WO2020080064A1 - Refrigeration apparatus - Google Patents

Refrigeration apparatus Download PDF

Info

Publication number
WO2020080064A1
WO2020080064A1 PCT/JP2019/038210 JP2019038210W WO2020080064A1 WO 2020080064 A1 WO2020080064 A1 WO 2020080064A1 JP 2019038210 W JP2019038210 W JP 2019038210W WO 2020080064 A1 WO2020080064 A1 WO 2020080064A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
motor
compressor
motor chamber
chamber
Prior art date
Application number
PCT/JP2019/038210
Other languages
French (fr)
Japanese (ja)
Inventor
昇 壷井
哲也 垣内
勝之 鈴木
英次 神吉
田中 啓介
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2020080064A1 publication Critical patent/WO2020080064A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present invention relates to a refrigeration system.
  • the stator winding wound with the ammonia resistant insulated conductor is arranged in the axial space in the motor frame in a gas phase portion that is not immersed in the liquid phase of the ammonia refrigerant.
  • the fully sealed electric motor has a liquid reservoir, and the refrigerant liquid accumulated in the liquid reservoir is discharged to the outside of the motor frame.
  • the refrigerant in the vapor phase part may be liquefied, and the liquefied refrigerant may adhere to the stator winding. Since the liquefied refrigerant has electrical conductivity, starting the motor with the liquefied refrigerant attached to the stator winding may cause the motor to burn out.
  • the present invention has an object to prevent burnout of a motor in a refrigeration system by preventing the liquefied refrigerant from starting the motor in a state of adhering to the motor.
  • One aspect of the present invention includes a compressor that compresses a refrigerant for a refrigeration cycle, a motor that is housed in a motor chamber defined by a motor casing of the compressor, and drives the compressor, and an inside of the motor chamber.
  • a pressure measuring unit for measuring the pressure of the motor a temperature detecting unit for measuring a temperature related to the temperature state of the motor, a heating unit for heating the motor chamber, and a control device for controlling the motor and the heating unit.
  • the control device calculates the saturation temperature of the refrigerant at the pressure measured by the pressure measurement unit, and when the compressor is started, the representative temperature detected by the temperature detection unit is the saturation temperature.
  • a refrigeration apparatus that heats the motor chamber by the heating unit and enables the compressor to be started when the representative temperature exceeds the saturation temperature.
  • the controller heats the motor chamber by the heating unit and relates to the temperature state of the motor.
  • the temperature to be exceeded exceeds the saturation temperature of the refrigerant in the motor chamber, the compressor can be started.
  • the temperature detection unit may measure a temperature of a stator coil of the motor and a temperature of the motor chamber, and the control device controls the stator coil of the motor detected by the temperature detection unit.
  • the magnitude relationship between the temperature and the temperature of the motor chamber may be determined, and the lower temperature of the temperature of the stator coil and the temperature of the motor chamber may be set as the representative temperature.
  • the temperature detection unit may measure the temperature of the motor casing, and the control device determines the temperature of the stator coil of the motor or the temperature of the motor chamber from the temperature of the motor casing detected by the temperature detection unit.
  • the temperature may be estimated, or the temperature of the stator coil of the motor or the estimated value of the temperature of the motor chamber may be set as the representative temperature.
  • a temperature sensor that measures the temperature of the motor casing can be mounted outside the motor chamber, so there is no need to install equipment such as airtight terminals. Therefore, the configuration required for the temperature detection unit of the refrigeration system can be reduced and the configuration of the refrigeration system can be simplified, so that the manufacturing cost of the refrigeration system can be reduced.
  • the heating unit may be a heater attached to the motor casing of the motor chamber.
  • the compressor may include a motor casing jacket configured to surround an outer surface of the motor casing, and the heating unit may control the temperature of the motor casing jacket and a temperature higher than a temperature of the motor chamber.
  • a heating circuit for supplying the medium to the motor casing jacket may be included.
  • a suction check valve provided upstream of the compressor is fluidly connected to the first flow path upstream of the suction check valve in the refrigeration cycle and the motor chamber.
  • a bypass pipe and a bypass valve provided in the bypass pipe may be provided.
  • control device opens the bypass valve when the representative temperature is equal to or lower than the saturation temperature and the pressure in the first flow path is lower than the pressure in the motor chamber.
  • the pressure in the motor chamber can be balanced with the pressure in the first flow path through the bypass pipe.
  • the motor chamber can be depressurized, and the saturation temperature of the refrigerant in the motor chamber can be lowered, so that burnout of the motor can be efficiently suppressed.
  • FIG. 1 is a schematic configuration diagram of a refrigeration apparatus according to a first embodiment of the present invention.
  • FIG. 3 is an enlarged view of the compressor according to the first embodiment. 3 is a flowchart showing control of the control device according to the first embodiment.
  • the enlarged view of the compressor which concerns on 2nd Embodiment.
  • the enlarged view of the compressor which concerns on 3rd Embodiment.
  • the schematic block diagram of the refrigerating device concerning a 3rd embodiment.
  • the schematic block diagram of the refrigerating device concerning a 4th embodiment.
  • the refrigeration apparatus 1 includes a compressor 10, a motor 20 that drives the compressor 10, an oil separator 30, a condenser 31, a refrigerant tank 32, and an expansion valve 33.
  • An evaporator 34 and a control device 40 are provided.
  • the compressor 10, the oil separator 30, the condenser 31, the refrigerant tank 32, the expansion valve 33, and the evaporator 34 are fluidly connected by the pipes 2a to 2e.
  • a circulation flow path of the refrigeration cycle including the compressor 10, the oil separator 30, the condenser 31, the refrigerant tank 32, the expansion valve 33, and the evaporator 34 is configured. .
  • the compressor 10 compresses a refrigerant.
  • the refrigerant for the refrigeration cycle of the present embodiment is a natural refrigerant such as ammonia or an artificial refrigerant such as CFCs, and is a refrigerant that has electric conductivity when in a liquid state.
  • the compressor 10 of this embodiment is a two-stage screw compressor.
  • the compressor 10 includes a compressor casing 11, a motor casing 12, a first stage compressor body 13 housed in the compressor casing 11, and a second stage compressor housed in the compressor casing 11.
  • a compressor body 14 is provided.
  • the compressor casing 11 and the motor casing 12 are integrally connected in a sealed manner.
  • the compressor 10 of this embodiment is a semi-hermetic type compressor.
  • the compressor casing 11 has a rotor chamber 11a for accommodating a pair of screw rotors 13a described later of the first-stage compressor body 13 and a pair of screw rotors 14a described later for the second-stage compressor body 14. Of the rotor chamber 11b. Further, the compressor casing 11 has an intake port 11c as an intake port of the compressor 10 for sucking the refrigerant into the rotor chamber 11a for the first stage compressor body 13, and a second stage as an outlet port of the compressor 10. A discharge port 11d for discharging the refrigerant from the rotor chamber 11b for the compressor body 14 is formed.
  • the motor casing 12 defines a motor chamber 12a for housing the motor 20. Further, the motor casing 12 defines the connection space 15 together with the compressor casing 11.
  • the motor casing 12 is formed with communication passages 12b and 12c that communicate the motor chamber 12a and the connection space 15. As a result, the refrigerant can move back and forth between the connection space 15 and the motor chamber 12a through the communication passages 12b and 12c.
  • An electric heater 50 (heating unit) for heating the motor chamber 12a is provided on the outer surface of the motor casing 12. The electric heater 50 is provided at least at the bottom of the motor casing 12 so that at least the lower part of the motor chamber 12a can be heated.
  • the first-stage compressor body 13 includes a pair of male and female screw rotors 13a housed in the rotor chamber 11a of the compressor casing 11.
  • FIG. 2 shows only the male rotor of the pair of male and female screw rotors 13a.
  • the screw rotor 13a has a rotor shaft 13b, and both ends of the rotor shaft 13b are rotatably supported by bearings 11e and 11f provided in the compressor casing 11.
  • the end of the rotor shaft 13b of the screw rotor 13a on the side of the connection space 15 is mechanically connected to a gear 16a arranged in the connection space 15.
  • the second-stage compressor body 14 includes a pair of male and female screw rotors 14a housed in the rotor chamber 11b of the compressor casing 11, as described above. Note that FIG. 2 shows only the male rotor of the pair of female and male screw rotors 14a.
  • the screw rotor 14a has a rotor shaft 14b, and both ends of the rotor shaft 14b are rotatably supported by bearings 11g and 11h provided in the compressor casing 11.
  • the end of the rotor shaft 14b of the screw rotor 14a on the side of the connection space 15 is mechanically connected to a gear 16b arranged in the connection space 15.
  • the first-stage compressor body 13 and the second-stage compressor body 14 are provided so as to be positioned relatively up and down, and the suction and discharge directions are opposite to each other.
  • the first-stage compressor body 13 in which the size of the screw rotor 13a is relatively large is arranged on the upper side, in other words, the size of the screw rotor 14a in the second-stage compression body is relatively small.
  • the machine body 14 is arranged on the lower side.
  • a structure in which the first-stage compressor body 13 and the second-stage compressor body 14 are horizontally arranged may be adopted, or other arrangements may be adopted. Good.
  • the motor 20 of this embodiment is an inner rotor type motor and is housed in the motor chamber 12 a of the motor casing 12.
  • the motor 20 includes an output shaft 21, a rotor 22 connected to the output shaft 21, and a stator 23 arranged so as to surround the rotor 22.
  • a stator coil 23a is wound around the stator 23.
  • the output shaft 21 is rotatably supported by bearings 12d and 12e provided on the motor casing 12 on both sides of the rotor 22.
  • the end of the output shaft 21 on the side of the connection space 15 is mechanically connected to the gears 16a and 16b.
  • the output shaft 21 includes the rotor shaft 13b of the screw rotor 13a of the first-stage compressor body 13 and the rotor shaft of the screw rotor 14a of the second-stage compressor body 14 via the gear 16c that meshes with the gears 16a and 16b. Mechanically connected to 14b.
  • the refrigeration system 1 includes a temperature detection unit 60 that detects a temperature associated with a temperature state of the motor 20, and a pressure measurement unit 70 that detects a pressure P inside the motor chamber 12a.
  • the temperature detection unit 60 of the present embodiment is provided on the surface of the stator coil 23a, and measures the temperature T1 of the stator coil 23a of the motor 20, and a temperature sensor 61.
  • the temperature sensor 62 is provided in the motor chamber 12a and measures the temperature T2 of the motor chamber 12a.
  • the pressure measuring unit 70 is provided in the motor chamber 12a and includes a pressure sensor 71 that measures the pressure P in the motor chamber 12a.
  • the pressure sensor 71 of the present embodiment is provided so as to detect the pressure of a space far from the connection space 15 in the space formed on both sides of the motor 20 in the motor chamber 12a. Further, the temperature sensor 61 of the present embodiment is provided so as to detect the temperature of one of the stator coils 23 a formed at both ends of the motor 20 that is farther from the connection space 15. Further, the temperature sensor 62 of the present embodiment is provided so as to detect the temperature of a space far from the connection space 15 among the spaces formed on both sides of the motor 20 in the motor chamber 12a. Specifically, the temperature sensor 62 is provided so as to detect the temperature of the lower portion of the space (in the vicinity of the bottom of the motor casing 12). That is, the pressure sensor 71, the temperature sensor 61, and the temperature sensor 62 of the present embodiment are provided on the side opposite to the load side with respect to the motor 20, which is structurally likely to collect refrigerant.
  • the first-stage compressor body 13 When the first-stage compressor body 13 is driven by the motor 20, the first-stage compressor body 13 sucks the refrigerant from the intake port 11c, compresses it, and discharges it into the connection space 15.
  • the second-stage compressor body 14 When driven by the motor 20, the second-stage compressor body 14 further compresses the refrigerant compressed by the first-stage compressor body 13 and discharged into the connection space 15, and discharges it to the discharge port 11d.
  • the refrigerant discharged from the first-stage compressor body 13 is sucked into the second-stage compressor body 14 via the connection space 15 defined by the compressor casing 11 and the motor casing 12. That is, the connection space 15 is a fluid flow path (intermediate flow path) that connects the discharge port of the first-stage compressor body 13 and the intake port of the second-stage compressor body 14.
  • the oil separator 30 is fluidly connected to the discharge port 11d of the compressor 10 through the pipe 2a.
  • the oil separator 30 separates and collects oil from the mixed fluid of the refrigerant and the oil discharged from the discharge port 11d of the compressor 10.
  • the oil separator 30 includes a filter 30a and an oil tank 30b.
  • the filter 30a collects the oil accompanying the flow of the vapor-phase refrigerant and separates it from the refrigerant.
  • the separated oil is stored in the oil tank 30b. That is, the oil is collected in the oil tank 30b.
  • the oil stored in the oil tank 30b is supplied to the compressor 10 via an oil passage (not shown).
  • the condenser 31 is fluidly connected to the oil separator 30 through the pipe 2b, and the gas-phase refrigerant obtained by separating the oil in the oil separator 30 is supplied from the oil separator 30 to the condenser 31 through the pipe 2b.
  • the refrigerant is cooled and condensed.
  • the condenser 31 is provided with a refrigerant tank 32, and the liquid-phase refrigerant condensed in the condenser 31 is stored in the refrigerant tank 32.
  • a discharge check valve 3a is interposed in the pipe 2b so that the refrigerant does not flow backward.
  • the expansion valve 33 is fluidly connected to the condenser 31 and the refrigerant tank 32 through the pipe 2c, and the refrigerant passing through the condenser 31 and the refrigerant tank 32 is supplied to the expansion valve 33 through the pipe 2c.
  • the expansion valve 33 has a function of reducing the pressure of the high-pressure refrigerant.
  • the evaporator 34 is fluidly connected to the expansion valve 33 through the pipe 2d, and the refrigerant decompressed by the expansion valve 33 is supplied to the evaporator 34 through the pipe 2d.
  • the evaporator 34 is a part that heats and evaporates the refrigerant.
  • the evaporator 34 is fluidly connected to the intake port 11c of the compressor 10 through the pipe 2e, and the vapor-phase refrigerant evaporated in the evaporator 34 is supplied to the intake port 11c of the compressor 10 through the pipe 2e.
  • a suction check valve 3b is interposed in the pipe 2e so that the refrigerant does not flow backward.
  • the control device 40 is constructed by hardware including a storage device such as a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read Only Memory), and software installed therein.
  • the control device 40 of the present embodiment responds to the signal from the temperature detection unit 60 corresponding to the temperature related to the temperature state of the motor 20 and the pressure of the motor chamber 12a (shown in FIG. 2) from the pressure measurement unit 70. The activation of the motor 20 and the operation of the electric heater 50 are controlled based on the signal.
  • control of the control device 40 will be described below with reference to FIG.
  • the control device 40 receives the activation signal of the compressor 10, the control device 40 starts the control of FIG. 3 (step S1).
  • the control device 40 sets the representative temperature T based on the signals from the temperature sensors 61 and 62 (step S2). Specifically, the control device 40 of the present embodiment determines the magnitude relationship between the temperature T1 of the stator coil 23a measured by the temperature sensor 61 and the temperature T2 of the motor chamber 12a measured by the temperature sensor 62. , The smaller temperature is set as the representative temperature T.
  • control device 40 calculates the saturation temperature Ts of the refrigerant at the pressure P detected by the pressure sensor 71 (step S3).
  • the saturation temperature Ts is obtained from the ph diagram (Mollier diagram) of the refrigerant.
  • control device 40 determines whether or not the representative temperature T exceeds the saturation temperature Ts (T> Ts) (step S4).
  • step S4 when the representative temperature T is equal to or lower than the saturation temperature Ts, the control device 40 controls the electric heater 50 so that the electric heater 50 heats the motor chamber 12a (step S5). After that, in the process of step S4, the processes of steps S2 to S5 are repeated until it is determined that the representative temperature T exceeds the saturation temperature Ts.
  • step S4 When it is determined in the process of step S4 that the representative temperature T exceeds the saturation temperature Ts, the control device 40 starts the compressor 10 (step S6). Then, after completing the process of step S6, the control device 40 ends the present control (step S7).
  • the control device 40 causes the electric heater 50 to drive the motor when the representative temperature T is equal to or lower than the saturation temperature Ts of the refrigerant in the motor chamber 12a when the compressor 10 is started.
  • the electric heater 50 is controlled to heat the chamber 12a.
  • the control device 40 starts the compressor 10 when both the temperature T1 of the stator coil 23a of the motor 20 and the temperature T2 of the motor chamber 12a exceed the saturation temperature Ts of the refrigerant in the motor chamber 12a.
  • step S2 and the process of step S3 may be performed at the same time.
  • the process of step S3 may be executed before the process of step S2.
  • the temperature detection unit 60 may not include the temperature sensor 62 that measures the temperature of the motor chamber 12a.
  • the controller 40 sets the temperature T1 of the stator coil 23a of the motor 20 measured by the temperature sensor 61 as the representative temperature T in the process of step S2 (shown in FIG. 3).
  • the temperature detection unit 60 of the present embodiment includes a temperature sensor 63 that measures the temperature T3 of the motor casing 12 instead of the temperature sensors 61 and 62 (shown in FIG. 2). That is, the temperature detection unit 60 of the present embodiment measures the temperature T3 of the motor casing 12 instead of measuring the temperature T1 of the stator coil 23a of the motor 20 and the temperature T2 of the motor chamber 12a (shown in FIG. 2). .
  • the temperature sensor 63 of this embodiment is provided so as to detect the temperature of a portion of the motor casing 12 that is located on the opposite side of the connection space 15 (opposite load side of the motor) with the motor 20 interposed therebetween. Specifically, the temperature sensor 63 is provided so as to detect the temperature of the bottom portion of the motor casing 12 located on the side opposite to the load with respect to the motor that structurally tends to accumulate refrigerant.
  • control flow of the control device 40 is the same as that of the first embodiment except for the process of step S2, and FIG. 3 is cited.
  • the control device 40 of the present embodiment estimates the temperature of the stator coil 23a of the motor 20 from the temperature T3 of the motor casing 12 measured by the temperature sensor 63, and uses the estimated value as the representative temperature T. Set as.
  • the temperature of the motor chamber 12a may be estimated from the temperature T3 of the motor casing 12 measured by the temperature sensor 63, and the estimated value may be set as the representative temperature T.
  • the temperature sensor 63 that measures the temperature T3 of the motor casing 12 can be attached to the outside of the motor chamber 12a, it is not necessary to provide a device such as an airtight terminal. Therefore, the configuration required for the temperature detection unit 60 of the refrigeration system 1 can be reduced and the configuration of the refrigeration system 1 can be simplified, so that the manufacturing cost of the refrigeration system 1 can be reduced.
  • a motor casing jacket 80 is provided on the outer surface of the motor casing 12 of the present embodiment so as to surround the motor casing 12.
  • a temperature control medium eg, water
  • the motor casing jacket 80 is formed with an inlet 80a through which the temperature control medium flows in and an outlet 80b through which the temperature control medium flows out.
  • the motor casing jacket 80 and a heating circuit described later form a heating unit.
  • the refrigeration system 1 includes a cooling device (cooling tower) 81 for cooling the temperature control medium (water in this embodiment) supplied to the motor casing jacket 80.
  • the motor casing jacket 80 and the cooling device 81 are fluidly connected via the pipes 4a and 4b.
  • the refrigeration system 1 of this embodiment is provided with a cooling circuit having the motor casing jacket 80 and the cooling device 81.
  • the temperature control medium is circulated by a pump (not shown), and the temperature control medium cooled by the cooling device 81 is supplied to the motor casing jacket 80.
  • the pipe 4a fluidly connects the outlet 80b of the motor casing jacket 80 and the cooling device 81.
  • the pipe 4a is provided with an opening / closing valve 5a that allows or blocks the flow of the temperature control medium in the pipe 4a.
  • the opening / closing valve 5a is an electromagnetic valve, and the opening / closing control is performed by the control device 40.
  • the pipe 4b fluidly connects the inlet 80a of the motor casing jacket 80 and the cooling device 81.
  • the pipe 4b is provided with an opening / closing valve 5b that allows or blocks the flow of the temperature control medium in the pipe 4b.
  • the opening / closing valve 5b is an electromagnetic valve, and the opening / closing control is performed by the control device 40.
  • the controller 40 cools the motor 20 by opening the on-off valves 5a and 5b and supplying the temperature control medium cooled by the cooling device 81 to the motor casing jacket 80 during the normal operation of the refrigeration system 1. .
  • the refrigeration system 1 of this embodiment includes a heat exchanger 82 for heating the temperature control medium supplied to the motor casing jacket 80.
  • the motor casing jacket 80 and the heat exchanger 82 are fluidly connected to each other via the pipes 4a to 4d.
  • the refrigeration apparatus 1 of this embodiment is provided with a heating circuit including the motor casing jacket 80 and the heat exchanger 82.
  • the temperature control medium is circulated by a pump (not shown), and the temperature control medium heated by the heat exchanger 82 is supplied to the motor casing jacket 80.
  • the motor casing jacket 80 and the heating circuit form a heating unit.
  • the heat exchanger 82 causes heat exchange between an external heat source (not shown) such as a heat source boiler and a temperature control medium flowing through the heating circuit. By this.
  • the heat exchanger 82 supplies a temperature control medium (high temperature water in the present embodiment) having a temperature higher than the saturation temperature Ts of the refrigerant in the motor chamber 12a to the motor casing jacket 80 so that the temperature control medium flows in the heating circuit. To heat.
  • the pipe 4c is branched from the pipe 4a at a branch portion 4e on the upstream side of the opening / closing valve 5a of the pipe 4a, and fluidly connects the pipe 4a and the heat exchanger 82.
  • the pipe 4c is provided with an opening / closing valve 5c that allows or blocks the flow of the temperature control medium in the pipe 4c.
  • the opening / closing valve 5c is an electromagnetic valve, and the opening / closing control is performed by the control device 40.
  • the pipe 4d joins the pipe 4b at a joining portion 4f on the downstream side of the on-off valve 5b of the pipe 4b, and fluidly connects the pipe 4b and the heat exchanger 82.
  • the pipe 4d is provided with an opening / closing valve 5d that allows or blocks the flow of the temperature control medium in the pipe 4d.
  • the opening / closing valve 5d is an electromagnetic valve, and the opening / closing control is performed by the control device 40.
  • the control device 40 of the embodiment includes a signal from the temperature detection unit 60 that corresponds to the temperature related to the temperature state of the motor 20, and a signal from the pressure measurement unit 70 that corresponds to the pressure of the motor chamber 12a (shown in FIG. 5).
  • the start of the motor 20 and the operation of the on-off valves 5a to 5d are controlled based on the above.
  • control flow of the control device 40 is the same as that of the first embodiment except for the process of step S5, and FIG. 3 is cited.
  • the control device 40 controls the operation of the open / close valves 5a to 5d so as to open the open / close valves 5c and 5d and close the open / close valves 5a and 5b.
  • the control device 40 also activates a pump (not shown) to circulate the temperature control medium in the heating circuit.
  • the temperature control medium high-temperature water
  • Ts of the refrigerant in the motor chamber 12a is supplied to the motor casing jacket 80 via the heating circuit, and the motor chamber 12a is heated.
  • a three-way valve may be provided on the branch portion 4e.
  • a three-way valve may be provided on the merging portion 4f.
  • the refrigerating apparatus 1 of the present embodiment fluidly connects the portion (first flow path C1) on the upstream side of the suction check valve 3b in the pipe 2e and the motor chamber 12a (shown in FIG. 8).
  • the bypass pipe 6 is provided with a bypass valve 7 that allows or blocks the flow of the refrigerant in the bypass pipe 6.
  • the bypass valve 7 is a solenoid valve and is closed in the normal operation state of the refrigeration system 1.
  • the motor casing 12 of the present embodiment has a bypass hole 12f connected to the bypass pipe 6 (shown in FIG. 7).
  • the motor chamber 12a and the first flow path C1 are fluidly connected by the bypass pipe 6.
  • the bypass hole 12f is provided in the motor casing 12 on the opposite side of the connection space 15 with the motor 20 interposed therebetween. That is, the bypass hole 12f is provided on the side opposite to the load of the motor 20 of the motor casing 12.
  • a pressure sensor 90 for detecting the pressure P1 of the refrigerant flowing through the first flow path C1 is provided in the first flow path C1 in the pipe 2e of the present embodiment.
  • the control device 40 of the present embodiment corresponds to the signal from the temperature detection unit 60 corresponding to the temperature related to the temperature state of the motor 20 and the pressure of the motor chamber 12a (shown in FIG. 8) from the pressure measurement unit 70.
  • the activation of the motor 20, the operation of the electric heater 50, and the operation of the bypass valve 7 are controlled based on the signal.
  • control flow of the control device 40 is the same as that of the first embodiment except for the process of step S5, and FIG. 3 is cited.
  • the control device 40 of the present embodiment determines that the pressure P1 of the first flow passage measured by the pressure sensor 90 is higher than the pressure P of the motor chamber 12a. If low, the bypass valve 7 is opened. That is, in the present embodiment, the bypass valve 7 is opened when the representative temperature T is equal to or lower than the saturation temperature Ts and the pressure P1 in the first passage is lower than the pressure P in the motor chamber 12a.
  • the bypass valve 7 can be closed before the motor 20 is started by the control device 40.
  • the pressure P in the motor chamber 12a can be balanced with the pressure P1 in the first flow path through the bypass pipe 6.
  • the pressure in the motor chamber 12a can be reduced, so that the saturation temperature Ts of the refrigerant in the motor chamber 12a can be lowered. Therefore, the heating of the motor chamber 12a by the electric heater 50 and the decompression of the motor chamber 12a by the bypass pipe 6 are used together, whereby the burnout of the motor 20 can be efficiently suppressed.
  • the compressor 10 is not limited to a screw type compressor, and may be another type of compressor such as a reciprocating type or a centrifugal type.
  • the compressor 10 is not limited to the two-stage compressor, and may be a one-stage compressor.
  • the compressor 10 is not limited to a semi-hermetic type compressor, and may be a totally hermetic type compressor as long as the refrigerant can exist in the motor casing. That is, the compressor casing 11 and the motor casing 12 may be integrally formed.

Abstract

This refrigeration apparatus 1 is provided with a compressor 10 for compressing a refrigerant that is for a refrigeration cycle, a motor 20 that is accommodated in a motor chamber 12a defined by a motor casing 12 of the compressor 10 and drives the compressor 10, a pressure measurement unit 70 for measuring the pressure in the motor chamber 12a, a temperature detection unit 60 for measuring a temperature associated with the temperature state of the motor 20, a heating unit 50 for heating the motor chamber 12a, and a control device 40 for controlling the motor 20 and the heating unit 50. The control device 40 calculates a saturation temperature Ts of the refrigerant under the pressure measured by the pressure measurement unit 70, causes the heating unit 50 to heat the motor chamber 12a if a representative temperature T detected by the temperature detection unit 60 is no greater than the saturation temperature Ts when the compressor 10 is to be started, and enables starting of the compressor 10 if the representative temperature T exceeds the saturation temperature Ts.

Description

冷凍装置Refrigeration equipment
 本発明は、冷凍装置に関する。 The present invention relates to a refrigeration system.
 特許文献1の全密封形電動機では、耐アンモニア絶縁導体により巻装された固定子巻線が、電動機フレーム内の軸方向の空間で、アンモニア冷媒の液相に浸漬されない気相部分に配置されている。また、この全密封形電動機は、液溜部を有しており、液溜部に溜まった冷媒液を電動機フレームの外部に排出する。 In the hermetically sealed electric motor of Patent Document 1, the stator winding wound with the ammonia resistant insulated conductor is arranged in the axial space in the motor frame in a gas phase portion that is not immersed in the liquid phase of the ammonia refrigerant. There is. In addition, the fully sealed electric motor has a liquid reservoir, and the refrigerant liquid accumulated in the liquid reservoir is discharged to the outside of the motor frame.
実開平6-17354号公報Japanese Utility Model Publication No. 6-17354
 しかしながら、特許文献1の全密封型電動機では、気相部分の冷媒が液化することがあり、液化した冷媒が固定子巻線に付着する場合がある。液化した冷媒は、電気伝導性を有するため、液化した冷媒が固定子巻線に付着した状態で電動機を起動すると、電動機が焼損する恐れがある。 However, in the fully sealed electric motor of Patent Document 1, the refrigerant in the vapor phase part may be liquefied, and the liquefied refrigerant may adhere to the stator winding. Since the liquefied refrigerant has electrical conductivity, starting the motor with the liquefied refrigerant attached to the stator winding may cause the motor to burn out.
 本発明は、冷凍装置において、液化した冷媒がモータに付着した状態でモータを起動することを防止することで、モータの焼損の防止を図ることを課題とする。 The present invention has an object to prevent burnout of a motor in a refrigeration system by preventing the liquefied refrigerant from starting the motor in a state of adhering to the motor.
 本発明の一態様は、冷凍サイクルのための冷媒を圧縮する圧縮機と、前記圧縮機のモータケーシングで画定されたモータ室に収容され、前記圧縮機を駆動するモータと、前記モータ室の内部の圧力を測定する圧力測定部と、前記モータの温度状態と関連する温度を測定する温度検出部と、前記モータ室を加熱する加熱部と、前記モータと前記加熱部とを制御する制御装置とを備え、前記制御装置は、前記圧力測定部によって測定された圧力における前記冷媒の飽和温度を算出し、前記圧縮機を起動する際に、前記温度検出部によって検出された代表温度が前記飽和温度以下の場合には、前記加熱部によって前記モータ室を加熱し、前記代表温度が前記飽和温度を超える場合に、前記圧縮機を起動可能にする、冷凍装置を提供する。 One aspect of the present invention includes a compressor that compresses a refrigerant for a refrigeration cycle, a motor that is housed in a motor chamber defined by a motor casing of the compressor, and drives the compressor, and an inside of the motor chamber. A pressure measuring unit for measuring the pressure of the motor, a temperature detecting unit for measuring a temperature related to the temperature state of the motor, a heating unit for heating the motor chamber, and a control device for controlling the motor and the heating unit. The control device calculates the saturation temperature of the refrigerant at the pressure measured by the pressure measurement unit, and when the compressor is started, the representative temperature detected by the temperature detection unit is the saturation temperature. In the following cases, there is provided a refrigeration apparatus that heats the motor chamber by the heating unit and enables the compressor to be started when the representative temperature exceeds the saturation temperature.
 この構成によれば、制御装置は、圧縮機を起動する際に、モータの温度がモータ室での冷媒の飽和温度以下の場合に、加熱部によってモータ室を加熱し、モータの温度状態と関連する温度がモータ室での冷媒の飽和温度を超える場合に圧縮機を起動可能にする。これにより、圧縮機を起動する際に、モータ室内に液化した冷媒が存在しないため、モータに液化した冷媒が付着した状態で圧縮機を起動することを防止でき、モータの焼損を抑制できる。 According to this configuration, when the temperature of the motor is equal to or lower than the saturation temperature of the refrigerant in the motor chamber when the compressor is started, the controller heats the motor chamber by the heating unit and relates to the temperature state of the motor. When the temperature to be exceeded exceeds the saturation temperature of the refrigerant in the motor chamber, the compressor can be started. As a result, when the compressor is started, since the liquefied refrigerant does not exist in the motor chamber, it is possible to prevent the compressor from being started in a state where the liquefied refrigerant is attached to the motor, and it is possible to suppress burnout of the motor.
 また、前記温度検出部は、前記モータの固定子コイルの温度と前記モータ室の温度とを測定してもよく、前記制御装置は、前記温度検出部によって検出された前記モータの固定子コイルの温度と前記モータ室の温度との大小関係を判断してもよく、前記固定子コイルの温度と前記モータ室の温度とのうち低い方の温度を前記代表温度として設定してもよい。 Further, the temperature detection unit may measure a temperature of a stator coil of the motor and a temperature of the motor chamber, and the control device controls the stator coil of the motor detected by the temperature detection unit. The magnitude relationship between the temperature and the temperature of the motor chamber may be determined, and the lower temperature of the temperature of the stator coil and the temperature of the motor chamber may be set as the representative temperature.
 前記温度検出部は、前記モータケーシングの温度を測定してもよく、前記制御装置は、前記温度検出部によって検出された前記モータケーシングの温度から前記モータの固定子コイルの温度または前記モータ室の温度を推定してもよく、前記モータの固定子コイルの温度または前記モータ室の温度の推定値を前記代表温度として設定してもよい。 The temperature detection unit may measure the temperature of the motor casing, and the control device determines the temperature of the stator coil of the motor or the temperature of the motor chamber from the temperature of the motor casing detected by the temperature detection unit. The temperature may be estimated, or the temperature of the stator coil of the motor or the estimated value of the temperature of the motor chamber may be set as the representative temperature.
 この構成によれば、モータケーシングの温度を測定する温度センサをモータ室の外側に取り付けることができるため、気密端子などの機器を設ける必要がない。このため、冷凍装置の温度検出部のために必要な構成を低減でき、冷凍装置の構成を単純化できるので、冷凍装置の製造コストを低減できる。 With this configuration, a temperature sensor that measures the temperature of the motor casing can be mounted outside the motor chamber, so there is no need to install equipment such as airtight terminals. Therefore, the configuration required for the temperature detection unit of the refrigeration system can be reduced and the configuration of the refrigeration system can be simplified, so that the manufacturing cost of the refrigeration system can be reduced.
 前記加熱部は、前記モータ室の前記モータケーシングに取り付けられたヒータであってもよい。 The heating unit may be a heater attached to the motor casing of the motor chamber.
 前記圧縮機は、前記モータケーシングの外面を取り囲むように構成されたモータケーシングジャケットを備えてもよく、前記加熱部は、前記モータケーシングジャケットと、前記モータ室の温度よりも高い温度を有する温調媒体を前記モータケーシングジャケットに供給する加熱回路とからなるものであってもよい。 The compressor may include a motor casing jacket configured to surround an outer surface of the motor casing, and the heating unit may control the temperature of the motor casing jacket and a temperature higher than a temperature of the motor chamber. A heating circuit for supplying the medium to the motor casing jacket may be included.
 前記冷凍サイクルにおいて前記圧縮機の上流側に設けられた吸込逆止弁と、前記冷凍サイクルにいて前記吸込逆止弁よりも上流側の第1流路と前記モータ室とを流体的に接続するバイパス配管と、前記バイパス配管に設けられたバイパス弁とを備えてもよい。 In the refrigeration cycle, a suction check valve provided upstream of the compressor is fluidly connected to the first flow path upstream of the suction check valve in the refrigeration cycle and the motor chamber. A bypass pipe and a bypass valve provided in the bypass pipe may be provided.
 また、前記制御装置は、前記代表温度が前記飽和温度以下で、前記第1流路の圧力が前記モータ室の圧力より低い場合に前記バイパス弁を開くことが望ましい。 Further, it is preferable that the control device opens the bypass valve when the representative temperature is equal to or lower than the saturation temperature and the pressure in the first flow path is lower than the pressure in the motor chamber.
 この構成によれば、バイパス弁を開くことで、バイパス配管を通じてモータ室の圧力を第1流路の圧力と均衡させることができる。これにより、モータ室を減圧できるため、モータ室での冷媒の飽和温度を低下できるので、モータの焼損を効率的に抑制できる。 With this configuration, by opening the bypass valve, the pressure in the motor chamber can be balanced with the pressure in the first flow path through the bypass pipe. As a result, the motor chamber can be depressurized, and the saturation temperature of the refrigerant in the motor chamber can be lowered, so that burnout of the motor can be efficiently suppressed.
 本発明によれば、モータの焼損を抑制できる。 According to the present invention, motor burnout can be suppressed.
本発明の第1実施形態に係る冷凍装置の概略構成図。1 is a schematic configuration diagram of a refrigeration apparatus according to a first embodiment of the present invention. 第1実施形態に係る圧縮機の拡大図。FIG. 3 is an enlarged view of the compressor according to the first embodiment. 第1実施形態に係る制御装置の制御を示すフローチャート。3 is a flowchart showing control of the control device according to the first embodiment. 第2実施形態に係る圧縮機の拡大図。The enlarged view of the compressor which concerns on 2nd Embodiment. 第3実施形態に係る圧縮機の拡大図。The enlarged view of the compressor which concerns on 3rd Embodiment. 第3実施形態に係る冷凍装置の概略構成図。The schematic block diagram of the refrigerating device concerning a 3rd embodiment. 第4実施形態に係る冷凍装置の概略構成図。The schematic block diagram of the refrigerating device concerning a 4th embodiment. 第4実施形態に係る圧縮機の拡大図。The enlarged view of the compressor which concerns on 4th Embodiment.
(第1実施形態)
 図1を参照すると、本実施形態に係る冷凍装置1は、圧縮機10と、圧縮機10を駆動するモータ20と、オイルセパレータ30と、凝縮器31と、冷媒タンク32と、膨張弁33と、蒸発器34と、制御装置40とを備える。冷凍装置1では、圧縮機10と、オイルセパレータ30と、凝縮器31と、冷媒タンク32と、膨張弁33と、蒸発器34とが配管2a~2eによって流体的に接続されている。これにより、冷凍装置1では、圧縮機10と、オイルセパレータ30と、凝縮器31と、冷媒タンク32と、膨張弁33と、蒸発器34とを有する冷凍サイクルの循環流路が構成されている。
(First embodiment)
Referring to FIG. 1, the refrigeration apparatus 1 according to the present embodiment includes a compressor 10, a motor 20 that drives the compressor 10, an oil separator 30, a condenser 31, a refrigerant tank 32, and an expansion valve 33. An evaporator 34 and a control device 40 are provided. In the refrigeration system 1, the compressor 10, the oil separator 30, the condenser 31, the refrigerant tank 32, the expansion valve 33, and the evaporator 34 are fluidly connected by the pipes 2a to 2e. Thereby, in the refrigeration system 1, a circulation flow path of the refrigeration cycle including the compressor 10, the oil separator 30, the condenser 31, the refrigerant tank 32, the expansion valve 33, and the evaporator 34 is configured. .
 圧縮機10は、冷媒を圧縮するものである。本実施形態の冷凍サイクルのための冷媒は、アンモニア等の自然冷媒やフロン類のような人工冷媒であって、液体時に電気伝導性を有する冷媒である。 The compressor 10 compresses a refrigerant. The refrigerant for the refrigeration cycle of the present embodiment is a natural refrigerant such as ammonia or an artificial refrigerant such as CFCs, and is a refrigerant that has electric conductivity when in a liquid state.
 本実施形態の圧縮機10は、2段型スクリュ圧縮機である。図2を参照すると、圧縮機10は、圧縮機ケーシング11と、モータケーシング12と、圧縮機ケーシング11に収容された1段目圧縮機本体13と、圧縮機ケーシング11に収容された2段目圧縮機本体14とを備える。圧縮機ケーシング11とモータケーシング12とは、密閉式に一体に結合されている。言い換えると、本実施形態の圧縮機10は、半密閉型の圧縮機である。 The compressor 10 of this embodiment is a two-stage screw compressor. Referring to FIG. 2, the compressor 10 includes a compressor casing 11, a motor casing 12, a first stage compressor body 13 housed in the compressor casing 11, and a second stage compressor housed in the compressor casing 11. A compressor body 14 is provided. The compressor casing 11 and the motor casing 12 are integrally connected in a sealed manner. In other words, the compressor 10 of this embodiment is a semi-hermetic type compressor.
 圧縮機ケーシング11は、1段目圧縮機本体13の後述する一対のスクリュロータ13aを収容するためのロータ室11aと、2段目圧縮機本体14の後述する一対のスクリュロータ14aを収容するためのロータ室11bとを画定している。また、圧縮機ケーシング11には、圧縮機10の吸気口として1段目圧縮機本体13のためのロータ室11aに冷媒を吸い込むための吸気口11cと、圧縮機10の吐出口として2段目圧縮機本体14のためのロータ室11bから冷媒を吐出するための吐出口11dとが形成されている。 The compressor casing 11 has a rotor chamber 11a for accommodating a pair of screw rotors 13a described later of the first-stage compressor body 13 and a pair of screw rotors 14a described later for the second-stage compressor body 14. Of the rotor chamber 11b. Further, the compressor casing 11 has an intake port 11c as an intake port of the compressor 10 for sucking the refrigerant into the rotor chamber 11a for the first stage compressor body 13, and a second stage as an outlet port of the compressor 10. A discharge port 11d for discharging the refrigerant from the rotor chamber 11b for the compressor body 14 is formed.
 モータケーシング12は、モータ20を収容するためのモータ室12aを画定している。また、モータケーシング12は、圧縮機ケーシング11とともに接続空間15を画定している。モータケーシング12には、モータ室12aと接続空間15とを連通させる連通路12b,12cが形成されている。これにより、冷媒は、連通路12b,12cを通じて接続空間15とモータ室12aとの間を行き来できる。また、モータケーシング12の外面には、モータ室12aを加熱するための電気ヒータ50(加熱部)が設けられている。電気ヒータ50は、少なくともモータ室12aの下部を加熱することができるように、少なくともモータケーシング12の底部に設けられている。 The motor casing 12 defines a motor chamber 12a for housing the motor 20. Further, the motor casing 12 defines the connection space 15 together with the compressor casing 11. The motor casing 12 is formed with communication passages 12b and 12c that communicate the motor chamber 12a and the connection space 15. As a result, the refrigerant can move back and forth between the connection space 15 and the motor chamber 12a through the communication passages 12b and 12c. An electric heater 50 (heating unit) for heating the motor chamber 12a is provided on the outer surface of the motor casing 12. The electric heater 50 is provided at least at the bottom of the motor casing 12 so that at least the lower part of the motor chamber 12a can be heated.
 1段目圧縮機本体13は、前述したように、圧縮機ケーシング11のロータ室11aに収容された雌雄一対のスクリュロータ13aを備える。なお、図2では、雌雄一対のスクリュロータ13aのうち雄ロータのみが示されている。スクリュロータ13aは、ロータ軸13bを有しており、ロータ軸13bの両端は、圧縮機ケーシング11に設けられた軸受11e,11fによって回転可能に支持されている。また、スクリュロータ13aのロータ軸13bの接続空間15側の端部は、接続空間15に配置されたギア16aに機械的に接続されている。 As described above, the first-stage compressor body 13 includes a pair of male and female screw rotors 13a housed in the rotor chamber 11a of the compressor casing 11. Note that FIG. 2 shows only the male rotor of the pair of male and female screw rotors 13a. The screw rotor 13a has a rotor shaft 13b, and both ends of the rotor shaft 13b are rotatably supported by bearings 11e and 11f provided in the compressor casing 11. The end of the rotor shaft 13b of the screw rotor 13a on the side of the connection space 15 is mechanically connected to a gear 16a arranged in the connection space 15.
 2段目圧縮機本体14は、前述したように、圧縮機ケーシング11のロータ室11bに収容された雌雄一対のスクリュロータ14aを備える。なお、図2では、雌雄一対のスクリュロータ14aのうち雄ロータのみが示されている。スクリュロータ14aは、ロータ軸14bを有しており、ロータ軸14bの両端は、圧縮機ケーシング11に設けられた軸受11g,11hによって回転可能に支持されている。また、スクリュロータ14aのロータ軸14bの接続空間15側の端部は、接続空間15に配置されたギア16bに機械的に接続されている。 The second-stage compressor body 14 includes a pair of male and female screw rotors 14a housed in the rotor chamber 11b of the compressor casing 11, as described above. Note that FIG. 2 shows only the male rotor of the pair of female and male screw rotors 14a. The screw rotor 14a has a rotor shaft 14b, and both ends of the rotor shaft 14b are rotatably supported by bearings 11g and 11h provided in the compressor casing 11. The end of the rotor shaft 14b of the screw rotor 14a on the side of the connection space 15 is mechanically connected to a gear 16b arranged in the connection space 15.
 本実施形態では、1段目圧縮機本体13と2段目圧縮機本体14は、相対的に上下に位置するように設けられ、互いに吸込と吐出の方向が反対向きになるように配置されている。特に、本実施形態では、スクリュロータ13aのサイズが相対的に大型の1段目圧縮機本体13が上側に配置され、換言すれば、スクリュロータ14aのサイズが相対的に小型の2段目圧縮機本体14が下側に配置されている。代替的には、上下配置する構造以外に代えて、1段目圧縮機本体13と2段目圧縮機本体14とを水平配置する構造が採用されてもよいし、その他の配置が採用されてもよい。 In the present embodiment, the first-stage compressor body 13 and the second-stage compressor body 14 are provided so as to be positioned relatively up and down, and the suction and discharge directions are opposite to each other. There is. Particularly, in the present embodiment, the first-stage compressor body 13 in which the size of the screw rotor 13a is relatively large is arranged on the upper side, in other words, the size of the screw rotor 14a in the second-stage compression body is relatively small. The machine body 14 is arranged on the lower side. Alternatively, instead of the vertically arranged structure, a structure in which the first-stage compressor body 13 and the second-stage compressor body 14 are horizontally arranged may be adopted, or other arrangements may be adopted. Good.
 本実施形態のモータ20は、インナーロータ型のモータであり、モータケーシング12のモータ室12aに収容されている。モータ20は、出力軸21と、出力軸21に連結された回転子22と、回転子22を取り囲むように配置された固定子23とを備える。固定子23には、固定子コイル23aが巻回されている。出力軸21は、回転子22の両側において、モータケーシング12に設けられた軸受12d,12eに回転可能に支持されている。また、出力軸21の接続空間15側の端部は、ギア16a、16bに機械的に接続されている。すなわち、出力軸21は、ギア16a、16bと噛み合うギア16cを介して、1段目圧縮機本体13のスクリュロータ13aのロータ軸13bと、2段目圧縮機本体14のスクリュロータ14aのロータ軸14bとに機械的に接続されている。 The motor 20 of this embodiment is an inner rotor type motor and is housed in the motor chamber 12 a of the motor casing 12. The motor 20 includes an output shaft 21, a rotor 22 connected to the output shaft 21, and a stator 23 arranged so as to surround the rotor 22. A stator coil 23a is wound around the stator 23. The output shaft 21 is rotatably supported by bearings 12d and 12e provided on the motor casing 12 on both sides of the rotor 22. The end of the output shaft 21 on the side of the connection space 15 is mechanically connected to the gears 16a and 16b. That is, the output shaft 21 includes the rotor shaft 13b of the screw rotor 13a of the first-stage compressor body 13 and the rotor shaft of the screw rotor 14a of the second-stage compressor body 14 via the gear 16c that meshes with the gears 16a and 16b. Mechanically connected to 14b.
 また、図1併せて参照すると、冷凍装置1は、モータ20の温度状態と関連する温度を検出する温度検出部60と、モータ室12aの内部の圧力Pを検出する圧力測定部70とを備える。具体的には、本実施形態の温度検出部60は、図2に示すように、固定子コイル23aの表面に設けられ、モータ20の固定子コイル23aの温度T1を測定する温度センサ61と、モータ室12aに設けられ、モータ室12aの温度T2を測定する温度センサ62とを備える。また、圧力測定部70は、モータ室12aに設けられ、モータ室12aの圧力Pを測定する圧力センサ71を備える。 Further, referring also to FIG. 1, the refrigeration system 1 includes a temperature detection unit 60 that detects a temperature associated with a temperature state of the motor 20, and a pressure measurement unit 70 that detects a pressure P inside the motor chamber 12a. . Specifically, as shown in FIG. 2, the temperature detection unit 60 of the present embodiment is provided on the surface of the stator coil 23a, and measures the temperature T1 of the stator coil 23a of the motor 20, and a temperature sensor 61. The temperature sensor 62 is provided in the motor chamber 12a and measures the temperature T2 of the motor chamber 12a. The pressure measuring unit 70 is provided in the motor chamber 12a and includes a pressure sensor 71 that measures the pressure P in the motor chamber 12a.
 本実施形態の圧力センサ71は、モータ室12aにおいてモータ20を挟んで両側に形成される空間の内、接続空間15に対して遠い空間の圧力を検出するように設けられている。また、本実施形態の温度センサ61は、モータ20の両端に形成される固定子コイル23aの内、接続空間15に対して遠い方の温度を検出するように設けられている。また、本実施形態の温度センサ62は、モータ室12aにおいてモータ20を挟んで両側に形成される空間の内、接続空間15に対して遠い空間の温度を検出するように設けられている。詳しくは、温度センサ62は、その空間の下部(モータケーシング12の底部近傍)の温度を検出するように設けられている。すなわち、本実施形態の圧力センサ71、温度センサ61及び温度センサ62は、構造的に冷媒が溜まり易いモータ20に関して反負荷側に設けられている。 The pressure sensor 71 of the present embodiment is provided so as to detect the pressure of a space far from the connection space 15 in the space formed on both sides of the motor 20 in the motor chamber 12a. Further, the temperature sensor 61 of the present embodiment is provided so as to detect the temperature of one of the stator coils 23 a formed at both ends of the motor 20 that is farther from the connection space 15. Further, the temperature sensor 62 of the present embodiment is provided so as to detect the temperature of a space far from the connection space 15 among the spaces formed on both sides of the motor 20 in the motor chamber 12a. Specifically, the temperature sensor 62 is provided so as to detect the temperature of the lower portion of the space (in the vicinity of the bottom of the motor casing 12). That is, the pressure sensor 71, the temperature sensor 61, and the temperature sensor 62 of the present embodiment are provided on the side opposite to the load side with respect to the motor 20, which is structurally likely to collect refrigerant.
 1段目圧縮機本体13は、モータ20により駆動されると、吸気口11cより冷媒を吸い込み、圧縮して接続空間15に吐出する。2段目圧縮機本体14は、モータ20により駆動されると、1段目圧縮機本体13により圧縮されて接続空間15に吐出された冷媒をさらに圧縮して、吐出口11dに吐出する。言い換えると、1段目圧縮機本体13が吐出した冷媒は、圧縮機ケーシング11とモータケーシング12とによって画定された接続空間15を介して、2段目圧縮機本体14に吸い込まれる。すなわち、接続空間15は、1段目圧縮機本体13の吐出口と2段目圧縮機本体14の吸気口とを接続する流体の流路(中間流路)である。 When the first-stage compressor body 13 is driven by the motor 20, the first-stage compressor body 13 sucks the refrigerant from the intake port 11c, compresses it, and discharges it into the connection space 15. When driven by the motor 20, the second-stage compressor body 14 further compresses the refrigerant compressed by the first-stage compressor body 13 and discharged into the connection space 15, and discharges it to the discharge port 11d. In other words, the refrigerant discharged from the first-stage compressor body 13 is sucked into the second-stage compressor body 14 via the connection space 15 defined by the compressor casing 11 and the motor casing 12. That is, the connection space 15 is a fluid flow path (intermediate flow path) that connects the discharge port of the first-stage compressor body 13 and the intake port of the second-stage compressor body 14.
 図1に示すように、オイルセパレータ30は、配管2aを通じて圧縮機10の吐出口11dと流体的に接続されている。オイルセパレータ30は、圧縮機10の吐出口11dから吐出された冷媒と油の混合流体から油を分離して回収するものである。オイルセパレータ30は、フィルタ30aと、オイルタンク30bとを備える。フィルタ30aは、気相の冷媒の流れに随伴する油を捕集して冷媒と分離するものである。分離された油は、オイルタンク30bに溜められる。すなわち、油はオイルタンク30bに回収される。オイルタンク30bに溜められた油は、図示しない油流路を介して圧縮機10に供給される。 As shown in FIG. 1, the oil separator 30 is fluidly connected to the discharge port 11d of the compressor 10 through the pipe 2a. The oil separator 30 separates and collects oil from the mixed fluid of the refrigerant and the oil discharged from the discharge port 11d of the compressor 10. The oil separator 30 includes a filter 30a and an oil tank 30b. The filter 30a collects the oil accompanying the flow of the vapor-phase refrigerant and separates it from the refrigerant. The separated oil is stored in the oil tank 30b. That is, the oil is collected in the oil tank 30b. The oil stored in the oil tank 30b is supplied to the compressor 10 via an oil passage (not shown).
 凝縮器31は、オイルセパレータ30と配管2bを通じて流体的に接続されており、オイルセパレータ30にて油を分離した気相の冷媒は、配管2bを通じてオイルセパレータ30から凝縮器31に供給される。凝縮器31では、冷媒が冷却されて凝縮される。凝縮器31には冷媒タンク32が併設されており、凝縮器31にて凝縮された液相の冷媒は冷媒タンク32に溜められる。また、配管2bには、吐出逆止弁3aが介設されており、冷媒が逆流しないようにされている。 The condenser 31 is fluidly connected to the oil separator 30 through the pipe 2b, and the gas-phase refrigerant obtained by separating the oil in the oil separator 30 is supplied from the oil separator 30 to the condenser 31 through the pipe 2b. In the condenser 31, the refrigerant is cooled and condensed. The condenser 31 is provided with a refrigerant tank 32, and the liquid-phase refrigerant condensed in the condenser 31 is stored in the refrigerant tank 32. A discharge check valve 3a is interposed in the pipe 2b so that the refrigerant does not flow backward.
 膨張弁33は、凝縮器31及び冷媒タンク32と配管2cを通じて流体的に接続されており、凝縮器31及び冷媒タンク32を通過した冷媒は、配管2cを通じて膨張弁33に供給される。膨張弁33は、高圧の冷媒を減圧する機能を有している。 The expansion valve 33 is fluidly connected to the condenser 31 and the refrigerant tank 32 through the pipe 2c, and the refrigerant passing through the condenser 31 and the refrigerant tank 32 is supplied to the expansion valve 33 through the pipe 2c. The expansion valve 33 has a function of reducing the pressure of the high-pressure refrigerant.
 蒸発器34は、膨張弁33と配管2dを通じて流体的に接続されており、膨張弁33にて減圧された冷媒は、配管2dを通じて蒸発器34に供給される。蒸発器34は、冷媒を加熱して蒸発させる部分である。蒸発器34は、配管2eを通じて圧縮機10の吸気口11cに流体的に接続されており、蒸発器34にて蒸発した気相の冷媒は、配管2eを通じて圧縮機10の吸気口11cに供給される。また、配管2eには吸込逆止弁3bが介設されており、冷媒が逆流しないようにされている。 The evaporator 34 is fluidly connected to the expansion valve 33 through the pipe 2d, and the refrigerant decompressed by the expansion valve 33 is supplied to the evaporator 34 through the pipe 2d. The evaporator 34 is a part that heats and evaporates the refrigerant. The evaporator 34 is fluidly connected to the intake port 11c of the compressor 10 through the pipe 2e, and the vapor-phase refrigerant evaporated in the evaporator 34 is supplied to the intake port 11c of the compressor 10 through the pipe 2e. It A suction check valve 3b is interposed in the pipe 2e so that the refrigerant does not flow backward.
 制御装置40は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)のような記憶装置を含むハードウェアと、それに実装されたソフトウェアにより構築されている。本実施形態の制御装置40は、温度検出部60からのモータ20の温度状態に関連する温度に対応する信号と、圧力測定部70からのモータ室12a(図2に示す)の圧力に対応する信号とに基づいて、モータ20の起動と、電気ヒータ50の作動とを制御する。 The control device 40 is constructed by hardware including a storage device such as a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read Only Memory), and software installed therein. The control device 40 of the present embodiment responds to the signal from the temperature detection unit 60 corresponding to the temperature related to the temperature state of the motor 20 and the pressure of the motor chamber 12a (shown in FIG. 2) from the pressure measurement unit 70. The activation of the motor 20 and the operation of the electric heater 50 are controlled based on the signal.
 以下、図3を参照して、本実施形態に係る制御装置40の制御について説明する。制御装置40は、圧縮機10の起動信号を受信すると、図3の制御を開始する(ステップS1)。 The control of the control device 40 according to the present embodiment will be described below with reference to FIG. When the control device 40 receives the activation signal of the compressor 10, the control device 40 starts the control of FIG. 3 (step S1).
 まず、制御装置40は、温度センサ61,62からの信号に基づいて代表温度Tを設定する(ステップS2)。具体的には、本実施形態の制御装置40は、温度センサ61によって測定された固定子コイル23aの温度T1と、温度センサ62によって測定されたモータ室12aの温度T2との大小関係を判断し、小さい方の温度を代表温度Tとして設定する。 First, the control device 40 sets the representative temperature T based on the signals from the temperature sensors 61 and 62 (step S2). Specifically, the control device 40 of the present embodiment determines the magnitude relationship between the temperature T1 of the stator coil 23a measured by the temperature sensor 61 and the temperature T2 of the motor chamber 12a measured by the temperature sensor 62. , The smaller temperature is set as the representative temperature T.
 次に、制御装置40は、圧力センサ71によって検出された圧力Pでの冷媒の飽和温度Tsを算出する(ステップS3)。飽和温度Tsは、冷媒のp-h線図(モリエル線図)から求められる。 Next, the control device 40 calculates the saturation temperature Ts of the refrigerant at the pressure P detected by the pressure sensor 71 (step S3). The saturation temperature Ts is obtained from the ph diagram (Mollier diagram) of the refrigerant.
 その後、制御装置40は、代表温度Tが飽和温度Tsを超える(T>Ts)か否かを判定する(ステップS4)。 After that, the control device 40 determines whether or not the representative temperature T exceeds the saturation temperature Ts (T> Ts) (step S4).
 ステップS4の処理において、代表温度Tが飽和温度Ts以下の場合、制御装置40は、電気ヒータ50がモータ室12aを加熱するように、電気ヒータ50を制御する(ステップS5)。その後、ステップS4の処理において、代表温度Tが飽和温度Tsを超えると判定されるまで、ステップS2~ステップS5の処理を繰り返す。 In the process of step S4, when the representative temperature T is equal to or lower than the saturation temperature Ts, the control device 40 controls the electric heater 50 so that the electric heater 50 heats the motor chamber 12a (step S5). After that, in the process of step S4, the processes of steps S2 to S5 are repeated until it is determined that the representative temperature T exceeds the saturation temperature Ts.
 ステップS4の処理において、代表温度Tが飽和温度Tsを超えると判定された場合、制御装置40は、圧縮機10を起動する(ステップS6)。そして、ステップS6の処理を完了した後、制御装置40は、本制御を終了する(ステップS7)。 When it is determined in the process of step S4 that the representative temperature T exceeds the saturation temperature Ts, the control device 40 starts the compressor 10 (step S6). Then, after completing the process of step S6, the control device 40 ends the present control (step S7).
 本実実施形態の冷凍装置1によれば、制御装置40は、圧縮機10を起動する際に、代表温度Tがモータ室12aでの冷媒の飽和温度Ts以下の場合に、電気ヒータ50がモータ室12aを加熱するように電気ヒータ50を制御する。また、制御装置40は、モータ20の固定子コイル23aの温度T1とモータ室12aの温度T2との両方がモータ室12aでの冷媒の飽和温度Tsを超える場合に圧縮機10を起動する。これにより、圧縮機10を起動する際に、モータ室12a内に液化した冷媒が存在しないため、モータ20の固定子コイル23aに液化した冷媒が付着した状態で圧縮機10を起動することを防止でき、モータ20の焼損を抑制できる。 According to the refrigeration system 1 of the present embodiment, the control device 40 causes the electric heater 50 to drive the motor when the representative temperature T is equal to or lower than the saturation temperature Ts of the refrigerant in the motor chamber 12a when the compressor 10 is started. The electric heater 50 is controlled to heat the chamber 12a. Further, the control device 40 starts the compressor 10 when both the temperature T1 of the stator coil 23a of the motor 20 and the temperature T2 of the motor chamber 12a exceed the saturation temperature Ts of the refrigerant in the motor chamber 12a. As a result, when the compressor 10 is started, since the liquefied refrigerant does not exist in the motor chamber 12a, it is possible to prevent the compressor 10 from being started in a state where the liquefied refrigerant is attached to the stator coil 23a of the motor 20. Therefore, the burnout of the motor 20 can be suppressed.
 ステップS2の処理とステップS3の処理とは、同時に行われてもよい。ステップS3の処理は、ステップS2の処理よりも先に実行されてもよい。 The process of step S2 and the process of step S3 may be performed at the same time. The process of step S3 may be executed before the process of step S2.
 また、温度検出部60は、モータ室12aの温度を測定する温度センサ62を備えていなくてもよい。この場合、制御装置40は、ステップS2(図3に示す)の処理において、温度センサ61によって測定されたモータ20の固定子コイル23aの温度T1を代表温度Tとして設定する。 Further, the temperature detection unit 60 may not include the temperature sensor 62 that measures the temperature of the motor chamber 12a. In this case, the controller 40 sets the temperature T1 of the stator coil 23a of the motor 20 measured by the temperature sensor 61 as the representative temperature T in the process of step S2 (shown in FIG. 3).
 (第2実施形態)
 図4を参照すると、本実施形態の温度検出部60は、温度センサ61,62(図2に示す)の代わりに、モータケーシング12の温度T3を測定する温度センサ63を備える。すなわち、本実施形態の温度検出部60は、モータ20の固定子コイル23aの温度T1及びモータ室12aの温度T2(図2に示す)を測定する代わりに、モータケーシング12の温度T3を測定する。
(Second embodiment)
Referring to FIG. 4, the temperature detection unit 60 of the present embodiment includes a temperature sensor 63 that measures the temperature T3 of the motor casing 12 instead of the temperature sensors 61 and 62 (shown in FIG. 2). That is, the temperature detection unit 60 of the present embodiment measures the temperature T3 of the motor casing 12 instead of measuring the temperature T1 of the stator coil 23a of the motor 20 and the temperature T2 of the motor chamber 12a (shown in FIG. 2). .
 本実施形態の温度センサ63は、モータケーシング12においてモータ20を挟んで接続空間15とは反対側(モータの反負荷側)に位置する部分の温度を検出するように設けられている。詳しくは、温度センサ63は、構造的に冷媒が溜まり易いモータに関して反負荷側に位置するモータケーシング12底部の温度を検出するように設けられている。 The temperature sensor 63 of this embodiment is provided so as to detect the temperature of a portion of the motor casing 12 that is located on the opposite side of the connection space 15 (opposite load side of the motor) with the motor 20 interposed therebetween. Specifically, the temperature sensor 63 is provided so as to detect the temperature of the bottom portion of the motor casing 12 located on the side opposite to the load with respect to the motor that structurally tends to accumulate refrigerant.
 本実施形態では、制御装置40の制御フローは、ステップS2の処理を除いて第1実施形態と同様であり、図3を援用する。本実施形態の制御装置40は、ステップS2の処理において、温度センサ63によって測定されたモータケーシング12の温度T3から、モータ20の固定子コイル23aの温度を推定し、その推定値を代表温度Tとして設定する。なお、温度センサ63によって測定されたモータケーシング12の温度T3から、モータ室12aの温度を推定し、その推定値を代表温度Tとして設定してもよい。 In the present embodiment, the control flow of the control device 40 is the same as that of the first embodiment except for the process of step S2, and FIG. 3 is cited. In the process of step S2, the control device 40 of the present embodiment estimates the temperature of the stator coil 23a of the motor 20 from the temperature T3 of the motor casing 12 measured by the temperature sensor 63, and uses the estimated value as the representative temperature T. Set as. The temperature of the motor chamber 12a may be estimated from the temperature T3 of the motor casing 12 measured by the temperature sensor 63, and the estimated value may be set as the representative temperature T.
 本実施形態によれば、モータケーシング12の温度T3を測定する温度センサ63をモータ室12aの外側に取り付けることができるため、気密端子などの機器を設ける必要がない。このため、冷凍装置1の温度検出部60のために必要な構成を低減でき、冷凍装置1の構成を単純化できるので、冷凍装置1の製造コストを低減できる。 According to the present embodiment, since the temperature sensor 63 that measures the temperature T3 of the motor casing 12 can be attached to the outside of the motor chamber 12a, it is not necessary to provide a device such as an airtight terminal. Therefore, the configuration required for the temperature detection unit 60 of the refrigeration system 1 can be reduced and the configuration of the refrigeration system 1 can be simplified, so that the manufacturing cost of the refrigeration system 1 can be reduced.
 (第3実施形態)
 図5を参照すると、本実施形態のモータケーシング12の外面には、モータケーシング12の周囲を取り囲むようにモータケーシングジャケット80が設けられている。モータケーシングジャケット80には、モータ室12aを加熱又は冷却するように、温調媒体(例えば、水)が供給される。モータケーシングジャケット80には、温調媒体が流入する入口80aと、温調媒体が流出する出口80bとが形成されている。本実施形態では、モータケーシングジャケット80と、後述する加熱回路とで加熱部を構成している。
(Third Embodiment)
Referring to FIG. 5, a motor casing jacket 80 is provided on the outer surface of the motor casing 12 of the present embodiment so as to surround the motor casing 12. A temperature control medium (eg, water) is supplied to the motor casing jacket 80 so as to heat or cool the motor chamber 12a. The motor casing jacket 80 is formed with an inlet 80a through which the temperature control medium flows in and an outlet 80b through which the temperature control medium flows out. In the present embodiment, the motor casing jacket 80 and a heating circuit described later form a heating unit.
 図6を参照すると、冷凍装置1は、モータケーシングジャケット80に供給する温調媒体(本実施形態では水)を冷却するための冷却装置(本実施形態ではクーリングタワー)81を備える。モータケーシングジャケット80と冷却装置81とは、配管4a,4bを介して流体的に接続されている。これにより、本実施形態の冷凍装置1には、モータケーシングジャケット80と、冷却装置81とを有する冷却回路が構成されている。冷却回路では、温調媒体がポンプ(図示せず)によって循環されており、冷却装置81で冷却された温調媒体が、モータケーシングジャケット80に供給される。 Referring to FIG. 6, the refrigeration system 1 includes a cooling device (cooling tower) 81 for cooling the temperature control medium (water in this embodiment) supplied to the motor casing jacket 80. The motor casing jacket 80 and the cooling device 81 are fluidly connected via the pipes 4a and 4b. As a result, the refrigeration system 1 of this embodiment is provided with a cooling circuit having the motor casing jacket 80 and the cooling device 81. In the cooling circuit, the temperature control medium is circulated by a pump (not shown), and the temperature control medium cooled by the cooling device 81 is supplied to the motor casing jacket 80.
 配管4aは、モータケーシングジャケット80の出口80bと、冷却装置81とを流体的に接続している。配管4aには、配管4a内の温調媒体の流動を許容又は遮断する開閉弁5aが設けられている。開閉弁5aは、電磁弁であり、制御装置40によって開閉制御される。 The pipe 4a fluidly connects the outlet 80b of the motor casing jacket 80 and the cooling device 81. The pipe 4a is provided with an opening / closing valve 5a that allows or blocks the flow of the temperature control medium in the pipe 4a. The opening / closing valve 5a is an electromagnetic valve, and the opening / closing control is performed by the control device 40.
 配管4bは、モータケーシングジャケット80の入口80aと、冷却装置81とを流体的に接続している。配管4bには、配管4b内の温調媒体の流動を許容又は遮断する開閉弁5bが設けられている。開閉弁5bは、電磁弁であり、制御装置40によって開閉制御される。 The pipe 4b fluidly connects the inlet 80a of the motor casing jacket 80 and the cooling device 81. The pipe 4b is provided with an opening / closing valve 5b that allows or blocks the flow of the temperature control medium in the pipe 4b. The opening / closing valve 5b is an electromagnetic valve, and the opening / closing control is performed by the control device 40.
 制御装置40は、冷凍装置1の通常運転中には、開閉弁5a,5bを開放し、モータケーシングジャケット80に冷却装置81で冷却された温調媒体を供給することで、モータ20を冷却する。 The controller 40 cools the motor 20 by opening the on-off valves 5a and 5b and supplying the temperature control medium cooled by the cooling device 81 to the motor casing jacket 80 during the normal operation of the refrigeration system 1. .
 また、本実施形態の冷凍装置1は、モータケーシングジャケット80に供給する温調媒体を加熱するための熱交換器82を備える。モータケーシングジャケット80と熱交換器82とは、配管4a~4dを介して流体的に接続されている。これにより、本実施形態の冷凍装置1には、モータケーシングジャケット80と、熱交換器82とを有する加熱回路が構成されている。加熱回路では、温調媒体がポンプ(図示せず)によって循環されており、熱交換器82で加熱された温調媒体が、モータケーシングジャケット80に供給される。前述したように、本実施形態では、モータケーシングジャケット80と、加熱回路とで加熱部を構成している。 Further, the refrigeration system 1 of this embodiment includes a heat exchanger 82 for heating the temperature control medium supplied to the motor casing jacket 80. The motor casing jacket 80 and the heat exchanger 82 are fluidly connected to each other via the pipes 4a to 4d. As a result, the refrigeration apparatus 1 of this embodiment is provided with a heating circuit including the motor casing jacket 80 and the heat exchanger 82. In the heating circuit, the temperature control medium is circulated by a pump (not shown), and the temperature control medium heated by the heat exchanger 82 is supplied to the motor casing jacket 80. As described above, in the present embodiment, the motor casing jacket 80 and the heating circuit form a heating unit.
 熱交換器82は、熱源ボイラのような図示しない外部熱源と、加熱回路を流れる温調媒体との間で熱交換を行わせる。これにより。熱交換器82は、モータケーシングジャケット80にモータ室12aの冷媒の飽和温度Tsよりも高い温度を有する温調媒体(本実施形態では高温水)を供給するように、加熱回路を流れる温調媒体を加熱する。 The heat exchanger 82 causes heat exchange between an external heat source (not shown) such as a heat source boiler and a temperature control medium flowing through the heating circuit. By this. The heat exchanger 82 supplies a temperature control medium (high temperature water in the present embodiment) having a temperature higher than the saturation temperature Ts of the refrigerant in the motor chamber 12a to the motor casing jacket 80 so that the temperature control medium flows in the heating circuit. To heat.
 配管4cは、配管4aの開閉弁5aよりも上流側の分岐部4eにおいて配管4aから分岐しており、配管4aと、熱交換器82とを流体的に接続している。配管4cには、配管4c内の温調媒体の流動を許容又は遮断する開閉弁5cが設けられている。開閉弁5cは、電磁弁であり、制御装置40によって開閉制御される。 The pipe 4c is branched from the pipe 4a at a branch portion 4e on the upstream side of the opening / closing valve 5a of the pipe 4a, and fluidly connects the pipe 4a and the heat exchanger 82. The pipe 4c is provided with an opening / closing valve 5c that allows or blocks the flow of the temperature control medium in the pipe 4c. The opening / closing valve 5c is an electromagnetic valve, and the opening / closing control is performed by the control device 40.
 配管4dは、配管4bの開閉弁5bよりも下流側の合流部4fにおいて配管4bに合流しており、配管4bと、熱交換器82とを流体的に接続している。配管4dには、配管4d内の温調媒体の流動を許容又は遮断する開閉弁5dが設けられている。開閉弁5dは、電磁弁であり、制御装置40によって開閉制御される。 The pipe 4d joins the pipe 4b at a joining portion 4f on the downstream side of the on-off valve 5b of the pipe 4b, and fluidly connects the pipe 4b and the heat exchanger 82. The pipe 4d is provided with an opening / closing valve 5d that allows or blocks the flow of the temperature control medium in the pipe 4d. The opening / closing valve 5d is an electromagnetic valve, and the opening / closing control is performed by the control device 40.
 実施形態の制御装置40は、温度検出部60からのモータ20の温度状態に関連する温度に対応する信号と、圧力測定部70からのモータ室12a(図5に示す)の圧力に対応する信号とに基づいて、モータ20の起動と、開閉弁5a~5dの作動とを制御する。 The control device 40 of the embodiment includes a signal from the temperature detection unit 60 that corresponds to the temperature related to the temperature state of the motor 20, and a signal from the pressure measurement unit 70 that corresponds to the pressure of the motor chamber 12a (shown in FIG. 5). The start of the motor 20 and the operation of the on-off valves 5a to 5d are controlled based on the above.
 本実施形態では、制御装置40の制御フローは、ステップS5の処理を除いて第1実施形態と同様であり、図3を援用する。本実施形態では、ステップS5の処理において、制御装置40は、開閉弁5c,5dを開放するとともに、開閉弁5a,5bを閉鎖するように、開閉弁5a~5dの作動を制御する。また、制御装置40は、ポンプ(図示せず)を起動して、加熱回路で温調媒体を循環させる。これにより、加熱回路を介して、モータケーシングジャケット80にモータ室12aでの冷媒の飽和温度Tsを超える温度を有する温調媒体(高温水)が供給され、モータ室12aが加熱される。 In the present embodiment, the control flow of the control device 40 is the same as that of the first embodiment except for the process of step S5, and FIG. 3 is cited. In the present embodiment, in the process of step S5, the control device 40 controls the operation of the open / close valves 5a to 5d so as to open the open / close valves 5c and 5d and close the open / close valves 5a and 5b. The control device 40 also activates a pump (not shown) to circulate the temperature control medium in the heating circuit. As a result, the temperature control medium (high-temperature water) having a temperature exceeding the saturation temperature Ts of the refrigerant in the motor chamber 12a is supplied to the motor casing jacket 80 via the heating circuit, and the motor chamber 12a is heated.
 本実施形態において、開閉弁5a,5cを設ける代わりに、分岐部4eに三方弁を設けてもよい。同様に、開閉弁5b,5dを設ける代わりに、合流部4fに三方弁を設けてもよい。 In the present embodiment, instead of providing the on-off valves 5a and 5c, a three-way valve may be provided on the branch portion 4e. Similarly, instead of providing the on-off valves 5b and 5d, a three-way valve may be provided on the merging portion 4f.
 (第4実施形態)
 図7を参照すると、本実施形態の冷凍装置1は、配管2eにおける吸込逆止弁3bの上流に側の部分(第1流路C1)とモータ室12a(図8に示す)とを流体的に接続するバイパス配管6を備える。バイパス配管6には、バイパス配管6内の冷媒の流動を許容又は遮断するバイパス弁7が設けられている。バイパス弁7は、電磁弁であり、冷凍装置1の通常運転状態では閉じられている。
(Fourth Embodiment)
Referring to FIG. 7, the refrigerating apparatus 1 of the present embodiment fluidly connects the portion (first flow path C1) on the upstream side of the suction check valve 3b in the pipe 2e and the motor chamber 12a (shown in FIG. 8). A bypass pipe 6 connected to the. The bypass pipe 6 is provided with a bypass valve 7 that allows or blocks the flow of the refrigerant in the bypass pipe 6. The bypass valve 7 is a solenoid valve and is closed in the normal operation state of the refrigeration system 1.
 図8を参照すると、本実施形態のモータケーシング12には、バイパス配管6(図7に示す)に接続されたバイパス孔12fが形成されている。これにより、図7を併せて参照すると、モータ室12aと、第1流路C1とは、バイパス配管6によって流体的に接続されている。詳しくは、バイパス孔12fは、モータケーシング12においてモータ20を挟んで接続空間15とは反対側に設けられている。すなわちバイパス孔12fは、モータケーシング12のモータ20に関して反負荷側に設けられている。 Referring to FIG. 8, the motor casing 12 of the present embodiment has a bypass hole 12f connected to the bypass pipe 6 (shown in FIG. 7). Thus, referring also to FIG. 7, the motor chamber 12a and the first flow path C1 are fluidly connected by the bypass pipe 6. Specifically, the bypass hole 12f is provided in the motor casing 12 on the opposite side of the connection space 15 with the motor 20 interposed therebetween. That is, the bypass hole 12f is provided on the side opposite to the load of the motor 20 of the motor casing 12.
 また、本実施形態の配管2eにおける、第1流路C1には、第1流路C1を流れる冷媒の圧力P1を検出する圧力センサ90が設けられている。 A pressure sensor 90 for detecting the pressure P1 of the refrigerant flowing through the first flow path C1 is provided in the first flow path C1 in the pipe 2e of the present embodiment.
 本実施形態の制御装置40は、温度検出部60からのモータ20の温度状態に関連する温度に対応する信号と、圧力測定部70からのモータ室12a(図8に示す)の圧力に対応する信号とに基づいて、モータ20の起動と、電気ヒータ50の作動と、バイパス弁7の作動とを制御する。 The control device 40 of the present embodiment corresponds to the signal from the temperature detection unit 60 corresponding to the temperature related to the temperature state of the motor 20 and the pressure of the motor chamber 12a (shown in FIG. 8) from the pressure measurement unit 70. The activation of the motor 20, the operation of the electric heater 50, and the operation of the bypass valve 7 are controlled based on the signal.
 本実施形態では、制御装置40の制御フローは、ステップS5の処理を除いて第1実施形態と同様であり、図3を援用する。本実施形態の制御装置40は、ステップS5の処理において、電気ヒータ50によってモータ室12aを加熱する際に、圧力センサ90によって測定された第1流路の圧力P1がモータ室12aの圧力Pより低い場合に、バイパス弁7を開放する。すなわち、本実施形態では、代表温度Tが飽和温度Ts以下で、第1流路の圧力P1がモータ室12aの圧力Pより低い場合に、バイパス弁7が開かれる。なお、制御装置40によってモータ20を起動する前にバイパス弁7を閉じることができる。 In the present embodiment, the control flow of the control device 40 is the same as that of the first embodiment except for the process of step S5, and FIG. 3 is cited. In the process of step S5, when the electric heater 50 heats the motor chamber 12a, the control device 40 of the present embodiment determines that the pressure P1 of the first flow passage measured by the pressure sensor 90 is higher than the pressure P of the motor chamber 12a. If low, the bypass valve 7 is opened. That is, in the present embodiment, the bypass valve 7 is opened when the representative temperature T is equal to or lower than the saturation temperature Ts and the pressure P1 in the first passage is lower than the pressure P in the motor chamber 12a. The bypass valve 7 can be closed before the motor 20 is started by the control device 40.
 この構成によれば、バイパス弁7を開くことで、バイパス配管6を通じてモータ室12aの圧力Pを第1流路の圧力P1と均衡させることができる。これにより、モータ室12aを減圧できるため、モータ室12aでの冷媒の飽和温度Tsを低下できる。このため、電気ヒータ50によるモータ室12aの加熱と、バイパス配管6によるモータ室12aの減圧とを併用することで、モータ20の焼損を効率的に抑制できる。 According to this configuration, by opening the bypass valve 7, the pressure P in the motor chamber 12a can be balanced with the pressure P1 in the first flow path through the bypass pipe 6. As a result, the pressure in the motor chamber 12a can be reduced, so that the saturation temperature Ts of the refrigerant in the motor chamber 12a can be lowered. Therefore, the heating of the motor chamber 12a by the electric heater 50 and the decompression of the motor chamber 12a by the bypass pipe 6 are used together, whereby the burnout of the motor 20 can be efficiently suppressed.
 以上より、本発明の具体的な実施形態及びその変形例について説明したが、本発明は上記形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。 Although specific embodiments of the present invention and modifications thereof have been described above, the present invention is not limited to the above embodiments, and various modifications can be made within the scope of the present invention.
 例えば、圧縮機10は、スクリュ式の圧縮機に限定されず、往復式又は遠心式のような他の種類の圧縮機であってもよい。 For example, the compressor 10 is not limited to a screw type compressor, and may be another type of compressor such as a reciprocating type or a centrifugal type.
 また、圧縮機10は、2段型圧縮機に限定されず、1段圧縮機であってもよい。 Further, the compressor 10 is not limited to the two-stage compressor, and may be a one-stage compressor.
 また、圧縮機10は、半密閉型の圧縮機に限定されず、モータケーシング内に冷媒が存在し得るものであれば全密封型の圧縮機であってもよい。すなわち、圧縮機ケーシング11とモータケーシング12とは、一体に形成されてもよい。 Further, the compressor 10 is not limited to a semi-hermetic type compressor, and may be a totally hermetic type compressor as long as the refrigerant can exist in the motor casing. That is, the compressor casing 11 and the motor casing 12 may be integrally formed.
  1 冷凍装置
  2a~2e 配管
  3a 吐出逆止弁
  3b 吸込逆止弁
  4a~4d 配管
  4e 分岐部
  4f 合流部
  5a~5d 開閉弁
  6 バイパス配管
  7 バイパス弁
  10 圧縮機
  11 圧縮機ケーシング
  11a ロータ室
  11b ロータ室
  11c 吸気口
  11d 吐出口
  11e~11h 軸受
  12 モータケーシング
  12a モータ室
  12b,12c 連通路
  12d,12e 軸受
  13 1段目圧縮機本体
  13a スクリュロータ
  14 2段目圧縮機本体
  15 接続空間
  16a,16b,16c ギア
  20 モータ
  21 出力軸
  22 回転子
  23 固定子
  23a 固定子コイル
  30 オイルセパレータ
  31 凝縮器
  32 冷媒タンク
  33 膨張弁
  34 蒸発器
  40 制御装置
  50 電気ヒータ(加熱部)
  60 温度検出部
  61,62,63 温度センサ
  70 圧力測定部
  71 圧力センサ
  80 モータケーシングジャケット
  81 冷却装置
  82 熱交換器
  90 圧力センサ
1 Refrigerator 2a to 2e Piping 3a Discharge check valve 3b Suction check valve 4a to 4d Piping 4e Branching section 4f Merging section 5a to 5d Open / close valve 6 Bypass piping 7 Bypass valve 10 Compressor 11 Compressor casing 11a Rotor chamber 11b Rotor Chamber 11c Intake port 11d Discharge port 11e-11h Bearing 12 Motor casing 12a Motor chamber 12b, 12c Communication passage 12d, 12e Bearing 13 1st stage compressor body 13a Screw rotor 14 2nd stage compressor body 15 Connection space 16a, 16b, 16c Gear 20 Motor 21 Output shaft 22 Rotor 23 Stator 23a Stator coil 30 Oil separator 31 Condenser 32 Refrigerant tank 33 Expansion valve 34 Evaporator 40 Controller 50 Electric heater (heating unit)
60 Temperature Detector 61, 62, 63 Temperature Sensor 70 Pressure Measuring Unit 71 Pressure Sensor 80 Motor Casing Jacket 81 Cooling Device 82 Heat Exchanger 90 Pressure Sensor

Claims (7)

  1.  冷凍サイクルのための冷媒を圧縮する圧縮機と、
     前記圧縮機のモータケーシングで画定されたモータ室に収容され、前記圧縮機を駆動するモータと、
     前記モータ室の内部の圧力を測定する圧力測定部と、
     前記モータの温度状態と関連する温度を測定する温度検出部と、
     前記モータ室を加熱する加熱部と、
     前記モータと前記加熱部とを制御する制御装置と
     を備え、
     前記制御装置は、
     前記圧力測定部によって測定された圧力における前記冷媒の飽和温度を算出し、
     前記圧縮機を起動する際に、前記温度検出部によって検出された代表温度が前記飽和温度以下の場合には、前記加熱部によって前記モータ室を加熱し、
     前記代表温度が前記飽和温度を超える場合に、前記圧縮機を起動可能にする、冷凍装置。
    A compressor for compressing the refrigerant for the refrigeration cycle,
    A motor that is housed in a motor chamber defined by the motor casing of the compressor and that drives the compressor;
    A pressure measuring unit for measuring the pressure inside the motor chamber,
    A temperature detection unit that measures a temperature related to the temperature state of the motor,
    A heating unit for heating the motor chamber,
    A control device for controlling the motor and the heating unit,
    The control device is
    Calculate the saturation temperature of the refrigerant at the pressure measured by the pressure measurement unit,
    When starting the compressor, if the representative temperature detected by the temperature detection unit is less than or equal to the saturation temperature, heat the motor chamber by the heating unit,
    A refrigeration apparatus that enables the compressor to be started when the representative temperature exceeds the saturation temperature.
  2.  前記温度検出部は、前記モータの固定子コイルの温度と前記モータ室の温度とを測定し、
     前記制御装置は、
     前記温度検出部によって検出された前記固定子コイルの温度と前記モータ室の温度との大小関係を判断し、
     前記固定子コイルの温度と前記モータ室の温度とのうち低い方の温度を前記代表温度として設定する、請求項1に記載の冷凍装置。
    The temperature detector measures the temperature of the stator coil of the motor and the temperature of the motor chamber,
    The control device is
    Judging the magnitude relationship between the temperature of the stator coil and the temperature of the motor chamber detected by the temperature detector,
    The refrigerating apparatus according to claim 1, wherein a lower one of the temperature of the stator coil and the temperature of the motor chamber is set as the representative temperature.
  3.  前記温度検出部は、前記モータケーシングの温度を測定し、
     前記制御装置は、
     前記温度検出部によって検出された前記モータケーシングの温度から前記モータの固定子コイルの温度または前記モータ室の温度を推定し、
     前記モータの固定子コイルの温度または前記モータ室の温度の推定値を前記代表温度として設定する、請求項1に記載の冷凍装置。
    The temperature detector measures the temperature of the motor casing,
    The control device is
    Estimating the temperature of the stator coil of the motor or the temperature of the motor chamber from the temperature of the motor casing detected by the temperature detection unit,
    The refrigeration apparatus according to claim 1, wherein an estimated value of the temperature of the stator coil of the motor or the temperature of the motor chamber is set as the representative temperature.
  4.  前記加熱部は、前記モータケーシングに取り付けられたヒータである、請求項1から3のいずれか1項に記載の冷凍装置。 The refrigeration system according to any one of claims 1 to 3, wherein the heating unit is a heater attached to the motor casing.
  5.  前記圧縮機は、前記モータケーシングの外面を取り囲むように構成されたモータケーシングジャケットを備え、
     前記加熱部は、前記モータケーシングジャケットと、前記モータ室の温度よりも高い温度を有する温調媒体を前記モータケーシングジャケットに供給する加熱回路とからなる、請求項1から3のいずれか1項に記載の冷凍装置。
    The compressor includes a motor casing jacket configured to surround an outer surface of the motor casing,
    4. The heating unit according to claim 1, wherein the heating unit includes the motor casing jacket and a heating circuit that supplies a temperature control medium having a temperature higher than the temperature of the motor chamber to the motor casing jacket. The refrigeration system described.
  6.  前記冷凍サイクルにおいて前記圧縮機の上流側に設けられた吸込逆止弁と、
     前記冷凍サイクルにいて前記吸込逆止弁よりも上流側の第1流路と前記モータ室とを流体的に接続するバイパス配管と、
     前記バイパス配管に設けられたバイパス弁と
     を備える、請求項1から3のいずれか1項に記載の冷凍装置。
    A suction check valve provided on the upstream side of the compressor in the refrigeration cycle,
    A bypass pipe that fluidly connects the first flow path upstream of the suction check valve and the motor chamber in the refrigeration cycle;
    The refrigeration apparatus according to any one of claims 1 to 3, further comprising: a bypass valve provided in the bypass pipe.
  7.  前記制御装置は、前記代表温度が前記飽和温度以下で、前記第1流路の圧力が前記モータ室の圧力より低い場合に前記バイパス弁を開く、請求項6に記載の冷凍装置。 The refrigeration apparatus according to claim 6, wherein the control device opens the bypass valve when the representative temperature is equal to or lower than the saturation temperature and the pressure in the first flow path is lower than the pressure in the motor chamber.
PCT/JP2019/038210 2018-10-18 2019-09-27 Refrigeration apparatus WO2020080064A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018196721A JP6971951B2 (en) 2018-10-18 2018-10-18 Refrigeration equipment
JP2018-196721 2018-10-18

Publications (1)

Publication Number Publication Date
WO2020080064A1 true WO2020080064A1 (en) 2020-04-23

Family

ID=70283060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038210 WO2020080064A1 (en) 2018-10-18 2019-09-27 Refrigeration apparatus

Country Status (2)

Country Link
JP (1) JP6971951B2 (en)
WO (1) WO2020080064A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021160031A (en) 2020-03-31 2021-10-11 セイコーエプソン株式会社 Failure prediction method and device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004278961A (en) * 2003-03-18 2004-10-07 Mitsubishi Electric Corp Refrigerating machine
JP2005180753A (en) * 2003-12-18 2005-07-07 Mitsubishi Electric Corp Air conditioner and refrigerator
JP2009300008A (en) * 2008-06-13 2009-12-24 Mitsubishi Heavy Ind Ltd Refrigerator
JP2011515606A (en) * 2008-03-13 2011-05-19 エーエーエフ−マックウェイ インク. Large capacity chiller compressor
JP2011214484A (en) * 2010-03-31 2011-10-27 Toyota Industries Corp Waste heat utilization device, and compressor control method in waste heat utilization device
JP2012233632A (en) * 2011-04-28 2012-11-29 Mitsubishi Heavy Ind Ltd Air conditioner and control method of air conditioner
JP2013122185A (en) * 2011-12-09 2013-06-20 Daikin Industries Ltd Motor, compressor, and refrigerating device
WO2016170578A1 (en) * 2015-04-20 2016-10-27 三菱電機株式会社 Refrigeration cycle device
JP2018054171A (en) * 2016-09-27 2018-04-05 ダイキン工業株式会社 Freezer
WO2019102532A1 (en) * 2017-11-22 2019-05-31 三菱電機株式会社 Compressor and refrigeration cycle device
JP2019128112A (en) * 2018-01-25 2019-08-01 株式会社神戸製鋼所 Refrigerating device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004278961A (en) * 2003-03-18 2004-10-07 Mitsubishi Electric Corp Refrigerating machine
JP2005180753A (en) * 2003-12-18 2005-07-07 Mitsubishi Electric Corp Air conditioner and refrigerator
JP2011515606A (en) * 2008-03-13 2011-05-19 エーエーエフ−マックウェイ インク. Large capacity chiller compressor
JP2009300008A (en) * 2008-06-13 2009-12-24 Mitsubishi Heavy Ind Ltd Refrigerator
JP2011214484A (en) * 2010-03-31 2011-10-27 Toyota Industries Corp Waste heat utilization device, and compressor control method in waste heat utilization device
JP2012233632A (en) * 2011-04-28 2012-11-29 Mitsubishi Heavy Ind Ltd Air conditioner and control method of air conditioner
JP2013122185A (en) * 2011-12-09 2013-06-20 Daikin Industries Ltd Motor, compressor, and refrigerating device
WO2016170578A1 (en) * 2015-04-20 2016-10-27 三菱電機株式会社 Refrigeration cycle device
JP2018054171A (en) * 2016-09-27 2018-04-05 ダイキン工業株式会社 Freezer
WO2019102532A1 (en) * 2017-11-22 2019-05-31 三菱電機株式会社 Compressor and refrigeration cycle device
JP2019128112A (en) * 2018-01-25 2019-08-01 株式会社神戸製鋼所 Refrigerating device

Also Published As

Publication number Publication date
JP2020063884A (en) 2020-04-23
JP6971951B2 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
JP5110882B2 (en) Oil-free screw compressor
US8006514B2 (en) Refrigerating device
KR101220707B1 (en) Freezing device
JP2006242557A (en) Refrigerating device
KR101602741B1 (en) Constant temperature liquid circulating device and operation method thereof
US20190242622A1 (en) Refrigeration Cycle Apparatus
KR101220663B1 (en) Freezing device
JP2007232230A (en) Refrigerating device
JP5568591B2 (en) Oil-free screw compressor
KR101332478B1 (en) Freezing device
KR101190317B1 (en) Freezing device
WO2020080064A1 (en) Refrigeration apparatus
JP2004116957A (en) Refrigerant cycle system
KR102126815B1 (en) Refrigeration apparatus
JP2010038503A (en) Refrigeration cycle device
WO2013153970A1 (en) Two-stage oil-cooled compressor device
KR101429363B1 (en) Oil-cooled two-stage compressor and heat pump
KR101268207B1 (en) Freezing device
JP6714572B2 (en) Compressor and operating method thereof
JP2005214442A (en) Refrigerator
JP5469835B2 (en) Ammonia refrigeration equipment
JP3815611B2 (en) Heat pump water heater
JP2005009725A (en) Air conditioner and control method of air conditioner
JP7280519B2 (en) Refrigeration equipment inspection method and inspection device
JP5197255B2 (en) Ammonia refrigeration equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19872445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19872445

Country of ref document: EP

Kind code of ref document: A1