JP2827801B2 - Turbo refrigerator - Google Patents
Turbo refrigeratorInfo
- Publication number
- JP2827801B2 JP2827801B2 JP6957293A JP6957293A JP2827801B2 JP 2827801 B2 JP2827801 B2 JP 2827801B2 JP 6957293 A JP6957293 A JP 6957293A JP 6957293 A JP6957293 A JP 6957293A JP 2827801 B2 JP2827801 B2 JP 2827801B2
- Authority
- JP
- Japan
- Prior art keywords
- oil
- refrigerant
- lubricating oil
- shaft
- wing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Structures Of Non-Positive Displacement Pumps (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、冷媒にClを含まない
冷媒を用する圧縮式冷凍機で高効率を幅広い運転領域が
求められるタ−ボ冷凍機に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbo refrigerator which uses a refrigerant containing no Cl as a refrigerant and which requires high efficiency and a wide operating range.
【0002】[0002]
【従来の技術】CFC11,CFC12,HCFC12
3,HCFC22等のCl基を含む冷媒を使用するタ−
ボ冷凍機では、圧縮機の潤滑油として用いる鉱油(ター
ビン油など)は大気中に解放しても水分の吸湿量が少な
いために、特に油中の水分を除去する手段は不要であっ
た。しかし上記冷媒に代わるClを基を含まない、いわ
ゆる代替冷媒、例えばHFC143a(1,1,1,2テ
トラフルオロエタン)では鉱油との相溶性がなく、2相
分離するためにタ−ボ冷凍機には鉱油は使用できない。
したがって、相溶性を持たせるために新たに分子設計を
した合成油(例えばエステル油)の使用が不可欠とな
る。2. Description of the Related Art CFC11, CFC12, HCFC12
3. Tar using a refrigerant containing Cl group such as HCFC22
In the refrigerating machine, the mineral oil (such as turbine oil) used as the lubricating oil for the compressor has a small amount of moisture absorption even when released to the atmosphere, so that a means for removing moisture in the oil is unnecessary. However, a so-called alternative refrigerant containing no Cl group instead of the above refrigerant, for example, HFC143a (1,1,1,2 tetrafluoroethane) is not compatible with mineral oil and has a turbo refrigerator to separate two phases. Can not use mineral oil.
Therefore, it is indispensable to use a synthetic oil (for example, an ester oil) newly designed in order to have compatibility.
【0003】ターボ冷凍機用遠心圧縮機の信頼性向上、
低コスト化に関しては、駆動モータの小形化や、増速ギ
ヤ用軸の軸受間距離の確保が図られてきたが、さらに低
コスト化を図るためにはユニット化、製作工程の短縮が
可能な構造とすることが必要である。遠心圧縮機は、例
えば「冷凍機械工学ハンドブック」(朝倉書店、196
5年)P305や特公昭52−42921号公報に示さ
れているように、駆動モータと軸方向に分割され、モー
タ回転子を直結した軸の軸受は、圧縮機側ケーシングに
一部又はすべて配置された構造となっている。[0003] Improving the reliability of centrifugal compressors for centrifugal chillers,
In terms of cost reduction, the drive motor has been downsized and the distance between bearings of the speed increasing gear shaft has been ensured. However, in order to further reduce cost, it is possible to unitize and shorten the manufacturing process. It is necessary to have a structure. Centrifugal compressors are described in, for example, “Refrigeration Mechanical Engineering Handbook” (Asakura Shoten, 196
5 years) As shown in P305 and Japanese Patent Publication No. 52-42921, the drive motor and the shaft bearing that is divided in the axial direction and directly connected to the motor rotor are partially or entirely disposed in the compressor side casing. It has a structure.
【0004】遠心圧縮機では羽根車外周部のディフュー
ザの全周にわたって等間隔に静止翼(複数個)を配置す
る構造のものがあり、静止翼の翼間とディフューザの側
壁とでディフューザ流路が形成されている。高速回転で
低流量域では静止翼の負圧面に剥離領域が発生し、充分
な圧力上昇が得られなくなる。この結果、初めに剥離領
域が周方向に旋回するいわゆる旋回失速が発生する。更
に流量を減少させるとサージ減少が発生する。サージ現
象を低流量側に移動させる技術としてディフューザに等
間隔に配置した静止翼の各静止翼間の内周側に補助翼を
配置し、静止翼もしくは補助翼の前縁側を側板側から心
板側にかけて下流方向に傾斜させた遠心圧縮機が提案さ
れている(特開平1−247798号)。Some centrifugal compressors have a structure in which stationary blades (a plurality of blades) are arranged at equal intervals over the entire circumference of the diffuser on the outer periphery of the impeller. The diffuser flow path is formed between the blades of the stationary blade and the side wall of the diffuser. Is formed. In a low flow rate region at a high rotation speed, a separation region occurs on the negative pressure surface of the stationary blade, and a sufficient pressure rise cannot be obtained. As a result, a so-called turning stall occurs in which the peeling area turns in the circumferential direction first. When the flow rate is further reduced, a decrease in surge occurs. As a technique for moving the surge phenomenon to the low flow rate side, auxiliary wings are arranged on the inner peripheral side between the stationary wings of the stationary wings arranged at equal intervals in the diffuser, and the leading edge side of the stationary wings or auxiliary wings from the side plate side to the core plate There has been proposed a centrifugal compressor inclined in the downstream direction toward the side (Japanese Patent Laid-Open No. 1-247798).
【0005】[0005]
【発明が解決しようとする課題】しかし、上記合成油は
水分は吸湿しやすい性質を持っており、水分が多量に混
入すると合成油は加水分解し、潤滑油の機能が損なわれ
る欠点があった。又塩素物に対して不安定であり、塩素
分が多量に混入すると合成油は加水分解し、潤滑油の機
能が損なわれる欠点があった。又、一般に潤滑油中に水
分が混入するのは、圧縮式冷凍機の稼動前に行う水を用
いた機密試験時の水が完全に除去されずに機内に残存す
るが、合成前では特にこの残存した水が合成油中に混じ
り込み易い。However, the above-mentioned synthetic oil has a property that water easily absorbs moisture, and when a large amount of water is mixed in, the synthetic oil is hydrolyzed and the function of the lubricating oil is impaired. . Further, it is unstable with respect to chlorides, and when a large amount of chlorine is mixed therein, the synthetic oil is hydrolyzed, and the function of the lubricating oil is impaired. In general, water is mixed into the lubricating oil because water during the security test using water performed before the operation of the compression refrigerator remains in the machine without being completely removed. The remaining water tends to mix into the synthetic oil.
【0006】又圧縮式冷凍機が組立て時に塩素系洗浄剤
を使用して洗浄され、洗浄後に洗剤が完全に除去されな
い場合に、合成油は塩素物に対して不安定であり、塩素
と混合すると合成油は加水分解し、水分と同様に劣化が
加速されて潤滑油はその機能が損なわれる。[0006] In addition, when the compression refrigerator is cleaned using a chlorine-based cleaning agent during assembly, and the cleaning agent is not completely removed after the cleaning, the synthetic oil is unstable with respect to chlorine substances. Synthetic oils are hydrolyzed and accelerated in degradation in the same way as water, and lubricating oils lose their function.
【0007】本発明は、合成油中へ混入した水分もしく
は塩素を除去して代替冷媒の使用を可能にするタ−ボ冷
凍機を提供することを目的とする。[0007] It is an object of the present invention to provide a turbo refrigerator which removes water or chlorine mixed in synthetic oil and makes it possible to use an alternative refrigerant.
【0008】又本発明の目的は、低流量域までサージ現
象及び旋回失速を発生させることなく運転できるタ−ボ
冷凍機を提供することにある。Another object of the present invention is to provide a turbo refrigerator capable of operating without generating a surge phenomenon and a rotating stall even in a low flow rate region.
【0009】[0009]
【課題を解決するための手段】上記目的は、蒸発器、凝
縮器、蒸発器からの冷媒ガスを圧縮する圧縮機、この圧
縮機を駆動する駆動機及び潤滑油が循環する油系統を備
えるタ−ボ冷凍機において、油系統に水分除去装置を設
けることによって、達成される。SUMMARY OF THE INVENTION An object of the present invention is to provide an evaporator, a condenser, a compressor for compressing refrigerant gas from the evaporator, a drive for driving the compressor, and an oil system for circulating lubricating oil. In a refrigerator, this is achieved by providing a water removal device in the oil system.
【0010】又上記目的を達成するために、圧縮機のデ
ィフューザに静止翼を配置し、羽根車からの吐出流体の
運動エネルギーを静止翼により圧力エネルギーに変換す
るディフューザを備えた遠心圧縮機において、前記静止
翼の前縁を側板側から心板側にかけて下流方向に傾斜さ
せ、前記静止翼よりも弦長が短く、前縁が側板側から心
板側にかけて下流方向に傾斜している補助翼を、補助翼
の翼面の一方が前記静止翼に対向するように前記静止翼
の内周側に配置したものである。According to another aspect of the present invention, there is provided a centrifugal compressor having a diffuser in which a stationary vane is arranged in a diffuser of a compressor and kinetic energy of a fluid discharged from an impeller is converted into pressure energy by the stationary vane. Auxiliary wings in which the leading edge of the stationary blade is inclined in the downstream direction from the side plate side to the core plate side, the chord length is shorter than the stationary blade, and the leading edge is inclined in the downstream direction from the side plate side to the core plate side. , And one of the wing surfaces of the auxiliary wing is arranged on the inner peripheral side of the stationary wing such that the wing surface faces the stationary wing.
【0011】更に上記目的を達成するために、本発明は
圧縮機のディフューザに静止翼を配置し、羽根車の吐出
流体の運動エネルギーを静止翼により圧力エネルギーに
変換するディフューザを備えた遠心圧縮機において、前
記ディフューザに偏在して配置した静止翼の前縁を側板
側から心板側にかけて下流方向に傾斜させ、前記静止翼
よりも弦長が短かく、前縁が側板側から心板側にかけて
下流方向に傾斜している補助翼を、補助翼の翼面の一方
が前記静止翼に対向するように前記静止翼の内周側に配
置した羽根車の外周に静止翼を配置したものである。Further, in order to achieve the above object, the present invention provides a centrifugal compressor provided with a stationary blade in a diffuser of a compressor, and a diffuser for converting kinetic energy of a discharge fluid of an impeller into pressure energy by the stationary blade. In the diffuser, the leading edge of the stationary blade arranged unevenly in the diffuser is inclined in the downstream direction from the side plate side to the core plate side, the chord length is shorter than the stationary blade, the leading edge is from the side plate side to the core plate side. An auxiliary wing that is inclined in the downstream direction is obtained by arranging a stationary wing on an outer periphery of an impeller arranged on an inner peripheral side of the stationary wing such that one of the wing surfaces of the auxiliary wing faces the stationary wing. .
【0012】[0012]
【作用】水分を除去するために使用する水分除去装置が
水分のみを吸着する材質のものから構成されており、こ
の水分除去装置を潤滑油が通過すると潤滑油中の水分の
みが捕集されるので、潤滑油中の水分が除去される。The moisture removing device used for removing moisture is made of a material that absorbs only moisture, and when the lubricant passes through the moisture removing device, only the moisture in the lubricant is collected. Therefore, the moisture in the lubricating oil is removed.
【0013】静止翼及び補助翼のいずれも側板側の前縁
を従来のものより羽根車に近い位置に配置することがで
きるために接続方向に近い流れを静止翼の方向に強力に
導くことができ、このため逆流が発生しにくくなるので
低流量域までサージ現象が発生しない。また、補助翼を
静止翼とともに翼間隔を粗の部分と密の部分とに配置
し、補助翼とともに静止翼を偏在させたので、初めに翼
間隔の粗の通路に密の通路より速く失速が起こり、失速
している翼間通路の通過流量が失速していない翼間通路
の通過流量より減少し、この減少分だけ失速していない
翼間通路の通過流量を増加させて旋回失速が発生しにく
くなる。[0013] Since both the stationary blade and the auxiliary blade can have the leading edge on the side plate side closer to the impeller than the conventional one, the flow near the connection direction can be strongly guided toward the stationary blade. As a result, a backflow is unlikely to occur, so that a surge phenomenon does not occur even in a low flow rate region. In addition, since the auxiliary wings were arranged in the coarse part and the dense part with the stationary wings and the blade spacing was unevenly distributed with the auxiliary wings, the stall was initially performed faster in the coarse passages in the wing spacing than in the dense passage. As a result, the passing flow rate of the stalled inter-blade passage becomes smaller than the passing flow rate of the non-stalled inter-blade passage, and the passing flow rate of the non-stalled inter-blade passage is increased by the reduced amount to cause a rotating stall. It becomes difficult.
【0014】[0014]
【実施例】本発明の実施例を図1から図8を用いて説明
する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS.
【0015】図1において、ターボ冷凍機は凝縮器1、
蒸発器2、圧縮機(ターボ圧縮機)3及びこの圧縮機3
を駆動する駆動源5から構成される。凝縮器1は高温高
圧の冷媒ガスを冷却するため外部から冷却水を導入する
伝熱管1Aを内臓し、又蒸発器2は外部へ冷水を取り出
すための伝熱管2Aを内臓している。凝縮器1、蒸発器
2及び圧縮機3は冷媒系統14で接続され、凝縮器1及
び蒸発器2の間には膨張弁14Aが介在している。圧縮
機3の下部には潤滑油を貯える油タンク4があり、この
油タンク4内には潤滑油を潤滑させる油ポンプ6が設け
られている。潤滑油系統7は前記油ポンプ6と圧縮機3
及び駆動源5の間に形成されて潤滑油をそれぞれの軸受
部51A,51B,51Cに循環させる構造になってい
る。この潤滑油系統7には水分除去装置8、ほかに水分
検知器9、オイルクーラ10、オイルストレーナ(濾過
器)11、仕切りバルブ12、13などが設けられてい
る。In FIG. 1, a turbo refrigerator has a condenser 1,
Evaporator 2, compressor (turbo compressor) 3, and this compressor 3
And a driving source 5 for driving. The condenser 1 has a built-in heat transfer tube 1A for introducing cooling water from outside to cool the high-temperature and high-pressure refrigerant gas, and the evaporator 2 has a built-in heat transfer tube 2A for taking out cold water to the outside. The condenser 1, the evaporator 2, and the compressor 3 are connected by a refrigerant system 14, and an expansion valve 14A is interposed between the condenser 1 and the evaporator 2. An oil tank 4 for storing lubricating oil is provided below the compressor 3, and an oil pump 6 for lubricating the lubricating oil is provided in the oil tank 4. The lubricating oil system 7 includes the oil pump 6 and the compressor 3
And the drive source 5 to circulate the lubricating oil to the bearings 51A, 51B, 51C. The lubricating oil system 7 is provided with a moisture removing device 8, a moisture detector 9, an oil cooler 10, an oil strainer (filter) 11, partition valves 12, 13, and the like.
【0016】図2は前記水分除去装置8の詳細図で、容
器20内には乾燥剤21が充填されている。乾燥剤21
には冷媒の分子径より小さい孔を有し、水分を吸着する
機能のある例えばモレキュラーシーブ(分子篩)を用い
る。ばね22は乾燥剤21を容器20内に固定するため
のものである。FIG. 2 is a detailed view of the water removing device 8. A desiccant 21 is filled in a container 20. Desiccant 21
For example, a molecular sieve (molecular sieve) having pores smaller than the molecular diameter of the refrigerant and having a function of adsorbing moisture is used. The spring 22 is for fixing the desiccant 21 in the container 20.
【0017】なお、冷媒としてはClを含まないいわゆ
る代替冷媒を用いるが、本実施例ではHFC134aを
使用している(以下の他の実施例でも同じ)。又潤滑油
としては合成油を用いるが、本実施例ではエステル油を
使用している(以下の他の実施例でも同じ)。Although a so-called alternative refrigerant containing no Cl is used as the refrigerant, the present embodiment uses the HFC134a (the same applies to other embodiments described below). Although a synthetic oil is used as the lubricating oil, an ester oil is used in this embodiment (the same applies to other embodiments described below).
【0018】次に上記構成のターボ冷凍機の作用につい
て説明する。Next, the operation of the centrifugal chiller having the above configuration will be described.
【0019】圧縮機3で圧縮された高温高圧の冷媒ガス
は凝縮器1へ導入され、ここで伝熱管1Aを流れる冷却
水で冷却され液化して液冷媒となる。凝縮器1を出た低
温高圧の液冷媒は膨張弁14を通過する際に更に温度を
下げて低温低圧の液冷媒となって蒸発器2に溜る。ここ
で、たとえば外部空調負荷で空気と熱交換して温度上昇
して戻ってきた冷水が伝熱管2Aが液冷媒と熱交換する
ことによって液冷媒は蒸発し冷媒ガスとなる。この冷媒
ガスは圧縮機3で圧縮されて再び高温高圧の冷媒ガスと
なり、凝縮器1へ導入され、ここで伝熱管1Aを流れる
冷却水で冷却され液化して液冷媒となるサイクルを繰り
返す。油ポンプ6を運転すると、潤滑油は水分除去装置
8、水分検知器9、オイルクーラ10、オイルストレー
ナ11を通過し、潤滑油中の水分が水分除去装置8を通
過する際に吸着され、潤滑油中から水分が除去される。
なお、冷凍機を運転せずに油ポンプ6のみを単独で運転
し、潤滑油を潤滑させることによっても水分を除去でき
る。水分検知器9には、例えば水分含有量によって色合
いが変わるインジケータを使用すれば水分除去装置8の
交換時期を知ることができる(そのほかアラームで交換
時期を知らせる水分検知手段を用いてもよい)。オイル
クーラ10は潤滑油を冷却して油温の上昇を防止する。
又、オイルストレーナ11によってオイルに混入する粒
状物が除去される。水分除去装置8の交換は仕切りバル
ブ12、13を閉めた状態で行うので、交換のために機
内の冷媒を回収する必要はない。The high-temperature and high-pressure refrigerant gas compressed by the compressor 3 is introduced into the condenser 1, where it is cooled by the cooling water flowing through the heat transfer tube 1A and liquefied to become a liquid refrigerant. When passing through the expansion valve 14, the low-temperature and high-pressure liquid refrigerant that has exited the condenser 1 is further lowered in temperature, becomes low-temperature and low-pressure liquid refrigerant, and accumulates in the evaporator 2. Here, for example, when the heat exchange tube 2A exchanges heat with the liquid refrigerant, the liquid refrigerant evaporates to become a refrigerant gas by exchanging heat with the air by the external air-conditioning load and returning the cooled water. This refrigerant gas is compressed by the compressor 3 to become high-temperature and high-pressure refrigerant gas again, introduced into the condenser 1, where it is cooled by the cooling water flowing through the heat transfer tube 1A, liquefied, and a cycle of becoming a liquid refrigerant is repeated. When the oil pump 6 is operated, the lubricating oil passes through the moisture removing device 8, the moisture detector 9, the oil cooler 10, and the oil strainer 11, and the moisture in the lubricating oil is adsorbed when passing through the moisture removing device 8, and the lubricating oil is lubricated. Moisture is removed from the oil.
The water can also be removed by operating the oil pump 6 alone without operating the refrigerator and lubricating the lubricating oil. For example, an indicator whose color changes depending on the moisture content can be used as the moisture detector 9 so that the replacement time of the moisture removal device 8 can be known (otherwise, moisture detection means for notifying the replacement time by an alarm may be used). The oil cooler 10 cools the lubricating oil to prevent the oil temperature from rising.
In addition, the oil strainer 11 removes particulate matter mixed into the oil. Since the replacement of the water removing device 8 is performed with the partition valves 12 and 13 closed, there is no need to recover the refrigerant in the device for the replacement.
【0020】図3は容器20内に水分除去粒状物除去と
の機能を兼備んさせるために、乾燥剤を固形にした水分
除去兼ストレーナ23を充填したものである。FIG. 3 shows a container 20 filled with a moisture removing / strainer 23 in which a desiccant is solidified in order to have a function of removing moisture and removing particulates.
【0021】図4は本発明の他の実施例で、自動油回収
機能を備えたタ−ボ冷凍機であり、上述実施例と異なる
部分についてのみ説明する。FIG. 4 shows another embodiment of the present invention, which is a turbo refrigerator provided with an automatic oil recovery function. Only parts different from the above-described embodiment will be described.
【0022】潤滑油系統7を分岐した潤滑油の分岐系3
0を形成して油タンク4に戻している。この分岐系30
にはエゼクタ31を設けている。蒸発器2の冷媒液面以
下であって冷媒液面近くに冷媒系統32を設けて油回収
器33に接続する。ヒータ34は前記油回収器33内の
冷媒液を加熱するためのものである。回収油系統35は
前記油回収器33の底部に設けられて前記エゼクタ31
に接続されている。更に前記油回収器33の上部には冷
媒を回収するための冷媒系統36が設けられ前記蒸発器
2と圧縮器3との間の冷媒系統14に接続されている。The lubricating oil branch system 3 branched from the lubricating oil system 7
0 is returned to the oil tank 4. This branch system 30
Is provided with an ejector 31. A refrigerant system 32 is provided below the refrigerant liquid level of the evaporator 2 and near the refrigerant liquid level, and is connected to the oil recovery unit 33. The heater 34 is for heating the refrigerant liquid in the oil recovery unit 33. The recovered oil system 35 is provided at the bottom of the oil recovery unit 33 and is connected to the ejector 31.
It is connected to the. Further, a refrigerant system 36 for recovering the refrigerant is provided above the oil recovery unit 33, and is connected to the refrigerant system 14 between the evaporator 2 and the compressor 3.
【0023】上記構成のターボ冷凍機の機能は次の通り
である。The function of the centrifugal chiller having the above configuration is as follows.
【0024】蒸発器2の冷媒液面付近では、圧縮機3か
ら洩れ込む潤滑油分が冷媒中に溶け込み、冷媒中の潤滑
油の含有量が蒸発器2の底部に比較して多い状態にあ
る。この部分より冷媒液を油回収器33に冷媒系統32
を経由して取り込む。油回収器3では、凝縮器1からの
冷媒ガスを配管34に通し、この熱で油回収器33内の
冷媒液を加熱し潤滑油分の濃度を高める。一方、潤滑油
に混入している水分は、油回収器33内で潤滑油ととも
にエゼクタ31で発生する負圧で油回収器33から吸い
上げられ、潤滑油といっしょに水分除去装置8、水分検
知器11を経由して油タンク4に戻る過程で、水分除去
装置8によって水分の除去が行われる。なお、水分除去
装置8はオイルストレーナ11とエゼクタ31との間以
外に、油ポンプ6とエゼクタ31との間、もしくはエゼ
クタ31と油回収器33との間等に配置することもでき
る。In the vicinity of the refrigerant level of the evaporator 2, the lubricating oil leaking from the compressor 3 is dissolved in the refrigerant, and the lubricating oil content in the refrigerant is larger than that at the bottom of the evaporator 2. . From this part, the refrigerant liquid is supplied to the oil recovery device 33 to the refrigerant system 32.
Capture via. In the oil recovery unit 3, the refrigerant gas from the condenser 1 is passed through a pipe 34, and this heat heats the refrigerant liquid in the oil recovery unit 33 to increase the concentration of the lubricating oil. On the other hand, the water mixed in the lubricating oil is sucked up from the oil collecting device 33 by the negative pressure generated in the ejector 31 together with the lubricating oil in the oil collecting device 33, and the water is removed together with the lubricating oil by the water removing device 8 and the water detecting device. In the process of returning to the oil tank 4 via 11, moisture is removed by the moisture removing device 8. The water removing device 8 can be arranged between the oil pump 6 and the ejector 31, between the oil pump 6 and the ejector 31, or between the ejector 31 and the oil collecting device 33, in addition to between the oil strainer 11 and the ejector 31.
【0025】本実施例によれば、潤滑油系統7のみなら
ず冷媒系統32中の水分も除去することができる。According to this embodiment, not only the lubricating oil system 7 but also the water in the refrigerant system 32 can be removed.
【0026】次に圧縮機3の構成について図5により説
明する。図は圧縮機3の駆動部の縦断面図であり、駆動
部は駆動モータ62、回転子62a、固定子62bから
なっている。63は前記回転子62aに直結された第1
の軸であり、この第1の軸63は回転子62aの軸部の
反モータ側軸端に歯車63aを嵌着するようになってい
る。この第1の軸は63は軸受65−1、65−2に支
持され、これら軸受65−1、65−2はモータケーシ
ング60と一体に形成された軸受支持フレーム60aに
装着されている。64は前記増速用歯車63aに噛合う
ピニオン64aを有し、羽根車64bを取り付ける第2
の軸である。この第2の軸64は軸受66−1、66−
2に支持され、これら軸受66−1、66−2は歯車ケ
ーシング61の軸受支持フレーム68に装着されてい
る。歯車ケーシング61には、モータケーシング60を
取り付けるフランジ部61a及び、モータケーシング6
0を取り付ける際に増速用歯車63aを歯車ケーシング
61内に挿入する開口部61bを設けている。67は軸
受65−1、65−2、軸受66−1、66−2へ潤滑
油を供給するための給油孔である。Next, the structure of the compressor 3 will be described with reference to FIG. The figure is a longitudinal sectional view of a drive unit of the compressor 3, and the drive unit includes a drive motor 62, a rotor 62a, and a stator 62b. 63 is a first member directly connected to the rotor 62a.
The first shaft 63 has a gear 63a fitted to a shaft end of the rotor 62a opposite to the motor. The first shaft 63 is supported by bearings 65-1 and 65-2. The bearings 65-1 and 65-2 are mounted on a bearing support frame 60a formed integrally with the motor casing 60. Reference numeral 64 denotes a second pinion having a pinion 64a meshed with the speed increasing gear 63a, and an impeller 64b attached thereto.
Axis. The second shaft 64 has bearings 66-1, 66-
2, and these bearings 66-1 and 66-2 are mounted on a bearing support frame 68 of the gear casing 61. The gear casing 61 includes a flange portion 61 a for attaching the motor casing 60 and a motor casing 6.
An opening 61b is provided for inserting the speed-increasing gear 63a into the gear casing 61 when the 0 is attached. Reference numeral 67 denotes an oil supply hole for supplying lubricating oil to the bearings 65-1, 65-2 and the bearings 66-1, 66-2.
【0027】次にこの駆動部の組立作業について説明す
る。Next, the operation of assembling the driving section will be described.
【0028】まず、モータユニット部の組立はモータケ
ーシング60に固定子62b、軸受65−1、65−2
を装着する。次に、回転子62aを嵌着した第1の軸6
3を、軸受65−2の取付側から軸受65−1の方向へ
組込み、更に増速用歯車63aを嵌着する。この状態で
モータユニット部が完成する。なお、モータの単体試験
では、増速用歯車63aの代りに試験用カラーを装着し
てもよい。First, the motor unit is assembled by mounting the stator 62b and the bearings 65-1 and 65-2 on the motor casing 60.
Attach. Next, the first shaft 6 fitted with the rotor 62a
3 is assembled in the direction of the bearing 65-1 from the mounting side of the bearing 65-2, and the speed increasing gear 63a is further fitted. In this state, the motor unit is completed. In the unit test of the motor, a test collar may be attached instead of the speed increasing gear 63a.
【0029】モータユニット部の状態で給油孔67を通
じて各軸受に給油しモータの回転試験を行なう。試験完
了後の回転体の分解作業は不用である。Each bearing is lubricated through the lubrication hole 67 in the state of the motor unit, and a rotation test of the motor is performed. Disassembly of the rotating body after the test is completed is unnecessary.
【0030】次に、第2の軸64及び軸受66−1、6
6−2が組込まれた歯車ケーシング61に、前記モータ
ユニット部を組込む。この場合、歯車ケーシング61に
設けられた開口部61bを通して増速用ギヤ63aが相
手ピニオン64aに噛合うように取り付ける。第1の軸
63と第2の軸64の相対位置精度は、モータケーシン
グ60のフランジ部61aに設けられたインローにより
決める。Next, the second shaft 64 and the bearings 66-1, 6
The motor unit is assembled in the gear casing 61 in which 6-2 is incorporated. In this case, the speed increasing gear 63a is mounted so as to mesh with the counterpart pinion 64a through the opening 61b provided in the gear casing 61. The relative positional accuracy between the first shaft 63 and the second shaft 64 is determined by a spigot provided on the flange 61 a of the motor casing 60.
【0031】以上の組立作業により組立は完了する。The assembly is completed by the above assembly work.
【0032】次に遠心圧縮機のディフューザに関し、図
6から図8によって説明する。Next, the diffuser of the centrifugal compressor will be described with reference to FIGS.
【0033】図6は遠心圧縮機を羽根車の回転軸方向か
ら見た断面図、図7はディフューザ部分の断面図、図8
は静止翼及び補助翼の配置図である。図において羽根車
1とケーシング5との間はいわゆるディフューザになっ
ており、羽根車71から流出した流れの運動エネルギー
を圧力に変換する。静止翼72の前縁には高さが静止翼
72と同等もしくは静止翼72以下で前縁が側板77側
から心板78側にかけて下流側に傾斜した付属静止翼7
3が一体に形成されている。また複数化の静止翼72と
静止翼72との翼間には静止翼72より弦長および高さ
が小さい補助翼74がその一方の翼面のみが静止翼72
に対向するように配置され、いわゆる羽根付ディフュー
ザを構成している。補助翼74の前縁は側板77側から
心板78側にかけて下流側に傾斜させてある。複数の静
止翼72及び補助翼74はスクロール状を形成する流路
(渦巻流路が徐々に狭くなるスクロールもしくは渦巻流
路が一様なコレクタを含む)において、ケーシング75
の舌部76の近傍(全周の約2分の1以内)には粗に配
置され、舌部76の近傍以外には密に配置される。また
静止翼72には舌部76の近傍(全周の約2分の1以
内)以外の部分においてのみ補助翼74を配置した場
合、旋回失速を防止する結果は更に向上する。FIG. 6 is a sectional view of the centrifugal compressor viewed from the direction of the rotation axis of the impeller, FIG. 7 is a sectional view of a diffuser portion, and FIG.
FIG. 3 is a layout diagram of stationary wings and auxiliary wings. In the drawing, a so-called diffuser is provided between the impeller 1 and the casing 5, and converts the kinetic energy of the flow flowing out of the impeller 71 into pressure. At the leading edge of the stationary blade 72, an attached stationary blade 7 whose height is equal to or smaller than the stationary blade 72 and whose leading edge is inclined downstream from the side plate 77 side to the core plate 78 side.
3 are integrally formed. Further, an auxiliary wing 74 having a smaller chord length and height than the stationary wing 72 is provided between the wings of the plurality of stationary wings 72, and only one of the wing surfaces is the stationary wing 72.
And a so-called vaned diffuser. The leading edge of the auxiliary wing 74 is inclined downstream from the side plate 77 side to the core plate 78 side. The plurality of stationary blades 72 and the auxiliary blades 74 form a casing 75 in a flow path forming a scroll shape (including a scroll in which the spiral flow path gradually narrows or a collector in which the spiral flow path is uniform).
Are coarsely arranged in the vicinity of the tongue 76 (within about one-half of the entire circumference), and are densely arranged in the vicinity other than the vicinity of the tongue 76. Further, when the auxiliary wing 74 is disposed only in the portion other than the vicinity of the tongue portion 76 (within about one-half of the entire circumference) of the stationary wing 72, the result of preventing the rotating stall is further improved.
【0034】圧縮機の運転流量が大なる状態では羽根車
71から流出した流れは静止翼72、付属静止翼73、
補助翼74の入口角度に近い角度で流れるので静止翼7
2の間の通路では流れの運動エネルギーが効率良く圧力
に変換される。この際、補助翼74の一方の翼面のみが
静止翼72に対向するように配置されているので静止翼
72の間の通路が補助翼74によって狭められることが
無く、このため流れの運動エネルギーが圧力に変換され
る効率が高い。圧縮機の運転流量が減少すると羽根車1
から流出した流れは静止翼72、付属静止翼73、補助
翼74の入口角度よりも羽根車1の半径方向から遠ざか
る方向の角度で流れる。このため流れの運動エネルギー
の圧力への変換作用が強い静止翼2に流れが沿わない傾
向が強くなる。またこの傾向は側板77側で著しい。流
れが静止翼72に沿わなくなると、流れの一部は逆流し
失速が発生、運動エネルギーの圧力への変換が行なわれ
にくくなるとともに、旋回失速、サージングといった非
定常現象が発生し圧縮機の運転が困難になる。付属静止
翼73は静止翼72前縁の側板77側の流れを静止翼7
2の方向に導き、補助翼74は静止翼72の中間の流れ
を静止翼72の方向に導く。このように付属止静翼7
3、補助翼74の両者の作用によって静止翼72の前縁
近くの流れは強く静止翼72の方向に導かれるので、失
速の発生が抑制される。従って旋回失速、サージングと
いった非定常現象が発生しにくくなり低流量域の圧縮機
の運転範囲を拡大できる。さらに低流量域の圧縮機の運
転範囲を拡大するためには旋回失速の防止が必要とな
る。旋回失速はサージングより大流量時に発生する現象
で、一部の静止翼72が失速し、かつ失速が周方向に移
動していく現象であるが著しい騒音、振動の発生を伴う
ため圧縮機の運転が困難になる。スクロール状流路を備
えた遠心圧縮機では低流量時のディフューザ出口の圧力
を周方向に一様で無い。舌部76の近傍では圧力が高
く、反対側では低い。従って舌部6の近傍の静止翼2は
反対側の静止翼2より失速しやすい。舌部76の近傍の
静止翼72の付属静止翼73を除くと舌部76の近傍の
静止翼72が反対側の静止翼72より失速しやすい傾向
はさらに強くなる。従って舌部76の近傍の静止翼72
は失速しても反対側の静止翼72は失速しないため失速
の周方向移動が起こりにくくなり旋回失速が抑制され
る。一部の静止翼72が失速しても失速の周方向移動が
起こらない場合は騒音、振動の水準は殆ど上昇しないの
で圧縮機の一層の低流量運転が可能となる。When the operating flow rate of the compressor is large, the flow flowing out of the impeller 71 is divided into the stationary blade 72, the attached stationary blade 73,
The stationary wing 7 flows at an angle close to the entrance angle of the auxiliary wing 74.
In the passage between the two, the kinetic energy of the flow is efficiently converted to pressure. At this time, since only one wing surface of the auxiliary wing 74 is arranged so as to face the stationary wing 72, the passage between the stationary wings 72 is not narrowed by the auxiliary wing 74, so that the kinetic energy of the flow Is converted to pressure with high efficiency. When the operating flow rate of the compressor decreases, the impeller 1
Flows from the stationary blade 72, the attached stationary blade 73, and the auxiliary blade 74 at an angle in a direction away from the radial direction of the impeller 1 more than the entrance angle. For this reason, there is a strong tendency that the flow does not follow the stationary blade 2 which strongly converts the kinetic energy of the flow into pressure. This tendency is remarkable on the side plate 77 side. If the flow does not follow the stationary blade 72, a part of the flow will flow backward, causing a stall, making it difficult to convert kinetic energy into pressure, and causing unsteady phenomena such as a rotating stall, surging, and the operation of the compressor. Becomes difficult. The attached stationary blade 73 controls the flow on the side plate 77 side of the leading edge of the stationary blade 72
2, the auxiliary wing 74 guides the flow intermediate the stationary wing 72 toward the stationary wing 72. Thus, the attached stationary vane 7
3. Since the flow near the leading edge of the stationary blade 72 is strongly guided toward the stationary blade 72 by the action of both the auxiliary blade 74, the occurrence of stall is suppressed. Therefore, unsteady phenomena such as turning stall and surging hardly occur, and the operating range of the compressor in the low flow rate region can be expanded. In order to further expand the operating range of the compressor in the low flow rate range, it is necessary to prevent the rotating stall. Rotating stall is a phenomenon that occurs when the flow rate is larger than surging. Some of the stationary blades 72 stall and the stall moves in the circumferential direction. Becomes difficult. In a centrifugal compressor having a scroll flow path, the pressure at the diffuser outlet at a low flow rate is not uniform in the circumferential direction. The pressure is high near the tongue 76 and low on the opposite side. Therefore, the stationary blade 2 near the tongue 6 is more likely to stall than the stationary blade 2 on the opposite side. Excluding the attached stationary blade 73 of the stationary blade 72 near the tongue 76, the stationary blade 72 near the tongue 76 is more likely to stall than the stationary blade 72 on the opposite side. Therefore, the stationary wing 72 near the tongue 76
In the case of the stall, the stationary blade 72 on the opposite side does not stall even if the stall occurs, so that the circumferential movement of the stall hardly occurs and the turning stall is suppressed. When the stall circumferential movement does not occur even when some of the stationary blades 72 stall, the level of noise and vibration hardly increases, so that the compressor can be operated at a lower flow rate.
【0035】[0035]
【発明の効果】本発明によれば、潤滑油中へ混入する水
分もしくは塩素を除去していわゆる代替冷媒の使用を可
能にする圧縮式冷凍機が得られる。According to the present invention, a compression refrigerator capable of removing water or chlorine mixed in lubricating oil and enabling the use of a so-called alternative refrigerant is obtained.
【0036】本発明によれば、遠心圧縮機を低流量域ま
でサージ現象及び旋回失速を発生させることなく運転で
きる。According to the present invention, the centrifugal compressor can be operated up to a low flow rate region without generating a surge phenomenon and a rotating stall.
【図1】本発明のタ−ボ冷凍機の実施例の系統図。FIG. 1 is a system diagram of an embodiment of a turbo refrigerator of the present invention.
【図2】図1の実施例の冷凍機に用いる水分除去装置の
詳細図。FIG. 2 is a detailed view of a water removing device used in the refrigerator of the embodiment of FIG.
【図3】水分除去装置の他の実施例の詳細図。FIG. 3 is a detailed view of another embodiment of the moisture removing device.
【図4】本発明のタ−ボ冷凍機の他の実施例の系統図。FIG. 4 is a system diagram of another embodiment of the turbo refrigerator of the present invention.
【図5】図1のタ−ボ冷凍機の遠心圧縮機の駆動部の縦
断面図。FIG. 5 is a longitudinal sectional view of a drive unit of the centrifugal compressor of the turbo refrigerator of FIG. 1;
【図6】図1のタ−ボ冷凍機の遠心圧縮機の羽根車の水
平断面図。FIG. 6 is a horizontal sectional view of an impeller of the centrifugal compressor of the turbo refrigerator of FIG. 1;
【図7】図6の羽根車のデイフユ−ザ部分の縦断面図。FIG. 7 is a longitudinal sectional view of a diffuser portion of the impeller of FIG. 6;
【図8】図6の羽根車の静止翼及び補助翼の配置図。FIG. 8 is a layout diagram of stationary vanes and auxiliary wings of the impeller of FIG. 6;
1…凝縮器、2…蒸発器、3…圧縮機、4…油タンク、
5…駆動源 6…油ポンプ、7…潤滑油系統、8…水分除去装置(塩
素除去装置) 9…オイルクーラ、10…オイルストレーナ、11…水
分検知器 14、32、36…冷媒系統、31…エゼクタ、35…
回収油系統 60…モータケーシング、60a,68…軸受支持フレ
ーム 61…歯車ケーシング、62…駆動モータ、62a…回
転子、62b…固定子 63…第1の軸、63a…増速用ギヤ、64…第2の
軸、64a…ピニオン 64b…羽根車、65−1、65−2、66−1、66
−2…軸受 67…給油孔、71…羽根車、72…静止翼、73…付
属静止翼、74…補助翼 75…ケーシング、76…舌部1 ... condenser, 2 ... evaporator, 3 ... compressor, 4 ... oil tank,
5 Drive source 6 Oil pump 7 Lubricating oil system 8 Moisture removal device (chlorine removal device) 9 Oil cooler 10 Oil strainer 11 Moisture detector 14, 32, 36 Refrigerant system 31 ... Ejector, 35 ...
Recovered oil system 60 ... motor casing, 60a, 68 ... bearing support frame 61 ... gear casing, 62 ... drive motor, 62a ... rotor, 62b ... stator 63 ... first shaft, 63a ... speed increasing gear, 64 ... Second shaft, 64a Pinion 64b Impeller, 65-1, 65-2, 66-1, 66
-2: bearing 67: oil supply hole, 71: impeller, 72: stationary blade, 73: stationary blade, 74: auxiliary wing 75: casing, 76: tongue
Claims (3)
スを圧縮する遠心圧縮機、この圧縮機を駆動する駆動
機、潤滑油が循環する潤滑油系統及び冷媒が循環する冷
媒系統を備えるタ−ボ冷凍機において駆動モータの回転
子に直結され増速用歯車を有する第1の軸と、前記増速
用歯車に噛合うピニオンを有し羽根車を取り付ける第2
の軸と、これらの第1の軸および第2の軸を支持する各
軸受とをケーシング内に収納してなる遠心圧縮機におい
て、前記駆動モータの回転子に直結された第1の軸を増
速用歯車と分離可能に嵌着するとともに、第1の軸の軸
受支持フレームと増速用歯車に噛合うピニオンを有する
第2の軸の軸受支持フレームとを各々別のフレームで形
成することを特徴とする遠心圧縮機より構成され、この
遠心圧縮機にはディフューザに静止翼を配置し、羽根圧
からの吐出流体の運動エネルギーを静止翼により圧力エ
ネルギーに変換するディフューザを備え、前記静止翼の
前縁を側板側から心板側にかけて下流方向に傾斜させ、
前記静止翼よりも弦長が短かく、前縁が側板側から心板
側にかけて下流方向に傾斜している補助翼を、補助翼の
翼面の一方が前記静止翼に対向するように前記静止翼の
内周側に配置したことを特徴とし、一方、潤滑油系統に
水用除去装置及び水分検知手段を設けることを特徴と
し、冷媒に混入した潤滑油を油タンクに回収する油回収
器を冷媒系統に設け、潤滑油系統に配置したエゼクタに
前記油回収器で回収した回収油系統を接続し、油タンク
に回収油を戻すとともに、前記エゼクタを配置した潤滑
油系統に水分除去装置を設けたことを特徴とするタ−ボ
冷凍機。An evaporator, a condenser, a centrifugal compressor for compressing refrigerant gas from the evaporator, a drive for driving the compressor, a lubricating oil system for circulating lubricating oil and a refrigerant system for circulating refrigerant. A first shaft directly connected to a rotor of a drive motor and having a speed increasing gear, and a second shaft having a pinion meshed with the speed increasing gear and having an impeller mounted thereon.
In the centrifugal compressor in which the first shaft and the bearings supporting the first shaft and the second shaft are housed in a casing, the first shaft directly connected to the rotor of the drive motor is increased. A second shaft bearing support frame having a pinion engaged with the first gear and the second shaft having a pinion engaged with the speed increasing gear; The centrifugal compressor is characterized in that a stationary blade is arranged in a diffuser, and a diffuser that converts the kinetic energy of the discharge fluid from the blade pressure into pressure energy by the stationary blade is provided in the centrifugal compressor. The leading edge is inclined in the downstream direction from the side plate side to the core plate side,
The auxiliary wing, which has a shorter chord length than the stationary wing and has a leading edge inclined in the downstream direction from the side plate side to the core plate side, the stationary wing so that one of the wing surfaces of the auxiliary wing faces the stationary wing. An oil recovery device that is arranged on the inner peripheral side of the wing, and on the other hand, is characterized in that a lubricating oil system is provided with a water removal device and a moisture detection unit, and an oil recovery device that collects lubricating oil mixed in the refrigerant into an oil tank. Provided in the refrigerant system, connected to the recovered oil system collected by the oil recovery unit to the ejector arranged in the lubricating oil system, return the recovered oil to the oil tank, and provided a water removal device in the lubricating oil system in which the ejector was arranged A turbo refrigerator.
の軸受が増速用歯車と駆動モータ回転子の間に配置さ
れ、増速用歯車およびモータの回転子がオーバーハング
構造であることを特徴とする遠心圧縮機より構成され、
冷媒にCl基を含まない冷媒を用い、潤滑油に合成油を
用いて潤滑油系統に水分除去装置を設けることを特徴さ
するタ−ボ冷凍機。2. The motor of claim 1, wherein the bearing of the first shaft is disposed between the speed increasing gear and the drive motor rotor, and the speed increasing gear and the rotor of the motor have an overhang structure. It is composed of a centrifugal compressor characterized by having
A turbo refrigerator comprising a refrigerant containing no Cl group, a synthetic oil as a lubricating oil, and a water removing device in a lubricating oil system.
FC143aを用い、合成油にエステル油を用いること
を特徴とするタ−ボ冷凍機。3. The method according to claim 2, wherein the refrigerant is H
A turbo refrigerator using FC143a and an ester oil as a synthetic oil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6957293A JP2827801B2 (en) | 1993-03-29 | 1993-03-29 | Turbo refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6957293A JP2827801B2 (en) | 1993-03-29 | 1993-03-29 | Turbo refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06281274A JPH06281274A (en) | 1994-10-07 |
JP2827801B2 true JP2827801B2 (en) | 1998-11-25 |
Family
ID=13406641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6957293A Expired - Fee Related JP2827801B2 (en) | 1993-03-29 | 1993-03-29 | Turbo refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2827801B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016020783A (en) * | 2014-07-15 | 2016-02-04 | 三菱重工業株式会社 | Oil recovery device of turbo refrigerator |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5291382B2 (en) * | 2008-05-20 | 2013-09-18 | 三菱重工業株式会社 | Multi-blade centrifugal fan |
JP2010025041A (en) * | 2008-07-23 | 2010-02-04 | Miura Co Ltd | Centrifugal fluid machine |
JP5611929B2 (en) * | 2011-12-07 | 2014-10-22 | 株式会社神戸製鋼所 | Fluid rotating machine |
JP6064489B2 (en) * | 2012-09-25 | 2017-01-25 | ダイキン工業株式会社 | Turbo refrigerator |
JP5595468B2 (en) * | 2012-11-19 | 2014-09-24 | 三菱重工業株式会社 | Multi-blade centrifugal fan |
CN117564467B (en) * | 2024-01-16 | 2024-03-15 | 辽宁华天航空科技股份有限公司 | Double-beam laser welding system and method for titanium alloy parts |
-
1993
- 1993-03-29 JP JP6957293A patent/JP2827801B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016020783A (en) * | 2014-07-15 | 2016-02-04 | 三菱重工業株式会社 | Oil recovery device of turbo refrigerator |
Also Published As
Publication number | Publication date |
---|---|
JPH06281274A (en) | 1994-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4393711B2 (en) | Liquid chiller with improved motor cooling and lubrication | |
US4213307A (en) | Oil separation and return system for centrifugal refrigerant compressors | |
CN202579183U (en) | Compressor | |
KR970011101B1 (en) | Oil drain and recycle system and operating method | |
CN101326413B (en) | Lubrication system for acute stopping bearing of magnetic bearing compressor | |
AU674964B2 (en) | Zero superheat refrigeration compression system | |
JP6056270B2 (en) | Turbo compressor and turbo refrigerator | |
CN1985135A (en) | Oil separator for compressor of vapor compression system | |
CN101025310A (en) | Compressor cooling system | |
JPH05223090A (en) | Turbo-compressor | |
CN101963161B (en) | Turbo compressor and refrigerator | |
JP2827801B2 (en) | Turbo refrigerator | |
CN111456819A (en) | Supercritical carbon dioxide Brayton cycle system | |
CN1144007C (en) | Oil and refrigerant pump for centrifugal chiller | |
CN113048056A (en) | Cantilever hybrid dry vacuum pump | |
US6341948B2 (en) | Internal oil filter element for refrigeration compressor | |
CN101963160A (en) | Turbocompressor and refrigerating machine | |
CN106958527B (en) | Cold oil-free scroll formula gas compressor in one kind | |
RU2669993C1 (en) | Device and method of cooling and/or low-temperature liquefying | |
CN217002314U (en) | Integrated high-speed centrifugal compressor | |
CN215951812U (en) | Self-operated medium separating and cooling device | |
JPH03121277A (en) | Apparatus for separating and recovering oil of oil injection type two-stage compressor | |
JP2572535B2 (en) | Canned motor cooling device for refrigerator | |
CN114576178A (en) | Integrated high-speed centrifugal compressor | |
CN113566464A (en) | Self-operated medium separating and cooling device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |