appb-T000002
상기 표 2에 따르면, 3-하이드록시프로피온산 수용액의 정제에 있어서, 용매 내의 아민 및 알코올의 중량비가 15:85 내지 45:55 인 실시예 4, 6 및 7은 제 1 추출 효율이 45.8% 이상임을 확인할 수 있었다.
[실험예 3]
실시예 4, 5, 8 내지 10
3-하이드록시프로피온산을 7.2 wt%를 함유하는 유기산 수용액에 하기 표 3에 기재된 함량으로 아민 및 알코올을 첨가하여 20℃에서 17시간 동안 교반 후 이를 정치하여 제 1 유기층과 제 1 수용액층으로 분리하여 제 1 추출을 실시하였다.
이후 상기 분리된 제 1 유기층 내의 1-헥산올을 70℃에서 진공 증류하여 제거한 후, 상기 알코올이 제거된 제 1 유기층에 물을 첨가하여 90℃에서 7시간 동안 교반 후, 이를 정치하여 제 2 유기층과 제 2 수용액층으로 분리하는 제 2 추출을 실시하였다.
분리된 제 2 수용액층에 함유된 유기산의 함량을 HPLC을 이용하여 측정하여, 제 2 추출 단계의 추출 효율을 분석하였고, 그 결과를 하기 표 3에 나타내었다.
비교예 2
3-하이드록시프로피온산을 7.2 wt%를 함유하는 유기산 수용액에 하기 표 3에 기재된 함량으로 아민 및 알코올을 첨가하여 20℃에서 17시간 동안 교반 후 이를 정치하여 제 1 유기층과 제 1 수용액층으로 분리하여 제 1 추출을 실시하였다.
이때, 유기산 수용액과 아민 및 알코올을 포함하는 용매의 부피비는 1:1.0이며, 용매 내의 아민 및 알코올의 중량비는 30:70이다.
이후 상기 분리된 제 1 유기층에 물을 첨가하여 90℃에서 7시간 동안 교반 후 이를 정치하여 제 2 유기층과 제 2 수용액층으로 분리하는 제 2 추출을 실시하였다.
분리된 제 2 수용액층에 함유된 유기산의 함량을 HPLC을 이용하여 측정하여, 제 2 추출 단계의 추출 효율을 분석하였고, 그 결과를 하기 표 3에 나타내었다.
Figure PCTKR2019013000-appb-T000003
상기 분배계수는 제 2 유기층에 함유된 유기산의 농도 대비 제 2 수용액층에 함유된 유기산의 농도의 비율을 의미한다.
상기 표 3에 따르면, 3-하이드록시프로피온산 수용액의 정제에 있어서, 제 1 추출 이후 제 2 추출 전 알코올을 제거하는 단계를 추가적으로 실시한 실시예 4, 5, 8 내지 10의 경우, 비교예 2에 비해 제 2 추출 효율이 약 1.8배 이상 높을 뿐 아니라, 분배계수 또한 비교예 2에 비해 약 4배 이상 높은 값을 가짐을 확인할 수 있었다.
[실험예 4]
실시예 11
유기산 수용액으로 락틱산을 7.2 wt%를 함유하는 수용액을 준비하였다. 추출을 위해 아민으로는 트리-n-옥틸아민을, 알코올로 1-헥산올을 사용하였다.
상기 유기산 수용액에 하기 표 4에 기재된 알코올 및 아민을 첨가한 후 20℃ 에서 17시간 교반 후, 이를 정치하여 제 1 유기층과 제 1 수용액층으로 분리하여 제 1 추출을 실시하였다.
이후 분리된 제 1 유기층에 함유된 유기산의 함량을 HPLC를 이용해 분석하였고, 그 결과를 하기 표 4에 나타내었다.
Figure PCTKR2019013000-appb-T000004
[실험예 5]
실시예 11
상기 실시예 11의 제 1 추출 이후, 제 1 유기층 내의 1-헥산올을 70℃에서 진공 증류하여 제거한 후, 상기 알코올이 제거된 제 1 유기층에 물을 첨가하여 90℃에서 7시간 동안 교반 후, 이를 정치하여 제 2 유기층과 제 2 수용액층으로 분리하는 제 2 추출을 실시하였다.
분리된 제 2 수용액층에 함유된 유기산의 함량을 HPLC을 이용하여 측정하여, 제 2 추출 단계의 추출 효율을 분석하였고, 그 결과를 하기 표 5에 나타내었다.
비교예 3
상기 실시예 11의 제 1 추출과 동일한 방법으로 제 1 추출을 실시하였다. 이후, 알코올이 제거되지 않은 제 1 유기층에 물을 첨가하여 90℃에서 7시간 동안 교반 후 이를 정치하여 제 2 유기층과 제 2 수용액층으로 분리하는 제 2 추출을 실시하였다.
분리된 제 2 수용액층에 함유된 유기산의 함량을 HPLC을 이용하여 측정하여, 제 2 추출 단계의 추출 효율을 분석하였고, 그 결과를 하기 표 5에 나타내었다.
Figure PCTKR2019013000-appb-T000005
상기 표 5에 따르면, 락틱산 수용액의 정제에 있어서, 제 1 추출 이후 제 2 추출 전 알코올을 제거하는 단계를 추가적으로 실시한 실시예 11의 경우, 비교예 3에 비해 제 2 추출 효율이 약 2.2배 이상 높을 뿐 아니라, 분배계수 또한 비교예 3에 비해 약 2.9배 이상 높은 값을 가짐을 확인할 수 있었다.
이로써, 제 2 추출 전 상기 알코올의 제거를 통해, 안정한 착물의 상태를 변화시켜 제 2 추출 효율을 상승시켜 고농도의 유기산을 효과적으로 얻을 수 있음을 확인하였다.

Claims (12)

  1. 유기산 수용액에 아민 및 알코올을 포함하는 용매를 첨가하여 제 1 유기층과 제 1 수용액층으로 분리하는 제 1 추출 단계;
    상기 분리된 제 1 유기층 내의 알코올을 제거하는 단계; 및
    상기 알코올이 제거된 제 1 유기층에 물을 첨가하여 제 2 유기층과 제 2 수용액층으로 분리하는 제 2 추출 단계를 포함하는, 유기산의 정제방법.
  2. 제1항에 있어서,
    상기 유기산 수용액은 미생물 기반의 발효 과정에서 얻어지는 발효액인, 유기산의 정제방법.
  3. 제1항에 있어서,
    상기 유기산 수용액은 하이드록시기를 포함한 탄소수 2 내지 10의 유기산을 포함하는, 유기산의 정제방법.
  4. 제3항에 있어서,
    상기 유기산 수용액은 하이드록시기를 포함한 탄소수 2 내지 10의 유기산을 3 내지 10 % 의 농도로 포함하는, 유기산의 정제방법.
  5. 제3항에 있어서,
    상기 유기산 수용액은 글리콜릭산(glycolic acid), 3-하이드록시프로피온산(3-hydroxypropionic acid), 락틱산(lactic acid) 또는 10-하이드록시데카노익산(10-hydroxydecanoic acid)으로 이루어진 군에서 선택된 1종 이상의 유기산을 포함하는, 유기산의 정제방법.
  6. 제1항에 있어서,
    상기 제 1 추출 단계에서 유기산 수용액과 아민 및 알코올을 포함하는 용매의 부피비는 1:0.5 내지 1:1.5인, 유기산의 정제방법.
  7. 제1항에 있어서,
    상기 제 1 추출 단계에서 용매 내의 아민 및 알코올의 중량비는 15:85 내지 45:55 인, 유기산의 정제방법.
  8. 제1항에 있어서,
    상기 아민은 트리-n-옥틸아민, 트리데실아민 또는 Aliquat 336으로 이루어진 군에서 선택된 1종 이상의 아민을 포함하는, 유기산의 정제방법.
  9. 제1항에 있어서,
    상기 알코올은 1-헥산올, 1-헵탄올 또는 1-옥탄올로 이루어진 군에서 선택된 1종 이상의 알코올을 포함하는, 유기산의 정제방법.
  10. 제1항에 있어서,
    상기 제 1 추출 단계는 0 내지 50℃ 온도 하에서 수행되는, 유기산의 정제방법.
  11. 제1항에 있어서,
    상기 분리된 제 1 유기층 내의 알코올을 제거하는 단계는 제 1 유기층 내의 알코올을 진공 증류하여 제거하는, 유기산의 정제방법.
  12. 제1항에 있어서,
    상기 제 2 추출 단계는 50 내지 100 ℃ 온도 하에서 수행되는, 유기산의 정제방법.
PCT/KR2019/013000 2018-10-17 2019-10-04 유기산의 정제방법 WO2020080713A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/976,049 US11420924B2 (en) 2018-10-17 2019-10-04 Method for purifying organic acids

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0123888 2018-10-17
KR1020180123888A KR102252883B1 (ko) 2018-10-17 2018-10-17 유기산의 정제방법

Publications (1)

Publication Number Publication Date
WO2020080713A1 true WO2020080713A1 (ko) 2020-04-23

Family

ID=70282969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/013000 WO2020080713A1 (ko) 2018-10-17 2019-10-04 유기산의 정제방법

Country Status (3)

Country Link
US (1) US11420924B2 (ko)
KR (1) KR102252883B1 (ko)
WO (1) WO2020080713A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007082490A (ja) * 2005-09-22 2007-04-05 Toyota Central Res & Dev Lab Inc 有機酸の抽出発酵による生産方法及び該生産方法に用いる有機酸生産酵母
JP2007522136A (ja) * 2004-01-29 2007-08-09 ズィーケム インコーポレイテッド 有機酸の回収
JP2008035732A (ja) * 2006-08-02 2008-02-21 Toyota Central Res & Dev Lab Inc 有機酸の製造方法
JP2011148740A (ja) * 2010-01-22 2011-08-04 Univ Of Tokyo 水中の有機酸回収方法
KR101664450B1 (ko) * 2010-01-08 2016-10-11 한국과학기술원 바이오매스로부터 유기산을 생산하는 방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6229046B1 (en) 1997-10-14 2001-05-08 Cargill, Incorported Lactic acid processing methods arrangements and products
DE102008040193A1 (de) 2008-07-04 2010-01-07 Evonik Röhm Gmbh Verfahren zur Herstellung freier Carbonsäuren
BR112012019838A2 (pt) * 2010-02-10 2015-09-15 Iogen Energy Corp metodo para a producao de um produto de fermentacao a partir de uma materia-prima lignocelulosica
JP2013537541A (ja) 2010-08-19 2013-10-03 コンパニア レフィナドラ ダ アマゾニア 発酵液から高純度の乳酸を得る方法
KR101515981B1 (ko) 2013-01-29 2015-04-30 한국화학연구원 유기산 발효액으로부터 고순도 유기산 알킬에스테르 및 유기산 회수 방법
JP2014187989A (ja) 2013-03-28 2014-10-06 Asahi Glass Co Ltd 有機酸の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007522136A (ja) * 2004-01-29 2007-08-09 ズィーケム インコーポレイテッド 有機酸の回収
JP2007082490A (ja) * 2005-09-22 2007-04-05 Toyota Central Res & Dev Lab Inc 有機酸の抽出発酵による生産方法及び該生産方法に用いる有機酸生産酵母
JP2008035732A (ja) * 2006-08-02 2008-02-21 Toyota Central Res & Dev Lab Inc 有機酸の製造方法
KR101664450B1 (ko) * 2010-01-08 2016-10-11 한국과학기술원 바이오매스로부터 유기산을 생산하는 방법
JP2011148740A (ja) * 2010-01-22 2011-08-04 Univ Of Tokyo 水中の有機酸回収方法

Also Published As

Publication number Publication date
KR20200043152A (ko) 2020-04-27
KR102252883B1 (ko) 2021-05-14
US11420924B2 (en) 2022-08-23
US20210363092A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
WO2010027150A2 (en) New preparation of hydroxychloroquine
EP3204364A2 (en) A method for preparing gadobutrol
WO2014189311A1 (ko) 저분자 리그닌 유도체의 제조방법
WO2020017779A1 (ko) 신너 폐액의 정제방법 및 그로부터 수득되는 신너 조성물
WO2020080713A1 (ko) 유기산의 정제방법
CN102093444A (zh) 一种制备异帕米星及其盐的方法
WO2019013570A2 (ko) 인산을 발효액 또는 발효 폐액으로부터 회수 및 재사용하는 방법
NO20020310L (no) Fremgangsmåte for separasjon og rensing av en vandig blanding av hovedsakelig eddiksyre og maursyre
WO2014065553A1 (ko) 1,4-디아미노부탄의 정제방법, 상기 방법으로 정제된 1,4-디아미노부탄 및 이로부터 제조되는 폴리아미드
WO2019039798A1 (ko) 비점 차이가 작은 혼합물의 분리 정제 방법
WO2013028030A2 (ko) 발효액에서 1,4-디아미노부탄의 분리 및 정제하는 방법
WO2016105156A1 (en) Method and apparatus for purification of dimethyl carbonate using pervaporation
CN1056614C (zh) N-乙酰基氨基硫代磷酸o,s-二甲酯的提纯方法
WO2020017780A1 (ko) 포토레지스트 세정용 신너 조성물
WO2022098075A1 (ko) 노볼락형 페놀 수지 그 제조방법
WO2021210920A1 (ko) 라멜테온의 제조 방법 및 이러한 제조 방법에 이용되는 중간체 화합물
US9745260B2 (en) Method for purifying acrylamide alkyl sulfonic acid
WO2019117446A1 (ko) 광학 활성을 가진 2-옥틸글리신 에스터를 제조하는 방법
CN113735792A (zh) 氯苯唑酸葡胺及其中间体的制备方法
WO2024049107A1 (ko) 고순도 (메트)아크릴산의 제조방법
US20200172479A1 (en) Method for preparing levetiracetam
WO2024049106A1 (ko) 고순도 (메트)아크릴산의 제조방법
NO881951D0 (no) Fremgangsmaate for ekstraksjon av gallium.
WO2021071130A1 (ko) 5&#39;-구아닐산이나트륨 7수화물 결정의 제조 방법
WO2022019501A1 (ko) 저산소 타이타늄 분말 제조를 위한 상압 분위기 제어에 의한 탈산 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19874052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19874052

Country of ref document: EP

Kind code of ref document: A1