JP2007212112A - Hermetic turbo-compression refrigerating machine - Google Patents

Hermetic turbo-compression refrigerating machine Download PDF

Info

Publication number
JP2007212112A
JP2007212112A JP2006035508A JP2006035508A JP2007212112A JP 2007212112 A JP2007212112 A JP 2007212112A JP 2006035508 A JP2006035508 A JP 2006035508A JP 2006035508 A JP2006035508 A JP 2006035508A JP 2007212112 A JP2007212112 A JP 2007212112A
Authority
JP
Japan
Prior art keywords
gas
refrigerant
refrigerant gas
rotor
hermetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006035508A
Other languages
Japanese (ja)
Other versions
JP4973976B2 (en
Inventor
Toshio Takahashi
俊雄 高橋
Nobusada Takahara
伸定 高原
Nobuyoshi Sakuma
信義 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2006035508A priority Critical patent/JP4973976B2/en
Publication of JP2007212112A publication Critical patent/JP2007212112A/en
Application granted granted Critical
Publication of JP4973976B2 publication Critical patent/JP4973976B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hermetic turbo-compression refrigerating machine capable of improving efficiency of a whole refrigerating machine, by reducing windage loss due to a large amount of coolant gas, or coolant gas containing droplets. <P>SOLUTION: A motor casing 23 of a hermetic motor 20 driving a two stage turbo compressor 12 has a hollow jacket 23a, a gas supply port 23b, and a gas return port 23c. Coolant liquid is supplied to the hollow jacket 23a from an economizer 19 of a middle pressure by a coolant liquid supply pipe 32, a stator 21 in the hollow jacket 23a is indirectly cooled by the coolant liquid, coolant gas gasified in the hollow jacket is supplied to one end of a rotor in the casing, the stator 21 and the rotor 22 are directly cooled from the one end of the rotor through a gap between the stator 21 and the rotor 22, and the coolant gas having reached another end of the rotor is returned to a low pressure evaporator by a coolant gas return pipe 34. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、冷凍機用のターボ圧縮機に係わり、さらに詳しくは、冷媒を密閉状態で循環させる密閉型ターボ圧縮冷凍機に関する。   The present invention relates to a turbo compressor for a refrigerator, and more particularly to a hermetic turbo compression refrigerator that circulates a refrigerant in a sealed state.

冷凍機は、液化ガスを冷媒として作動し、仕事を費やして熱を低熱源より高熱源に運ぶいわゆるヒートポンプである。冷凍機は、通常、圧縮機、凝縮器、膨張弁、蒸発器を備え、冷媒ガスを圧縮機で圧縮して高温高圧の状態にし、この状態の冷媒ガスを凝縮器で放熱して液化し、この液を膨張弁で膨張させて低温低圧の気液混合状態とし、蒸発器で被冷却媒体より熱を奪って気化させ冷媒ガスとし、再び圧縮機に吸入させる。
上述した一連のサイクルを冷凍サイクルと呼び、蒸発器で低熱源より吸熱し、凝縮器で高熱源に放熱する。吸熱量をQe、放熱量をQc、圧縮機の仕事熱当量をALとするとき、Qe/ALを冷凍機の成績係数COP、Qc/ALをヒートポンプの動作係数という。
The refrigerator is a so-called heat pump that operates using liquefied gas as a refrigerant and spends work to transfer heat from a low heat source to a high heat source. The refrigerator usually includes a compressor, a condenser, an expansion valve, and an evaporator. The refrigerant gas is compressed by the compressor to a high temperature and high pressure state, and the refrigerant gas in this state is radiated and liquefied by the condenser. This liquid is expanded by an expansion valve to form a low-temperature and low-pressure gas-liquid mixed state, and heat is removed from the medium to be cooled by an evaporator to evaporate it into a refrigerant gas, which is again sucked into the compressor.
The above-described series of cycles is called a refrigeration cycle. The evaporator absorbs heat from a low heat source and the condenser dissipates heat to a high heat source. When the heat absorption is Qe, the heat release is Qc, and the work heat equivalent of the compressor is AL, Qe / AL is the coefficient of performance COP of the refrigerator and Qc / AL is the operation coefficient of the heat pump.

圧縮比が大きくなると圧縮機の吐出温度が高くなり容積効率が低下する。特に蒸発温度が低くなると圧縮比が大きくなるので、圧縮操作を2段または3段以上に分けて圧縮する場合がある。このように圧縮操作を多段で行う冷凍サイクルを多段圧縮サイクルと呼ぶ。
多段圧縮サイクル用のターボ圧縮機として、特許文献1が既に開示されている。また、かかるターボ圧縮機用電動機の冷却方法として、特許文献2が開示されている。
As the compression ratio increases, the discharge temperature of the compressor increases and the volumetric efficiency decreases. In particular, since the compression ratio increases when the evaporation temperature decreases, the compression operation may be divided into two stages or three stages or more. Such a refrigeration cycle in which the compression operation is performed in multiple stages is called a multistage compression cycle.
Patent Document 1 has already been disclosed as a turbo compressor for a multistage compression cycle. Further, Patent Document 2 is disclosed as a method for cooling the turbo compressor motor.

特許文献1の装置は、1軸2段圧縮機において、圧縮羽根により生じるスラスト力を低減することを目的とし、図4に示すように、1段目の圧縮羽根54で圧縮した冷媒56の一部を1段目の圧縮羽根54側の出口配管57の途中から駆動モータの冷却用として用い駆動モータの冷却後に2段目の圧縮羽根55側の入口配管へと戻すバイパス配管58、59を設けて、1段目側の出口配管と2段目側の入口配管との間に駆動モータ部分を冷媒が通過することにより生じる圧力損失に見合った分の抵抗51を持たせたものである。   The apparatus of Patent Document 1 aims to reduce the thrust force generated by the compression blades in a single-shaft two-stage compressor. As shown in FIG. 4, one of the refrigerants 56 compressed by the first-stage compression blades 54 is used. By-pass pipes 58 and 59 are provided to cool the drive motor from the middle of the outlet pipe 57 on the first stage compression blade 54 side and return to the inlet pipe on the second stage compression blade 55 side after cooling the drive motor. Thus, a resistor 51 corresponding to the pressure loss caused by the refrigerant passing through the drive motor portion is provided between the first-stage outlet pipe and the second-stage inlet pipe.

特許文献2の方法は、回転子のエンドリング部に羽根を設けることなく同等の冷却性能を得ることを目的とし、図5に示すように、電動機軸64の回転子62の取付位置の両側で、かつ固定子61のコイルエンド端部より回転子62側に円盤63を設けたものである。   The method of Patent Document 2 aims to obtain an equivalent cooling performance without providing blades on the end ring portion of the rotor, and as shown in FIG. 5, on both sides of the mounting position of the rotor 62 of the motor shaft 64. In addition, a disk 63 is provided on the rotor 62 side from the coil end end of the stator 61.

特開平5−223090号公報、「ターボ圧縮機」JP-A-5-223090, “turbo compressor” 特開平6−159825号公報、「密閉型ターボ冷凍機用電動機の冷却方法」Japanese Patent Application Laid-Open No. 6-159825, “Cooling method of electric motor for hermetic turbo refrigerator”

特許文献1の装置において、駆動モータの冷却用には冷媒ガスが用いられる。そのため、液化した冷媒液と比較すると蒸発潜熱を利用できないため大量の冷媒ガスが必要であり、風損が大きい問題点がある。
また、1段目側の出口配管58と2段目側の入口配管59との間に駆動モータ部分を冷媒ガスが通過することにより生じる圧力損失に見合った分の抵抗51を持たせるため、冷媒ガスの全量がこの抵抗分の圧力損失を生じ、冷凍機全体の効率が低下する。
In the apparatus of Patent Document 1, refrigerant gas is used for cooling the drive motor. Therefore, compared with the liquefied refrigerant liquid, the latent heat of vaporization cannot be used, so a large amount of refrigerant gas is required, and there is a problem that the windage loss is large.
In addition, since a resistance 51 corresponding to the pressure loss caused by the refrigerant gas passing through the drive motor portion is provided between the first-stage side outlet pipe 58 and the second-stage side inlet pipe 59, the refrigerant The total amount of gas causes a pressure loss corresponding to this resistance, and the efficiency of the entire refrigerator is lowered.

一方、特許文献2の方法では、高圧の凝縮器から低圧の蒸発器までその圧力差により、液化した冷媒液を流し、その一部は電動機ケーシング65と固定子61の間から、また一部は電動機軸64の内部を通り固定子61と回転子62の間に供給し、これを冷却し、蒸発器へ戻すようになっている。従って、冷媒液は液滴のまま固定子61及び回転子62を冷却するため、冷却効果は高いものの液滴を含む冷媒ガスの風損が大きく、冷凍機としての効率はさらに低下してしまう問題点がある。
また、冷媒液を供給する凝縮器内の圧力は、電動機内部の中間圧と比較し非常に高く、その差圧分の冷媒液及び冷媒ガスを冷却に用いるため、圧力が高い分、冷凍機全体の効率が低下する。
On the other hand, in the method of Patent Document 2, the liquefied refrigerant liquid is caused to flow by the pressure difference from the high-pressure condenser to the low-pressure evaporator, and a part thereof is between the motor casing 65 and the stator 61 and partly. This is supplied between the stator 61 and the rotor 62 through the inside of the motor shaft 64, cooled, and returned to the evaporator. Accordingly, since the refrigerant liquid cools the stator 61 and the rotor 62 while being in droplets, although the cooling effect is high, the windage of the refrigerant gas containing the droplets is large, and the efficiency as a refrigerator is further reduced. There is a point.
In addition, the pressure in the condenser for supplying the refrigerant liquid is very high compared to the intermediate pressure inside the electric motor, and the refrigerant liquid and refrigerant gas corresponding to the differential pressure are used for cooling. Decreases the efficiency.

本発明は、かかる要望を解決するために創案されたものである。すなわち、本発明の目的は、大量の冷媒ガス又は液滴を含む冷媒ガスによる風損を低減し、冷凍機全体の効率を改善することができる密閉型ターボ圧縮冷凍機を提供することにある。   The present invention has been developed to solve such a demand. That is, an object of the present invention is to provide a hermetic turbo compression refrigerator that can reduce windage loss due to a large amount of refrigerant gas or refrigerant gas containing droplets and improve the efficiency of the entire refrigerator.

本発明によれば、冷媒ガスを圧縮して高温高圧の冷媒ガスにするターボ圧縮機と、
高温高圧の前記冷媒ガスを放熱して液化する凝縮器と、
液化した前記冷媒液を膨張させて低温低圧の気液混合ガスにする膨張弁と、
被冷却媒体を冷却して前記気液混合ガスを気化し冷媒ガスにする蒸発器とを備え、蒸発器で気化した前記冷媒ガスを再びターボ圧縮機で吸入する密閉型ターボ圧縮冷凍機であって、
前記ターボ圧縮機を密閉状態で駆動する密閉型電動機と、該密閉型電動機に冷媒液を供給する冷媒液供給管と、密閉型電動機内で冷媒液が蒸発した冷媒ガスを蒸発器に戻す冷媒ガス戻り管とを備え、
前記密閉型電動機は、電動機の固定子と回転子を内蔵する電動機ケーシングを有し、該電動機ケーシングは、前記冷媒液供給管と連通し固定子を冷媒液で間接冷却する中空ジャケットと、該中空ジャケット内でガス化した冷媒ガスをケーシング内の回転子の一端部に供給するガス供給口と、回転子の一端部から固定子と回転子の隙間を通過して回転子の他端に達した冷媒ガスを前記冷媒ガス戻り管に連通させるガス戻り口とを有する、ことを特徴とする密閉型ターボ圧縮冷凍機が提供される。
According to the present invention, a turbo compressor that compresses a refrigerant gas into a high-temperature and high-pressure refrigerant gas;
A condenser that radiates and liquefies the high-temperature and high-pressure refrigerant gas;
An expansion valve for expanding the liquefied refrigerant liquid into a low-temperature low-pressure gas-liquid mixed gas;
And an evaporator that cools a medium to be cooled and vaporizes the gas-liquid mixed gas to form a refrigerant gas, wherein the refrigerant gas vaporized by the evaporator is again sucked by a turbo compressor. ,
A hermetic motor that drives the turbo compressor in a hermetically sealed state, a refrigerant liquid supply pipe that supplies a refrigerant liquid to the hermetic motor, and a refrigerant gas that returns the refrigerant gas evaporated in the hermetic motor to the evaporator A return pipe and
The hermetic motor has an electric motor casing containing a stator and a rotor of the electric motor, and the electric motor casing communicates with the refrigerant liquid supply pipe and indirectly cools the stator with the refrigerant liquid, and the hollow A gas supply port for supplying the refrigerant gas gasified in the jacket to one end of the rotor in the casing, and the other end of the rotor reached from the one end of the rotor through the gap between the stator and the rotor There is provided a hermetic turbo compression refrigerator having a gas return port through which refrigerant gas communicates with the refrigerant gas return pipe.

本発明の好ましい実施形態によれば、前記ターボ圧縮機は、第1段遠心圧縮機と第2段遠心圧縮機からなる2段ターボ圧縮機であり、
前記膨張弁は、高圧側膨張弁と低圧側膨張弁とからなり、
更に高圧側膨張弁と低圧側膨張弁の間に位置し、気液混合ガスから冷媒ガスを分離して2段ターボ圧縮機の中間段に導くエコノマイザを備え、
前記冷媒液供給管の一端はエコノマイザ又は凝縮器に連通しここから冷媒液を供給する。
According to a preferred embodiment of the present invention, the turbo compressor is a two-stage turbo compressor comprising a first stage centrifugal compressor and a second stage centrifugal compressor,
The expansion valve comprises a high pressure side expansion valve and a low pressure side expansion valve,
Furthermore, it is located between the high-pressure side expansion valve and the low-pressure side expansion valve, and comprises an economizer that separates the refrigerant gas from the gas-liquid mixed gas and guides it to the intermediate stage of the two-stage turbo compressor,
One end of the refrigerant liquid supply pipe communicates with an economizer or a condenser to supply the refrigerant liquid therefrom.

前記冷媒ガス戻り管は、圧力差で流れる冷媒ガスの流量を調整するオリフィス又は弁を備える。   The refrigerant gas return pipe includes an orifice or a valve that adjusts the flow rate of the refrigerant gas flowing due to the pressure difference.

前記中空ジャケットは、固定子を囲む螺旋状又はそれに類する流路である、ことが好ましい。   The hollow jacket is preferably a spiral or similar channel surrounding the stator.

また、前記中空ジャケットの流路は、入口から出口に向かって流路面積が漸増又はステップ状に増大する。   Further, the flow path area of the hollow jacket gradually increases or increases stepwise from the inlet toward the outlet.

また、前記中空ジャケット内でガス化した冷媒ガスが流入するケーシング内の回転子の一端部と、蒸発器とを連通し、ケーシング内から蒸発器へ冷媒液を戻す冷媒液戻り管を備える。   In addition, there is provided a refrigerant liquid return pipe that communicates one end of the rotor in the casing into which the refrigerant gas gasified in the hollow jacket flows and the evaporator, and returns the refrigerant liquid from the casing to the evaporator.

また、前記冷媒ガス戻り管内の冷媒ガスの温度、冷媒ガス戻り管自体の温度、又は前記電動機ケーシング内の温度を検知する温度検出器と、前記冷媒液供給管の流量を調節する流量調節弁と、該温度検出器の検出温度により流量調節弁を制御する温度制御器とを備える。   A temperature detector for detecting a temperature of the refrigerant gas in the refrigerant gas return pipe, a temperature of the refrigerant gas return pipe itself, or a temperature in the electric motor casing; and a flow rate adjusting valve for adjusting a flow rate of the refrigerant liquid supply pipe; And a temperature controller for controlling the flow rate adjusting valve according to the temperature detected by the temperature detector.

また、前記冷媒ガスをケーシング内の回転子の一端部に供給するガス供給口は、スラスト方向の力がかかる反対側である、ことが好ましい。   Moreover, it is preferable that the gas supply port which supplies the said refrigerant gas to the one end part of the rotor in a casing is the other side to which the force of a thrust direction is applied.

上記本発明の構成によれば、冷媒液供給管から密閉型電動機の中空ジャケット内に冷媒液を供給し、中空ジャケット内で冷媒液からガスへの蒸発潜熱を利用して固定子を間接冷却するので、小量の冷媒液で固定子を冷却することができる。
また、中空ジャケット内でガス化した冷媒ガスを固定子と回転子の隙間を通過させて回転子を冷却する。固定子は冷媒液により、十分に冷却されており、冷媒ガスは主に回転子を冷却するために働く。そのため、ガスのみで固定子、回転子を冷却する構造よりもガス量は少なくなり、風損を大幅に低減できる。また、回転子と接触する冷媒ガスは液滴をあまり多く含まない。そのため、冷媒液を回転子から直接噴射するよりも液滴を少なくすることとなり、同様に風損を低減することができる。
従って大量の冷媒ガス又は液滴を含む冷媒ガスによる風損を低減し、冷凍機全体の効率を改善することができる。
According to the configuration of the present invention, the refrigerant liquid is supplied from the refrigerant liquid supply pipe into the hollow jacket of the hermetic motor, and the stator is indirectly cooled using the latent heat of vaporization from the refrigerant liquid to the gas in the hollow jacket. Therefore, the stator can be cooled with a small amount of refrigerant liquid.
Further, the rotor gas is cooled by allowing the refrigerant gas gasified in the hollow jacket to pass through the gap between the stator and the rotor. The stator is sufficiently cooled by the refrigerant liquid, and the refrigerant gas mainly works to cool the rotor. Therefore, the amount of gas is smaller than that of a structure in which the stator and rotor are cooled only by gas, and windage loss can be greatly reduced. Also, the refrigerant gas that contacts the rotor does not contain many droplets. Therefore, the number of droplets is reduced as compared with the case where the refrigerant liquid is directly injected from the rotor, and the windage loss can be similarly reduced.
Therefore, it is possible to reduce windage loss due to a large amount of refrigerant gas or refrigerant gas containing droplets, and to improve the efficiency of the entire refrigerator.

また、ターボ圧縮機が2段ターボ圧縮機であり、高圧側膨張弁と低圧側膨張弁の間にエコノマイザを備えたエコノマイザサイクルの場合に、エコノマイザから冷媒液供給管を介して密閉型電動機に冷媒液を供給することにより、エコノマイザ内の圧力は凝縮器内の圧力より低くかつ回転子部の圧力より高い中間圧であるため、冷媒液供給に伴う圧力損失が小さく、その分、冷凍機全体の効率低下を防止することができる。   In the case of an economizer cycle in which the turbo compressor is a two-stage turbo compressor and an economizer is provided between the high-pressure side expansion valve and the low-pressure side expansion valve, the refrigerant is supplied from the economizer to the hermetic motor through the refrigerant liquid supply pipe. By supplying the liquid, the pressure in the economizer is lower than the pressure in the condenser and higher than the pressure in the rotor, so the pressure loss associated with the supply of the refrigerant liquid is small. A reduction in efficiency can be prevented.

以下、本発明の好ましい実施形態を図面を参照して説明する。なお各図において、共通する部分には同一の符号を付し、重複した説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明の密閉型ターボ圧縮冷凍機の構成図であり、図2は、図1の密閉型ターボ圧縮冷凍機の概略図であり、図3は、図2の密閉型ターボ圧縮冷凍機における圧力−エンタルピ線図である。   1 is a configuration diagram of a hermetic turbo compression refrigerator of the present invention, FIG. 2 is a schematic diagram of the hermetic turbo compression refrigerator of FIG. 1, and FIG. 3 is a hermetic turbo compression refrigerator of FIG. It is a pressure-enthalpy diagram in a machine.

これらの図において、本発明の密閉型ターボ圧縮冷凍機10は、ターボ圧縮機12、凝縮器14、膨張弁16、および蒸発器18を備える。
ターボ圧縮機12は、冷媒ガス1を圧縮して高温高圧の冷媒ガス5にする。凝縮器14は、高温高圧の冷媒ガス5を放熱して冷媒ガスを液化して冷媒液6にする。膨張弁16は、液化した冷媒液6を膨張させて低温低圧の気液混合ガス9にする。蒸発器18は、被冷却媒体を冷却して気液混合ガス9を気化して冷媒ガス1にする。蒸発器18を出た冷媒ガス1は再びターボ圧縮機12に吸入されるようになっている。
In these drawings, the hermetic turbo compression refrigerator 10 of the present invention includes a turbo compressor 12, a condenser 14, an expansion valve 16, and an evaporator 18.
The turbo compressor 12 compresses the refrigerant gas 1 into a high-temperature and high-pressure refrigerant gas 5. The condenser 14 dissipates heat from the high-temperature and high-pressure refrigerant gas 5 to liquefy the refrigerant gas into the refrigerant liquid 6. The expansion valve 16 expands the liquefied refrigerant liquid 6 into a low-temperature and low-pressure gas-liquid mixed gas 9. The evaporator 18 cools the medium to be cooled to vaporize the gas-liquid mixed gas 9 to make the refrigerant gas 1. The refrigerant gas 1 exiting the evaporator 18 is again sucked into the turbo compressor 12.

図1、図2において、ターボ圧縮機12は第1段遠心圧縮機12aと第2段遠心圧縮機12bからなる2段ターボ圧縮機であり、第1段遠心圧縮機12aで圧縮した冷媒ガス2に膨張途中の気液混合ガス7から冷媒ガス3を混合して冷媒ガス4とし、これを第2段遠心圧縮機12bで圧縮して高温高圧の冷媒ガス5にするようになっている。   1 and 2, a turbo compressor 12 is a two-stage turbo compressor composed of a first-stage centrifugal compressor 12a and a second-stage centrifugal compressor 12b, and refrigerant gas 2 compressed by the first-stage centrifugal compressor 12a. The refrigerant gas 3 is mixed from the gas-liquid mixed gas 7 in the middle of expansion into the refrigerant gas 4, which is compressed by the second-stage centrifugal compressor 12b into the high-temperature and high-pressure refrigerant gas 5.

膨張弁16は、高圧側膨張弁16aと低圧側膨張弁16bとからなる。また、本発明の密閉型ターボ圧縮冷凍機10は、更にエコノマイザ19を備える。
エコノマイザ19は、高圧側膨張弁16aと低圧側膨張弁16bの間に位置し、膨張途中の気液混合ガス7から冷媒ガス3を分離して2段ターボ圧縮機12の中間段に導くようになっている。
The expansion valve 16 includes a high-pressure side expansion valve 16a and a low-pressure side expansion valve 16b. The hermetic turbo compression refrigerator 10 of the present invention further includes an economizer 19.
The economizer 19 is located between the high-pressure side expansion valve 16a and the low-pressure side expansion valve 16b, and separates the refrigerant gas 3 from the gas-liquid mixed gas 7 in the middle of expansion and guides it to the intermediate stage of the two-stage turbo compressor 12. It has become.

本発明の密閉型ターボ圧縮冷凍機10において、冷媒は、例えば、0.1MPaにおいて5〜7℃前後において蒸発し、圧縮比20前後において2MPa、100〜130℃前後になるものを用いる。かかる冷媒として、例えばR−114を用いることができる。
この場合、図3の圧力−エンタルピ線図において、最大圧力Pは例えば2MPaであり、最低圧力Pは例えば0.1MPaである。また、エコノマイザ19内の圧力Pは、その中間圧である約0.45MPa前後となる。
また、図2において、凝縮器14での放熱温度は、例えば100〜130℃であり、蒸発器18における冷却温度は、例えば5〜7℃となる。また、2段ターボ圧縮機12の中間段における温度は、約50℃前後となる。
従って、この例では、被冷却媒体を5〜7℃の低温で冷却することができる。
In the sealed turbo compression refrigerator 10 of the present invention, for example, a refrigerant that evaporates around 5 to 7 ° C. at 0.1 MPa and becomes 2 MPa and around 100 to 130 ° C. around a compression ratio of 20 is used. As such a refrigerant, for example, R-114 can be used.
In this case, the pressure of 3 - in enthalpy diagram, the maximum pressure P H is 2MPa example, minimum pressure P L is 0.1MPa, for example. Further, the pressure P m in the economizer 19 is approximately 0.45MPa longitudinal its intermediate pressure.
Moreover, in FIG. 2, the heat radiation temperature in the condenser 14 is 100-130 degreeC, for example, and the cooling temperature in the evaporator 18 is 5-7 degreeC, for example. Further, the temperature in the intermediate stage of the two-stage turbo compressor 12 is about 50 ° C.
Therefore, in this example, the medium to be cooled can be cooled at a low temperature of 5 to 7 ° C.

図1において、本発明の密閉型ターボ圧縮冷凍機10は、更に、密閉型電動機20、冷媒液供給管32、及び冷媒ガス戻り管34を備える。
密閉型電動機20は、電動機の固定子21と回転子22を内蔵する電動機ケーシング23を有し、回転子22の回転を増速歯車24、25を介して増速軸26に伝達し、第1段遠心圧縮機12aと第2段遠心圧縮機12bのインペラを密閉状態で回転駆動するようになっている。
In FIG. 1, the hermetic turbo compression refrigerator 10 of the present invention further includes a hermetic motor 20, a refrigerant liquid supply pipe 32, and a refrigerant gas return pipe 34.
The hermetic motor 20 includes an electric motor casing 23 containing a stator 21 and a rotor 22 of the electric motor. The rotation of the rotor 22 is transmitted to the speed increasing shaft 26 via speed increasing gears 24 and 25, and the first The impellers of the stage centrifugal compressor 12a and the second stage centrifugal compressor 12b are rotationally driven in a sealed state.

電動機ケーシング23は、中空ジャケット23a、ガス供給口23b、及びガス戻り口23cを有する。
中空ジャケット23aは、固定子21を囲む螺旋状又はそれに類する流路であり、冷媒液供給管32の一端(図で左端)と連通し、固定子21を冷媒液で間接冷却する。なおこの螺旋流路は、この例のように固定子の片側から供給する構造でも、両端から供給する構造でもよい。
The electric motor casing 23 has a hollow jacket 23a, a gas supply port 23b, and a gas return port 23c.
The hollow jacket 23a is a spiral or similar channel surrounding the stator 21, and communicates with one end (the left end in the figure) of the refrigerant liquid supply pipe 32 to indirectly cool the stator 21 with the refrigerant liquid. The spiral channel may be supplied from one side of the stator as in this example or may be supplied from both ends.

また、中空ジャケット23aの流路は、入口から出口に向かって流路面積が漸増又はステップ状に増大することが好ましい。この構成により、流路内で冷媒液がガス化して冷媒ガスになるにつれ、体積が膨張するが、流路面積の増大により、圧損の増大を防止することができる。   Moreover, it is preferable that the flow path area of the hollow jacket 23a gradually increases or increases stepwise from the inlet toward the outlet. With this configuration, the volume of the refrigerant expands as the refrigerant liquid gasifies into the refrigerant gas in the flow path, but an increase in pressure loss can be prevented by increasing the flow path area.

また、冷媒ガスをケーシング内の回転子の一端部に供給するガス供給口23bは、スラスト方向の力がかかる反対側(この例では左側)であるのがよい。この構成により、増速歯車24で発生するスラスト力を回転子22の圧力差で発生するスラスト力で相殺してスラスト力を低減することができる。   Further, the gas supply port 23b for supplying the refrigerant gas to one end portion of the rotor in the casing is preferably on the opposite side (left side in this example) to which a force in the thrust direction is applied. With this configuration, it is possible to reduce the thrust force by canceling the thrust force generated by the speed increasing gear 24 with the thrust force generated by the pressure difference of the rotor 22.

ガス供給口23bは、螺旋流路の末端(この図で左端部)とケーシング内を連通する孔であり、中空ジャケット23a内でガス化した冷媒ガスをケーシング内の回転子22の一端部(この図で左端部)に供給する。
ガス戻り口23cは、ケーシング内部と外部を連通する孔であり、回転子21の一端部(この図で左端部)から固定子22と回転子21の間(隙間)を通過して回転子21の他端(この図で右端部)に達した冷媒ガスを冷媒ガス戻り管34に連通させる。
The gas supply port 23b is a hole that communicates the end of the spiral flow path (the left end in this figure) with the inside of the casing, and the refrigerant gas gasified in the hollow jacket 23a is connected to one end of the rotor 22 in the casing (this Supply to the left end in the figure.
The gas return port 23c is a hole that communicates the inside and the outside of the casing, and passes between the stator 22 and the rotor 21 (gap) from one end portion (the left end portion in this figure) of the rotor 21 to the rotor 21. The refrigerant gas reaching the other end (the right end portion in this figure) is communicated with the refrigerant gas return pipe 34.

冷媒液供給管32は、その一端(図で右端)がエコノマイザ19内の冷媒液8に連通し、ここから冷媒液8を密閉型電動機の中空ジャケット23aに供給する配管ラインである。なお、図中に破線の矢印で示すように、冷媒液供給管32の一端を凝縮器14に連通しここから冷媒液を供給してもよい。   One end (right end in the figure) of the refrigerant liquid supply pipe 32 communicates with the refrigerant liquid 8 in the economizer 19 and is a piping line for supplying the refrigerant liquid 8 to the hollow jacket 23a of the hermetic motor. In addition, as shown with the arrow of a broken line in a figure, you may connect one end of the refrigerant | coolant liquid supply pipe | tube 32 to the condenser 14, and may supply a refrigerant | coolant liquid here.

冷媒液供給管32の途中に、冷媒液の流量を調節する流量調節弁32aを備える。更に図1において、冷媒ガス戻り管34内の冷媒ガスの温度又は冷媒ガス戻り管自体の温度を検知する第1温度検出器33aと、電動機ケーシング内の温度を検知する第2温度検出器33bと、温度検出器33a又は33bの検出温度により流量調節弁を制御する温度制御器33cとを備える。
この構成により、温度検出器33a又は33bの検出温度(すなわち出口温度)が規定より、低ければ冷えすぎのため、冷媒量を絞り、逆に高ければ冷えなさ過ぎのため、冷媒量を増やすことができる。
A flow rate adjustment valve 32 a for adjusting the flow rate of the refrigerant liquid is provided in the middle of the refrigerant liquid supply pipe 32. Further, in FIG. 1, a first temperature detector 33a that detects the temperature of the refrigerant gas in the refrigerant gas return pipe 34 or the temperature of the refrigerant gas return pipe itself, and a second temperature detector 33b that detects the temperature in the motor casing. And a temperature controller 33c for controlling the flow rate adjusting valve according to the temperature detected by the temperature detector 33a or 33b.
With this configuration, if the detected temperature (that is, the outlet temperature) of the temperature detector 33a or 33b is lower than the specified value, the refrigerant amount is reduced because it is too cold, and conversely if it is higher, the refrigerant amount is increased because it is not too cold. it can.

冷媒ガス戻り管34は、密閉型電動機で冷媒液が蒸発した冷媒ガスをガス戻り口23cから蒸発器18に戻す配管ラインである。この冷媒ガス戻り管34は、圧力差で流れる冷媒ガスの流量を調整するオリフィス34a又は弁を備える。   The refrigerant gas return pipe 34 is a piping line that returns the refrigerant gas, in which the refrigerant liquid is evaporated by the hermetic motor, to the evaporator 18 from the gas return port 23c. The refrigerant gas return pipe 34 includes an orifice 34a or a valve that adjusts the flow rate of the refrigerant gas flowing due to the pressure difference.

更に図1において、中空ジャケット内でガス化した冷媒ガスが流入するケーシング内の回転子の一端部と、蒸発器とを連通し、ケーシング内から蒸発器へ冷媒液を戻す冷媒液戻り管35を備える。   Further, in FIG. 1, a refrigerant liquid return pipe 35 is connected between the one end of the rotor in the casing into which the refrigerant gas gasified in the hollow jacket flows and the evaporator, and returns the refrigerant liquid from the casing to the evaporator. Prepare.

上述した本発明の構成によれば、冷媒液供給管32から密閉型電動機20の中空ジャケット内に冷媒液を供給し、中空ジャケット23a内で冷媒液からガスへの蒸発潜熱を利用して固定子を間接冷却するので、冷媒液からガスへの蒸発潜熱を利用して小量の冷媒液で固定子を冷却することができる。
また、中空ジャケット内でガス化した冷媒ガスを固定子21と回転子22の隙間を通過させて固定子21及び回転子22を冷却する。固定子は冷媒液により、十分に冷却されており、冷媒ガスは主に回転子を冷却するために働く。そのため、ガスのみで固定子、回転子を冷却する構造よりもガス量は少なくなり、風損を大幅に低減できる。また、回転子と接触する冷媒ガスは液滴をあまり多く含まない。そのため、冷媒液を回転子から直接噴射するよりも液滴を少なくすることとなり、同様に風損を低減することができる。
従って大量の冷媒ガス又は液滴を含む冷媒ガスによる風損を低減し、冷凍機全体の効率を改善することができる。
According to the configuration of the present invention described above, the refrigerant liquid is supplied from the refrigerant liquid supply pipe 32 into the hollow jacket of the hermetic motor 20, and the stator is utilized in the hollow jacket 23a using the latent heat of vaporization from the refrigerant liquid to the gas. Is indirectly cooled, so that the stator can be cooled with a small amount of the refrigerant liquid by utilizing the latent heat of vaporization from the refrigerant liquid to the gas.
The refrigerant gas gasified in the hollow jacket is passed through the gap between the stator 21 and the rotor 22 to cool the stator 21 and the rotor 22. The stator is sufficiently cooled by the refrigerant liquid, and the refrigerant gas mainly works to cool the rotor. Therefore, the amount of gas is smaller than that of a structure in which the stator and rotor are cooled only by gas, and windage loss can be greatly reduced. Also, the refrigerant gas that contacts the rotor does not contain many droplets. Therefore, the number of droplets is reduced as compared with the case where the refrigerant liquid is directly injected from the rotor, and the windage loss can be similarly reduced.
Therefore, it is possible to reduce windage loss due to a large amount of refrigerant gas or refrigerant gas containing droplets, and to improve the efficiency of the entire refrigerator.

また、ターボ圧縮機が2段ターボ圧縮機であり、高圧側膨張弁16aと低圧側膨張弁16bの間にエコノマイザ19を備えたエコノマイザサイクルの場合に、エコノマイザ19から冷媒液供給管32を介して密閉型電動機20に冷媒液を供給することにより、エコノマイザ19内の圧力は凝縮器14内の圧力(例えば2MPa)より低くかつ回転子部(ケーシング内)の圧力より高い中間圧(例えば約0.45MPa)であるため、冷媒液供給に伴う圧力損失が小さく、その分、冷凍機全体の効率低下を防止することができる。   In the case of an economizer cycle in which the turbo compressor is a two-stage turbo compressor and an economizer 19 is provided between the high-pressure side expansion valve 16a and the low-pressure side expansion valve 16b, the economizer 19 is connected via the refrigerant liquid supply pipe 32. By supplying the refrigerant liquid to the hermetic motor 20, the pressure in the economizer 19 is lower than the pressure in the condenser 14 (for example, 2 MPa) and higher than the pressure in the rotor portion (in the casing) (for example, about 0.1. 45 MPa), the pressure loss associated with the supply of the refrigerant liquid is small, and accordingly, the efficiency of the entire refrigerator can be prevented from decreasing.

なお、本発明は、上述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々に変更することができることは勿論である。   In addition, this invention is not limited to embodiment mentioned above, Of course, it can change variously in the range which does not deviate from the summary of this invention.

本発明の密閉型ターボ圧縮冷凍機の構成図である。It is a block diagram of the hermetic turbo compression refrigerator of the present invention. 図1の密閉型ターボ圧縮冷凍機の概略図である。FIG. 2 is a schematic view of the hermetic turbo compression refrigerator of FIG. 1. 図2の密閉型ターボ圧縮冷凍機における圧力−エンタルピ線図である。FIG. 3 is a pressure-enthalpy diagram in the hermetic turbo compression refrigerator of FIG. 2. 特許文献1の装置の構成図である。2 is a configuration diagram of an apparatus disclosed in Patent Document 1. FIG. 特許文献2の装置の構成図である。It is a block diagram of the apparatus of patent document 2. FIG.

符号の説明Explanation of symbols

1,2,3,4,5 冷媒ガス、6 冷媒液、
7 気液混合ガス、8 冷媒液、9 液混合ガス、
10 密閉型ターボ圧縮冷凍機、12 ターボ圧縮機、
12a 第1段遠心圧縮機、12b 第2段遠心圧縮機、
14 凝縮器、16 膨張弁、
16a 高圧側膨張弁、16b 低圧側膨張弁、
18 蒸発器、19 エコノマイザ、
20 密閉型電動機、21 固定子、22 回転子、
23 電動機ケーシング、23a 中空ジャケット、
23b ガス供給口、23c ガス戻り口、
24,25 増速歯車、26 増速軸
32 冷媒液供給管、32a 流量調節弁、
33a、33b 温度検出器、33c 温度制御器、
34 冷媒ガス戻り管、34a オリフィス
35 冷媒液戻り管
1, 2, 3, 4, 5 refrigerant gas, 6 refrigerant liquid,
7 gas-liquid mixed gas, 8 refrigerant liquid, 9 liquid mixed gas,
10 hermetic turbo compression refrigerator, 12 turbo compressor,
12a first stage centrifugal compressor, 12b second stage centrifugal compressor,
14 condenser, 16 expansion valve,
16a high pressure side expansion valve, 16b low pressure side expansion valve,
18 Evaporator, 19 Economizer,
20 hermetic motor, 21 stator, 22 rotor,
23 motor casing, 23a hollow jacket,
23b gas supply port, 23c gas return port,
24, 25 Speed increasing gear, 26 Speed increasing shaft 32 Refrigerant liquid supply pipe, 32a Flow rate adjusting valve,
33a, 33b temperature detector, 33c temperature controller,
34 Refrigerant gas return pipe, 34a Orifice 35 Refrigerant liquid return pipe

Claims (8)

冷媒ガスを圧縮して高温高圧の冷媒ガスにするターボ圧縮機と、
高温高圧の前記冷媒ガスを放熱して液化する凝縮器と、
液化した前記冷媒液を膨張させて低温低圧の気液混合ガスにする膨張弁と、
被冷却媒体を冷却して前記気液混合ガスを気化し冷媒ガスにする蒸発器とを備え、蒸発器で気化した前記冷媒ガスを再びターボ圧縮機で吸入する密閉型ターボ圧縮冷凍機であって、
前記ターボ圧縮機を密閉状態で駆動する密閉型電動機と、該密閉型電動機に冷媒液を供給する冷媒液供給管と、密閉型電動機内で冷媒液が蒸発した冷媒ガスを蒸発器に戻す冷媒ガス戻り管とを備え、
前記密閉型電動機は、電動機の固定子と回転子を内蔵する電動機ケーシングを有し、該電動機ケーシングは、前記冷媒液供給管と連通し固定子を冷媒液で間接冷却する中空ジャケットと、該中空ジャケット内でガス化した冷媒ガスをケーシング内の回転子の一端部に供給するガス供給口と、回転子の一端部から固定子と回転子の隙間を通過して回転子の他端に達した冷媒ガスを前記冷媒ガス戻り管に連通させるガス戻り口とを有する、ことを特徴とする密閉型ターボ圧縮冷凍機。
A turbo compressor that compresses the refrigerant gas into a high-temperature and high-pressure refrigerant gas;
A condenser that radiates and liquefies the high-temperature and high-pressure refrigerant gas;
An expansion valve for expanding the liquefied refrigerant liquid into a low-temperature low-pressure gas-liquid mixed gas;
And an evaporator that cools a medium to be cooled and vaporizes the gas-liquid mixed gas to form a refrigerant gas, wherein the refrigerant gas vaporized by the evaporator is again sucked by a turbo compressor. ,
A hermetic motor that drives the turbo compressor in a hermetically sealed state, a refrigerant liquid supply pipe that supplies a refrigerant liquid to the hermetic motor, and a refrigerant gas that returns the refrigerant gas evaporated in the hermetic motor to the evaporator A return pipe and
The hermetic motor has an electric motor casing containing a stator and a rotor of the electric motor, and the electric motor casing communicates with the refrigerant liquid supply pipe and indirectly cools the stator with the refrigerant liquid, and the hollow A gas supply port for supplying the refrigerant gas gasified in the jacket to one end of the rotor in the casing, and the other end of the rotor reached from the one end of the rotor through the gap between the stator and the rotor A hermetic turbo compression refrigerator having a gas return port through which refrigerant gas communicates with the refrigerant gas return pipe.
前記ターボ圧縮機は、第1段遠心圧縮機と第2段遠心圧縮機からなる2段ターボ圧縮機であり、
前記膨張弁は、高圧側膨張弁と低圧側膨張弁とからなり、
更に高圧側膨張弁と低圧側膨張弁の間に位置し、気液混合ガスから冷媒ガスを分離して2段ターボ圧縮機の中間段に導くエコノマイザを備え、
前記冷媒液供給管の一端はエコノマイザ又は凝縮器に連通しここから冷媒液を供給する、ことを特徴とする請求項1に記載の密閉型ターボ圧縮冷凍機。
The turbo compressor is a two-stage turbo compressor composed of a first-stage centrifugal compressor and a second-stage centrifugal compressor,
The expansion valve comprises a high pressure side expansion valve and a low pressure side expansion valve,
Furthermore, it is located between the high-pressure side expansion valve and the low-pressure side expansion valve, and comprises an economizer that separates the refrigerant gas from the gas-liquid mixed gas and guides it to the intermediate stage of the two-stage turbo compressor,
2. The hermetic turbo compression refrigerator according to claim 1, wherein one end of the refrigerant liquid supply pipe communicates with an economizer or a condenser to supply refrigerant liquid therefrom.
前記冷媒ガス戻り管は、圧力差で流れる冷媒ガスの流量を調整するオリフィス又は弁を備える、ことを特徴とする請求項1に記載の密閉型ターボ圧縮冷凍機。   2. The hermetic turbo compression refrigerator according to claim 1, wherein the refrigerant gas return pipe includes an orifice or a valve for adjusting a flow rate of the refrigerant gas flowing due to a pressure difference. 前記中空ジャケットは、固定子を囲む螺旋状又はそれに類する流路である、ことを特徴とする請求項1に記載の密閉型ターボ圧縮冷凍機。   2. The hermetic turbo compression refrigerator according to claim 1, wherein the hollow jacket is a spiral channel surrounding the stator or a similar channel. 前記中空ジャケットの流路は、入口から出口に向かって流路面積が漸増又はステップ状に増大する、ことを特徴とする請求項4に記載の密閉型ターボ圧縮冷凍機。   5. The hermetic turbo compression refrigerator according to claim 4, wherein the flow path of the hollow jacket gradually increases or increases stepwise from the inlet toward the outlet. 前記中空ジャケット内でガス化した冷媒ガスが流入するケーシング内の回転子の一端部と、蒸発器とを連通し、ケーシング内から蒸発器へ冷媒液を戻す冷媒液戻り管を備える、ことを特徴とする請求項1に記載の密閉型ターボ圧縮冷凍機。   One end of the rotor in the casing into which the refrigerant gas gasified in the hollow jacket flows and the evaporator are provided, and a refrigerant liquid return pipe is provided for returning the refrigerant liquid from the casing to the evaporator. The hermetic turbo compression refrigerator according to claim 1. 前記冷媒ガス戻り管内の冷媒ガスの温度、冷媒ガス戻り管自体の温度、又は前記電動機ケーシング内の温度を検知する温度検出器と、前記冷媒液供給管の流量を調節する流量調節弁と、該温度検出器の検出温度により流量調節弁を制御する温度制御器とを備える、ことを特徴とする請求項1に記載の密閉型ターボ圧縮冷凍機。   A temperature detector for detecting a temperature of the refrigerant gas in the refrigerant gas return pipe, a temperature of the refrigerant gas return pipe itself, or a temperature in the electric motor casing; a flow rate adjusting valve for adjusting a flow rate of the refrigerant liquid supply pipe; 2. The hermetic turbo compression refrigerator according to claim 1, further comprising a temperature controller that controls the flow rate control valve based on a temperature detected by the temperature detector. 前記冷媒ガスをケーシング内の回転子の一端部に供給するガス供給口は、スラスト方向の力がかかる反対側である、ことを特徴とする請求項1に記載の密閉型ターボ圧縮冷凍機。   2. The hermetic turbo compression refrigerator according to claim 1, wherein a gas supply port that supplies the refrigerant gas to one end of a rotor in a casing is an opposite side to which a force in a thrust direction is applied.
JP2006035508A 2006-02-13 2006-02-13 Sealed turbo compression refrigerator Expired - Fee Related JP4973976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006035508A JP4973976B2 (en) 2006-02-13 2006-02-13 Sealed turbo compression refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006035508A JP4973976B2 (en) 2006-02-13 2006-02-13 Sealed turbo compression refrigerator

Publications (2)

Publication Number Publication Date
JP2007212112A true JP2007212112A (en) 2007-08-23
JP4973976B2 JP4973976B2 (en) 2012-07-11

Family

ID=38490721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006035508A Expired - Fee Related JP4973976B2 (en) 2006-02-13 2006-02-13 Sealed turbo compression refrigerator

Country Status (1)

Country Link
JP (1) JP4973976B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100848885B1 (en) 2008-02-27 2008-07-29 선비기술 주식회사 Mass added turbo compressor
JP2009185712A (en) * 2008-02-06 2009-08-20 Ihi Corp Turbo compressor and refrigerator
JP2009186028A (en) * 2008-02-01 2009-08-20 Daikin Ind Ltd Turbo refrigerator
JP2009300008A (en) * 2008-06-13 2009-12-24 Mitsubishi Heavy Ind Ltd Refrigerator
JP2011508182A (en) * 2007-12-31 2011-03-10 ジョンソン コントロールズ テクノロジー カンパニー Rotor cooling method and system
JP2011515606A (en) * 2008-03-13 2011-05-19 エーエーエフ−マックウェイ インク. Large capacity chiller compressor
CN102282374A (en) * 2009-01-13 2011-12-14 西门子公司 Machine for fluid transportation
JP2013076389A (en) * 2011-09-30 2013-04-25 Daikin Industries Ltd Centrifugal compressor and refrigerating device
CN103237991A (en) * 2010-12-16 2013-08-07 江森自控科技公司 Motor cooling system
JP2013231393A (en) * 2012-04-27 2013-11-14 Toshiba Corp Steam turbine plant
CN104006562A (en) * 2013-02-27 2014-08-27 荏原冷热系统株式会社 Turbine refrigerator
JP2014163624A (en) * 2013-02-27 2014-09-08 Ebara Refrigeration Equipment & Systems Co Ltd Turbo refrigerator
WO2014196454A1 (en) 2013-06-04 2014-12-11 株式会社Ihi Turbo refrigerator
CN104896780A (en) * 2014-03-05 2015-09-09 荏原冷热系统株式会社 Turbine refrigerator
EP2921707A1 (en) * 2014-03-19 2015-09-23 Kabushiki Kaisha Toyota Jidoshokki Motor-driven turbo compressor
CN104929957A (en) * 2014-03-19 2015-09-23 株式会社丰田自动织机 Motor-driven turbo compressor
EP3006860A1 (en) * 2013-06-04 2016-04-13 Daikin Industries, Ltd. Turbo refrigerator
JP2018521291A (en) * 2015-06-29 2018-08-02 ダイキン アプライド アメリカズ インコーポレィティッド Method for providing cooling using R1233zd

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS436135Y1 (en) * 1964-03-26 1968-03-18
JPH05223090A (en) * 1992-02-12 1993-08-31 Toshiba Corp Turbo-compressor
JPH11132581A (en) * 1997-10-31 1999-05-21 Mitsubishi Heavy Ind Ltd Refrigerator
JP2001349628A (en) * 2000-06-02 2001-12-21 Mitsubishi Heavy Ind Ltd Freezer machine
JP2003161537A (en) * 2001-11-20 2003-06-06 Lg Electronics Inc Cooling device and cooling method thereof
JP2004278961A (en) * 2003-03-18 2004-10-07 Mitsubishi Electric Corp Refrigerating machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS436135Y1 (en) * 1964-03-26 1968-03-18
JPH05223090A (en) * 1992-02-12 1993-08-31 Toshiba Corp Turbo-compressor
JPH11132581A (en) * 1997-10-31 1999-05-21 Mitsubishi Heavy Ind Ltd Refrigerator
JP2001349628A (en) * 2000-06-02 2001-12-21 Mitsubishi Heavy Ind Ltd Freezer machine
JP2003161537A (en) * 2001-11-20 2003-06-06 Lg Electronics Inc Cooling device and cooling method thereof
JP2004278961A (en) * 2003-03-18 2004-10-07 Mitsubishi Electric Corp Refrigerating machine

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508182A (en) * 2007-12-31 2011-03-10 ジョンソン コントロールズ テクノロジー カンパニー Rotor cooling method and system
JP2014006046A (en) * 2007-12-31 2014-01-16 Johnson Controls Technology Co Method and system for rotor cooling
JP2009186028A (en) * 2008-02-01 2009-08-20 Daikin Ind Ltd Turbo refrigerator
JP2009185712A (en) * 2008-02-06 2009-08-20 Ihi Corp Turbo compressor and refrigerator
US8800310B2 (en) 2008-02-06 2014-08-12 Ihi Corporation Turbo compressor and refrigerator
WO2009108014A3 (en) * 2008-02-27 2009-11-12 (주)선비기술 Turbo compressor using mass-containing liquid
WO2009108014A2 (en) * 2008-02-27 2009-09-03 (주)선비기술 Turbo compressor using mass-containing liquid
KR100848885B1 (en) 2008-02-27 2008-07-29 선비기술 주식회사 Mass added turbo compressor
JP2011515606A (en) * 2008-03-13 2011-05-19 エーエーエフ−マックウェイ インク. Large capacity chiller compressor
US8959950B2 (en) 2008-03-13 2015-02-24 Daikin Applied Americas Inc. High capacity chiller compressor
JP2009300008A (en) * 2008-06-13 2009-12-24 Mitsubishi Heavy Ind Ltd Refrigerator
CN102282374A (en) * 2009-01-13 2011-12-14 西门子公司 Machine for fluid transportation
CN103237991A (en) * 2010-12-16 2013-08-07 江森自控科技公司 Motor cooling system
JP2014501377A (en) * 2010-12-16 2014-01-20 ジョンソン コントロールズ テクノロジー カンパニー Power system cooling system
JP2013076389A (en) * 2011-09-30 2013-04-25 Daikin Industries Ltd Centrifugal compressor and refrigerating device
JP2013231393A (en) * 2012-04-27 2013-11-14 Toshiba Corp Steam turbine plant
CN104006562A (en) * 2013-02-27 2014-08-27 荏原冷热系统株式会社 Turbine refrigerator
JP2014163624A (en) * 2013-02-27 2014-09-08 Ebara Refrigeration Equipment & Systems Co Ltd Turbo refrigerator
JP2014163625A (en) * 2013-02-27 2014-09-08 Ebara Refrigeration Equipment & Systems Co Ltd Turbo refrigerator
WO2014196454A1 (en) 2013-06-04 2014-12-11 株式会社Ihi Turbo refrigerator
CN105339743A (en) * 2013-06-04 2016-02-17 大金工业株式会社 Turbo refrigerator
US10234175B2 (en) 2013-06-04 2019-03-19 Daikin Industries, Ltd. Turbo refrigerator
US9879886B2 (en) 2013-06-04 2018-01-30 Daikin Industries, Ltd. Turbo refrigerator
EP3006860A4 (en) * 2013-06-04 2017-03-29 Daikin Industries, Ltd. Turbo refrigerator
EP3006860A1 (en) * 2013-06-04 2016-04-13 Daikin Industries, Ltd. Turbo refrigerator
JP2015169352A (en) * 2014-03-05 2015-09-28 荏原冷熱システム株式会社 turbo refrigerator
CN104896780A (en) * 2014-03-05 2015-09-09 荏原冷热系统株式会社 Turbine refrigerator
CN104896780B (en) * 2014-03-05 2018-10-02 荏原冷热系统株式会社 Turborefrigerator
KR20150109275A (en) * 2014-03-19 2015-10-01 가부시키가이샤 도요다 지도숏키 Motor-driven turbo compressor
KR101720855B1 (en) 2014-03-19 2017-03-28 가부시키가이샤 도요다 지도숏키 Motordriven turbo compressor
CN104929956A (en) * 2014-03-19 2015-09-23 株式会社丰田自动织机 Motor-driven turbo compressor
CN104929956B (en) * 2014-03-19 2017-04-12 株式会社丰田自动织机 Motor-driven turbo compressor
CN104929957B (en) * 2014-03-19 2017-04-12 株式会社丰田自动织机 Motor-driven turbo compressor
CN104929957A (en) * 2014-03-19 2015-09-23 株式会社丰田自动织机 Motor-driven turbo compressor
EP2921707A1 (en) * 2014-03-19 2015-09-23 Kabushiki Kaisha Toyota Jidoshokki Motor-driven turbo compressor
JP2018521291A (en) * 2015-06-29 2018-08-02 ダイキン アプライド アメリカズ インコーポレィティッド Method for providing cooling using R1233zd

Also Published As

Publication number Publication date
JP4973976B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
JP4973976B2 (en) Sealed turbo compression refrigerator
KR101201062B1 (en) Refrigeration device
US6698234B2 (en) Method for increasing efficiency of a vapor compression system by evaporator heating
WO2011122085A1 (en) Refrigeration cycle system and method for circulating refrigerant
WO2014068967A1 (en) Refrigeration device
JP2008039383A (en) Unit provided on cooling device for transcritical operation
JP5367100B2 (en) Dual refrigeration equipment
JP2011133209A (en) Refrigerating apparatus
JP2012137214A (en) Refrigerating device
JP2009276046A (en) Ejector type refrigeration cycle
JP2015148406A (en) Refrigeration device
JP2011133205A (en) Refrigerating apparatus
JP2009257756A (en) Heat pump apparatus, and outdoor unit for heat pump apparatus
JP5367059B2 (en) Dual refrigeration equipment
JP6388260B2 (en) Refrigeration equipment
JP2011133207A (en) Refrigerating apparatus
JP2014190614A (en) Turbo refrigerator
JP2005214550A (en) Air conditioner
JP2013155972A (en) Refrigeration device
JP2011133210A (en) Refrigerating apparatus
JP2011133206A (en) Refrigerating apparatus
JP5502460B2 (en) Refrigeration equipment
JP5377528B2 (en) Refrigeration cycle equipment
JP6004004B2 (en) Turbo refrigerator
JP2008096072A (en) Refrigerating cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120329

R151 Written notification of patent or utility model registration

Ref document number: 4973976

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees