JP2004278961A - Refrigerating machine - Google Patents

Refrigerating machine Download PDF

Info

Publication number
JP2004278961A
JP2004278961A JP2003072874A JP2003072874A JP2004278961A JP 2004278961 A JP2004278961 A JP 2004278961A JP 2003072874 A JP2003072874 A JP 2003072874A JP 2003072874 A JP2003072874 A JP 2003072874A JP 2004278961 A JP2004278961 A JP 2004278961A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
compressor
winding
detecting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003072874A
Other languages
Japanese (ja)
Inventor
Terubumi Shinkai
光史 新海
Soichi Shiraishi
聡一 白石
Katsunori Shudo
克則 首藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003072874A priority Critical patent/JP2004278961A/en
Publication of JP2004278961A publication Critical patent/JP2004278961A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating machine capable of preventing the abnormal overheating of a motor winding by injecting the refrigerant liquid to the sucked gas, and enlarging an operation range of a compressor. <P>SOLUTION: This refrigerating machine comprises a winding temperature detecting means mounted on a motor winding of the compressor, a refrigerant liquid injection pipe mounted between an outlet side of a condenser and a suction-side pipe of the compressor for injecting a part of the refrigerant liquid to the suction-side pipe, a flow rate control valve mounted on the way of the refrigerant liquid injection pipe for controlling the injection amount of the refrigerant liquid, a refrigerant pressure detecting means and a refrigerant temperature detecting means respectively mounted on the suction-side pipe of the compressor, and a control device for controlling the injection amount of the refrigerant liquid by opening and closing the flow rate control valve on the basis of the winding temperature detected by the winding temperature detecting means, the saturated gas temperature and the saturated liquid temperature of the refrigerant detected by the refrigerant pressure detecting means, and the refrigerant temperature detected by the refrigerant temperature detecting means. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する分野】
この発明は、冷媒圧縮機の駆動用電動機の巻線冷却を吸入冷媒ガスで行う冷凍装置に関するものである。
【0002】
【従来の技術】
従来の冷凍装置においては、冷媒圧縮機の駆動用電動機の巻線は冷媒回路を循環する冷媒ガスにより冷却されているため、冷媒循環量が低下すると、電動機巻線の冷却効果が低下し電動機の巻線温度が上昇する。したがって、冷凍装置の高差圧運転や高負荷運転になると、吸入冷媒ガス風量が相対的に低下するため電動機の巻線温度が上昇する。電動機の巻線温度が過度に上昇した場合に、巻線保護用サーモスタットが作動して冷媒圧縮機を異常停止させてしまうため、巻線保護設定温度より低く設定した温度を検知して圧縮機連続運転を継続することにより、圧縮機の運転容量を上昇させるものがある(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2001−241787号公報(第1図)
【0004】
【発明が解決しようとする課題】
従来の冷凍装置では、電動機巻線の冷却を吸入冷媒ガスで行うため、高差圧運転や高負荷運転になると、吸入冷媒ガス風量の低下に伴って電動機巻線の過熱が起こり、巻線温度が上昇し、冷凍装置の連続運転ができなくなる。また特許文献1記載のように、巻線保護設定温度より低く設定した温度を検出して圧縮機連続運転を継続するものでは、巻線の過熱を直接的に抑制するものではないので、根本的な解決にはならないという問題点があった。
【0005】
この発明は、上述のような課題を解決するためになされたもので、吸入冷媒ガスに冷媒液を噴射することにより、電動機巻線の異常過熱を防止し、圧縮機の運転範囲を拡大することができる冷凍装置を提供するものである。
【0006】
また、非共沸混合冷媒固有の特性である温度勾配を利用して吸入冷媒の乾き度を検知し、冷媒液噴射量を制限することにより、液バックによる冷媒圧縮機の不具合を防止できる冷凍装置を提供するものである。
【0007】
【課題を解決するための手段】
この発明に係る冷凍装置においては、圧縮機の電動機巻線温度が過度に上昇した時、巻線保護用温度調節手段が作動して圧縮機を異常停止するようにしたものにおいて、圧縮機の電動機巻線に設けられた巻線温度検知手段と、凝縮器の出口側と圧縮機の吸入側配管との間に設けられ冷媒液の一部を吸入側配管に噴射する冷媒液噴射配管と、この冷媒液噴射配管の途中に設けられ冷媒液噴射量を制御する流量制御弁と、圧縮機の吸入側配管にそれぞれ設けられた冷媒圧力検知手段及び冷媒温度検知手段と、巻線温度検知手段が検知した巻線温度、冷媒圧力検知手段が検知した冷媒の飽和ガス温度及び飽和液温度、冷媒温度検知手段が検知した冷媒温度により、流量制御弁を開閉制御して冷媒液噴射量を制御する制御装置とを備えたものである。
【0008】
【発明の実施の形態】
実施の形態1.
図1はこの発明の実施の形態1における冷凍装置の冷媒回路図である。図において、冷媒圧縮機1、冷媒凝縮器2、膨張弁3、冷媒蒸発器4及びこれら各構成部品を順次連結接続する冷媒配管5により冷凍装置の冷媒回路を構成している。冷媒圧縮機1は電動機1aと圧縮部1bとから構成され、電動機1aには巻線保護用温度調節手段であるサーモスタット1cと巻線温度検知手段である巻線温度センサー1dが設けられている。冷媒凝縮器2には例えば冷却水管等の冷媒凝縮用熱源2aが設けられている。冷媒蒸発器4には例えばブライン配管等の冷媒蒸発用熱源4aが設けられている。冷媒凝縮器2の出口側と冷媒圧縮機1の吸入側配管5との間には、冷媒凝縮器2で凝縮液化された冷媒液の一部を吸入側配管5に噴射する冷媒液噴射配管6が設けられ、この冷媒液噴射配管6の途中には噴射量を制御する流量制御弁7が設けられている。また、冷媒圧縮機1の吸入側配管5における冷媒液噴射配管6接続部の下流側(圧縮機側)に冷媒圧力検知手段である冷媒圧力センサー8と冷媒温度検知手段である冷媒温度センサー9が設けられている。制御装置10は、巻線温度センサー1dにより電動機1aの巻線温度が所定の設定値を超えるまで上昇した場合、流量制御弁7を予め設定された開閉速度で開閉制御して、冷媒凝縮器2で凝縮液化した冷媒液の一部を冷媒圧縮機1の吸入側配管5に噴射する。この噴射された冷媒液により、電動機1aの巻線を冷却し巻線温度を所定の温度まで低下させることができ、より高圧差での冷凍装置の運転が可能となる。また制御装置10は、吸入配管5の冷媒液噴射配管6接続部の下流側(圧縮機側)に設けた冷媒圧力センサー8で検出した冷媒の蒸発圧力pに基づいて冷媒の飽和ガス温度tg及び飽和液温度tlをそれぞれ演算し、冷媒温度センサー9にて検出した冷媒温度tと比較する。そして、冷媒の飽和ガス温度tgと飽和液温度tlとの温度差と、冷媒温度センサー9で検出した冷媒温度tと飽和液温度tlとの温度差を比較演算することにより、冷媒の乾き度xを推定する。この乾き度xが、冷媒圧縮機1が許容することができる吸入ガス乾き度以下(または未満)になった場合は、液バックによる不具合を防止するために流量制御弁7の開度を保持し冷媒液噴射量を制限する。冷媒液噴射量を制限した結果、電動機1aの巻線温度が巻線保護用サーモスタット1cの作動温度まで上昇した場合は、冷媒圧縮機1の運転を停止する制御を行う。
【0009】
図2は従来使用してきた単一冷媒の冷凍サイクル線図を示す。単一冷媒の等温度線は図2の1A−1B−1C−1D、2A−2B−2C−2Dのように示され、冷媒の蒸発工程ハにおけるc−1c間は等温度変化となる。
【0010】
図3は非共沸混合冷媒を使用した場合の冷凍サイクル線図を示す。非共沸混合冷媒の場合は沸点の異なる2種類以上の冷媒で構成されているため、冷媒の相変化において温度勾配を有している。このため等温度線は図3の1A−1B−1C−1D、1A’−1B’−1C’−1D’、2A−2B−2C−2Dのように示され、蒸発工程ハにおいては冷媒が蒸発していく過程で温度変化が生じる。なお、図2及び図3において、アは飽和ガス線、カは飽和液線、サは等乾き度線を示す。
この発明は図3の非共沸混合冷媒を使用した冷凍装置に関するものであり、この非共沸混合冷媒を用いた冷凍装置を図1に示す冷媒回路図により説明する。
冷凍装置の高差圧運転や高負荷運転等により、冷媒圧縮機1の電動機1aの発熱量に対して吸入ガス風量が相対的に減少し、電動機巻線温度センサー1dにて検出している電動機1aの巻線温度が所定の設定値を超えるまで上昇した場合、制御装置10により電気的に流量制御を行うことができる流量制御弁7を予め設定した開閉速度で開閉制御して、冷媒凝縮器2で凝縮液化された冷媒液の一部を冷媒圧縮機1の吸入側配管5に噴射する。そして、吸入側配管5へ冷媒液を噴射し、電動機1aの巻線を冷却し巻線温度を所定の温度まで低下させることができ、より高差圧での冷凍装置の運転を可能にしている。
一方、電動機1aの巻線温度及び電動機1aの主たる冷却熱源である吸入ガス風量は、冷媒圧縮機1の容量制御状態や高低圧条件等によって異なるため、噴射する冷媒量は電動機巻線温度センサー1d、制御装置10及び流量制御弁7によって増減することになるが、容量制御時や高差圧時に吸入ガス風量が減少すると、吸入ガス風量に対する冷媒液噴射量が相対的に増加するため、冷媒圧縮機1に吸入される冷媒が気液二相状態となり、液バックによる冷媒圧縮機1の不具合が発生する場合がある。これを防止するため、この発明の実施の形態1では、冷媒液噴射配管6接続部の下流側(圧縮機側)に冷媒圧力センサー8と冷媒温度センサー9とを設け、冷媒圧力センサー8で検出した冷媒の蒸発圧力pに基づいて冷媒の飽和ガス温度tg及び飽和液温度tlを制御装置10で演算し、冷媒温度センサー9にて検出した冷媒温度tと比較する。ここで使用冷媒である非共沸混合冷媒は、図3に示すように蒸発の過程で温度勾配を持つため、冷媒温度<冷媒圧力相当飽和ガス温度である場合は、冷媒圧縮機1に吸入される冷媒が気液二相状態であると判断することができる。また、冷媒の飽和ガス温度tgと飽和液温度tlとの温度差と、冷媒温度センサー9で検出した冷媒温度tと飽和液温度tlとの温度差を比較演算することにより、冷媒の乾き度xを推定することができる。この乾き度xが、冷媒圧縮機1が許容することができる吸入ガス乾き度以下(または未満)になった場合は、液バックによる不具合を防止するために流量制御弁7の開度を保持し冷媒液噴射量を制限する。冷媒液噴射量を制限した結果、電動機1aの巻線温度が巻線保護用サーモスタット1cの作動温度まで上昇した場合は、冷媒圧縮機1を異常停止する制御を行う。
【0011】
以上のとおり、非共沸混合冷媒を使用した冷凍装置において、冷媒凝縮器2で凝縮液化された冷媒液の一部を吸入側配管5に噴射することにより、電動機1aの巻線温度を低下させ、運転領域が拡大するとともに、過度の液噴射による液バックに起因する冷媒圧縮機1の不具合を防止することができる。
【0012】
この発明の実施の形態1における冷媒液噴射制御の一例を図4に示すフローチャートにより説明する。巻線保護用サーモスタット1cの作動温度TM>T1>T2>T3の関係にあるとする。なお、T1、T2、T3は巻線温度センサー1dによる各設定値である。
まずステップS1で冷媒圧縮機1が運転中であるかを判断する。運転中でなければ元に戻る。冷媒圧縮機1が運転中であればステップS2で巻線温度を検出し、巻線温度がT1より低ければステップS3に進み、流量制御弁7を開度維持(その時点での弁開度のまま保持)しながら冷媒液噴射量を制限する。このステップS3で冷媒液噴射量を制限した結果、電動機1aの巻線温度が巻線保護用サーモスタット1cの作動温度TMまで上昇した場合(ステップS4)は、冷媒圧縮機1を異常停止する(ステップS5)。ステップS4で巻線保護用サーモスタット1cの作動温度TMまで達しない場合は元に戻る。一方、ステップS2で巻線温度がT1より高ければステップS6に進み、制御装置10により吸入ガス乾き度を演算する。この演算結果である乾き度をステップS7で冷媒圧縮機1の許容値と比較する。演算結果の乾き度が冷媒圧縮機1の許容値未満であれば上記と同様にステップS3、S4、S5の制御を行う。ステップS7で演算結果の乾き度が冷媒圧縮機の許容値以上であれば、ステップS8に進み、流量制御弁7の開度を少し開いて冷媒液噴射量を増やす動作を行う。次にステップS9で巻線温度がT2よりも高ければ元に戻る。ステップS9で巻線温度がT2より低ければステップS10に進み、ここで巻線温度がT3より低くなれば流量制御弁7を閉じる(ステップS11)。その後元に戻る。またステップS10で巻線温度がT3より高ければ上記と同様にステップS3、S4、S5の制御を行う。
【0013】
次に、この発明の実施の形態1における吸入ガス乾き度演算の一例を図5に示すフローチャートにより説明する。ここで、冷媒圧力センサー8の計測値p、冷媒温度センサー9の計測値t、飽和ガス温度tg、飽和液温度tl、乾き度xとする。
まずステップS21で冷媒圧力センサー8により圧縮機吸入側冷媒圧力を計測値pとして計測し、この計測値pに基づいてステップS22で冷媒の飽和ガス温度tgを、ステップS23で冷媒の飽和液温度tlをそれぞれ演算する。ステップS24では冷媒温度センサー9により圧縮機吸入側冷媒温度を計測値tとして計測する。そして、ステップ25で冷媒の飽和ガス温度tgと飽和液温度tlとの温度差(tg−tl)と、冷媒温度センサー9の計測値tと飽和液温度tlとの温度差(t−tl)を比較することにより、冷媒の乾き度xを推定演算する。
【0014】
【発明の効果】
この発明は以上説明したように、圧縮機の電動機巻線温度が過度に上昇した時、巻線保護用温度調節手段が作動して圧縮機を異常停止するようにしたものにおいて、圧縮機の電動機巻線に設けられた巻線温度検知手段と、凝縮器の出口側と圧縮機の吸入側配管との間に設けられ冷媒液の一部を吸入側配管に噴射する冷媒液噴射配管と、この冷媒液噴射配管の途中に設けられ冷媒液噴射量を制御する流量制御弁と、圧縮機の吸入側配管にそれぞれ設けられた冷媒圧力検知手段及び冷媒温度検知手段と、巻線温度検知手段が検知した巻線温度、冷媒圧力検知手段が検知した冷媒の飽和ガス温度及び飽和液温度、冷媒温度検知手段が検知した冷媒温度により、流量制御弁を開閉制御して冷媒液噴射量を制御する制御装置とを備え、吸入ガスに冷媒液を噴射することにより、電動機巻線の異常過熱を防止し、圧縮機の運転範囲を拡大することができる。
【0015】
また、非共沸混合冷媒固有の特性である温度勾配を利用して吸入冷媒の乾き度を検知し、冷媒液噴射量を制限することにより、液バックによる冷媒圧縮機の不具合を防止できる。
【図面の簡単な説明】
【図1】この発明の実施の形態1を示す冷凍装置の冷媒回路図である。
【図2】従来使用してきた単一冷媒の冷凍サイクル線図である。
【図3】この発明の実施の形態1における非共沸混合冷媒を使用した場合の冷凍サイクル線図である。
【図4】この発明の実施の形態1における冷媒液噴射制御の一例を示すフローチャートである。
【図5】この発明の実施の形態1における吸入ガス乾き度演算の一例を示すフローチャートである。
【符号の説明】
1 冷媒圧縮機
1a 電動機
1b 圧縮部
1c 巻線保護用サーモスタット
1d 巻線温度センサー
2 冷媒凝縮器
2a 冷媒凝縮用熱源
3 膨張弁
4 冷媒蒸発器
4a 冷媒蒸発用熱源
5 冷媒配管
6 冷媒液噴射配管
7 流量制御弁
8 冷媒圧力センサー
9 冷媒温度センサー
10 制御装置
[0001]
[Field of the Invention]
The present invention relates to a refrigeration apparatus that cools a winding of a drive motor of a refrigerant compressor by using a suctioned refrigerant gas.
[0002]
[Prior art]
In the conventional refrigeration apparatus, the winding of the motor for driving the refrigerant compressor is cooled by the refrigerant gas circulating in the refrigerant circuit. Winding temperature rises. Therefore, when a high differential pressure operation or a high load operation of the refrigeration apparatus is performed, the flow rate of the suctioned refrigerant gas is relatively reduced, so that the winding temperature of the electric motor is increased. If the winding temperature of the motor rises excessively, the thermostat for winding protection will operate and stop the refrigerant compressor abnormally. There is one that increases the operating capacity of a compressor by continuing the operation (for example, see Patent Document 1).
[0003]
[Patent Document 1]
JP 2001-241787 A (FIG. 1)
[0004]
[Problems to be solved by the invention]
In the conventional refrigeration system, since the motor winding is cooled by the suction refrigerant gas, when the high differential pressure operation or the high load operation is performed, the motor winding is overheated due to the decrease in the suction refrigerant gas air flow, and the winding temperature is reduced. Rise and the continuous operation of the refrigeration system becomes impossible. Further, as described in Patent Literature 1, in the case of detecting the temperature set lower than the winding protection set temperature and continuing the compressor continuous operation, the overheating of the winding is not directly suppressed. There was a problem that it could not be solved.
[0005]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and it is intended to prevent abnormal overheating of an electric motor winding and expand an operating range of a compressor by injecting a refrigerant liquid into a suction refrigerant gas. It is intended to provide a refrigeration apparatus capable of performing the above.
[0006]
In addition, a refrigeration system that detects the dryness of the suction refrigerant using a temperature gradient, which is a characteristic characteristic of non-azeotropic mixed refrigerant, and limits the amount of liquid refrigerant injected, thereby preventing the refrigerant compressor from malfunctioning due to liquid back. Is provided.
[0007]
[Means for Solving the Problems]
In the refrigeration apparatus according to the present invention, when the motor winding temperature of the compressor excessively rises, the winding protection temperature adjusting means operates to stop the compressor abnormally. A winding temperature detecting means provided on the winding, a refrigerant liquid injection pipe provided between the outlet side of the condenser and the suction side pipe of the compressor and injecting a part of the refrigerant liquid to the suction side pipe, A flow control valve provided in the middle of the refrigerant liquid injection pipe for controlling the amount of refrigerant liquid injected, refrigerant pressure detection means and refrigerant temperature detection means provided respectively on the suction side pipe of the compressor, and winding temperature detection means are detected. A control device that controls opening and closing of a flow control valve to control a refrigerant liquid injection amount based on the detected winding temperature, the saturated gas temperature and the saturated liquid temperature of the refrigerant detected by the refrigerant pressure detecting means, and the refrigerant temperature detected by the refrigerant temperature detecting means. It is provided with.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram of a refrigeration apparatus according to Embodiment 1 of the present invention. In the figure, a refrigerant circuit of a refrigeration apparatus is constituted by a refrigerant compressor 1, a refrigerant condenser 2, an expansion valve 3, a refrigerant evaporator 4, and a refrigerant pipe 5 which sequentially connects and connects these components. The refrigerant compressor 1 includes an electric motor 1a and a compression section 1b. The electric motor 1a is provided with a thermostat 1c serving as a winding protection temperature adjusting means and a winding temperature sensor 1d serving as a winding temperature detecting means. The refrigerant condenser 2 is provided with a refrigerant condensation heat source 2a such as a cooling water pipe. The refrigerant evaporator 4 is provided with a refrigerant evaporation heat source 4a such as a brine pipe. A refrigerant liquid injection pipe 6 for injecting a part of the refrigerant liquid condensed and liquefied in the refrigerant condenser 2 to the suction pipe 5 between the outlet side of the refrigerant condenser 2 and the suction pipe 5 of the refrigerant compressor 1. A flow control valve 7 for controlling the injection amount is provided in the middle of the refrigerant liquid injection pipe 6. A refrigerant pressure sensor 8 as a refrigerant pressure detecting means and a refrigerant temperature sensor 9 as a refrigerant temperature detecting means are provided on the suction side pipe 5 of the refrigerant compressor 1 on the downstream side (compressor side) of the connection portion of the refrigerant liquid injection pipe 6. Is provided. When the winding temperature of the electric motor 1a rises above a predetermined set value by the winding temperature sensor 1d, the control device 10 controls the flow control valve 7 to open and close at a preset opening and closing speed, and the refrigerant condenser 2 A part of the refrigerant liquid condensed and liquefied in the above is injected into the suction side pipe 5 of the refrigerant compressor 1. With the injected refrigerant liquid, the winding of the electric motor 1a can be cooled to lower the winding temperature to a predetermined temperature, and the refrigeration apparatus can be operated at a higher pressure difference. The controller 10 also controls the saturated gas temperature tg of the refrigerant and the saturation gas temperature tg of the refrigerant based on the refrigerant evaporation pressure p detected by the refrigerant pressure sensor 8 provided on the downstream side (compressor side) of the refrigerant liquid injection pipe 6 connection part of the suction pipe 5. The saturated liquid temperature tl is calculated and compared with the refrigerant temperature t detected by the refrigerant temperature sensor 9. Then, a difference between the temperature tg of the saturated gas of the refrigerant and the temperature tl of the saturated liquid and the temperature difference between the temperature t of the refrigerant detected by the refrigerant temperature sensor 9 and the temperature tl of the saturated liquid are compared with each other to obtain the dryness x of the refrigerant Is estimated. When the dryness x becomes equal to or less than (or less than) the dryness of the suction gas that the refrigerant compressor 1 can tolerate, the opening of the flow control valve 7 is maintained to prevent a problem due to liquid back. Limit the amount of refrigerant liquid injected. If the winding temperature of the electric motor 1a rises to the operating temperature of the winding protection thermostat 1c as a result of restricting the refrigerant liquid injection amount, control to stop the operation of the refrigerant compressor 1 is performed.
[0009]
FIG. 2 shows a refrigeration cycle diagram of a single refrigerant conventionally used. The isothermal line of the single refrigerant is shown as 1A-1B-1C-1D and 2A-2B-2C-2D in FIG. 2, and the temperature changes between c-1c in the refrigerant evaporation step c.
[0010]
FIG. 3 shows a refrigeration cycle diagram when a non-azeotropic mixed refrigerant is used. A non-azeotropic mixed refrigerant is composed of two or more types of refrigerant having different boiling points, and thus has a temperature gradient in the phase change of the refrigerant. Therefore, the isothermal lines are shown as 1A-1B-1C-1D, 1A'-1B'-1C'-1D ', and 2A-2B-2C-2D in FIG. During the process, a temperature change occurs. In FIGS. 2 and 3, a represents a saturated gas line, f represents a saturated liquid line, and sa represents an equal-dryness curve.
The present invention relates to a refrigeration apparatus using the non-azeotropic mixed refrigerant of FIG. 3, and a refrigeration apparatus using the non-azeotropic mixed refrigerant will be described with reference to a refrigerant circuit diagram shown in FIG.
Due to the high differential pressure operation or the high load operation of the refrigerating device, the amount of intake gas air decreases relatively to the amount of heat generated by the electric motor 1a of the refrigerant compressor 1, and the electric motor detected by the electric motor winding temperature sensor 1d. When the winding temperature of the coil 1a rises above a predetermined set value, the controller 10 controls the flow rate control valve 7, which can electrically control the flow rate, to open and close at a preset opening / closing speed, and the refrigerant condenser A part of the refrigerant liquid condensed and liquefied in 2 is injected into the suction side pipe 5 of the refrigerant compressor 1. Then, the refrigerant liquid is injected into the suction-side pipe 5 to cool the windings of the electric motor 1a to lower the winding temperature to a predetermined temperature, thereby enabling the operation of the refrigeration system at a higher differential pressure. .
On the other hand, the winding temperature of the electric motor 1a and the amount of intake gas air, which is the main cooling heat source of the electric motor 1a, vary depending on the capacity control state of the refrigerant compressor 1, high and low pressure conditions, and the like. However, if the suction gas flow rate decreases during capacity control or high differential pressure, the refrigerant liquid injection quantity relative to the suction gas flow rate increases, and thus the refrigerant compression rate increases. The refrigerant drawn into the compressor 1 may be in a gas-liquid two-phase state, and a malfunction of the refrigerant compressor 1 due to liquid back may occur. In order to prevent this, in the first embodiment of the present invention, a refrigerant pressure sensor 8 and a refrigerant temperature sensor 9 are provided on the downstream side (compressor side) of the connection portion of the refrigerant liquid injection pipe 6 and detected by the refrigerant pressure sensor 8. The controller 10 calculates the saturated gas temperature tg and the saturated liquid temperature tl of the refrigerant based on the refrigerant evaporation pressure p, and compares them with the refrigerant temperature t detected by the refrigerant temperature sensor 9. Since the non-azeotropic mixed refrigerant used here has a temperature gradient in the course of evaporation as shown in FIG. 3, when the refrigerant temperature <the saturated gas temperature corresponding to the refrigerant pressure, the refrigerant is drawn into the refrigerant compressor 1. It can be determined that the refrigerant is in a gas-liquid two-phase state. Further, by comparing and calculating the temperature difference between the saturated gas temperature tg and the saturated liquid temperature tl of the refrigerant and the temperature difference between the refrigerant temperature t and the saturated liquid temperature tl detected by the refrigerant temperature sensor 9, the dryness x of the refrigerant is calculated. Can be estimated. When the dryness x becomes equal to or less than (or less than) the dryness of the suction gas that the refrigerant compressor 1 can tolerate, the opening of the flow control valve 7 is maintained to prevent a problem due to liquid back. Limit the amount of refrigerant liquid injected. If the winding temperature of the electric motor 1a rises to the operating temperature of the winding protection thermostat 1c as a result of limiting the refrigerant liquid injection amount, control for abnormally stopping the refrigerant compressor 1 is performed.
[0011]
As described above, in the refrigeration system using the non-azeotropic refrigerant mixture, a part of the refrigerant liquid condensed and liquefied in the refrigerant condenser 2 is injected into the suction side pipe 5 to lower the winding temperature of the electric motor 1a. In addition, the operating range is expanded, and the malfunction of the refrigerant compressor 1 caused by the liquid back due to excessive liquid injection can be prevented.
[0012]
An example of the refrigerant liquid injection control according to the first embodiment of the present invention will be described with reference to a flowchart shown in FIG. It is assumed that the operating temperature TM of the winding protection thermostat 1c has a relationship of TM>T1>T2> T3. Note that T1, T2, and T3 are set values by the winding temperature sensor 1d.
First, in step S1, it is determined whether the refrigerant compressor 1 is operating. If not driving, return to the original. If the refrigerant compressor 1 is operating, the winding temperature is detected in step S2, and if the winding temperature is lower than T1, the process proceeds to step S3, and the flow control valve 7 is maintained at the opening degree (the valve opening degree at that time is maintained). While maintaining the state, the refrigerant liquid injection amount is limited. When the winding temperature of the electric motor 1a rises to the operating temperature TM of the winding protection thermostat 1c as a result of limiting the refrigerant liquid injection amount in step S3 (step S4), the refrigerant compressor 1 is abnormally stopped (step S4). S5). If the temperature does not reach the operating temperature TM of the winding protection thermostat 1c in step S4, the process returns to the original state. On the other hand, if the winding temperature is higher than T1 in step S2, the process proceeds to step S6, and the controller 10 calculates the dryness of the intake gas. The calculated dryness is compared with an allowable value of the refrigerant compressor 1 in step S7. If the dryness of the calculation result is less than the allowable value of the refrigerant compressor 1, the control of steps S3, S4, and S5 is performed in the same manner as above. If the calculated dryness is equal to or greater than the allowable value of the refrigerant compressor in step S7, the process proceeds to step S8, in which the opening of the flow control valve 7 is slightly opened to increase the refrigerant liquid injection amount. Next, in step S9, if the winding temperature is higher than T2, the operation returns to the original state. If the winding temperature is lower than T2 in step S9, the process proceeds to step S10, and if the winding temperature is lower than T3, the flow control valve 7 is closed (step S11). Then return to the original. If the winding temperature is higher than T3 in step S10, the control in steps S3, S4, and S5 is performed in the same manner as described above.
[0013]
Next, an example of the calculation of the dryness of the intake gas according to the first embodiment of the present invention will be described with reference to the flowchart shown in FIG. Here, the measured value p of the refrigerant pressure sensor 8, the measured value t of the refrigerant temperature sensor 9, the saturated gas temperature tg, the saturated liquid temperature tl, and the dryness x are set.
First, in step S21, the refrigerant pressure sensor 8 measures the compressor suction-side refrigerant pressure as a measured value p. Based on the measured value p, the saturated gas temperature tg of the refrigerant is determined in step S22, and the saturated liquid temperature tl of the refrigerant is determined in step S23. Are respectively calculated. In step S24, the refrigerant temperature on the compressor suction side is measured by the refrigerant temperature sensor 9 as a measurement value t. In step 25, the temperature difference (tg-tl) between the refrigerant saturated gas temperature tg and the saturated liquid temperature tl and the temperature difference (t-tl) between the measured value t of the refrigerant temperature sensor 9 and the saturated liquid temperature tl are calculated. By performing the comparison, the dryness x of the refrigerant is estimated and calculated.
[0014]
【The invention's effect】
As described above, according to the present invention, when the motor winding temperature of the compressor excessively rises, the winding protection temperature adjusting means operates to stop the compressor abnormally. A winding temperature detecting means provided on the winding, a refrigerant liquid injection pipe provided between the outlet side of the condenser and the suction side pipe of the compressor and injecting a part of the refrigerant liquid to the suction side pipe, A flow control valve provided in the middle of the refrigerant liquid injection pipe for controlling the amount of refrigerant liquid injected, refrigerant pressure detection means and refrigerant temperature detection means provided respectively on the suction side pipe of the compressor, and winding temperature detection means are detected. A control device that controls opening and closing of a flow control valve to control a refrigerant liquid injection amount based on the detected winding temperature, the saturated gas temperature and the saturated liquid temperature of the refrigerant detected by the refrigerant pressure detecting means, and the refrigerant temperature detected by the refrigerant temperature detecting means. And a refrigerant liquid in the suction gas. By injection, to prevent abnormal overheating of motor windings, it is possible to enlarge the operating range of the compressor.
[0015]
In addition, the dryness of the suction refrigerant is detected by using the temperature gradient, which is a characteristic characteristic of the non-azeotropic mixed refrigerant, and the refrigerant liquid injection amount is limited, thereby preventing the refrigerant compressor from malfunctioning due to liquid back.
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram of a refrigeration apparatus according to Embodiment 1 of the present invention.
FIG. 2 is a refrigeration cycle diagram of a single refrigerant conventionally used.
FIG. 3 is a refrigeration cycle diagram when a non-azeotropic mixed refrigerant according to Embodiment 1 of the present invention is used.
FIG. 4 is a flowchart illustrating an example of a refrigerant liquid injection control according to the first embodiment of the present invention.
FIG. 5 is a flowchart showing an example of calculation of dryness of intake gas in Embodiment 1 of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Refrigerant compressor 1a Electric motor 1b Compression part 1c Winding protection thermostat 1d Winding temperature sensor 2 Refrigerant condenser 2a Refrigerant condensation heat source 3 Expansion valve 4 Refrigerant evaporator 4a Refrigerant evaporation heat source 5 Refrigerant piping 6 Refrigerant liquid injection pipe 7 Flow control valve 8 Refrigerant pressure sensor 9 Refrigerant temperature sensor 10 Controller

Claims (3)

圧縮機、凝縮器、膨張弁、蒸発器等を冷媒配管により順次連結接続して冷媒回路を構成し、前記圧縮機の電動機巻線に巻線保護用温度調節手段を設け、電動機巻線温度が過度に上昇した時、前記温度調節手段が作動して圧縮機を異常停止するようにした冷凍装置において、前記圧縮機の電動機巻線に設けられた巻線温度検知手段と、前記凝縮器の出口側と圧縮機の吸入側配管との間に設けられ冷媒液の一部を吸入側配管に噴射する冷媒液噴射配管と、この冷媒液噴射配管の途中に設けられ冷媒液噴射量を制御する流量制御弁と、前記圧縮機の吸入側配管にそれぞれ設けられた冷媒圧力検知手段及び冷媒温度検知手段と、前記巻線温度検知手段が検知した巻線温度、前記冷媒圧力検知手段が検知した冷媒の飽和ガス温度及び飽和液温度、前記冷媒温度検知手段が検知した冷媒温度により、前記流量制御弁を開閉制御して前記冷媒液噴射量を制御する制御装置とを備えたことを特徴とする冷凍装置。A compressor, a condenser, an expansion valve, an evaporator, and the like are sequentially connected and connected by a refrigerant pipe to form a refrigerant circuit, and a temperature control means for protecting a winding of the motor winding of the compressor is provided. When the temperature rises excessively, the temperature control means operates to stop the compressor abnormally. In a refrigeration system, a winding temperature detection means provided on a motor winding of the compressor, and an outlet of the condenser Liquid refrigerant injection pipe that is provided between the compressor side and the suction pipe of the compressor and injects a part of the refrigerant liquid to the suction pipe, and a flow rate that is provided in the middle of the refrigerant liquid injection pipe and controls the refrigerant liquid injection amount. A control valve, a refrigerant pressure detecting means and a refrigerant temperature detecting means provided respectively on a suction side pipe of the compressor, a winding temperature detected by the winding temperature detecting means, and a refrigerant temperature detected by the refrigerant pressure detecting means. Saturated gas temperature and saturated liquid temperature, the cold The temperature of the refrigerant temperature detecting unit detects, refrigeration apparatus characterized by comprising a control device for controlling the refrigerant liquid injection amount the flow control valve closing control to. 冷媒として非共沸混合冷媒を用いたことを特徴とする請求項1記載の冷凍装置。The refrigeration apparatus according to claim 1, wherein a non-azeotropic mixed refrigerant is used as the refrigerant. 制御装置は、冷媒圧力検知手段が検知した冷媒の飽和ガス温度と飽和液温度との温度差と、冷媒温度検知手段が検知した冷媒温度とを比較して冷媒の乾き度を演算し、この冷媒の乾き度に応じて流量制御弁を開閉制御して冷媒液噴射量を制限することを特徴とする請求項2記載の冷凍装置。The control device calculates the degree of dryness of the refrigerant by comparing the temperature difference between the saturated gas temperature and the saturated liquid temperature of the refrigerant detected by the refrigerant pressure detecting means with the refrigerant temperature detected by the refrigerant temperature detecting means. 3. The refrigeration system according to claim 2, wherein the flow rate control valve is controlled to open and close in accordance with the degree of dryness of the refrigerant to limit the amount of refrigerant liquid injected.
JP2003072874A 2003-03-18 2003-03-18 Refrigerating machine Pending JP2004278961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003072874A JP2004278961A (en) 2003-03-18 2003-03-18 Refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003072874A JP2004278961A (en) 2003-03-18 2003-03-18 Refrigerating machine

Publications (1)

Publication Number Publication Date
JP2004278961A true JP2004278961A (en) 2004-10-07

Family

ID=33288900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003072874A Pending JP2004278961A (en) 2003-03-18 2003-03-18 Refrigerating machine

Country Status (1)

Country Link
JP (1) JP2004278961A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212112A (en) * 2006-02-13 2007-08-23 Ishikawajima Harima Heavy Ind Co Ltd Hermetic turbo-compression refrigerating machine
JP2007225162A (en) * 2006-02-22 2007-09-06 Mitsubishi Electric Corp Refrigerating device
CN101737332B (en) * 2008-11-06 2012-07-18 株式会社神户制钢所 Steam compressor arrangement
JP2020063884A (en) * 2018-10-18 2020-04-23 株式会社神戸製鋼所 Refrigeration device
CN113028585A (en) * 2021-03-31 2021-06-25 四川虹美智能科技有限公司 Control protection method and system for compressor
CN113028587A (en) * 2021-03-31 2021-06-25 四川虹美智能科技有限公司 Fault handling method and system for compressor
CN113028586A (en) * 2021-03-31 2021-06-25 四川虹美智能科技有限公司 Control protection method and system for compressor
CN113028588A (en) * 2021-03-31 2021-06-25 四川虹美智能科技有限公司 Fault protection method and system for compressor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212112A (en) * 2006-02-13 2007-08-23 Ishikawajima Harima Heavy Ind Co Ltd Hermetic turbo-compression refrigerating machine
JP2007225162A (en) * 2006-02-22 2007-09-06 Mitsubishi Electric Corp Refrigerating device
CN101737332B (en) * 2008-11-06 2012-07-18 株式会社神户制钢所 Steam compressor arrangement
JP2020063884A (en) * 2018-10-18 2020-04-23 株式会社神戸製鋼所 Refrigeration device
WO2020080064A1 (en) * 2018-10-18 2020-04-23 株式会社神戸製鋼所 Refrigeration apparatus
CN113028585A (en) * 2021-03-31 2021-06-25 四川虹美智能科技有限公司 Control protection method and system for compressor
CN113028587A (en) * 2021-03-31 2021-06-25 四川虹美智能科技有限公司 Fault handling method and system for compressor
CN113028586A (en) * 2021-03-31 2021-06-25 四川虹美智能科技有限公司 Control protection method and system for compressor
CN113028588A (en) * 2021-03-31 2021-06-25 四川虹美智能科技有限公司 Fault protection method and system for compressor

Similar Documents

Publication Publication Date Title
JP5355016B2 (en) Refrigeration equipment and heat source machine
WO2007029802A1 (en) Refrigeration device
KR101445992B1 (en) Device for estimating flowrate of heating medium, heat source device, and method for estimating flowrate of heating medium
JP2007071505A (en) Refrigerating plant
JP2010532462A (en) High temperature gas defrosting method and apparatus
CN102165194A (en) Compressor discharge control on a transport refrigeration system
JP2009522533A (en) Flash tank refrigerant control
JP3816872B2 (en) Operation control method of refrigeration system with two evaporators
CN106662364A (en) Refrigerant cooling for variable speed drive
JP2012072920A (en) Refrigeration apparatus
JP6234507B2 (en) Refrigeration apparatus and refrigeration cycle apparatus
JP3610402B2 (en) Heat pump equipment
WO2002090843A1 (en) Refrigerating device
JP2004278961A (en) Refrigerating machine
JP4178646B2 (en) refrigerator
JP3940562B2 (en) Compressor protection method
JP5956326B2 (en) Refrigeration apparatus and refrigeration cycle apparatus
JP2004353916A (en) Temperature controlling method and air conditioner
JP3843963B2 (en) Heat pump water heater
JP5854882B2 (en) Chilling unit
JP6076583B2 (en) heat pump
JP6132028B2 (en) Heat pump equipment
AU2018411936B2 (en) Hot water supply apparatus
CN108027176A (en) Multiple compression refrigerating circulatory device
JP4301546B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Effective date: 20040712

Free format text: JAPANESE INTERMEDIATE CODE: A7421