WO2020080153A1 - 発光素子および画像表示装置 - Google Patents

発光素子および画像表示装置 Download PDF

Info

Publication number
WO2020080153A1
WO2020080153A1 PCT/JP2019/039366 JP2019039366W WO2020080153A1 WO 2020080153 A1 WO2020080153 A1 WO 2020080153A1 JP 2019039366 W JP2019039366 W JP 2019039366W WO 2020080153 A1 WO2020080153 A1 WO 2020080153A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
light emitting
conductivity type
semiconductor layer
Prior art date
Application number
PCT/JP2019/039366
Other languages
English (en)
French (fr)
Inventor
奥山 浩之
政貴 汐先
伸介 野澤
古川 直樹
伸浩 菅原
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to CN201980066932.7A priority Critical patent/CN112823428A/zh
Priority to US17/284,366 priority patent/US12021172B2/en
Publication of WO2020080153A1 publication Critical patent/WO2020080153A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages

Definitions

  • the present disclosure relates to a light emitting element that emits light in the stacking direction of semiconductors and an image display device including the same.
  • LEDs light emitting diodes
  • Patent Document 1 in a configuration in which a semiconductor layer having a first conductivity type layer, an active layer and a second conductivity type layer and a contact layer are stacked, a predetermined layer is formed on the contact layer formed on the light extraction surface side.
  • a light emitting element in which an insulating layer made of a transparent material having a refractive index is provided to improve the light extraction efficiency in the front direction.
  • a light emitting device has a first surface and a second surface, and is a semiconductor layer formed by laminating a first conductivity type layer, an active layer, and a second conductivity type layer in order from the first surface side.
  • a first dielectric layer provided on the second surface side of the semiconductor layer and having an opening, and a first electrode electrically connected to the first conductivity type layer on the first surface side of the semiconductor layer.
  • a second electrode provided on the first dielectric layer and electrically connected to the second conductivity type layer through the opening.
  • An image display device includes the light emitting element of the above embodiment as a plurality of light emitting elements.
  • a semiconductor layer formed by laminating a first conductivity type layer, an active layer, and a second conductivity type layer has an opening on the second surface side.
  • the first dielectric layer is provided, and the second conductivity type layer and the second electrode provided on the first dielectric layer are electrically connected to each other through the opening.
  • FIG. 2A is a schematic cross-sectional view (A) and a schematic plan view (B) showing an example of the configuration of the light-emitting element according to the first embodiment of the present disclosure.
  • FIG. 5 is a schematic cross-sectional view illustrating another example of the configuration of the light emitting element according to the first embodiment of the present disclosure.
  • FIG. 5 is a schematic cross-sectional view illustrating another example of the configuration of the light emitting element according to the first embodiment of the present disclosure.
  • FIG. 2 is a schematic plan view showing an example of connection of external wiring to the light emitting element shown in FIG. 1.
  • FIG. 2B is a schematic cross-sectional view showing the configuration of the light emitting element and external wiring shown in FIG. 2A.
  • FIG. 9 is a schematic plan view showing another example of connection of external wiring to the light emitting element shown in FIG. 1.
  • FIG. 3B is a schematic cross-sectional view showing the configuration of the light emitting element and external wiring shown in FIG. 3A.
  • FIG. 3 is a perspective view showing an example of a configuration of a light emitting unit including a plurality of light emitting elements shown in FIG. 1. It is a schematic diagram showing the cross-sectional structure of the light emitting unit shown in FIG. 4A. It is a cross-sectional schematic diagram (A) and a plane schematic diagram (B) showing an example of composition of a general light emitting element.
  • FIG. 3 is a perspective view showing an example of a configuration of a light emitting unit including a plurality of light emitting elements shown in FIG. 1.
  • It is a schematic diagram showing the cross-sectional structure of the light emitting unit shown in FIG. 4A.
  • It is a cross-sectional schematic diagram (A) and a plane schematic diagram (B)
  • FIG. 4A is a schematic cross-sectional view (A) and a schematic plan view (B) showing an example of a configuration of a light-emitting element according to a second embodiment of the present disclosure. It is a cross-sectional schematic diagram showing an example of a structure of the light emitting element which concerns on the 3rd Embodiment of this indication.
  • FIG. 7B is a schematic plan view of the light emitting device shown in FIG. 7A. It is a plane schematic diagram showing an example of composition of a light emitting element concerning a modification of this indication.
  • FIG. 16 is a perspective view illustrating an example of a configuration of a display device including the light emitting element illustrated in FIG. 1 or the like as an application example.
  • FIG. 11B is a perspective view of the lighting device shown in FIG. 11A. It is a top view showing the other example of the illuminating device as an application example. It is a perspective view of the illuminating device shown to FIG. 12A. It is a top view showing the other example of the illuminating device as an application example. It is a perspective view of the illuminating device shown to FIG. 13A.
  • First Embodiment an example in which a dielectric layer is provided on a second conductivity type layer, and the second conductivity type layer and the second electrode are electrically connected via an opening provided in the dielectric layer
  • Configuration of light emitting element 1-2.
  • Configuration of light emitting unit 1-3.
  • Action / effect 2.
  • Second embodiment (example in which the second electrode has a single-layer structure) 3.
  • Third embodiment (example in which an uneven structure is provided around the second electrode) 4.
  • Modified example (example in which the second electrode is arranged on the diagonal line of the light extraction surface) 5.
  • Application example an example in which a dielectric layer is provided on a second conductivity type layer, and the second conductivity type layer and the second electrode are electrically connected via an opening provided in the dielectric layer) 1-1.
  • Configuration of light emitting element 1-2.
  • Configuration of light emitting unit 1-3.
  • Action / effect 2.
  • Second embodiment (example in which the second electrode has a single-layer structure
  • FIG. 1A (A) schematically shows a cross-sectional structure of a light emitting element (light emitting element 10) according to the first embodiment of the present disclosure
  • FIG. 1A (B) shows FIG. 1A (A).
  • 2 schematically shows the planar configuration of the light emitting element 10 shown in FIG.
  • FIG. 1A (A) shows a cross section taken along line II shown in FIG. 1A (B).
  • the light emitting element 10 is an LED chip, and is preferably used as a display pixel of an image display device (for example, the display device 2, see FIG. 9) called a so-called LED display.
  • the light emitting element 10 has a first conductive type layer 12, an active layer 13, and a semiconductor layer 11 (semiconductor layer) formed by stacking, for example, two second conductive type layers 14 and 15 in this order.
  • the lower surface of the first conductivity type layer 12 is the back surface (surface S1; first surface) of the semiconductor layer 11, and the upper surface of the second conductivity type layer 15 is the light extraction surface (surface S2; second surface) of the semiconductor layer 11. Is.
  • the side surface (surface S3) of the light emitting element 10 is an inclined surface that intersects the stacking direction (Y-axis direction) of each layer.
  • the cross section has an inverted trapezoidal shape.
  • the first electrode 21 is provided on the surface S1 side of the semiconductor layer 11, and the second electrode 22 is provided on the surface S2 side of the semiconductor layer 11.
  • the dielectric layer 19 (first dielectric layer) is provided on the second conductivity type layer 15 of the semiconductor layer 11, and the opening provided in the dielectric layer 19 is provided.
  • the second conductivity type layer 15 and the second electrode 22 are electrically connected via 19H.
  • a laminated film in which the dielectric layer 16, the metal layer 17, and the dielectric layer 18 are laminated is provided, and the first electrode 21 is electrically connected to the first conductivity type layer 12 through an opening 16H provided in this laminated film.
  • the light emitting element 10 is a solid-state light emitting element that emits light of a predetermined wavelength body from the upper surface (light extraction surface, surface S2), and is specifically an LED (Light Emitting Diode) chip.
  • the LED chip refers to one cut out from a wafer used for crystal growth, and is not a package type covered with a molded resin or the like.
  • the LED chip has a size of, for example, 5 ⁇ m or more and 100 ⁇ m or less, and is a so-called micro LED.
  • the planar shape of the LED chip is, for example, a substantially square shape.
  • the LED chip is in the shape of a thin piece, and the aspect ratio (height / width) of the LED chip is preferably 0.1 or more and less than 1 in order to prevent light from being absorbed.
  • the materials for the first conductivity type layer 12, the active layer 13, and the second conductivity type layers 14 and 15 that constitute the semiconductor layer are appropriately selected depending on the light in the desired wavelength band. Specifically, for obtaining red band light, for example, an AlGaInP-based semiconductor material is preferably used. To obtain green band light or blue band light, for example, an AlGaInN-based semiconductor material is preferably used.
  • the first conductivity type layer 12 is electrically connected to the first electrode 21, and is configured to include, for example, n-type AlGaInP.
  • the active layer 13 has, for example, a multiple quantum well structure of a well layer and a barrier layer formed of semiconductors having different compositions, and is configured to be able to emit light of a predetermined wavelength.
  • the active layer 23 according to this embodiment can emit red light having an emission wavelength of, for example, 500 nm or more and 700 nm or less.
  • the active layer 23 is composed of, for example, about 3 to 20 well layers containing GaInP and about 2 to 19 barrier layers containing AlGaInP, and the well layers and the barrier layers are laminated with each other.
  • the first conductivity type layer 12 is an n-type AlGaInN
  • the active layer 23 is, for example, about 1 to 20 well layers containing GaInN and about 0 to 19 layers containing GaInN. It is preferable to use the barrier layer. It is possible to emit light having an emission wavelength of 400 nm or more and 600 nm or less.
  • the second conductivity type layer 14 is formed on the active layer 13, and is configured to include, for example, p-type AlGaInP.
  • the second conductivity type layer 15 is provided on the second conductivity type layer 14, and is electrically connected to the second electrode 22.
  • the second conductivity type layer 15 is provided on the entire light extraction surface (surface S2) of the semiconductor layer 11 in plan view, and a region where the second electrode 22 is not formed constitutes a light extraction region of the light emitting element 10.
  • the second conductivity type layer 15 is preferably made of a material capable of making ohmic contact with the second electrode 22, and is composed of, for example, p-type GaP. For example, in the case of blue and green light emission, it is preferable to use a layer containing n-type AlGaInN for the second conductivity type layer 14 and a layer containing p-type GaInN for the second conductivity type layer 15.
  • the dielectric layer 16 is for electrically insulating the metal layer 17 and the semiconductor layer 11.
  • the dielectric layer 16 is provided on the entire side surface (the surface S3) of the semiconductor layer 11, and is further provided so as to cover the peripheral portion of the surface of the contact portion 21A that constitutes the first electrode 21.
  • the material of the dielectric layer 16 it is preferable to use a material that can transmit the light emitted from the active layer 13, and examples thereof include silicon oxide (SiO x ), silicon nitride (SiN x ), and aluminum oxide (AlO x ). , Titanium oxide (TiO x ) and titanium nitride (TiN).
  • the dielectric layer 16 has a thickness of, for example, about 0.1 ⁇ m to 1 ⁇ m, and has a substantially uniform thickness depending on the film formation direction.
  • the dielectric layer 16 may have a non-uniformity in thickness due to a manufacturing error.
  • the dielectric layer 16 formed on the side surface (the surface S3) of the semiconductor layer 11 tends to be thin.
  • the metal layer 17 is for shielding or reflecting the light emitted from the active layer 13.
  • the metal layer 17 is formed in contact with the surface of the dielectric layer 16.
  • the end of the metal layer 17 on the light extraction surface S2 side is formed, for example, on the same surface as the light extraction surface S2 side of the second conductivity type layer 15.
  • the end of the metal layer 17 on the second electrode 22 side is formed in the vicinity of the end of the first electrode 21 with the dielectric layer 16 in between, for example. That is, the metal layer 17 and the semiconductor layer 11, the second electrode 22, and the first electrode 21 are insulated and separated (electrically separated) by the dielectric layer 16.
  • the material of the metal layer 17 it is preferable to use a material that shields or reflects the light emitted from the active layer 13, and, for example, titanium (Ti), aluminum (Al), copper (Cu), gold (Au), Examples thereof include silver (Ag) and nickel (Ni) or alloys thereof.
  • the metal layer 17 has a thickness of, for example, about 0.1 ⁇ m to 1 ⁇ m, and has a substantially uniform thickness depending on the film formation direction.
  • the metal layer 17 may have a non-uniformity in thickness due to a manufacturing error.
  • the semiconductor wafer is often formed from the upper side or the lower side, the metal layer 17 formed on the side surface (the surface S3) of the semiconductor layer 11 has a small film thickness like the dielectric layer 16. Tend.
  • the metal layer 17 may have the dielectric layer 19 and the dielectric layer 16 and the dielectric layer 18 at the meeting portion (the portion where the surfaces S2 and S3 intersect) depending on the manufacturing method, as shown in FIG. 1A.
  • the structure may be surrounded by the layer 19, the dielectric layer 16, and the dielectric layer 18, but a part may be exposed depending on the manufacturing method.
  • the dielectric layer 18 When mounting the light emitting element 10 on a mounting substrate (for example, the wiring substrate 52 (see FIG. 2B)), the dielectric layer 18 separates the pad portion 21B forming the first electrode 21 from the mounting substrate. This is to prevent the conductive material (for example, solder, plating, or sputtered metal) to be bonded and the metal layer 17 from being short-circuited to each other.
  • the dielectric layer 18 is formed in contact with the surface of the metal layer 17 and the surface of the dielectric layer 16 that covers the periphery of the contact portion 22A of the first electrode 21.
  • the dielectric layer 18 is formed on the entire surface of the metal layer 17 and is formed on all or part of the dielectric layer 16.
  • the same material as that of the dielectric layer 16 can be used.
  • the dielectric layer 18 may be formed of a plurality of materials among the above materials.
  • the dielectric layer 18 has a thickness of, for example, about 0.1 ⁇ m to 1 ⁇ m, and has a substantially uniform thickness depending on the film formation direction.
  • the dielectric layer 18 may have a non-uniformity in thickness due to a manufacturing error.
  • the dielectric layer 18 formed on the side surface (plane S3) of the semiconductor layer 11 is similar to the dielectric layer 16 and the metal layer 17. The film thickness tends to be thin.
  • the dielectric layer 19 is provided on the second conductivity type layer 15, protects the semiconductor layer 11 (specifically, the surface of the second conductivity type layer 15), and emits light in the front direction of the light emitting element 10. This is for improving the strength.
  • the dielectric layer 19 is provided with an opening 19H on the second conductivity type layer 15 so that, for example, the contact portion 21A that directly forms the second electrode 22 is exposed. A portion of the vicinity of the opening 19H is formed on the contact portion 21A so as to cover the peripheral edge of the contact portion 21A.
  • the material of the dielectric layer 19 is light transmissive and has a difference in refractive index from the second conductivity type layer 15 of 0.3 or more, more preferably 1.0 or more. It is preferably smaller than the refractive index. Examples of such a material include alumina (Al x O y ), silicon oxide (SiO x ), and silicon nitride (Si x N y ).
  • the dielectric layer 19 is configured as a single layer film or a laminated film made of the above materials. Alternatively, the dielectric layer 19 may use titanium oxide (TiO x ) and titanium nitride (TiN).
  • the dielectric layer 19 preferably has a thickness of, for example, 100 ⁇ m or more and 800 ⁇ m or less, more preferably 400 ⁇ m or more and 600 ⁇ m or less, and has a substantially uniform thickness.
  • the dielectric layer 19 may have a non-uniformity in thickness due to a manufacturing error.
  • the first electrode 21 is electrically connected to the lower surface (surface S1) of the semiconductor layer 11, that is, the first conductivity type layer 12. That is, the first electrode 21 is in ohmic contact with the first conductivity type layer 12, and is formed as, for example, an n electrode.
  • the first electrode 21 is composed of, for example, a contact portion 21A directly provided on the first conductivity type layer 12, and a pad portion 21B provided on the dielectric layer 16 and the dielectric layer 18, for example.
  • the pad portion 21B is electrically connected to the contact portion 21A through the opening 16H provided in the dielectric layer 16.
  • the first electrode 21 is a metal electrode, and is configured as, for example, a multilayer body of titanium (Ti) / platinum (Pt) / gold (Au) or an alloy of gold and germanium (AuGe) / Ni (nickel) / Au. There is. In addition, it may be configured to include a highly reflective metal material such as silver (Ag) or aluminum (Al).
  • the contact portion 21A and the pad portion 21B forming the first electrode 21 may be formed of the same material as each other, but the contact portion 21A makes ohmic contact with GaAs forming the first conductivity type layer 12. From such a viewpoint, it is preferable to use AuGeNi / Au, for example.
  • the pad portion 21B is preferably formed of, for example, TiPtAu from the viewpoint of subsequent wiring connection.
  • the contact portion 21A may be formed as a laminated film of the contact layer 21A1 and the metal layer 21A2, for example, as shown in FIG. 1B.
  • the contact layer 21A1 is preferably made of a material capable of making ohmic contact with the first conductivity type layer 12, and examples thereof include n-type GaAs. It is preferable to use gold (Au), germanium (Ge), and nickel (Ni) for the metal layer 21A2. In this way, by forming the contact portion 21A as a laminated film of the contact layer 21A1 and the metal layer 21A2, while making ohmic contact with the first conductivity type layer 12, n-type GaAs or the like forming the contact layer 21A1 is formed. It is possible to avoid light absorption by the semiconductor material.
  • the second electrode 22 is provided on the light extraction surface (surface S1) side, is in contact with the second conductivity type layer 15, and is electrically connected to the second conductivity type layer 15. That is, the second electrode 22 is in ohmic contact with the second conductivity type layer 15, and is formed as a p-electrode, for example.
  • the second electrode 22 has, for example, as shown in FIG. 1A (B), a horizontally long planar shape having a longitudinal direction and a lateral direction, for example, an aspect ratio of 1 or more, more preferably 2 or more.
  • the longitudinal direction is the X-axis direction and the lateral direction is the Z-axis direction.
  • the second electrode 22 extends in a direction corresponding to the opening 19H, for example, a connecting portion 22X having a substantially circular shape, and the connecting portion 22X in directions opposite to each other, and is larger than the diameter of the connecting portion 22X.
  • the second electrode 22 of the present embodiment includes, for example, a contact portion 22A directly provided on the second conductivity type layer 15 and a pad portion 22B provided on the dielectric layer 19.
  • the contact portion 22A is formed directly above the second conductivity type layer 15, for example, in a substantially circular shape.
  • the size (a1) in the uniaxial direction (for example, the X-axis direction) of the contact portion 22A is, for example, when the first conductivity type layer 12 and the contact portion 21A do not absorb the light emitted from the active layer 13, for example,
  • the contact portion 21A of the first electrode 21 described above preferably has a size (b1) or less (a1 ⁇ b1) in one axis direction (for example, the X axis direction). Further, for example, when one or both of the first conductivity type layer 12 and the contact portion 21A absorb the light emitted from the active layer 13, for example, as shown in FIG.
  • the contact portion 21A preferably has a size (b1) or more (a1 ⁇ b1) in the uniaxial direction (for example, the X-axis direction).
  • the absorption in this case means the absorption when the band gap of the semiconductor is smaller than the energy of the emission wavelength, and does not include the absorption by free carriers or dopants.
  • the pad portion 22B is electrically connected to the contact portion 22A through the opening 19H provided in the dielectric layer 19.
  • the pad portion 22B constitutes the planar shape of the second electrode 22, and has, for example, an aspect ratio of 1 or more, more preferably 2 or more, for example, the X-axis direction is the longitudinal direction and the Z-axis direction is the short side in a plan view.
  • the pad portion 22B has a laterally long shape in the hand direction, and has a connecting portion 22X at the center and extension portions 22Y at both ends. That is, the pad portion 22B has a substantially symmetrical structure across the opening 19H.
  • the connection portion 22X covers the opening 19H of the dielectric layer 19 and is connected to the contact portion 22A.
  • the expansion portion 22Y is for ensuring electrical connection between the second electrode 22 and the wiring 51 (see, for example, FIG. 2A) described later.
  • the minimum diameter of the pad portion 22B (width in the Z-axis direction in FIG. 1A) is preferably smaller than the minimum diameter of the pad portion 21B of the first electrode 21 (for example, the width in the Z-axis direction).
  • the second electrode 22 is a metal electrode, and is configured as, for example, titanium (Ti), platinum (Pt), aluminum (Al), gold (Au), rhodium (Ph) and copper (Cu) or a multilayer body thereof.
  • the contact portion 22A and the pad portion 22B forming the second electrode 22 may be formed by using the same material as each other, but the contact portion 22A is, for example, titanium (Ti) or platinum (Pt) from the viewpoint of semiconductor connection. ), Aluminum (Al) and gold (Au) are preferably used, and the pad portion 22B is, for example, titanium (Ti), platinum (Pt), aluminum (Al), gold (Au) from the viewpoint of wiring connection and light reflection. ), Rhodium (Ph) and copper (Cu).
  • FIG. 2A shows the connection between the light emitting element 10 of the present embodiment and an external wiring (wiring 51) for controlling the driving of a plurality of light emitting elements 10 arranged in the display device 2 described later in plan view.
  • 1 schematically shows an example.
  • FIG. 2B schematically shows the cross-sectional structure of FIG. 2A.
  • FIG. 3A shows the connection between the light emitting element 10 of the present embodiment and an external wiring (wiring 51) for controlling the driving of a plurality of light emitting elements 10 arranged in the display device 2 described later in plan view. It is a schematic representation of another example. 3B schematically shows the cross-sectional structure of FIG. 3A.
  • the light emitting element 10 is arranged in the extending direction of the wiring 51 (Z-axis direction in FIG. 2A), and the longitudinal direction (eg, X-axis direction) of the pad portion 21B forming the second electrode 22 is By arranging the wiring 51 so as to intersect with the extending direction of the wiring 51, it is possible to increase the margin of misalignment between the second electrode 22 and the wiring 51. Further, as shown in FIG. 2B, the first electrode 21 is joined to the wiring board 52 for n-electrode connection by using, for example, plating or solder joining.
  • FIG. 4A is a perspective view showing an example of a schematic configuration of the light emitting unit 1.
  • FIG. 4B shows an example of a sectional configuration taken along line II-II of the light emitting unit 1 of FIG. 4A.
  • the light emitting unit 1 can be suitably applied as a display pixel in a display device 2 described later, and is a minute package in which a plurality of light emitting elements 10 are covered with a thin resin.
  • the above light emitting elements 10 are arranged in a line with other light emitting elements 10 with a predetermined gap.
  • the light emitting unit 1 has, for example, an elongated shape extending in the arrangement direction of the light emitting element 10.
  • the gap between two light emitting elements 10 adjacent to each other is, for example, equal to or larger than the size of each light emitting element 10.
  • the gap may be smaller than the size of each light emitting element 10 in some cases.
  • Each light emitting element 10 emits light in a different wavelength band.
  • the three light emitting elements 10 include a light emitting element 10G that emits green band light, a light emitting element 10R that emits red band light, and a light emitting element 10B that emits blue band light. It is configured.
  • the light emitting unit 1 has an elongated shape extending in the arrangement direction of the light emitting elements 10
  • the light emitting element 10G is disposed near the short side of the light emitting unit 1
  • the light emitting element 10B is, for example, It is arranged in the vicinity of a short side of the light emitting unit 1 different from the adjacent short side of the light emitting element 10G.
  • the light emitting element 10R is arranged, for example, between the light emitting element 10G and the light emitting element 10B.
  • the respective positions of the light emitting elements 10R, 10G, and 10B are not limited to the above, but in the following description, it is assumed that the light emitting elements 10R, 10G, and 10B are arranged at the positions illustrated above. There may be cases where the positional relationship of the components of FIG.
  • the light emitting unit 1 further includes a chip-shaped insulator 40 that covers each light emitting element 10, and terminal electrodes 31 and 32 electrically connected to each light emitting element 10. I have it.
  • the terminal electrodes 31 and 32 are arranged on the bottom surface side of the insulator 40.
  • the insulator 40 surrounds and holds at least part of each light emitting element 10 from the side surface side to the upper surface of each light emitting element 10, and has an opening 40H1 on each light emitting element 10.
  • the insulator 40 is made of, for example, a resin material such as silicone, acrylic, or epoxy.
  • the insulator 40 may partially include another material such as polyimide.
  • the insulator 40 has an elongated shape (for example, a rectangular parallelepiped shape) extending in the arrangement direction of the light emitting elements 10. The height of the insulator 40 is higher than the height of each light emitting element 10, and the lateral width (width in the short side direction) of the insulator 40 is wider than the width of each light emitting element 10.
  • the size of the insulator 40 itself is, for example, 1 mm or less.
  • the insulator 40 is in the shape of a thin piece.
  • the aspect ratio (maximum height / maximum lateral width) of the insulator 40 is so small that the light emitting unit 1 does not lie when the light emitting unit 1 is transferred, and is, for example, 1/5 or less.
  • the insulator 40 has, for example, as shown in FIG. 4B, an opening 40H2 at a position corresponding to directly below each light emitting element 10. At least the pad portion 21B (not shown in FIG. 4B) is exposed on the bottom surface of each opening 40H2.
  • the pad portion 21B is connected to the terminal electrode 31 via, for example, a predetermined conductive member (for example, solder or plated metal).
  • the bump 33 is a columnar conductive member embedded in the insulator 40, and the connection portion 34 is a strip-shaped conductive member formed on the upper surface of the insulator 40.
  • the wiring shown in FIGS. 2A and 2B Corresponds to 51.
  • the terminal electrodes 31 and 32 are mainly composed of, for example, Ti (titanium) or Cu (copper). Part of the surfaces of the terminal electrodes 31 and 32 may be covered with a material that is not easily oxidized, such as Au (gold).
  • LED displays that use multiple LEDs as display pixels are drawing attention as lightweight and thin displays, and various improvements such as improved luminous efficiency have been made.
  • a method for improving the light emission efficiency for example, in a configuration in which a semiconductor layer having a first conductivity type layer, an active layer and a second conductivity type layer and a contact layer are laminated, a predetermined amount is provided on the contact layer serving as a light extraction surface.
  • FIG. 5A schematically shows a cross-sectional structure of a general light emitting element 1000
  • FIG. 5B schematically shows a planar structure of the light emitting element 1000 shown in FIG. 5A. It is represented in. Note that FIG. 5A shows a cross section taken along line III-III shown in FIG.
  • a p-electrode 1022 is provided on a contact layer 1015 laminated on a semiconductor layer 1011 composed of a first conductivity type layer 1012, an active layer 1013 and a second conductivity type layer 1014.
  • An n-electrode 1021 is provided on the lower surface of 1011.
  • a laminated film in which a dielectric layer 1016, a metal layer 1017, and a dielectric layer 1018 are laminated in this order is formed on the side surfaces of the semiconductor layer 1011 and the contact layer 1015 and the lower surface of the semiconductor layer 1011.
  • a dielectric layer 1019 is provided on the contact layer 1015 outside the formation region of the p electrode 1022, and the dielectric layer 1019 is provided so as to partially cover the peripheral edge of the contact layer 1015. ing. Therefore, in the LED display in which the plurality of light emitting elements 1000 are arranged, when connecting the external wiring for controlling the driving of the light emitting elements 1000 arranged in each display pixel to the p electrode 1022, the p electrode 1022 and the dielectric are connected. It will straddle the layered portion with the layer 1019. For this reason, the p-electrode 1022 needs to be formed large in order to secure the connection with the external wiring, and accordingly, there is a possibility that the light extraction efficiency may be reduced because the light is blocked and absorbed.
  • the second electrode 22 electrically connected to the second conductivity type layer 15 on the light extraction surface (surface S2) side of the semiconductor layer 11 is provided on the second conductivity type layer 15.
  • the contact portion 22A and the pad portion 22B are connected via an opening 19H provided in the dielectric layer 19 corresponding to the contact portion 22A.
  • the dielectric layer having the opening 19H at the predetermined position on the second conductivity type layer 15 forming the light extraction surface (surface S2) of the semiconductor layer 11 including the active layer 13. 19 is provided, and the second electrode 22 electrically connected to the second conductivity type layer 15 through the opening 19H is provided on the dielectric layer 19.
  • a contact portion 22A for ensuring electrical connection with the second conductivity type layer 15 is provided on the second conductivity type layer 15, and is provided on the contact portion 22A.
  • a pad portion 22B electrically connected to the contact portion 22A through the opening 19H is provided on the dielectric layer 19.
  • the formation area of the second electrode 22 (specifically, the contact portion 22A) directly formed on the second conductivity type layer 15 is reduced, and the reflection area of the dielectric layer 19 can be increased. Become. That is, it is possible to improve the light extraction efficiency while ensuring the connectivity with the current-carrying electrode (wiring 51).
  • the second electrode 22 is composed of the two members of the contact portion 22A and the pad portion 22B. Therefore, for example, the contact portion 22A is used for ohmic formation and the pad portion 22B is connected by wiring. Therefore, it is possible to select a material suitable for each function according to its function.
  • the pad portion 22B is provided on the dielectric layer 19, and the second conductivity type layer 15 is provided on the second conductivity type layer 15 through the opening 19H provided in the dielectric layer 19.
  • the light emitting elements arranged in each display pixel are electrically connected to the contact portion 22A formed in
  • the wiring 51 for example, the connection portion 34
  • the driving of the device 10 should be directly connected to the second electrode 22 without straddling the laminated portion of the p electrode 1022 and the dielectric layer 1019 like the light emitting element 1000. Is possible. Therefore, it is possible to increase the margin for the positional deviation between the wiring 51 and the second electrode 22, and it is possible to improve the manufacturing yield and reliability.
  • the size (a1) of the portion 22A in the X-axis direction is set to be equal to or smaller than the size (b1) of the contact portion 21A of the first electrode 21 in the X-axis direction, for example.
  • the contact portion 21A of the first electrode 21 in the X-axis direction for example.
  • the size of the contact portion 22A of the second electrode 22 is set to be equal to or smaller than the size in the X-axis direction, for example.
  • the minimum diameter (width in the Z-axis direction) of the pad portion 22B is made smaller than the minimum diameter (for example, width in the Z-axis direction) of the pad portion 21B of the first electrode 21. Thereby, the light extraction efficiency is improved and the light emitting element 10 is easily supported.
  • FIG. 6 (A) schematically shows a cross-sectional structure of a light emitting element (light emitting element 60) according to the second embodiment of the present disclosure
  • FIG. 6 (B) shows FIG. 6 (A).
  • 2 schematically shows the planar configuration of the light emitting device 60 shown in FIG.
  • FIG. 6A illustrates a cross section taken along line IV-IV in FIG. 6B.
  • the light emitting element 60 is preferably used as a display pixel of an image display device (for example, the display device 2) called a so-called LED display.
  • the light emitting element 60 has a first conductive type layer 12, an active layer 13, and a semiconductor layer 11 (semiconductor layer) formed by laminating, for example, two second conductive type layers 14 and 15 in this order.
  • the side surface (surface S3) of the light emitting element 60 is an inclined surface that intersects the stacking direction (Y-axis direction) of each layer. It is an inclined surface whose cross section is an inverted trapezoid.
  • the first electrode 21 is provided on the surface S1 side of the semiconductor layer 11, and the second electrode 62 is provided on the surface S2 side of the semiconductor layer 11.
  • a laminated film in which a dielectric layer 16, a metal layer 17, and a dielectric layer 18 are laminated in order from the side surface (plane S3) side is provided, and the first electrode 21 is It is electrically connected to the first conductivity type layer 12 through this laminated film.
  • the light emitting device 60 of the present embodiment is provided on the dielectric layer 19 as a re-deposited solid film continuous layer without boundaries, in which the second electrode 62 is collectively formed, and is provided on the dielectric layer 19. It is different from the first embodiment in that it is electrically connected to the second conductivity type layer 15 through the opening 19H.
  • the second electrode is provided on the dielectric layer 19 provided on the second conductivity type layer 15 that constitutes the light extraction surface (surface S2) of the semiconductor layer 11.
  • a metal layer having a solid film structure is formed.
  • the connection portion between the second conductivity type layer 15 and the second electrode 62 is flatter than that of the light emitting element 10 in the first embodiment, and thus in the first embodiment.
  • the second electrode 62 and the external wiring can be electrically connected more easily. Furthermore, since the forming process is eliminated as compared with the light emitting element 10 in the first embodiment, the cost can be reduced.
  • FIG. 7 (A) schematically shows a cross-sectional configuration of a light emitting element (light emitting element 70) according to the third embodiment of the present disclosure
  • FIG. 7 (B) shows FIG. 7 (A).
  • 2 schematically shows a planar configuration of the light emitting device 70 shown in FIG.
  • FIG. 7A shows a cross section taken along line VV shown in FIG. 7B.
  • the light emitting element 70 is, for example, an LED chip, and is preferably used as a display pixel of an image display device (for example, the display device 2) called a so-called LED display. .
  • the light emitting element 70 has a first conductive type layer 12, an active layer 13, and a semiconductor layer 11 (semiconductor layer) formed by stacking, for example, two second conductive type layers 14 and 15 in this order.
  • the side surface (surface S3) of the light emitting element 70 is an inclined surface that intersects the stacking direction (Y-axis direction) of each layer. It is an inclined surface whose cross section is an inverted trapezoid.
  • the first electrode 21 is provided on the surface S1 side of the semiconductor layer 11, and the second electrode 22 is provided on the surface S2 side of the semiconductor layer 11.
  • the concavo-convex structure (for example, the concave portion X) is provided outside the region where the second electrode 22 is formed on the light extraction surface (surface S2) of the semiconductor layer 11 as the first and second aspects. This is different from the second embodiment.
  • the concavo-convex structure for example, the concave portion X
  • the second conductive type layer 15 layer, or both the second conductive type layer 14 and the second conductive type layer 15 are processed, It is desirable not to process up to the active layer 13.
  • the light extraction efficiency can be greatly increased by providing the plurality of recesses X on the light extraction surface (surface S2) of the semiconductor layer 11. Further, it becomes possible to adjust the light emission extracted from the light extraction surface (surface S2) to a desired emission angle, and for example, it is possible to obtain a Lambertian light distribution.
  • FIG. 8 schematically shows a planar configuration of a light emitting element (light emitting element 80) according to a modified example of the present disclosure.
  • the light emitting element 80 is, for example, an LED chip and is preferably used as a display pixel of an image display device (for example, the display device 2) called a so-called LED display.
  • the light emitting element 80 of this modification is different from the first, second and third embodiments in that the longitudinal direction of the first electrode 82 is arranged in the diagonal direction of the light emitting element 80 having a substantially rectangular shape. .
  • the first electrode 81 by providing the first electrode 81 so that the longitudinal direction thereof is substantially parallel to the diagonal direction of the light emitting element 80 having a substantially rectangular shape, it is possible to make the expanded portion large in the longitudinal direction. This makes it possible to further increase the margin of positional deviation between the wiring 51 and the first electrode 81.
  • the light emitting elements 10, 60, 70, 80 include, for example, an image display device including a light emitting unit (for example, the light emitting unit 1) using a plurality of light emitting elements as a display pixel. Alternatively, it can be applied to a lighting device using the light emitting elements individually or as a light emitting unit. An example is shown below.
  • FIG. 9 is a perspective view showing an example of a schematic configuration of the image display device (display device 2).
  • the display device 2 is a so-called LED display, and uses LEDs as display pixels.
  • the display device 2 includes a display panel 210 and a drive circuit (not shown) that drives the display panel 210, as shown in FIG. 9, for example.
  • the display panel 210 is a stack of a mounting substrate 220 and a transparent substrate 230.
  • the surface of the transparent substrate 230 serves as an image display surface, which has a display area 2A in the center and a frame area 2B which is a non-display area around the display area 2A.
  • FIG. 10 shows an example of a layout of a region corresponding to the display region 2A on the surface of the mounting substrate 220 on the transparent substrate 230 side.
  • a plurality of data wirings 221 are formed to extend in a predetermined direction and at a predetermined pitch. They are arranged in parallel.
  • a plurality of scan wirings 222 are formed so as to extend in a direction intersecting (for example, orthogonal) with the data wirings 221. , Are arranged in parallel at a predetermined pitch.
  • the data line 221 and the scan line 222 are made of a conductive material such as Cu (copper).
  • the scan wiring 222 is formed, for example, on the outermost layer, and is formed, for example, on an insulating layer (not shown) formed on the surface of the base material.
  • the base material of the mounting substrate 220 is, for example, a glass substrate, a resin substrate, or the like, and the insulating layer on the base material is, for example, SiN x , SiO x , or Al x O y .
  • the data wiring 221 is formed in a layer different from the outermost layer including the scan wiring 222 (for example, a layer lower than the outermost layer), for example, formed in an insulating layer on the base material. .
  • black is provided on the surface of the insulating layer as needed.
  • the black is for increasing the contrast and is made of a light absorbing material.
  • the black is formed, for example, on at least a region where pad electrodes 221B and 222B, which will be described later, are not formed on the surface of the insulating layer. The black may be omitted if necessary.
  • the vicinity of the intersection of the data wiring 221 and the scan wiring 222 is a display pixel 223, and the plurality of display pixels 223 are arranged in a matrix in the display area 3A.
  • the light emitting unit 1 including the plurality of light emitting elements 10 is mounted on each display pixel 223.
  • one display pixel 223 is configured by three light emitting elements 10R, 10G, and 10B.
  • the light emitting element 10R emits red light
  • the light emitting element 10G emits green light
  • the light emitting element 10B emits light.
  • An example is shown in which blue light can be output respectively.
  • the light emitting unit 1 is provided with a pair of terminal electrodes 31, 32 for each of the light emitting elements 10R, 10G, 10B.
  • the one terminal electrode 31 is electrically connected to the data wiring 221, and the other terminal electrode 32 is electrically connected to the scan wiring 222.
  • the terminal electrode 31 is electrically connected to the pad electrode 221B at the tip of the branch 221A provided in the data wiring 221.
  • the terminal electrode 32 is electrically connected to the pad electrode 222B at the tip of the branch 222A provided on the scan wiring 222.
  • Each of the pad electrodes 221B and 222B is formed, for example, on the outermost layer, and is provided, for example, at a portion where each light emitting unit 1 is mounted, as shown in FIG.
  • the pad electrodes 221B and 222B are made of a conductive material such as Au (gold).
  • the mounting board 220 is further provided with, for example, a plurality of columns (not shown) that regulate the distance between the mounting board 220 and the transparent substrate 230.
  • the support pillar may be provided in a region facing the display region 3A, or may be provided in a region facing the frame region 3B.
  • the transparent substrate 230 is, for example, a glass substrate, a resin substrate, or the like.
  • the surface of the transparent substrate 230 on the light emitting unit 1 side may be flat, but is preferably a rough surface.
  • the rough surface may be provided over the entire area facing the display area 2A, or may be provided only in the area facing the display pixel 223.
  • the rough surface has fine irregularities on which light emitted from the light emitting elements 10R, 10G, and 10B enters the rough surface.
  • the unevenness of the rough surface can be produced by, for example, sandblasting, dry etching, or the like.
  • the drive circuit drives each display pixel 223 (each light emitting unit 1) based on the video signal.
  • the drive circuit includes, for example, a data driver that drives the data wiring 221 connected to the display pixel 223 and a scan driver that drives the scan wiring 222 connected to the display pixel 223.
  • the drive circuit may be mounted on the mounting substrate 220, may be provided separately from the display panel 210, and may be connected to the mounting substrate 220 via wiring (not shown). .
  • FIGS. 11A and 11B show a planar configuration (FIG. 11A) and a perspective direction (FIG. 11B) configuration of a lighting device 200A which is an example of a lighting device using the light emitting element 10 (or the light emitting elements 60, 70, 80). It is a representation.
  • the light emitting element 10 for example, four light emitting elements 10 are arranged, for example, in point symmetry on a mounting stage (mounting substrate) on a circle.
  • the light emitting elements 10 may be arranged by a method other than the point symmetry.
  • FIGS. 12A and 12B show a planar configuration (FIG. 12A) and a perspective direction (FIG. 12B) of an illumination device 200B that is another example of the illumination device using the light emitting element 10.
  • FIGS. 12A and 12B in the light emitting element 10, for example, eight light emitting elements 10 are arranged on an annular mounting stage (mounting substrate).
  • FIGS. 243 and 13B show a planar configuration (FIG. 13A) and a perspective direction (FIG. 13B) configuration of an illumination device 200C that is another example of an illumination device using a light emitting element. As shown in FIGS. 243 and 13B, for example, nine light emitting elements 10 are arranged on a rectangular mounting stage.
  • the lighting device 200C may include a ceiling light cover.
  • the present disclosure has been described above with reference to the first to third embodiments and modifications, but the present disclosure is not limited to the above-described embodiments and the like, and various modifications can be made.
  • the second conductivity type layer has an example of a laminated structure of the second conductivity type layer 14 and the second conductivity type layer 15, but the second conductivity type layer has a laminated structure. It does not need to be, and may be a single layer structure.
  • the present disclosure may also have the following configurations.
  • the first conductivity type layer, the active layer, and the second conductivity type layer are stacked in this order, and the first conductivity type layer side is the first surface and the second conductivity type layer side is A first dielectric layer and a second electrode are sequentially provided on the second surface side of the semiconductor layer serving as the second surface, and a second conductivity type layer and a second electrode are provided on the first dielectric layer. Since the electrical connection is made through the opening, for example, the margin of misalignment between the second electrode and the external wiring provided on the light emitting element is enlarged, and the formation area of the second electrode is increased. It is possible to reduce.
  • a semiconductor layer which has a first surface and a second surface, and is formed by laminating a first conductivity type layer, an active layer and a second conductivity type layer in order from the first surface side;
  • a first dielectric layer provided on the second surface side of the semiconductor layer and having an opening;
  • a first electrode electrically connected to the first conductivity type layer on the first surface side of the semiconductor layer;
  • a light emitting device comprising: a second electrode provided on the first dielectric layer and electrically connected to the second conductivity type layer through the opening.
  • the said 2nd electrode is a light emitting element as described in said (1) which has a planar shape which has a longitudinal direction and a lateral direction, and the aspect ratio is larger than one.
  • the said 2nd electrode is a light emitting element as described in said (1) or (2) which has a substantially symmetrical structure on both sides of the said opening.
  • the second electrode has a connection portion that covers the opening and is electrically connected to the second conductivity type layer, and an extension portion that extends in opposite directions between the connection portion. ) Thru
  • the second electrode is provided on the second conductivity type layer, and is provided on the first dielectric layer and a contact portion at least a part of the periphery of which is covered by the first dielectric layer.
  • the light emitting device according to any one of (1) to (5) above which further comprises a pad portion that extends in the opening and is connected to the contact portion.
  • the semiconductor layer has a concavo-convex structure outside the formation region of the second electrode.
  • a metal layer is provided from a side surface of the semiconductor layer to a first surface of the first semiconductor layer.
  • the metal layer forms a laminated film with a second dielectric layer, and the metal layer is provided from the side surface of the semiconductor layer to the first surface of the first semiconductor layer with the second dielectric layer interposed therebetween.
  • the light emitting device according to (8) above. (10) The light emitting device according to any one of (1) to (9), wherein an external wiring is connected to the second electrode.
  • the second electrode has a planar shape having a longitudinal direction and a lateral direction, The light emitting device according to (10), wherein the external wiring is arranged so as to intersect with a longitudinal direction of the second electrode.
  • the first electrode is provided on the first conductivity type layer, and at least a part of the peripheral edge is covered with a second dielectric layer provided from the side surface of the semiconductor layer to the first surface of the semiconductor layer.
  • the size of the contact portion of the second electrode in the uniaxial direction is equal to the first size.
  • the light-emitting element according to any one of (6) to (11), which has a size equal to or smaller than the size of the contact portion of the electrode in the uniaxial direction.
  • the first electrode is provided on the first conductivity type layer, and at least a part of the peripheral edge is covered with a second dielectric layer provided from the side surface of the semiconductor layer to the first surface of the semiconductor layer.
  • the uniaxial size of the contact portion of the second electrode is The light-emitting element according to any one of (6) to (11), which has a size in the uniaxial direction of the contact portion of the first electrode or more.
  • the first electrode is provided on the first conductivity type layer, and at least a part of the peripheral edge is covered with a second dielectric layer provided from the side surface of the semiconductor layer to the first surface of the semiconductor layer.
  • a contact portion, and a pad portion extending into the opening provided in the second dielectric layer and connected to the contact portion, The light emitting device according to any one of (6) to (13), wherein the minimum diameter of the pad portion of the second electrode is smaller than the minimum diameter of the pad portion of the first electrode.
  • the first conductivity type layer is an n-type semiconductor layer
  • the second conductivity type layer is a p-type semiconductor layer
  • a semiconductor layer which has a first surface and a second surface, and is formed by laminating a first conductivity type layer, an active layer and a second conductivity type layer in order from the first surface side;
  • a first dielectric layer provided on the second surface side of the semiconductor layer and having an opening;
  • a first electrode electrically connected to the first conductivity type layer on the first surface side of the semiconductor layer;
  • An image display device comprising: a second electrode provided on the first dielectric layer and electrically connected to the second conductivity type layer through the opening.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)

Abstract

本開示の一実施形態の発光素子は、第1面および第2面を有すると共に、第1面側から順に、第1導電型層、活性層および第2導電型層を積層してなる半導体層と、半導体層の第2面側に設けられると共に、開口を有する第1の誘電体層と、半導体層の第1面側において、第1導電型層と電気的に接続された第1の電極と、第1の誘電体層上に設けられると共に、開口を介して第2導電型層と電気的に接続された第2の電極とを備える。

Description

発光素子および画像表示装置
 本開示は、半導体の積層方向に光を射出する発光素子およびこれを備えた画像表示装置に関する。
 近年、発光ダイオード(LED)等の発光素子を複数個集めて構成した照明装置や画像表示装置が普及してきている。その中でも、LEDを表示画素に用いたLEDディスプレイは軽量で薄型のディスプレイとして注目を集めており、発光効率の向上等の様々な改良がなされてきている。
 例えば、特許文献1では、第1導電型層、活性層および第2導電型層を有する半導体層とコンタクト層とが積層された構成において、光取り出し面側に形成されたコンタクト層上に所定の屈折率を有する透明材料からなる絶縁層を設けることで、正面方向の光取り出し効率を向上させた発光素子が開示されている。
特開2016-4892号公報
 ところで、照明装置や表示装置を構成する発光素子では、通電電極との接続性と光取り出し効率との両立が求められている。
 通電電極との接続性と光取り出し効率とを両立させることが可能な発光素子および画像表示装置を提供することが望ましい。
 本開示の一実施形態の発光素子は、第1面および第2面を有すると共に、第1面側から順に、第1導電型層、活性層および第2導電型層を積層してなる半導体層と、半導体層の第2面側に設けられると共に、開口を有する第1の誘電体層と、半導体層の第1面側において、第1導電型層と電気的に接続された第1の電極と、第1の誘電体層上に設けられると共に、開口を介して第2導電型層と電気的に接続された第2の電極とを備えたものである。
 本開示の一実施形態の画像表示装置は、複数の発光素子として、上記一実施形態の発光素子を備えたものである。
 本開示の一実施形態の発光素子および一実施形態の画像表示装置では、第1導電型層、活性層および第2導電型層が積層されてなる半導体層の第2面側に開口を有する第1の誘電体層を設け、第2導電型層と、第1の誘電体層上に設けた第2の電極とを開口を介して電気的に接続するようにした。これにより、例えば、発光素子上に配設される、例えば外部配線と第2の電極との位置ずれマージンを拡大しつつ、第2の電極の形成領域を削減することが可能となる。
本開示の第1の実施の形態に係る発光素子の構成の一例を表す断面模式図(A)および平面模式図(B)である。 本開示の第1の実施の形態に係る発光素子の構成の他の例を表す断面模式図である。 本開示の第1の実施の形態に係る発光素子の構成の他の例を表す断面模式図である。 図1に示した発光素子への外部配線の接続の一例を表す平面模式図である。 図2Aに示した発光素子と外部配線との構成を表す断面模式図である。 図1に示した発光素子への外部配線の接続の他の例を表す平面模式図である。 図3Aに示した発光素子と外部配線との構成を表す断面模式図である。 図1に示した発光素子を複数備えた発光ユニットの構成の一例を表す斜視図である。 図4Aに示した発光ユニットの断面構成を表す模式図である。 一般的な発光素子の構成の一例を表す断面模式図(A)および平面模式図(B)である。 本開示の第2の実施の形態に係る発光素子の構成の一例を表す断面模式図(A)および平面模式図(B)である。 本開示の第3の実施の形態に係る発光素子の構成の一例を表す断面模式図である。 図7Aに示した発光素子の平面模式図である。 本開示の変形例に係る発光素子の構成の一例を表す平面模式図である。 適用例として、図1等に示した発光素子を備えた表示装置の構成の一例を表す斜視図である。 図9に示した表示装置のレイアウトの一例を表した模式図である。 適用例としての照明装置の一例を表す平面図である。 図11Aに示した照明装置の斜視図である。 適用例としての照明装置の他の例を表す平面図である。 図12Aに示した照明装置の斜視図である。 適用例としての照明装置の他の例を表す平面図である。 図13Aに示した照明装置の斜視図である。
 以下、本開示における一実施形態について、図面を参照して詳細に説明する。以下の説明は本開示の一具体例であって、本開示は以下の態様に限定されるものではない。また、本開示は、各図に示す各構成要素の配置や寸法、寸法比等についても、それらに限定されるものではない。なお、説明する順序は、下記の通りである。
 1.第1の実施の形態(第2導電型層上に誘電体層を設け、誘電体層に設けられた開口を介して第2導電型層と第2電極とを電気的に接続した例)
   1-1.発光素子の構成
   1-2.発光ユニットの構成
   1-3.作用・効果
 2.第2の実施の形態(第2電極を単層構造とした例)
 3.第3の実施の形態(第2電極の周囲に凹凸構造を設けた例)
 4.変形例(第2電極を光取り出し面の対角線上に配置した例)
 5.適用例
<1.第1の実施の形態>
 図1A(A)は、本開示の第1の実施の形態に係る発光素子(発光素子10)の断面構成を模式的に表したものであり、図1A(B)は、図1A(A)に示した発光素子10の平面構成を模式的に表したものである。なお、図1A(A)は、図1A(B)に示したI-I線における断面を表している。この発光素子10は、LEDチップであり、例えば所謂LEDディスプレイと呼ばれる画像表示装置(例えば、表示装置2、図9参照)の表示画素として好適に用いられるものである。
 発光素子10は、第1導電型層12、活性層13および、例えば2層からなる第2導電型層14,15がこの順に積層されてなる半導体層11(半導体層)を有するものである。この第1導電型層12の下面が半導体層11における裏面(面S1;第1面)であり、第2導電型層15の上面が半導体層11における光取り出し面(面S2;第2面)である。発光素子10の側面(面S3)は、図1A(A)に示したように、各層の積層方向(Y軸方向)と交差する傾斜面となっており、具体的には、発光素子10の断面が逆台形状となっている。発光素子10は、半導体層11の面S1側に第1電極21が、半導体層11の面S2側に第2電極22が設けられている。本実施の形態の発光素子10は、半導体層11の第2導電型層15上に誘電体層19(第1の誘電体層)が設けられており、この誘電体層19に設けられた開口19Hを介して、第2導電型層15と第2電極22とが電気的に接続されている。半導体層11の側面(面S3)ならびに半導体層11の下面(面S1)には、誘電体層16、金属層17および誘電体層18が積層された積層膜が設けられており、第1電極21は、この積層膜に設けられた開口16Hを介して第1導電型層12と電気的に接続されている。
(1-1.発光素子の構成)
 発光素子10は、所定の波長体の光を上面(光取り出し面、面S2)から出射する固体発光素子であり、具体的にはLED(Light Emitting Diode)チップである。LEDチップとは、結晶成長に用いたウェハから切り出した状態のものを指しており、成形した樹脂等で覆われたパッケージタイプのものではないことを指している。LEDチップは、例えば5μm以上100μm以下のサイズとなっており、いわゆるマイクロLEDと呼ばれるものである。LEDチップの平面形状は、例えば、略正方形となっている。LEDチップは薄片状となっており、LEDチップのアスペクト比(高さ/幅)は、光が吸収を受けないようにするため、例えば0.1以上1未満が望ましい。
 以下に、発光素子10を構成する各部材について説明する。
 半導体層を構成する第1導電型層12、活性層13および第2導電型層14,15は、所望の波長帯の光によって適宜材料を選択する。具体的には、赤色帯の光を得る場合には、例えばAlGaInP系の半導体材料を用いることが好ましい。緑色帯の光あるいは青色帯の光を得る場合には、例えばAlGaInN系の半導体材料を用いることが好ましい。
 第1導電型層12は、第1電極21と電気的に接続され、例えばn型のAlGaInPを含んで構成されている。活性層13は、例えば、相互に組成の異なる半導体によりそれぞれ形成された井戸層と障壁層との多重量子井戸構造を有し、所定波長の光を発することが可能に構成される。本実施形態に係る活性層23は、発光波長が例えば500nm以上700nm以下の赤色の光を発することが可能である。活性層23は、例えば、GaInPを含む約3~20層の井戸層と、AlGaInPを含む約2~19層の障壁層からなり、井戸層および障壁層が相互に積層されている。例えば、青と緑の発光の場合、第1導電型層12はn型のAlGaInN、活性層23は、例えば、GaInNを含む約1~20層の井戸層と、GaInNを含む約0~19層の障壁層を用いることが好ましい。発光波長が例えば400nm以上600nm以下の光を発することが可能である。
 第2導電型層14は、活性層13上に形成され、例えばp型のAlGaInPを含んで構成されている。第2導電型層15は、第2導電型層14上に設けられたものであり、第2電極22と電気的に接続されるものである。第2導電型層15は、平面視において半導体層11の光取り出し面(面S2)全体に設けられ、第2電極22が形成されない領域が発光素子10の光取り出し領域を構成している。第2導電型層15は、第2電極22とオーミックコンタクトが可能な材料を用いることが好ましく、例えばp型のGaPを含んで構成されている。例えば、青と緑の発光の場合、第2導電型層14はn型のAlGaInN、第2導電型層15はp型のGaInNを含む層を用いることが好ましい。
 誘電体層16は、金属層17と半導体層11とを電気的に絶縁するためのものである。誘電体層16は、半導体層11の側面(面S3)全体に設けられており、さらに、第1電極21を構成する接触部21Aの表面の周縁部分を覆うように設けられている。誘電体層16の材料としては、活性層13から出射された光を透過可能な材料を用いることが好ましく、例えば、酸化シリコン(SiOx)、窒化シリコン(SiNx)、酸化アルミニウム(AlOx)、酸化チタン(TiOx)および窒化チタン(TiN)等が挙げられる。誘電体層16の厚みは、例えば0.1μm~1μm程度であり、成膜方向によってほぼ均一な厚さとなっている。なお、誘電体層16は、製造誤差に起因する厚さの不均一性を有していてもよい。また、半導体ウェハは上側もしくは下側から製膜されることが多いので、半導体層11の側面(面S3)に形成される誘電体層16は、膜厚が薄くなる傾向がある。
 金属層17は、活性層13から出射された光を遮蔽もしくは反射するためのものである。金属層17は、誘電体層16の表面に接して形成されている。金属層17の光取り出し面S2側の端部は、例えば第2導電型層15の光取り出し面S2側と同一面に形成されている。一方、金属層17の第2電極22側の端部は、例えば誘電体層16を間にして第1電極21の端部近傍に形成されている。即ち、金属層17と、半導体層11、第2電極22および第1電極21とは誘電体層16によって絶縁分離(電気的に分離)されている。金属層17の材料としては、活性層13から出射される光を遮蔽もしくは反射する材料を用いることが好ましく、例えば、チタン(Ti)、アルミニウム(Al)、銅(Cu)、金(Au)、銀(Ag)およびニッケル(Ni)あるいはそれらの合金が挙げられる。金属層17の厚みは、例えば0.1μm~1μm程度であり、成膜方向によってほぼ均一な厚さとなっている。なお、金属層17は、製造誤差に起因する厚さの不均一性を有していてもよい。また、半導体ウェハは上側もしくは下側から製膜されることが多いので、半導体層11の側面(面S3)に形成される金属層17は、誘電体層16と同様に、膜厚が薄くなる傾向がある。また、金属層17は、誘電体層19と、誘電体層16および誘電体層18との会合部(面S2と面S3が交差する部分)において、製法によっては、図1Aのとおりに誘電体層19、誘電体層16および誘電体層18に囲まれた構造になることもあるが、製法によっては一部が露出している場合がある。
 誘電体層18は、発光素子10を実装用の基板(例えば、配線基板52(図2B参照))に実装する際に、第1電極21を構成するパッド部21Bと実装用の基板とを互いに接合する導電性材料(例えば、半田、めっきまたはスパッタ金属)と、金属層17とが互いに短絡するのを防止するためのものである。誘電体層18は、金属層17の表面と、第1電極21の接触部22Aの周縁を覆う誘電体層16の表面に接して形成されている。誘電体層18は、金属層17の表面全体に形成されると共に、誘電体層16の全体または一部に形成されている。誘電体層18の材料としては、誘電体層16と同様の材料を用いることができ、例えば、酸化シリコン(SiOx)、窒化シリコン(SiNx)、酸化アルミニウム(AlOx)、酸化チタン(TiOx)および窒化チタン(TiN)等が挙げられる。また、誘電体層18は、上記材料のうち複数の材料から形成されていてもよい。誘電体層18の厚みは、例えば0.1μm~1μm程度であり、成膜方向によってほぼ均一な厚さとなっている。なお、誘電体層18は、製造誤差に起因する厚さの不均一性を有していてもよい。また、半導体ウェハは上側もしくは下側から製膜されることが多いので、半導体層11の側面(面S3)に形成される誘電体層18は、誘電体層16および金属層17と同様に、膜厚が薄くなる傾向がある。
 誘電体層19は、第2導電型層15上に設けられたものであり、半導体層11(具体的には、第2導電型層15の表面)の保護および発光素子10の正面方向の発光強度を向上させるためのものである。誘電体層19は、詳細は後述するが、第2導電型層15上に、例えば直接設けられた第2電極22を構成する接触部21Aが露出するように、開口19Hが設けられており、開口19Hの近傍は、接触部21Aの周縁を覆うように一部が接触部21A上に形成されている。
 誘電体層19の材料としては、光透過性を有し、第2導電型層15との屈折率差が0.3以上、より好ましくは、1.0以上異なり、第2導電型層15の屈折率より小さいものが好ましい。このような材料としては、例えば、アルミナ(Alxy)や酸化シリコン(SiOx)および窒化シリコン(Sixy)等が挙げられる。誘電体層19は、上記材料からなる単層膜あるいは積層膜として構成されている。あるいは、誘電体層19は、酸化チタン(TiOx)および窒化チタン(TiN)等を用いてもよい。これにより、発光素子10の光取り出し面(面S1)の絶縁性を担保しつつ、正面方向の発光強度を向上させることが可能となる。誘電体層19の厚みは、例えば100μm以上800μm以下であることが好ましく、より好ましくは、400μm以上600μm以下であり、ほぼ均一な厚さとなっている。なお、誘電体層19は、製造誤差に起因する厚さの不均一性を有していてもよい。
 第1電極21は、半導体層11の下面(面S1)即ち、第1導電型層12と電気的に接続されるものである。即ち、第1電極21は、第1導電型層12とオーミック接触しており、例えばn電極として形成されるものである。第1電極21は、例えば第1導電型層12上に、例えば直接設けられた接触部21Aと、誘電体層16および誘電体層18上に設けられたパッド部21Bとから構成されている。パッド部21Bは、誘電体層16に設けられた開口16Hを介して接触部21Aと電気的に接続されている。
 第1電極21は金属電極であり、例えば、チタン(Ti)/白金(Pt)/金(Au)あるいは金とゲルマニウムの合金(AuGe)/Ni(ニッケル)/Au等の多層体として構成されている。この他、銀(Ag)やアルミニウム(Al)等の高反射性の金属材料を含んで構成されていてもよい。第1電極21を構成する接触部21Aおよびパッド部21Bは、互いに同じ材料を用いて形成されていてもよいが、接触部21Aは、第1導電型層12を構成するGaAsとオーミックコンタクトを取るといった観点から、例えばAuGeNi/Auを用いることが好ましい。パッド部21Bは、その後の配線接続の観点から、例えばTiPtAuを用いて形成することが好ましい。
 更に、接触部21Aは、例えば、図1Bに示したように、コンタクト層21A1と金属層21A2との積層膜として形成するようにしてもよい。コンタクト層21A1は、第1導電型層12とオーミックコンタクトが可能な材料を用いることが好ましく、例えば、例えばn型のGaAs等が挙げられる。金属層21A2には、金(Au)、ゲルマニウム(Ge)およびニッケル(Ni)を用いることが好ましい。このように、接触部21Aをコンタクト層21A1と金属層21A2との積層膜とすることにより、第1導電型層12とのオーミックコンタクトを取りつつ、コンタクト層21A1を構成するn型のGaAs等の半導体材料による光吸収を避けることが可能となる。
 第2電極22は、光取り出し面(面S1)側に設けられ、第2導電型層15に接すると共に、第2導電型層15と電気的に接続されている。即ち、第2電極22は、第2導電型層15とオーミック接触しており、例えばp電極として形成されるものである。第2電極22は、例えば図1Aの(B)に示したように、例えばアスペクト比1以上、より好ましくは2以上の、長手方向および短手方向を有する横長の平面形状を有する。ここで、長手方向はX軸方向とし、短手方向はZ軸方向とする。具体的には、第2電極22は、開口19Hに対応する位置に例えば略円形状を有する接続部22Xと、接続部22Xを間に互いに反対方向に延在すると共に、接続部22Xの直径よりも小さい幅を有する拡張部22Yとを備えた略対称構造を有する。更に、本実施の形態の第2電極22は、例えば第2導電型層15上に直接設けられた接触部22Aと、誘電体層19上に設けられたパッド部22Bとから構成されている。
 接触部22Aは、第2導電型層15上の直上に、例えば略円形状に形成されている。接触部22Aの一軸方向(例えば、X軸方向)の大きさ(a1)は、例えば、第1導電型層12および接触部21Aが活性層13から発せられる光を吸収しない場合には、例えば、図1Aに示したように、上述した第1電極21の接触部21Aの一軸方向(例えば、X軸方向)の大きさ(b1)以下(a1≦b1)であることが好ましい。また、例えば、第1導電型層12および接触部21Aのどちらか一方あるいは両方が活性層13から発せられる光を吸収する場合には、例えば図1Cに示したように、上述した第1電極21の接触部21Aの一軸方向(例えば、X軸方向)の大きさ(b1)以上(a1≧b1)であることが好ましい。但し、この場合の吸収というのは半導体のバンドギャップが発光波長のエネルギーより小さいことでの吸収を指し、フリーキャリアやドーパントによる吸収は含まないものとする。パッド部22Bは、誘電体層19に設けられた開口19Hを介して接触部22Aと電気的に接続されている。パッド部22Bは、上記第2電極22の平面形状を構成するものであり、平面視において、例えばアスペクト比1以上、より好ましくは2以上の、例えばX軸方向が長手方向、Z軸方向が短手方向となる横長の形状を有し、中央部分に接続部22Xを、その両端に拡張部22Yを有する。即ち、パッド部22Bは、開口19Hを挟んで略対称構造を有する。接続部22Xは、誘電体層19の開口19Hを覆い、接触部22Aと接続されるものである。拡張部22Yは、第2電極22と、後述する配線51(例えば、図2A参照)との電気的接続を担保するためのものである。また、パッド部22Bの最小径(図1AではZ軸方向の幅)は、第1電極21のパッド部21Bの最小径(例えば、Z軸方向の幅)よりも小さいことが好ましい。
 第2電極22は金属電極であり、例えば、チタン(Ti)、白金(Pt)、アルミニウム(Al)、金(Au)、ロジウム(Ph)および銅(Cu)あるいはそれらの多層体として構成されている。第2電極22を構成する接触部22Aおよびパッド部22Bは、互いに同じ材料を用いて形成されていてもよいが、接触部22Aは、半導体接続の観点から、例えばチタン(Ti)、白金(Pt)、アルミニウム(Al)および金(Au)を用いることが好ましく、パッド部22Bは、配線接続と光反射の観点から、例えばチタン(Ti)、白金(Pt)、アルミニウム(Al)、金(Au)、ロジウム(Ph)および銅(Cu)を用いて形成することが好ましい。
 図2Aは、平面視において、本実施の形態の発光素子10と、例えば、後述する表示装置2において複数配置された発光素子10の駆動を制御するための外部配線(配線51)との接続の一例を模式的に表したものである。図2Bは、図2Aの断面構成を模式的に表したものである。図3Aは、平面視において、本実施の形態の発光素子10と、例えば、後述する表示装置2において複数配置された発光素子10の駆動を制御するための外部配線(配線51)との接続の他の例を模式的に表したものである。図3Bは、図3Aの断面構成を模式的に表したものである。本実施の形態では、配線51の延伸方向(図2Aでは、Z軸方向)に対して発光素子10を、第2電極22を構成するパッド部21Bの長手方向(例えば、X軸方向)が、配線51の延伸方向と交差するように配置することで、第2電極22と配線51との位置ずれのマージンを拡大することが可能となる。また、第1電極21は、図2Bに示したように、例えば、メッキやはんだ接合を用いてn電極接続のための配線基板52に接合される。
(1-2.発光ユニットの構成)
 図4Aは、発光ユニット1の概略構成の一例を斜視的に表したものである。図4Bは、図4Aの発光ユニット1のII-II線における断面構成の一例を表したものである。発光ユニット1は、例えば、後述する表示装置2において表示画素として好適に適用可能なものであり、複数の発光素子10を薄い肉厚の樹脂で被った微小パッケージである。
 発光ユニット1内には、上記発光素子10が他の発光素子10と所定の間隙を介して一列に配置されている。この発光ユニット1は、例えば、発光素子10の配設方向に延在する細長い形状となっている。互いに隣り合う2つの発光素子10の隙間は、例えば、各発光素子10のサイズと同等か、それよりも大きくなっている。なお、上記の隙間は、場合によっては各発光素子10のサイズより狭くなっていてもよい。
 各発光素子10は、互いに異なる波長帯の光を発するようになっている。例えば、図4Aに示したように、3つの発光素子10は、緑色帯の光を発する発光素子10Gと、赤色帯の光を発する発光素子10Rと、青色帯の光を発する発光素子10Bとにより構成されている。例えば、発光ユニット1が発光素子10の配列方向に延在する細長い形状となっている場合に、発光素子10Gは、例えば、発光ユニット1の短辺近傍に配置され、発光素子10Bは、例えば、発光ユニット1の短辺のうち発光素子10Gの近接する短辺とは異なる短辺の近傍に配置されている。発光素子10Rは、例えば、発光素子10Gと発光素子10Bとの間に配置されている。なお、発光素子10R,10G,10Bのそれぞれの位置は、上記に限定されるものではないが、以下では、発光素子10R,10G,10Bが上で例示した箇所に配置されているものとして、他の構成要素の位置関係を説明する場合がある。
 発光ユニット1は、さらに、図4A,図4Bに示したように、各発光素子10を覆うチップ状の絶縁体40と、各発光素子10に電気的に接続された端子電極31,32とを備えている。端子電極31,32は、絶縁体40の底面側に配置されている。
 絶縁体40は、各発光素子10を、少なくとも各発光素子10の側面側から上面の一部囲むと共に保持するものであり、各発光素子10上に開口40H1を有している。絶縁体40は、例えば、シリコーン、アクリル、エポキシ等の樹脂材料によって構成されている。絶縁体40は、一部にポリイミド等の別材料を含んでいてもよい。絶縁体40は、各発光素子10の配列方向に延在する細長い形状(例えば、直方体形状)となっている。絶縁体40の高さは、各発光素子10の高さよりも高くなっており、絶縁体40の横幅(短辺方向の幅)は、各発光素子10の幅よりも広くなっている。絶縁体40自体のサイズは、例えば、1mm以下となっている。絶縁体40は、薄片状となっている。絶縁体40のアスペクト比(最大高さ/最大横幅)は、発光ユニット1を転写する際に発光ユニット1が横にならない程度に小さくなっており、例えば、1/5以下となっている。
 絶縁体40は、例えば、図4B示したように、各発光素子10の直下に対応する箇所に開口40H2を有している。各開口40H2の底面には、少なくとも上記パッド部21B(図4Bでは図示せず)が露出している。パッド部21Bは、例えば所定の導電性部材(例えば、半田、めっき金属)を介して端子電極31に接続されている。バンプ33は絶縁体40に埋め込まれた柱状の導電性部材であり、接続部34は絶縁体40の上面に形成された帯状の導電性部材であり、例えば、図2Aおよび図2Bに示した配線51に相当する。端子電極31,32は、例えば、主にTi(チタン)やCu(銅)を含んで構成されている。端子電極31,32の表面の一部が、例えば、Au(金)等の酸化されにくい材料で被覆されていてもよい。
(1-3.作用・効果)
 次に、本実施の形態の発光素子10の作用・効果について説明する。
 前述したように、複数のLEDを表示画素に用いたLEDディスプレイは軽量で薄型のディスプレイとして注目を集めており、発光効率の向上等の様々な改良がなされてきている。発光効率を向上させる方法としては、例えば、第1導電型層、活性層および第2導電型層を有する半導体層とコンタクト層とが積層された構成において、光取り出し面となるコンタクト層上に所定の屈折率を有する透明材料からなる絶縁層を設けることで、正面方向の光取り出し効率を向上させる方法がある。これにより、正面方向の発光強度が向上し、発光効率を向上させることが可能となる。
 図5(A)は、一般的な発光素子1000の断面構成を模式的に表したものであり、図5(B)は、図5(A)に示した発光素子1000の平面構成を模式的に表したものである。なお、図5(A)は、図5(B)に示したIII-III線における断面を表している。一般的な発光素子1000では、第1導電型層1012、活性層1013および第2導電型層1014からなる半導体層1011に積層されたコンタクト層1015上にp電極1022が設けられており、半導体層1011の下面にn電極1021が設けられた構成を有する。なお、半導体層1011およびコンタクト層1015の側面および半導体層1011の下面には、誘電体層1016、金属層1017および誘電体層1018の順に積層された積層膜が形成されている。
 発光素子1000では、コンタクト層1015上のp電極1022の形成領域外には誘電体層1019が設けられており、その誘電体層1019は、一部がコンタクト層1015の周縁を覆うように設けられている。このため、複数の発光素子1000が配置されたLEDディスプレイにおいて、各表示画素に配置された発光素子1000の駆動を制御する外部配線をp電極1022と接続する際には、p電極1022と誘電体層1019との積層部分を跨ぐこととなる。このため、p電極1022は、外部配線との接続を確保するためにp電極1022を大きく形成する必要があり、その分、光を遮り吸収するため光取り出し効率が低下する虞がある。
 これに対して、本実施の形態では、半導体層11の光取り出し面(面S2)側の第2導電型層15と電気的に接続される第2電極22を、第2導電型層15上に直接設けられた接触部22Aと、第2導電型層15上に設けられた誘電体層19上に設けられたパッド部22Bとから構成するようにした。接触部22Aとパッド部22Bとは、接触部22Aに対応する誘電体層19に設けられた開口19Hを介して接続されている。これにより、第2導電型層15上に形成される第2電極22の形成領域(具体的には、第2導電型層15上に直接形成される接触部22A)の形成領域を削減することが可能となり、誘電体層19による反射領域を増大させることが可能となる。
 以上、本実施の形態の発光素子10では、活性層13を含む半導体層11の光取り出し面(面S2)を構成する第2導電型層15上の所定の位置に開口19Hを有する誘電体層19を設け、この誘電体層19上に開口19Hを介して第2導電型層15と電気的に接続される第2電極22を設けるようにした。具体的には、第2電極22として、第2導電型層15上に、第2導電型層15との電気的な接続を確保する接触部22Aを設け、この接触部22A上に設けられた開口19Hを介して接触部22Aと電気的に接続されるパッド部22Bを誘電体層19上に設けるようにした。これにより、第2導電型層15上に直接形成される第2電極22(具体的には、接触部22A)の形成領域が削減され、誘電体層19による反射領域を増大させることが可能となる。即ち、通電電極(配線51)との接続性を確保しつつ、光取り出し効率を向上させることが可能となる。
 また、本実施の形態では、第2電極22を、接触部22Aおよびパッド部22Bの2つの部材から構成するようにしたので、例えば、接触部22Aをオーミック形成用に、パッド部22Bを配線接続用に、その機能に分けてそれぞれに適した材料を選択することが可能となる。
 更に、本実施の形態の発光素子10は、上記のように、誘電体層19上にパッド部22Bを設け、誘電体層19に設けられた開口19Hを介して、第2導電型層15上に形成された接触部22Aと電気的に接続するようにしたので、後述する複数の発光素子10が表示画素に配置されたLEDディスプレイ(表示装置2)において、各表示画素に配置された発光素子10の駆動を制御する配線51(例えば、接続部34)は、上記発光素子1000のように、p電極1022と誘電体層1019との積層部分を跨ぐことなく直接第2電極22に接続することが可能となる。よって、配線51と第2電極22との位置ずれに対するマージンを拡大することが可能となり、製造歩留まりおよび信頼性を向上させることが可能となる。
 更にまた、本実施の形態では、例えば、第1導電型層12および接触部21Aが活性層13から発せられる光を吸収しない場合には、図1Aに示したように、第2電極22の接触部22Aの、例えばX軸方向の大きさ(a1)が第1電極21の接触部21Aの、例えばX軸方向の大きさ(b1)以下となるようにした。また、例えば、第1導電型層12および接触部21Aのどちらか一方あるいは両方が活性層13から発せられる光を吸収する場合には、第1電極21の接触部21Aの、例えばX軸方向の大きさが第2電極22の接触部22Aの、例えばX軸方向の大きさ以下となるようにした。更に、パッド部22Bの最小径(Z軸方向の幅)が、第1電極21のパッド部21Bの最小径(例えば、同様にZ軸方向の幅)よりも小さくなるようにした。これにより、光取り出し効率が向上する共に、発光素子10を支持しやすくなる。
 次に、第2,第3の実施の形態および変形例について説明する。なお、第1の実施の形態の発光素子10に対応する構成要素には同一の符号を付して説明を省略する。
<2.第2の実施の形態>
 図6(A)は、本開示の第2の実施の形態に係る発光素子(発光素子60)の断面構成を模式的に表したものであり、図6(B)は、図6(A)に示した発光素子60の平面構成を模式的に表したものである。なお、図6(A)は、図6(B)に示したIV-IV線における断面を表したものである。この発光素子60は、上記第1の実施の形態と同様に、例えば所謂LEDディスプレイと呼ばれる画像表示装置(例えば、表示装置2)の表示画素として好適に用いられるものである。
 発光素子60は、第1導電型層12、活性層13および、例えば2層からなる第2導電型層14,15がこの順に積層されてなる半導体層11(半導体層)を有するものである。発光素子60の側面(面S3)は、図6(A)に示したように、各層の積層方向(Y軸方向)と交差する傾斜面となっており、具体的には、発光素子60の断面が逆台形状となるような傾斜面となっている。発光素子60は、半導体層11の面S1側に第1電極21が、半導体層11の面S2側に第2電極62が設けられている。半導体層11の側面および下面には、側面(面S3)側から順に、誘電体層16、金属層17および誘電体層18が積層された積層膜が設けられており、第1電極21は、この積層膜を介して第1導電型層12と電気的に接続されている。本実施の形態の発光素子60は、第2電極62が一括成形された、再成膜した境界のないベタ膜連続層として誘電体層19上に設けられており、誘電体層19に設けられた開口19Hを介して第2導電型層15と電気的に接続されている点が上記第1の実施の形態とは異なる。
 以上のように、本実施の形態の発光素子60では、半導体層11の光取り出し面(面S2)を構成する第2導電型層15上に設けられた誘電体層19上に、第2電極62としてベタ膜構造を有する金属層を形成するようにした。これにより、本実施の形態では、上記第1の実施の形態における発光素子10よりも第2導電型層15と第2電極62の接続部分が平坦となるため、上記第1の実施の形態における効果に加えて、第2電極62と外部配線(例えば、配線51)との電気的接続をより容易に行うことができるという効果を奏する。更に、上記第1の実施の形態における発光素子10よりも、その形成工程が削除されるため、コストを削減することが可能となる。
<3.第3の実施の形態>
 図7(A)は、本開示の第3の実施の形態に係る発光素子(発光素子70)の断面構成を模式的に表したものであり、図7(B)は、図7(A)に示した発光素子70の平面構成を模式的に表したものである。なお、図7(A)は、図7(B)に示したV-V線における断面を表したものである。この発光素子70は、上記第1の実施の形態と同様に、例えばLEDチップであり、例えば所謂LEDディスプレイと呼ばれる画像表示装置(例えば、表示装置2)の表示画素として好適に用いられるものである。
 発光素子70は、第1導電型層12、活性層13および、例えば2層からなる第2導電型層14,15がこの順に積層されてなる半導体層11(半導体層)を有するものである。発光素子70の側面(面S3)は、図7(A)に示したように、各層の積層方向(Y軸方向)と交差する傾斜面となっており、具体的には、発光素子70の断面が逆台形状となるような傾斜面となっている。発光素子70は、半導体層11の面S1側に第1電極21が、半導体層11の面S2側に第2電極22が設けられている。半導体層11の側面および下面には、側面(面S3)側から順に、誘電体層16、金属層17および誘電体層18が積層された積層膜が設けられており、第1電極21は、この積層膜を介して第1導電型層12と電気的に接続されている。本実施の形態の発光素子70は、例えば、半導体層11の光取り出し面(面S2)の第2電極22の形成領域外に凹凸構造(例えば、凹部X)を設けた点が上記第1および第2の実施の形態とは異なる。なお、図7Aに示したように、凹凸構造として凹部を形成する場合には、第2導電型層15層、または、第2導電型層14および第2導電型層15の両方を加工し、活性層13までは加工しないことが望ましい。
 以上のように、本実施の形態の発光素子70では、半導体層11の光取り出し面(面S2)に複数の凹部Xを設けることにより、光取出し効率を大きく増大させることが可能となる。更に、光取り出し面(面S2)から取り出される発光を所望の放射角に調整することが可能となり、例えば、ランバーシアン配光を得ることが可能となる。
<4.変形例>
 図8は、本開示の変形例に係る発光素子(発光素子80)の平面構成を模式的に表したものである。この発光素子80は、上記第1の実施の形態と同様に、例えばLEDチップであり、例えば所謂LEDディスプレイと呼ばれる画像表示装置(例えば、表示装置2)の表示画素として好適に用いられるものである。本変形例の発光素子80は、第1電極82の長手方向を、略矩形形状を有する発光素子80の対角線方向に配置した点が上記第1、第2および第3の実施の形態とは異なる。
 このように、第1電極81の長手方向が、略矩形形状を有する発光素子80の対角線方向と略平行となるように設けることにより、拡張部を長手方向に大きく形成することが可能となる。これにより、配線51と第1電極81との位置ずれのマージンをさらに拡大することが可能となる。
<5.適用例>
 以下に、上記第1~第3の実施の形態および変形例において説明した発光素子10,60,70,80の適用例について説明する。上記第1~第3の実施の形態の発光素子10,60,70,80は、例えば、複数の発光素子を用いた発光ユニット(例えば、上記発光ユニット1)を表示画素として備えた画像表示装置、または、発光素子を個別に、あるいは発光ユニットとして用いた照明装置に適用することができる。以下にその一例を示す。
(適用例1)
 図9は、画像表示装置(表示装置2)の概略構成の一例を斜視的に表したものである。表示装置2は、いわゆるLEDディスプレイと呼ばれるものであり、表示画素としてLEDが用いられたものである。表示装置2は、例えば図9に示したように、表示パネル210と、表示パネル210を駆動する駆動回路(図示せず)とを備えている。
 表示パネル210は、実装基板220と、透明基板230とを互いに重ね合わせたものである。透明基板230の表面が映像表示面となっており、中央部分に表示領域2Aを有し、その周囲に、非表示領域であるフレーム領域2Bを有している。
 図10は、実装基板220の透明基板230側の表面のうち表示領域2Aに対応する領域のレイアウトの一例を表したものである。実装基板220の表面のうち表示領域2Aに対応する領域には、例えば図10に示したように、複数のデータ配線221が所定の方向に延在して形成されており、かつ所定のピッチで並列配置されている。実装基板220の表面のうち表示領域2Aに対応する領域には、さらに、例えば、複数のスキャン配線222がデータ配線221と交差(例えば、直交)する方向に延在して形成されており、且つ、所定のピッチで並列配置されている。データ配線221およびスキャン配線222は、例えば、Cu(銅)等の導電性材料からなる。
 スキャン配線222は、例えば、最表層に形成されており、例えば、基材表面に形成された絶縁層(図示せず)上に形成されている。なお、実装基板220の基材は、例えば、ガラス基板、または樹脂基板等からなり、基材上の絶縁層は、例えば、SiNx、SiOx、またはAlxyからなる。一方、データ配線221は、スキャン配線222を含む最表層とは異なる層(例えば、最表層よりも下の層)内に形成されており、例えば、基材上の絶縁層内に形成されている。絶縁層の表面上には、スキャン配線222の他に、例えば、必要に応じてブラックが設けられている。ブラックは、コントラストを高めるためのものであり、光吸収性の材料によって構成されている。ブラックは、例えば、絶縁層の表面のうち少なくとも後述のパッド電極221B,222Bの非形成領域に形成されている。なお、ブラックは、必要に応じて省略することも可能である。
 データ配線221とスキャン配線222との交差部分の近傍が表示画素223となっており、複数の表示画素223が表示領域3A内においてマトリクス状に配置されている。各表示画素223には、複数の発光素子10を含む発光ユニット1が実装されている。なお、図10には、3つの発光素子10R,10G,10Bで一つの表示画素223が構成されており、発光素子10Rから赤色の光を、発光素子10Gから緑色の光を、発光素子10Bから青色の光をそれぞれ出力することができるようになっている場合が例示されている。
 発光ユニット1には、例えば発光素子10R,10G,10Bごとに一対の端子電極31,32が設けられている。そして、一方の端子電極31がデータ配線221に電気的に接続されており、他方の端子電極32がスキャン配線222に電気的に接続されている。例えば、端子電極31は、データ配線221に設けられた分枝221Aの先端のパッド電極221Bに電気的に接続されている。また、例えば、端子電極32は、スキャン配線222に設けられた分枝222Aの先端のパッド電極222Bに電気的に接続されている。
 各パッド電極221B,222Bは、例えば、最表層に形成されており、例えば、図10に示したように、各発光ユニット1が実装される部位に設けられている。ここで、パッド電極221B,222Bは、例えば、Au(金)等の導電性材料からなる。
 実装基板220には、さらに、例えば、実装基板220と透明基板230との間の間隔を規制する複数の支柱(図示せず)が設けられている。支柱は、表示領域3Aとの対向領域内に設けられていてもよいし、フレーム領域3Bとの対向領域内に設けられていてもよい。
 透明基板230は、例えば、ガラス基板、または樹脂基板等からなる。透明基板230において、発光ユニット1側の表面は平坦となっていてもよいが、粗面となっていることが好ましい。粗面は、表示領域2Aとの対向領域全体に渡って設けられていてもよいし、表示画素223との対向領域にだけ設けられていてもよい。粗面は、発光素子10R,10G,10Bから発せられた光が当該粗面に入細かな凹凸を有している。粗面の凹凸は、例えば、サンドブラストや、ドライエッチング等によって作製可能である。
 駆動回路は、映像信号に基づいて各表示画素223(各発光ユニット1)を駆動するものである。駆動回路は、例えば、表示画素223に接続されたデータ配線221を駆動するデータドライバと、表示画素223に接続されたスキャン配線222を駆動するスキャンドライバとにより構成されている。駆動回路は、例えば、実装基板220上に実装されていてもよいし、表示パネル210とは別体で設けられ、かつ配線(図示せず)を介して実装基板220と接続されていてもよい。
(適用例2)
 図11Aおよび図11Bは、発光素子10(または、発光素子60,70,80)を用いた照明装置の一例である照明装置200Aの平面構成(図11A)および斜視方向(図11B)の構成を表したものである。図11Aおよび図11Bに示したように、発光素子10は、円上に実装用ステージ(実装基板)上に、例えば4つの発光素子10が、例えば、点対称に配置されている。勿論、発光素子10の配置方法は、点対称以外の方法で配置されていてもよい。
図12Aおよび図12Bは、発光素子10を用いた照明装置の他の例である照明装置200Bの平面構成(図12A)および斜視方向(図12B)の構成を表したものである。図12Aおよび図12Bに示したように、発光素子10は、円環状の実装用ステージ(実装基板)上に、例えば8つの発光素子10が配置されている。
 図13Aおよび図13Bは、発光素子を用いた照明装置の他の例である照明装置200Cの平面構成(図13A)および斜視方向(図13B)の構成を表したものである。図243および図13Bに示したように、例えば、長方形状の実装用ステージに9個の発光素子10が配置されている。この照明装置200Cは、シーリングライト用カバーを備えていてもよい。
 以上、第1~第3の実施の形態および変形例を挙げて本開示を説明したが、本開示は上記実施の形態等に限定されるものではなく、種々変形が可能である。例えば、上記第1の実施の形態等では、第2導電型層を第2導電型層14と第2導電型層15との積層構造として例を示したが、第2導電型層は積層構造である必要はなく、単層構造であってもよい。
 なお、本開示は以下のような構成をとることも可能である。以下の構成の本技術によれば、第1導電型層、活性層および第2導電型層がこの順に積層されると共に、第1導電型層側を第1面、第2導電型層側を第2面とする半導体層の第2面側に第1の誘電体層および第2の電極を順に設け、第2導電型層と第2の電極とを、第1の誘電体層に設けられた開口を介して電気的に接続するようにしたので、例えば、発光素子上に配設される例えば外部配線と第2の電極との位置ずれマージンが拡大され、第2の電極の形成領域を削減することが可能となる。よって、通電電極との接続性を確保しつつ、光取り出し効率を向上させることが可能となる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれの効果であってもよい。
(1)
 第1面および第2面を有すると共に、前記第1面側から順に、第1導電型層、活性層および第2導電型層を積層してなる半導体層と、
 前記半導体層の前記第2面側に設けられると共に、開口を有する第1の誘電体層と、
 前記半導体層の前記第1面側において、前記第1導電型層と電気的に接続された第1の電極と、
 前記第1の誘電体層上に設けられると共に、前記開口を介して前記第2導電型層と電気的に接続された第2の電極と
 を備えた発光素子。
(2)
 前記第2の電極は、長手方向および短手方向を有する平面形状を有し、そのアスペクト比が1よりも大きい、前記(1)に記載の発光素子。
(3)
 前記第2の電極は、前記開口を挟んで略対称構造を有する、前記(1)または(2)に記載の発光素子。
(4)
 前記第2の電極は、前記開口を覆い前記第2導電型層と電気的に接続される接続部と、前記接続部を間に互いに反対方向に延在する拡張部とを有する、前記(1)乃至(3)のうちのいずれかに記載の発光素子。
(5)
 前記接続部は略円形状を有し、前記拡張部は前記接続部の直径よりも小さい幅で延在している、前記(4)に記載の発光素子。
(6)
 前記第2の電極は、前記第2導電型層上に設けられると共に、少なくとも周縁の一部が前記第1の誘電体層によって覆われた接触部と、前記第1の誘電体層上に設けられると共に、前記開口内に延在して前記接触部と接続されるパッド部とを有する、前記(1)乃至(5)のうちのいずれかに記載の発光素子。
(7)
 前記半導体層は、前記第2の電極の形成領域の外側に凹凸構造を有する、前記(1)乃至(6)のうちのいずれかに記載の発光素子。
(8)
 前記半導体層の側面から前記第1の半導体層の第1面にかけて金属層が設けられている、前記(1)乃至(7)のうちのいずれかに記載の発光素子。
(9)
 前記金属層は第2の誘電体層と積層膜を形成し、前記第2の誘電体層を介して前記半導体層の側面から前記第1の半導体層の第1面にかけて前記金属層が設けられている、前記(8)に記載の発光素子。
(10)
 前記第2の電極には外部配線が接続されている、前記(1)乃至(9)のうちのいずれかに記載の発光素子。
(11)
 前記第2の電極は、長手方向および短手方向を有する平面形状を有し、
 前記外部配線は、前記第2の電極の長手方向と交差するように配設されている、前記(10)に記載の発光素子。

(12)
 前記第1の電極は、前記第1導電型層上に設けられると共に、少なくとも周縁の一部が前記半導体層の側面から前記半導体層の第1面にかけて設けられた第2の誘電体層によって覆われた接触部と、前記第2の誘電体層に設けられた開口内に延在して前記接触部と接続されるパッド部とを有し、
 前記第1導電型層および前記第1の電極の前記接触部が前記活性層から発せられる光を吸収しない場合、前記第2の電極の前記接触部の一軸方向の大きさは、前記第1の電極の前記接触部の一軸方向の大きさ以下である、前記(6)乃至(11)のうちのいずれかに記載の発光素子。
(13)
 前記第1の電極は、前記第1導電型層上に設けられると共に、少なくとも周縁の一部が前記半導体層の側面から前記半導体層の第1面にかけて設けられた第2の誘電体層によって覆われた接触部と、前記第2の誘電体層に設けられた開口内に延在して前記接触部と接続されるパッド部とを有し、
 前記第1導電型層および前記第1の電極の前記接触部の少なくとも一方が前記活性層から発せられる光を吸収する場合、前記第2の電極の前記接触部の一軸方向の大きさは、前記第1の電極の前記接触部の一軸方向の大きさ以上である、前記(6)乃至(11)のうちのいずれかに記載の発光素子。
(14)
 前記第1の電極は、前記第1導電型層上に設けられると共に、少なくとも周縁の一部が前記半導体層の側面から前記半導体層の第1面にかけて設けられた第2の誘電体層によって覆われた接触部と、前記第2の誘電体層に設けられた開口内に延在して前記接触部と接続されるパッド部とを有し、
 前記第2の電極の前記パッド部の最小径は、前記第1の電極の前記パッド部の最小径よりも小さい、前記(6)乃至(13)のうちのいずれかに記載の発光素子。
(15)
 前記第1の電極は配線電極を有する構造体と電気的に接続されている、前記(1)乃至(14)のうちのいずれかに記載の発光素子。
(16)
 前記第1導電型層はn型半導体層、前記第2導電型層はp型半導体層であり、
 前記第1の電極はn電極、前記第2の電極はp電極である、前記(1)乃至(15)のうちのいずれかに記載の発光素子。
(17)
 複数の発光素子を有し、
 前記複数の発光素子は、
 第1面および第2面を有すると共に、前記第1面側から順に、第1導電型層、活性層および第2導電型層を積層してなる半導体層と、
 前記半導体層の前記第2面側に設けられると共に、開口を有する第1の誘電体層と、
 前記半導体層の前記第1面側において、前記第1導電型層と電気的に接続された第1の電極と、
 前記第1の誘電体層上に設けられると共に、前記開口を介して前記第2導電型層と電気的に接続された第2の電極と
 を備えた画像表示装置。
 本出願は、日本国特許庁において2018年10月19日に出願された日本特許出願番号2018-197374号を基礎として優先権を主張するものであり、この出願の全ての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (17)

  1.  第1面および第2面を有すると共に、前記第1面側から順に、第1導電型層、活性層および第2導電型層を積層してなる半導体層と、
     前記半導体層の前記第2面側に設けられると共に、開口を有する第1の誘電体層と、
     前記半導体層の前記第1面側において、前記第1導電型層と電気的に接続された第1の電極と、
     前記第1の誘電体層上に設けられると共に、前記開口を介して前記第2導電型層と電気的に接続された第2の電極と
     を備えた発光素子。
  2.  前記第2の電極は、長手方向および短手方向を有する平面形状を有し、そのアスペクト比が1よりも大きい、請求項1に記載の発光素子。
  3.  前記第2の電極は、前記開口を挟んで略対称構造を有する、請求項1に記載の発光素子。
  4.  前記第2の電極は、前記開口を覆い前記第2導電型層と電気的に接続される接続部と、前記接続部を間に互いに反対方向に延在する拡張部とを有する、請求項1に記載の発光素子。
  5.  前記接続部は略円形状を有し、前記拡張部は前記接続部の直径よりも小さい幅で延在している、請求項4に記載の発光素子。
  6.  前記第2の電極は、前記第2導電型層上に設けられると共に、少なくとも周縁の一部が前記第1の誘電体層によって覆われた接触部と、前記第1の誘電体層上に設けられると共に、前記開口内に延在して前記接触部と接続されるパッド部とを有する、請求項1に記載の発光素子。
  7.  前記半導体層は、前記第2の電極の形成領域の外側に凹凸構造を有する、請求項1に記載の発光素子。
  8.  前記半導体層の側面から前記半導体層の第1面にかけて金属層が設けられている、請求項1に記載の発光素子。
  9.  前記金属層は第2の誘電体層と積層膜を形成し、前記第2の誘電体層を介して前記半導体層の側面から前記半導体層の第1面にかけて前記金属層が設けられている、請求項8に記載の発光素子。
  10.  前記第2の電極には外部配線が接続されている、請求項1に記載の発光素子。
  11.  前記第2の電極は、長手方向および短手方向を有する平面形状を有し、
     前記外部配線は、前記第2の電極の長手方向と交差するように配設されている、請求項10に記載の発光素子。
  12.  前記第1の電極は、前記第1導電型層上に設けられると共に、少なくとも周縁の一部が前記半導体層の側面から前記半導体層の第1面にかけて設けられた第2の誘電体層によって覆われた接触部と、前記第2の誘電体層に設けられた開口内に延在して前記接触部と接続されるパッド部とを有し、
     前記第1導電型層および前記第1の電極の前記接触部が前記活性層から発せられる光を吸収しない場合、前記第2の電極の前記接触部の一軸方向の大きさは、前記第1の電極の前記接触部の一軸方向の大きさ以下である、請求項6に記載の発光素子。
  13.  前記第1の電極は、前記第1導電型層上に設けられると共に、少なくとも周縁の一部が前記半導体層の側面から前記半導体層の第1面にかけて設けられた第2の誘電体層によって覆われた接触部と、前記第2の誘電体層に設けられた開口内に延在して前記接触部と接続されるパッド部とを有し、
     前記第1導電型層および前記第1の電極の前記接触部の少なくとも一方が前記活性層から発せられる光を吸収する場合、前記第2の電極の前記接触部の一軸方向の大きさは、前記第1の電極の前記接触部の一軸方向の大きさ以上である、請求項6に記載の発光素子。
  14.  前記第1の電極は、前記第1導電型層上に設けられると共に、少なくとも周縁の一部が前記半導体層の側面から前記半導体層の第1面にかけて設けられた第2の誘電体層によって覆われた接触部と、前記第2の誘電体層に設けられた開口内に延在して前記接触部と接続されるパッド部とを有し、
     前記第2の電極の前記パッド部の最小径は、前記第1の電極の前記パッド部の最小径よりも小さい、請求項6に記載の発光素子。
  15.  前記第1の電極は配線電極を有する構造体と電気的に接続されている、請求項1に記載の発光素子。
  16.  前記第1導電型層はn型半導体層、前記第2導電型層はp型半導体層であり、
     前記第1の電極はn電極、前記第2の電極はp電極である、請求項1に記載の発光素子。
  17.  複数の発光素子を有し、
     前記複数の発光素子は、
     第1面および第2面を有すると共に、前記第1面側から順に、第1導電型層、活性層および第2導電型層を積層してなる半導体層と、
     前記半導体層の前記第2面側に設けられると共に、開口を有する第1の誘電体層と、
     前記半導体層の前記第1面側において、前記第1導電型層と電気的に接続された第1の電極と、
     前記第1の誘電体層上に設けられると共に、前記開口を介して前記第2導電型層と電気的に接続された第2の電極と
     を備えた画像表示装置。
PCT/JP2019/039366 2018-10-19 2019-10-04 発光素子および画像表示装置 WO2020080153A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980066932.7A CN112823428A (zh) 2018-10-19 2019-10-04 发光元件和图像显示装置
US17/284,366 US12021172B2 (en) 2018-10-19 2019-10-04 Light-emitting element and image displaying apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018197374 2018-10-19
JP2018-197374 2018-10-19

Publications (1)

Publication Number Publication Date
WO2020080153A1 true WO2020080153A1 (ja) 2020-04-23

Family

ID=70283210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039366 WO2020080153A1 (ja) 2018-10-19 2019-10-04 発光素子および画像表示装置

Country Status (3)

Country Link
US (1) US12021172B2 (ja)
CN (1) CN112823428A (ja)
WO (1) WO2020080153A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11158767B2 (en) * 2015-03-30 2021-10-26 Sony Semiconductor Solutions Corporation Light-emitting element, light-emitting unit, light-emitting panel device, and method for driving light-emitting panel device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200212022A1 (en) * 2018-12-28 2020-07-02 Intel Corporation Micro light-emitting diode display fabrication and assembly apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130861A (ja) * 2006-11-22 2008-06-05 Sony Corp シリコーンゴム層積層体及びその製造方法、突当て装置、実装用基板への物品の実装方法、並びに、発光ダイオード表示装置の製造方法
JP2012195321A (ja) * 2011-03-14 2012-10-11 Toshiba Corp 半導体発光素子
JP2013102068A (ja) * 2011-11-09 2013-05-23 Stanley Electric Co Ltd 窒化物半導体発光素子及びその製造方法
JP2016004892A (ja) * 2014-06-17 2016-01-12 ソニー株式会社 半導体素子、パッケージ素子、発光パネル装置、ウェーハ、および半導体素子の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5754173B2 (ja) * 2011-03-01 2015-07-29 ソニー株式会社 発光ユニットおよび表示装置
JP6215612B2 (ja) * 2013-08-07 2017-10-18 ソニーセミコンダクタソリューションズ株式会社 発光素子、発光素子ウェーハ及び電子機器
CN107408606B (zh) * 2015-03-30 2019-12-13 索尼半导体解决方案公司 发光元件、发光单元、发光面板装置及驱动发光面板装置的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130861A (ja) * 2006-11-22 2008-06-05 Sony Corp シリコーンゴム層積層体及びその製造方法、突当て装置、実装用基板への物品の実装方法、並びに、発光ダイオード表示装置の製造方法
JP2012195321A (ja) * 2011-03-14 2012-10-11 Toshiba Corp 半導体発光素子
JP2013102068A (ja) * 2011-11-09 2013-05-23 Stanley Electric Co Ltd 窒化物半導体発光素子及びその製造方法
JP2016004892A (ja) * 2014-06-17 2016-01-12 ソニー株式会社 半導体素子、パッケージ素子、発光パネル装置、ウェーハ、および半導体素子の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11158767B2 (en) * 2015-03-30 2021-10-26 Sony Semiconductor Solutions Corporation Light-emitting element, light-emitting unit, light-emitting panel device, and method for driving light-emitting panel device

Also Published As

Publication number Publication date
CN112823428A (zh) 2021-05-18
US20210351324A1 (en) 2021-11-11
US12021172B2 (en) 2024-06-25

Similar Documents

Publication Publication Date Title
JP5754173B2 (ja) 発光ユニットおよび表示装置
US9293655B2 (en) Semiconductor light emitting element
JP6094345B2 (ja) 発光素子及びそれを用いた発光装置
JP5850036B2 (ja) 発光装置
JP5141086B2 (ja) 半導体発光素子
KR102701799B1 (ko) 반도체 발광소자
WO2020080153A1 (ja) 発光素子および画像表示装置
JP2015195244A (ja) 半導体ユニット、半導体素子、発光装置、表示装置、半導体素子の製造方法
US20230361256A1 (en) Light-emitting device and image display apparatus
CN212412081U (zh) 显示用发光元件以及具有其的显示装置
US11444228B2 (en) Light emitting device and display apparatus
JP2013110179A (ja) 半導体発光装置
WO2021193277A1 (ja) 発光デバイスおよび画像表示装置
JP2014003166A (ja) 半導体発光素子
CN215896431U (zh) 单元像素及显示器装置
WO2024190226A1 (ja) 積層構造体および半導体装置
KR102161006B1 (ko) 반도체 발광소자 및 이를 제조하는 방법
KR102215937B1 (ko) 반도체 발광소자
WO2024176785A1 (ja) 発光装置および画像表示装置
US20220069184A1 (en) Semiconductor light emitting device and method for manufacturing the same
JP2000174348A (ja) 半導体発光装置
JP2023542538A (ja) 高効率発光素子、それを有するユニットピクセル、およびそれを有するディスプレイ装置
JP2024092521A (ja) 発光装置
JP2024520879A (ja) 発光モジュール、発光モジュールの製造方法及び表示装置
WO2017104547A1 (ja) 発光ユニットおよび表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19873730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19873730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP