JPH05223090A - Turbo-compressor - Google Patents

Turbo-compressor

Info

Publication number
JPH05223090A
JPH05223090A JP4024213A JP2421392A JPH05223090A JP H05223090 A JPH05223090 A JP H05223090A JP 4024213 A JP4024213 A JP 4024213A JP 2421392 A JP2421392 A JP 2421392A JP H05223090 A JPH05223090 A JP H05223090A
Authority
JP
Japan
Prior art keywords
stage
compressor
motor
refrigerant
drive motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4024213A
Other languages
Japanese (ja)
Inventor
Sanae Sekida
早苗 関田
Hidetoshi Kanzaki
英俊 神嵜
Yoshio Nakano
芳夫 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4024213A priority Critical patent/JPH05223090A/en
Publication of JPH05223090A publication Critical patent/JPH05223090A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/403Casings; Connections of working fluid especially adapted for elastic fluid pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To provide structure for a turbo-compressor which is highly efficient and capable of reducing thrust power produced by compression impellers, in a compressor for turbo type refrigerating machine, etc., especially in a single- shaft two-stage compressor. CONSTITUTION:In a single-shaft two-stage compressor having compression blades 4, 5 on both ends of a motor shaft 3, bypass pipings 9, 10 for using a part of refrigerant 6 compressed by the first stage compression blade 4 to cool a drive motor from the middle of the outlet piping 7 on the first stage compression blade 4 side, and for returning the refrigerant to an inlet piping on the second stage compression blade 5 side after cooling the drive motor, are provided. Thus, structure which is capable of providing resistance equivalent to pressure loss produced due to the passage of the refrigerant through a section of the drive motor between the outlet piping on the first stage side and the inlet piping on the second stage side, is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空調用の冷暖房用に用
いるターボ圧縮機に係り、特にその圧縮機部分の構造に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbo compressor used for air conditioning and heating, and more particularly to the structure of the compressor part.

【0002】[0002]

【従来の技術】ビル空調や地域熱供給等の比較的大容量
の空調システム機器として、ターボ式冷凍機がある。こ
のターボ式冷凍機の圧縮機の構造は、駆動モータと増速
機を介して圧縮羽根を所定の回転数まで回転させて冷媒
を圧縮し、冷媒が圧縮されて高温・高圧となり、凝縮器
(熱交換器)で冷却水と熱交換させ、暖房用として使用
される。また、冷媒は凝縮器を経た後、膨張器で膨張
し、低温・低圧となり、今度は蒸発器(熱交換器)で冷
水と熱交換させこの冷水を冷房用として使用する。蒸発
器を経た冷媒は再び、圧縮羽根で圧縮するといったサイ
クルを繰り返す。
2. Description of the Related Art A turbo chiller is used as a relatively large capacity air conditioning system equipment for building air conditioning and district heat supply. The structure of the compressor of this turbo refrigerator is such that the compression vanes are rotated to a predetermined number of rotations through a drive motor and a gearbox to compress the refrigerant, and the refrigerant is compressed to a high temperature and high pressure, and a condenser ( It is used for heating by exchanging heat with cooling water in a heat exchanger). In addition, after passing through the condenser, the refrigerant expands in the expander to a low temperature and low pressure, and this time heat is exchanged with cold water in the evaporator (heat exchanger), and this cold water is used for cooling. The refrigerant that has passed through the evaporator is compressed again by the compression blades, and the cycle is repeated.

【0003】圧縮羽根は、通常油潤滑の軸受を有してお
り、この油は冷媒との混合性、また分離性の優れた潤滑
油が必要であるが、冷媒中に潤滑油が混合するために油
分離器が必要であり、また潤滑油の混合により、上記熱
交換器の性能劣化を生じるため冷凍機の効率が低下する
といった欠点を有している。
The compression blade usually has an oil-lubricated bearing, and this oil needs a lubricating oil that is excellent in mixing and separating properties with the refrigerant, but the lubricating oil mixes in the refrigerant. An oil separator is required, and the performance of the heat exchanger is deteriorated due to the mixing of the lubricating oil, so that the efficiency of the refrigerator is reduced.

【0004】駆動モータを外部設置した場合には、駆動
モータからの発熱損失も生じる。また、1軸2段圧縮機
においては、スラスト力は何トンもの値となるためスラ
スト軸受の構造が複雑となる。
When the drive motor is installed externally, heat loss from the drive motor also occurs. Further, in the single-shaft two-stage compressor, the thrust force has a value of several tons, so that the structure of the thrust bearing becomes complicated.

【0005】[0005]

【発明が解決しようとする課題】以上述べたようにター
ボ式冷凍機の圧縮機、特に1軸2段圧縮機における圧縮
羽根により生じるスラスト力は何トンもの値となるた
め、スラスト軸受の構造が複雑となるばかりでなく、ス
ラスト力による発熱損失も生じ、さらに潤滑油の循環量
も増大することから、冷凍機の効率低下やメンテナンス
も増大することとなる。
As described above, since the thrust force generated by the compression blades of the compressor of the turbo refrigerator, especially the single-shaft two-stage compressor has a value of several tons, the structure of the thrust bearing is Not only becomes complicated, but also heat loss due to thrust force occurs, and the circulating amount of lubricating oil also increases, so that the efficiency of the refrigerator decreases and maintenance also increases.

【0006】また、駆動モータを外部設置した場合に
は、駆動モータからの発熱損失を回収できないばかりで
なく、スラスト軸受やラジアル軸受への油潤滑を必要と
するため、冷凍機の効率低下や冷媒と潤滑油との混合性
等も十分に調査する必要があり、特に新規な冷媒に対す
る潤滑油の適合性については、新たな潤滑油の開発を必
要とするといった問題がある。
Further, when the drive motor is installed outside, not only the heat loss from the drive motor cannot be recovered, but also the thrust bearing and the radial bearing need to be lubricated with oil, which lowers the efficiency of the refrigerator and the refrigerant. It is necessary to thoroughly investigate the miscibility with the lubricating oil and the like, and in particular, regarding the compatibility of the lubricating oil with the new refrigerant, there is a problem that a new lubricating oil needs to be developed.

【0007】本発明は上記の問題を鑑みなされたもの
で、インバータモータ等を用いる事により直接に高速回
転までモータを駆動させモータ軸の両端に圧縮羽根を設
けた1軸2段圧縮機に於て、駆動モータの冷却を冷媒ガ
スで冷却することにより、スラスト軸受のスラスト力を
軽減させ、効率の良いターボ圧縮機の構造を提供せんと
するものである。
The present invention has been made in view of the above problems, and is directed to a single-shaft two-stage compressor in which an inverter motor or the like is used to drive the motor directly to high speed rotation and to provide compression blades at both ends of the motor shaft. By cooling the drive motor with the refrigerant gas, the thrust force of the thrust bearing is reduced to provide an efficient turbo compressor structure.

【0008】[0008]

【課題を解決するための手段】駆動モータを直接高速回
転させる1軸2段圧縮機で、モータ軸の両端に圧縮羽根
を有する1軸2段圧縮機において、モータ冷却のために
1段目の圧縮羽根側の出口冷媒ガスの一部をバイパスし
て、モータ冷却用として1段目の圧縮羽根側へ導入し、
モータを冷却させた後、この冷媒ガスを2段目の圧縮羽
根側の入口側へ戻すバイパス配管を設け、1段目側出口
配管と2段目側入口配管との間に駆動モータ部分を冷媒
が通過することによる圧力損失に見合った分の抵抗を持
たせるようにする。
A single-shaft two-stage compressor in which a drive motor is directly rotated at a high speed. In a single-shaft two-stage compressor having compression blades at both ends of a motor shaft, the first stage is used for cooling the motor. Bypassing a part of the outlet refrigerant gas on the compression blade side and introducing it to the first-stage compression blade side for cooling the motor,
After cooling the motor, a bypass pipe for returning this refrigerant gas to the inlet side on the second-stage compression blade side is provided, and the drive motor portion is connected to the refrigerant between the first-stage side outlet pipe and the second-stage side inlet pipe. It should have a resistance corresponding to the pressure loss due to passage.

【0009】また、軸受部に非接触型の磁気軸受を用い
れば油潤滑を必要としないため冷媒ガスとの油分離が不
要となり、冷凍機としての構造が簡単と成るばかりでな
く、蒸発器・凝縮器に用いる熱交換器の性能向上、つま
り冷凍機の効率向上が達成できる。
Further, if a non-contact type magnetic bearing is used for the bearing portion, oil lubrication is not required, so that oil separation from the refrigerant gas is not required, and not only the structure as a refrigerator is simplified but also an evaporator / The performance of the heat exchanger used for the condenser can be improved, that is, the efficiency of the refrigerator can be improved.

【0010】[0010]

【作用】1軸2段圧縮機の1段側の圧力レベルは、例え
ば入口約0.5ata、出口約1.1ata、2段側の圧力レベル
は、入口約1.1ata、出口約1.9ataのように圧力レベルは
2段側の方が高く、圧縮羽根によって生じる動圧分・静
圧分がモータ軸に作用するスラスト力は1段側と2段側
とを相殺しても、圧力レベルの高い2段側から1段側へ
と作用するが、上記のように構成すれば、すなわちモー
タの冷却用として1段出口の冷媒ガスをモータの1段圧
縮羽根側へ供給し、モータを冷却した後にモータの2段
圧縮羽根の入口側へ戻す事により、モータ部での圧力差
が生じるため、圧力の高い1段側から圧力の低い2段側
へとスラスト力が働くことにより、圧縮羽根によって生
じるスラスト力と打ち消す様に作用する。この相対的な
スラスト力はモータ出入口での圧力差が大きいほど小さ
くなる。
[Function] The pressure level on the first stage side of the single-shaft two-stage compressor is, for example, about 0.5ata at the inlet, about 1.1ata at the outlet, and the pressure level at the second stage is about 1.1ata at the inlet and about 1.9ata at the outlet. The level is higher on the second stage side, and the thrust force acting on the motor shaft by the dynamic and static pressure components generated by the compression blades is high on the second stage side even if the first stage side and the second stage side are canceled out. Side to the first stage side, but if configured as described above, that is, the refrigerant gas at the first stage outlet is supplied to the first stage compression blade side of the motor for cooling the motor, and after cooling the motor, the motor is cooled. By returning to the inlet side of the two-stage compression blade, a pressure difference is generated in the motor section, so that thrust force acts from the high-pressure first stage side to the low-pressure second stage side, which causes the thrust force generated by the compression blade. It works like canceling. This relative thrust force becomes smaller as the pressure difference at the motor inlet / outlet increases.

【0011】[0011]

【実施例】図1は、本発明のターボ冷凍機の圧縮機部の
要部構成図であり、ターボ冷凍機の圧縮機部は、インバ
ータ駆動により、設定の回転数を得る為のモータ・ロー
タ1とモータ・ステータ2とから成り、モータ軸3の両
端には2段圧縮羽根4と2段圧縮羽根5とを有する1軸
2段圧縮機を構成し、冷媒ガス6は1段圧縮羽根4で圧
縮されて、配管7を通って2段圧縮羽根5へと導入す
る。配管7の途中には、圧力差を付けるためのオリフィ
ス8を設け、さらにオリフィス8の手前からモータ冷却
のためのバイパス配管9と、オリフィス8の後方のバイ
パス配管10により、冷媒ガス6を2段圧縮羽根5へと導
入させる。ここで、オリフィス8はモータ部での圧力損
失に見合ったオリフィス径としてある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram of a compressor part of a turbo refrigerator according to the present invention. The compressor part of the turbo refrigerator is a motor / rotor for obtaining a set rotation speed by driving an inverter. 1 and a motor / stator 2 to form a uniaxial two-stage compressor having a two-stage compression vane 4 and a two-stage compression vane 5 at both ends of a motor shaft 3. And is introduced into the two-stage compression blade 5 through the pipe 7. An orifice 8 for providing a pressure difference is provided in the middle of the pipe 7, and the refrigerant gas 6 is divided into two stages by a bypass pipe 9 for cooling the motor from before the orifice 8 and a bypass pipe 10 behind the orifice 8. It is introduced into the compression blade 5. Here, the orifice 8 has an orifice diameter commensurate with the pressure loss in the motor section.

【0012】モータ軸3はラジアル軸受11と12とにより
支持され、また軸方向にはスラスト軸受13と14とで支持
される。特に、磁気軸受のような非接触型の軸受にすれ
ば、摩擦損失が生じないため、低騒音、低損失となり、
さらに潤滑油を全く必要としない構造とすることが出来
る。以上の様に構成することにより、
The motor shaft 3 is supported by radial bearings 11 and 12, and axially supported by thrust bearings 13 and 14. In particular, if a non-contact type bearing such as a magnetic bearing is used, friction loss does not occur, resulting in low noise and low loss.
Further, it is possible to have a structure that requires no lubricating oil. By configuring as above,

【0013】図1に示す様な1軸2段圧縮機の一段側の
圧力レベルは、入口約0.5ata、出口約1.1ataで、2段側
の圧力レベルは、入口約1.1ata、出口約1.9ataであり、
当然ながら圧力レベルは2段側の方が高く、圧縮羽根
5、4によって生じる動圧分・静圧分がモータ軸3に作
用するスラスト力は1段側と2段側とを相殺しても、圧
力レベルの高い2段側から1段側へと作用する。ここ
で、モータの冷却用として、1段出口の冷媒ガス6をモ
ータの1段圧縮羽根側9へ供給し、モータを冷却した後
にモータの2段圧縮羽根の入口側10へ戻す事により、モ
ータ部での圧力差が生じるため、圧力の高い1段側から
圧力の低い2段側へとスラスト力が働くことになり、圧
縮羽根によって生じるスラスト力と打ち消す様に作用す
るため、図2に示す様にモータ出入口での圧力差が大き
いほど相対的なスラスト力は小さくなる。
The pressure level on the one-stage side of the single-shaft two-stage compressor as shown in FIG. 1 is about 0.5ata at the inlet and about 1.1ata at the outlet, and the pressure level at the two-stage side is about 1.1ata at the inlet and about 1.9 outlet. ata,
Naturally, the pressure level is higher on the second stage side, and the thrust force acting on the motor shaft 3 by the dynamic pressure / static pressure components generated by the compression blades 5, 4 cancels the first and second stages. , It acts from the second-stage side with a high pressure level to the first-stage side. Here, for cooling the motor, the refrigerant gas 6 at the first-stage outlet is supplied to the first-stage compression blade side 9 of the motor, and after cooling the motor, it is returned to the inlet-side 10 of the second-stage compression blade of the motor. Since there is a pressure difference between the two parts, the thrust force acts from the high pressure first stage side to the low pressure second stage side, which acts to cancel the thrust force generated by the compression blades, as shown in FIG. Similarly, the larger the pressure difference at the motor inlet / outlet, the smaller the relative thrust force.

【0014】さらに、軸受部に非接触型の磁気軸受を用
いる場合には、油潤滑を必要としないため冷媒ガスとの
油との分離が不要なるため油分離器が不要となり、冷凍
機としての構造が簡単と成るばかりでなく、冷媒液に油
が混入してないため蒸発器・凝縮器に用いる熱交換器の
性能向上ができ、ターボ冷凍機の効率向上ができる。
Furthermore, when a non-contact type magnetic bearing is used for the bearing portion, oil lubrication is not required, so that separation of refrigerant gas from oil is not required, and thus an oil separator is not required, and a refrigerator is used. Not only does the structure become simpler, but since the refrigerant liquid does not contain oil, the performance of the heat exchanger used in the evaporator / condenser can be improved, and the efficiency of the turbo refrigerator can be improved.

【0015】また、油潤滑を必要としないために、どの
ような冷媒液でも使用することが可能であり、且つ、冷
媒に対する油の開発・選定もの必要無くなるといった長
所もある。
Further, since oil lubrication is not required, any refrigerant liquid can be used, and there is an advantage that oil development and selection for the refrigerant is unnecessary.

【0016】[0016]

【発明の効果】以上述べたように本発明によれば、イン
バータ駆動により、直接モータを高速回転させ、モータ
軸の両端に圧縮羽根を有する1軸2段圧縮機に於て、モ
ータ冷却のために1段出口の冷媒ガスの一部をバイパス
して、モータ冷却用としてモータの1段羽根側へ導入
し、モータを冷却させた後、この冷媒ガスを2段羽根入
口側へ戻す方式にする事により、モータ部での発熱損失
を回収すると共に、冷媒ガスによる圧力差によって、圧
縮羽根によるスラスト力とを相殺させ、発生するスラス
ト力を最小限とする事が出来る。
As described above, according to the present invention, the motor is directly driven by the inverter to rotate at a high speed, and the motor is cooled in the one-shaft two-stage compressor having the compression blades at both ends of the motor shaft. A part of the refrigerant gas at the first-stage outlet is bypassed and introduced to the first-stage blade side of the motor for cooling the motor, and after cooling the motor, the refrigerant gas is returned to the second-stage blade inlet side. As a result, the heat generation loss in the motor section can be recovered, and the thrust force generated by the compression blades can be offset by the pressure difference due to the refrigerant gas, and the generated thrust force can be minimized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のターボ圧縮機の一実施例を示す要部構
成図
FIG. 1 is a main part configuration diagram showing an embodiment of a turbo compressor of the present invention.

【図2】冷媒ガスによる圧力差とスラストとの関係を示
す特性図
FIG. 2 is a characteristic diagram showing the relationship between the pressure difference due to the refrigerant gas and the thrust.

【符号の説明】[Explanation of symbols]

1…モータロータ 2…モータステータ 3…モータ軸 4…1段圧縮羽根 5…2段圧縮羽根 6…冷媒ガス 7…配管 8…オリフィス 9,10…バイパス配管 11,12…ラジアル軸受 13,14…スラスト軸受 DESCRIPTION OF SYMBOLS 1 ... Motor rotor 2 ... Motor stator 3 ... Motor shaft 4 ... 1st stage compression blade 5 ... 2nd stage compression blade 6 ... Refrigerant gas 7 ... Piping 8 ... Orifice 9,10 ... Bypass piping 11, 12 ... Radial bearing 13, 14 ... Thrust bearing

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 駆動モータ軸の両端に圧縮羽根を有し、
前記駆動モータにより前記圧縮羽根を所定の回転数まで
回転させる1軸2段圧縮機で、1段目の圧縮羽根で圧縮
した冷却媒体(以下、冷媒という)を2段目の圧縮羽根
に送る構造の2段式のターボ圧縮機において、1段目の
圧縮羽根で圧縮した冷媒の一部を1段目の圧縮羽根側の
出口配管の途中から駆動モータの冷却用として用い、駆
動モータの冷却後に再び2段目の圧縮羽根側の入口配管
へと戻すバイパス配管を設け、1段目の圧縮羽根側の出
口配管と2段目の圧縮羽根側の入口配管との間に駆動モ
ータ部分を冷媒が通過することによって生じる圧力損失
に見合った分の抵抗を持たせた構造としたことを特徴と
するターボ圧縮機。
1. A compression blade is provided at both ends of a drive motor shaft,
A single-shaft two-stage compressor that rotates the compression blades to a predetermined rotation speed by the drive motor, and sends a cooling medium (hereinafter, referred to as a refrigerant) compressed by the first-stage compression blades to the second-stage compression blades. In the two-stage turbo compressor, the part of the refrigerant compressed by the first-stage compression blade is used for cooling the drive motor from the middle of the outlet pipe on the first-stage compression blade side, and after the drive motor is cooled. Bypass pipes that return to the inlet pipe on the second-stage compression blade side are provided again, and the drive motor portion is cooled by the refrigerant between the outlet pipe on the first-stage compression blade side and the inlet pipe on the second-stage compression blade side. A turbo compressor characterized by having a structure having a resistance commensurate with the pressure loss caused by passage.
JP4024213A 1992-02-12 1992-02-12 Turbo-compressor Pending JPH05223090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4024213A JPH05223090A (en) 1992-02-12 1992-02-12 Turbo-compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4024213A JPH05223090A (en) 1992-02-12 1992-02-12 Turbo-compressor

Publications (1)

Publication Number Publication Date
JPH05223090A true JPH05223090A (en) 1993-08-31

Family

ID=12132021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4024213A Pending JPH05223090A (en) 1992-02-12 1992-02-12 Turbo-compressor

Country Status (1)

Country Link
JP (1) JPH05223090A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1113686A (en) * 1997-06-26 1999-01-19 Daikin Ind Ltd Turbomachine
JPH11294879A (en) * 1998-02-16 1999-10-29 Daikin Ind Ltd Refrigerating system
WO2000055506A1 (en) * 1999-03-15 2000-09-21 Samjin Co., Ltd. Two-stage centrifugal compressor
KR20010001173A (en) * 1999-06-02 2001-01-05 구자홍 Turbo compressor
JP2002064956A (en) * 2000-08-14 2002-02-28 Ishikawajima Harima Heavy Ind Co Ltd High speed-revolution motor and cooling method therefor
KR100530757B1 (en) * 1999-07-15 2005-11-23 삼성테크윈 주식회사 Turbo compressor
JP2006509370A (en) * 2002-12-06 2006-03-16 ゼネラル・エレクトリック・カンパニイ Method, system and apparatus for cooling high power density devices
JP2007212112A (en) * 2006-02-13 2007-08-23 Ishikawajima Harima Heavy Ind Co Ltd Hermetic turbo-compression refrigerating machine
US7690887B2 (en) 2005-12-28 2010-04-06 Ishikawajima-Harima Heavy Industries, Co., Ltd. Turbo compressor
US7942628B2 (en) 2005-12-28 2011-05-17 Ishikawajima-Harima Heavy Industries Co., Ltd. Turbo compressor
US8756954B2 (en) 2008-02-06 2014-06-24 Ihi Corporation Turbo compressor and turbo refrigerator
CN103917786A (en) * 2011-08-30 2014-07-09 Ksb股份公司 Turbocompressor and use
WO2014192434A1 (en) 2013-05-30 2014-12-04 三菱重工業株式会社 Turbo compressor and turbo chiller using same
JP6175211B1 (en) * 2017-02-23 2017-08-02 三菱重工コンプレッサ株式会社 Rotating machine
CN109477496A (en) * 2016-07-13 2019-03-15 三菱电机株式会社 Electric blowing machine and electrical equipment
WO2021050655A3 (en) * 2019-09-12 2021-04-22 Carrier Corporation Centrifugal compressor with motor cooling by compressed process gas and bearing lubricant flow through a hollow shaft
CN114483657A (en) * 2020-11-13 2022-05-13 Lg电子株式会社 Compressor and cooling device comprising same
CN116335968A (en) * 2023-03-27 2023-06-27 广州汽车集团股份有限公司 Air compressor and fuel cell
EP4307536A4 (en) * 2021-05-11 2024-08-28 Chongqing midea general refrigeration equipment co ltd Compressor, refrigeration system and refrigeration apparatus

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1113686A (en) * 1997-06-26 1999-01-19 Daikin Ind Ltd Turbomachine
JPH11294879A (en) * 1998-02-16 1999-10-29 Daikin Ind Ltd Refrigerating system
WO2000055506A1 (en) * 1999-03-15 2000-09-21 Samjin Co., Ltd. Two-stage centrifugal compressor
KR20010001173A (en) * 1999-06-02 2001-01-05 구자홍 Turbo compressor
KR100530757B1 (en) * 1999-07-15 2005-11-23 삼성테크윈 주식회사 Turbo compressor
JP2002064956A (en) * 2000-08-14 2002-02-28 Ishikawajima Harima Heavy Ind Co Ltd High speed-revolution motor and cooling method therefor
JP2006509370A (en) * 2002-12-06 2006-03-16 ゼネラル・エレクトリック・カンパニイ Method, system and apparatus for cooling high power density devices
US7690887B2 (en) 2005-12-28 2010-04-06 Ishikawajima-Harima Heavy Industries, Co., Ltd. Turbo compressor
US7942628B2 (en) 2005-12-28 2011-05-17 Ishikawajima-Harima Heavy Industries Co., Ltd. Turbo compressor
JP2007212112A (en) * 2006-02-13 2007-08-23 Ishikawajima Harima Heavy Ind Co Ltd Hermetic turbo-compression refrigerating machine
US8756954B2 (en) 2008-02-06 2014-06-24 Ihi Corporation Turbo compressor and turbo refrigerator
JP2014527598A (en) * 2011-08-30 2014-10-16 カーエスベー・アクチエンゲゼルシャフトKsb Aktiengesellschaft Turbo compressor and use
CN103917786A (en) * 2011-08-30 2014-07-09 Ksb股份公司 Turbocompressor and use
WO2014192434A1 (en) 2013-05-30 2014-12-04 三菱重工業株式会社 Turbo compressor and turbo chiller using same
US10858951B2 (en) 2013-05-30 2020-12-08 Mitsubishi Heavy Industries Thermal Systems, Ltd. Turbo compressor and turbo chiller using same
CN109477496A (en) * 2016-07-13 2019-03-15 三菱电机株式会社 Electric blowing machine and electrical equipment
WO2018154674A1 (en) * 2017-02-23 2018-08-30 三菱重工コンプレッサ株式会社 Rotary machine
US10808723B2 (en) 2017-02-23 2020-10-20 Mitsubishi Heavy Industries Compressor Corporation Rotary machine
JP6175211B1 (en) * 2017-02-23 2017-08-02 三菱重工コンプレッサ株式会社 Rotating machine
WO2021050655A3 (en) * 2019-09-12 2021-04-22 Carrier Corporation Centrifugal compressor with motor cooling by compressed process gas and bearing lubricant flow through a hollow shaft
US12078180B2 (en) 2019-09-12 2024-09-03 Carrier Corporation Centrifugal compressor having a motor cooling passage
CN114483657A (en) * 2020-11-13 2022-05-13 Lg电子株式会社 Compressor and cooling device comprising same
CN114483657B (en) * 2020-11-13 2024-04-19 Lg电子株式会社 Compressor and cooling device comprising same
EP4307536A4 (en) * 2021-05-11 2024-08-28 Chongqing midea general refrigeration equipment co ltd Compressor, refrigeration system and refrigeration apparatus
CN116335968A (en) * 2023-03-27 2023-06-27 广州汽车集团股份有限公司 Air compressor and fuel cell

Similar Documents

Publication Publication Date Title
JPH05223090A (en) Turbo-compressor
US20220136744A1 (en) Turbo chiller
US6460371B2 (en) Multistage compression refrigerating machine for supplying refrigerant from subcooler to cool rotating machine and lubricating oil
Brasz et al. Power production from a moderate-temperature geothermal resource
US5884498A (en) Turborefrigerator
US5555745A (en) Refrigeration system
KR100200087B1 (en) Cooling cycle of two-stage centrifugal compressor
US20090277197A1 (en) Evaporator apparatus and method for modulating cooling
US20080199326A1 (en) Two-stage vapor cycle compressor
CN101326413A (en) Lubrication system for acute stopping bearing of magnetic bearing compressor
CN101963161B (en) Turbo compressor and refrigerator
JP2005345084A (en) Exhaust heat recovering refrigeration air conditioning system
Kus et al. Oil free turbo-compressors for CO2 refrigeration applications
CN116398452A (en) Magnetic suspension centrifugal heat pump compressor with wide frequency conversion operation
US10533778B2 (en) Turbo economizer used in chiller system
WO2017122719A1 (en) Turbo compressor and turbo refrigeration device equipped with same
JP2005345083A (en) Liquid-side energy recovering system of refrigeration air conditioner
JP6004004B2 (en) Turbo refrigerator
KR102113036B1 (en) A turbo compressor and a turbo chiller including the same
JP2020159294A (en) Turbo compressor and refrigeration cycle device
JP2827801B2 (en) Turbo refrigerator
CN111894890B (en) Seal assembly for compressor
JP2023013514A (en) Turbo compressor and freezer
US2820350A (en) Refrigeration apparatus
KR100572822B1 (en) Air refrigerating cycle