JPH11132581A - Refrigerator - Google Patents
RefrigeratorInfo
- Publication number
- JPH11132581A JPH11132581A JP31455797A JP31455797A JPH11132581A JP H11132581 A JPH11132581 A JP H11132581A JP 31455797 A JP31455797 A JP 31455797A JP 31455797 A JP31455797 A JP 31455797A JP H11132581 A JPH11132581 A JP H11132581A
- Authority
- JP
- Japan
- Prior art keywords
- rotor
- stator
- refrigerant
- gas refrigerant
- liquid refrigerant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/13—Economisers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/23—Separators
Landscapes
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は冷凍機に関する。[0001] The present invention relates to a refrigerator.
【0002】[0002]
【従来の技術】従来の冷凍機の1例が図4に示されてい
る。冷凍機を運転すると、多段ターボ圧縮機1の吐出口
21から吐出された高圧のガス冷媒は吐出管10を経て凝縮
器6に入り、ここで伝熱管18内を流過する冷却水等の冷
却媒体に放熱することによって凝縮液化する。2. Description of the Related Art An example of a conventional refrigerator is shown in FIG. When the refrigerator is operated, the discharge port of the multi-stage turbo compressor 1
The high-pressure gas refrigerant discharged from 21 enters the condenser 6 via the discharge pipe 10, where it is condensed and liquefied by radiating heat to a cooling medium such as cooling water flowing through the heat transfer pipe 18.
【0003】この液冷媒は液溜め14から抽出されて中間
冷却器7に入り、その高圧側絞り機構24で中間圧力まで
絞られることにより液冷媒の一部が蒸発し、蒸発した蒸
気はエリミネータ26で液滴を分離した後、中間吸込管11
及びこれに介装された中間吸込弁8を経て多段ターボ圧
縮機1にその中間吸込口23から吸い込まれて第2段羽根
車28によって圧縮される。The liquid refrigerant is extracted from the liquid reservoir 14 and enters the intercooler 7, where the liquid refrigerant is partially evaporated by being throttled to the intermediate pressure by the high-pressure side throttle mechanism 24. After separating the droplets in
The air is sucked into the multi-stage turbo compressor 1 through the intermediate suction port 23 through the intermediate suction valve 8 interposed therebetween, and is compressed by the second-stage impeller 28.
【0004】中間冷却器7で蒸発しなかった残部の液冷
媒は蒸発潜熱によって冷却された後、低圧側絞り機構25
により絞られることによって流量が調整されると同時に
断熱膨張して低圧の気液二相となる。The remaining liquid refrigerant not evaporated in the intercooler 7 is cooled by the latent heat of evaporation, and then cooled by the low-pressure side throttle mechanism 25.
As a result, the flow rate is adjusted and the adiabatic expansion is performed, thereby forming a low-pressure gas-liquid two-phase.
【0005】この冷媒は蒸発器5に入りここで伝熱管16
内を流過するブライン、冷水等の被冷却媒体から吸熱す
ることによって蒸発気化して低圧のガス冷媒となり、吸
込管9を経て多段ターボ圧縮機1にその第1段吸込口22
から吸い込まれ、入口ベーン15を経て第1段羽根車27及
び第2段羽根車28によって圧縮される。This refrigerant enters the evaporator 5 where the heat transfer tubes 16
By absorbing heat from a medium to be cooled such as brine or cold water flowing through the inside, it evaporates and evaporates to become a low-pressure gas refrigerant, and passes through the suction pipe 9 to the multi-stage turbo compressor 1 at its first-stage suction port 22.
And is compressed by the first-stage impeller 27 and the second-stage impeller 28 via the inlet vane 15.
【0006】多段ターボ圧縮機1の羽根車27及び28は回
転軸29に固着されて密閉ハウジング30の内部に収納され
ている。この回転軸29は歯車31、32を介して電動機2の
回転軸33に連動連結され、電動機2のロータ4及びステ
ータ3はケーシング34内に収容されている。The impellers 27 and 28 of the multi-stage turbo compressor 1 are fixed to a rotating shaft 29 and housed in a sealed housing 30. The rotating shaft 29 is operatively connected to a rotating shaft 33 of the electric motor 2 via gears 31 and 32, and the rotor 4 and the stator 3 of the electric motor 2 are housed in a casing 34.
【0007】凝縮器6の液溜め14から抽出された液冷媒
が供給管12を経て電動機2のステータ3の外周に供給さ
れてその外周面を冷却する。次いで、この液冷媒の一部
はステータ3の外周面から内周面に向かう通路を通って
ステータ3の内周面とロータ4の外周面との間に形成さ
れるエアギャップに流入してこれらを冷却する過程で蒸
発気化した後、戻り管13を通って蒸発器5に吸入され
る。[0007] The liquid refrigerant extracted from the liquid reservoir 14 of the condenser 6 is supplied to the outer periphery of the stator 3 of the electric motor 2 through the supply pipe 12 to cool the outer peripheral surface. Next, a part of the liquid refrigerant flows into an air gap formed between the inner peripheral surface of the stator 3 and the outer peripheral surface of the rotor 4 through a passage extending from the outer peripheral surface of the stator 3 to the inner peripheral surface. Is evaporated and vaporized in the process of cooling, and then sucked into the evaporator 5 through the return pipe 13.
【0008】この冷凍サイクルのモリエル線図が図5に
示されている。冷媒ガスは多段ターボ圧縮機1の第1段
羽根車27で圧縮されることによりAからBの状態にな
り、Cの状態で第2段羽根車28に吸い込まれて圧縮され
ることによりDの状態となる。FIG. 5 is a Mollier diagram of the refrigeration cycle. The refrigerant gas is changed from A to B by being compressed by the first stage impeller 27 of the multi-stage turbocompressor 1, and is sucked into the second stage impeller 28 in the state of C to be compressed by being compressed by the second stage impeller 28. State.
【0009】このガス冷媒は凝縮器6で冷却されること
によりEの状態になり、次いで、凝縮することによりF
の状態の飽和液冷媒となる。この飽和液冷媒は中間冷却
器7の高圧側絞り機構24によって絞られることによりG
の状態となる。そして、その一部は蒸発してHの状態と
なり、次いで、中間吸込弁8で減圧されてIの状態とな
りCの状態で第2段羽根車28に吸い込まれる。The gas refrigerant is cooled by the condenser 6 to be in the state of E, and then condensed to form F.
Saturated liquid refrigerant. This saturated liquid refrigerant is throttled by the high-pressure side throttle mechanism 24 of the intercooler 7 to
State. Then, a part thereof evaporates to a state of H, and then is reduced in pressure by the intermediate suction valve 8 to a state of I, and is sucked into the second stage impeller 28 in a state of C.
【0010】残部の液冷媒は冷却されることによりJの
状態となり、低圧側絞り機構25によって絞られることに
よりKの状態となる。この冷媒は蒸発器5で蒸発するこ
とによってLの状態となって多段ターボ圧縮機1に吸い
込まれ、入口ベーン15で減圧されてAの状態となる。[0010] The remaining liquid refrigerant is cooled to be in the state of J, and is throttled by the low-pressure side throttle mechanism 25 to be in the state of K. The refrigerant evaporates in the evaporator 5 to be in the state of L in the multistage turbo compressor 1, and is decompressed by the inlet vane 15 to the state of A.
【0011】凝縮器6の液溜め14から抽出された液冷媒
は電動機2を冷却することによって破線で示す系路を経
てMの状態となって蒸発器5に吸入される。なお、Nは
飽和液線、Oは飽和蒸気線である。The liquid refrigerant extracted from the liquid reservoir 14 of the condenser 6 is cooled to the electric motor 2 to enter the state of M through a system shown by a broken line and is sucked into the evaporator 5. Note that N is a saturated liquid line, and O is a saturated vapor line.
【0012】[0012]
【発明が解決しようとする課題】上記従来の冷凍機にお
いては、液冷媒がステータ3の内周面とロータ4の外周
面との間に形成されるエアギャップ内で蒸発して気液二
相となるので、ロータ4の回転抵抗が増大して電動機2
の機械損失が大きくなるとともに多量の液冷媒を要する
ので冷凍機の効率が悪化するという問題があった。In the above-described conventional refrigerator, the liquid refrigerant evaporates in an air gap formed between the inner peripheral surface of the stator 3 and the outer peripheral surface of the rotor 4, and the gas-liquid two-phase is cooled. Therefore, the rotational resistance of the rotor 4 increases and the motor 2
However, there is a problem that the efficiency of the refrigerator is deteriorated because the mechanical loss increases and a large amount of liquid refrigerant is required.
【0013】更に、凝縮器6の伝熱管18内を流過する冷
却媒体の温度及び蒸発器5の伝熱管16内を流過する被冷
却媒体の温度によって電動機2に供給される液冷媒の圧
力が変化するので、電動機2の冷却に必要な冷媒量が確
保できない場合があった。Further, the pressure of the liquid refrigerant supplied to the electric motor 2 depends on the temperature of the cooling medium flowing through the heat transfer tube 18 of the condenser 6 and the temperature of the medium to be cooled flowing through the heat transfer tube 16 of the evaporator 5. , The amount of refrigerant required for cooling the electric motor 2 may not be secured.
【0014】[0014]
【課題を解決するための手段】本発明は上記課題を解決
するために発明されたものであって、第1の発明の要旨
とするところは、電動機により駆動される多段圧縮機
と、この多段圧縮機から吐出されたガス冷媒を凝縮液化
させる凝縮器と、この凝縮器で凝縮した液冷媒を減圧す
ることによって冷却する中間冷却器と、この中間冷却器
から流出した液冷媒を蒸発させる蒸発器とを具備し、上
記電動機のケーシング内をステータを収容するステータ
室とロータを収容するロータ室とに仕切り、上記蒸発器
から抽出され液冷媒ポンプにより昇温された過冷却液冷
媒を上記ステータ室に供給して上記ステータを冷却した
後、上記中間冷却器の下流側の冷媒回路に戻し、上記中
間冷却器で蒸発したガス冷媒を上記ロータ室に供給して
上記ロータを冷却した後、上記多段圧縮機の中間吸込口
又は第1段吸込口に戻すことを特徴とする冷凍機にあ
る。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and a first aspect of the present invention is to provide a multi-stage compressor driven by an electric motor and a multi-stage compressor. A condenser for condensing and liquefying the gas refrigerant discharged from the compressor, an intercooler for cooling by reducing the liquid refrigerant condensed in the condenser, and an evaporator for evaporating the liquid refrigerant flowing out of the intercooler. And the casing of the electric motor is partitioned into a stator chamber containing a stator and a rotor chamber containing a rotor, and the supercooled liquid refrigerant extracted from the evaporator and heated by a liquid refrigerant pump is supplied to the stator chamber. After cooling the stator to supply the refrigerant to the refrigerant circuit downstream of the intercooler, the gas refrigerant evaporated by the intercooler is supplied to the rotor chamber to cool the rotor. After, in refrigerator and returning the intermediate inlet or first stage suction port of the multistage compressor.
【0015】他の特徴とするところは、上記ロータ室か
ら流出したガス冷媒を上記多段圧縮機の中間吸込口又は
第1段吸込口に切り換えて流入させる手段を設けたこと
にある。Another feature is that a means is provided for switching the gas refrigerant flowing out of the rotor chamber into the intermediate suction port or the first-stage suction port of the multistage compressor.
【0016】更に他の特徴とするところは、上記ロータ
室から流出したガス冷媒の圧力を制御する圧力制御弁を
設けたことにある。Still another feature is that a pressure control valve for controlling the pressure of the gas refrigerant flowing out of the rotor chamber is provided.
【0017】[0017]
【発明の実施の形態】本発明の実施形態が図1に示され
ている。電動機2のケーシング34の内部はステータ3を
収容するステータ室41とロータ4を収容するロータ室42
とに仕切られている。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention is shown in FIG. The interior of a casing 34 of the electric motor 2 includes a stator chamber 41 for housing the stator 3 and a rotor chamber 42 for housing the rotor 4.
And is divided into.
【0018】蒸発器5の下部には液溜め43が形成され、
この液溜め43から抽出された液冷媒は液冷媒ポンプ44に
より付勢されてヘッドタンク45に流入することにより図
2に示すモリエル線図上のWの状態となる。A liquid reservoir 43 is formed below the evaporator 5.
The liquid refrigerant extracted from the liquid reservoir 43 is energized by the liquid refrigerant pump 44 and flows into the head tank 45 to be in the state of W on the Mollier diagram shown in FIG.
【0019】次いで、この液冷媒はXの状態でステータ
室41内に供給され、ステータ3を冷却することによって
図2のYの状態となって中間冷却器7の後流側の冷媒回
路に入り、ここで中間冷却器7から流出した冷媒と合流
して蒸発器5に入る。Next, the liquid refrigerant is supplied into the stator chamber 41 in the state of X, and is cooled to the stator 3 to be in the state of Y in FIG. 2 and enters the refrigerant circuit on the downstream side of the intercooler 7. Here, the refrigerant merges with the refrigerant flowing out of the intercooler 7 and enters the evaporator 5.
【0020】一方、中間冷却器7で蒸発したガス冷媒は
エリミネータ26を経てPの状態でロータ室42内に入り、
ここでロータ4を冷却することによってQの状態とな
る。このガス冷媒は圧力制御弁46及び開閉弁47を経てC
の状態で多段ターボ圧縮機1の中間吸込口23に吸い込ま
れる。On the other hand, the gas refrigerant evaporated in the intercooler 7 enters the rotor chamber 42 in the state of P via the eliminator 26,
Here, by cooling the rotor 4, the state becomes Q. This gas refrigerant passes through the pressure control valve 46 and the on-off
Is sucked into the intermediate suction port 23 of the multi-stage turbo compressor 1 in the state described above.
【0021】この際、圧力制御弁47によりガス冷媒の圧
力を制御してロータ4を冷却するのに十分なガス冷媒の
流量を安定的に確保する。At this time, the pressure of the gas refrigerant is controlled by the pressure control valve 47 to stably secure a flow rate of the gas refrigerant sufficient to cool the rotor 4.
【0022】冷凍機の運転条件の変化によって中間冷却
器7の圧力が所定値以上となったとき又は電動機2の温
度が所定値以上になったとき、開閉弁47が閉じると同時
に開閉弁48が開く。すると、ロータ室42から流出したガ
ス冷媒は圧力制御弁46及び開閉弁48を経て吸込管9に入
り、ここで蒸発器5から流出したガス冷媒と合流して多
段ターボ圧縮機1にその第1段吸込口22から吸い込まれ
る。When the pressure of the intercooler 7 exceeds a predetermined value due to a change in the operating conditions of the refrigerator or the temperature of the electric motor 2 exceeds a predetermined value, the on-off valve 47 is closed and the on-off valve 48 is simultaneously opened. open. Then, the gas refrigerant flowing out of the rotor chamber 42 enters the suction pipe 9 via the pressure control valve 46 and the opening / closing valve 48, where it merges with the gas refrigerant flowing out of the evaporator 5 and sends the first gas to the multi-stage turbo compressor 1. It is sucked through the step inlet 22.
【0023】この際、圧力制御弁47によりガス冷媒の圧
力を制御して中間冷却器7の圧力を所定値以下に、電動
機2の温度を所定値以下に維持すると同時に必要以上に
多量のガス冷媒がロータ室42内を流過するのを防止す
る。At this time, the pressure of the gas refrigerant is controlled by the pressure control valve 47 to maintain the pressure of the intercooler 7 at a predetermined value or less and the temperature of the electric motor 2 at a predetermined value or less, and at the same time, use an unnecessarily large amount of gas refrigerant. From flowing through the rotor chamber 42.
【0024】ガス冷媒を第1段吸込口22に戻す場合のモ
リエル線図が図3に示され、ガス冷媒はロータ4を冷却
することによってSの状態からTの状態となり、次い
で、圧力制御弁47で絞られることによってUの状態とな
る。他の構成、作用は図4及び図5に示す従来のものと
同様であり、対応する部材に同じ符号を付してその説明
を省略する。FIG. 3 is a Mollier diagram in the case where the gas refrigerant is returned to the first stage suction port 22. The gas refrigerant changes from the state of S to the state of T by cooling the rotor 4, and then the pressure control valve. By being squeezed at 47, the state becomes U. The other configuration and operation are the same as those of the conventional one shown in FIGS.
【0025】しかして、系内で最も低温の液冷媒を蒸発
器5から抽出し、これを液冷媒ポンプ44で昇圧すること
によって過冷却液冷媒とし、この過冷却液冷媒により電
動機2のステータ3を冷却しているので、ステータ3を
効果的に冷却することができ、従って、ステータ3を冷
却するための液冷媒の量及びロータ4を冷却するための
ガス冷媒の量を最小限に抑制することができる。The liquid refrigerant having the lowest temperature in the system is extracted from the evaporator 5 and is boosted by a liquid refrigerant pump 44 to be a supercooled liquid refrigerant. , The stator 3 can be effectively cooled, and therefore, the amount of liquid refrigerant for cooling the stator 3 and the amount of gas refrigerant for cooling the rotor 4 are minimized. be able to.
【0026】また、ロータ4はロータ室42に供給された
最小限の量のガス冷媒によって冷却され、しかも、ステ
ータ3とロータ4との間に形成されるエアギャップ内を
気液二相の冷媒が流過しないので、ロータ4の回転抵抗
を低減することができ、従って、電動機2の機械効率ひ
いては冷凍機の効率を向上しうる。The rotor 4 is cooled by a minimum amount of gas refrigerant supplied to the rotor chamber 42, and a gas-liquid two-phase refrigerant flows through an air gap formed between the stator 3 and the rotor 4. Does not flow, the rotational resistance of the rotor 4 can be reduced, and therefore, the mechanical efficiency of the electric motor 2 and thus the efficiency of the refrigerator can be improved.
【0027】冷凍機の運転条件が変化したとき、ロータ
室42から流出したガス冷媒を圧縮機1の第1段吸込口22
に切り換えて流入させることによってロータ4を冷却す
るのに充分なガス冷媒の量を得ることができる。この
際、ロータ室42から流出したガス冷媒の圧力を圧力制御
弁46により制御すれば、必要以上に多量のガス冷媒がロ
ータ室42を流過するのを防止できる。When the operating conditions of the refrigerator change, the gas refrigerant flowing out of the rotor chamber 42 is supplied to the first stage inlet 22 of the compressor 1.
In this case, the amount of gas refrigerant sufficient to cool the rotor 4 can be obtained. At this time, if the pressure of the gas refrigerant flowing out of the rotor chamber 42 is controlled by the pressure control valve 46, it is possible to prevent an unnecessarily large amount of gas refrigerant from flowing through the rotor chamber 42.
【0028】[0028]
【発明の効果】本発明においては、電動機のケーシング
内をステータを収容するステータ室とロータを収容する
ロータ室とに仕切り、蒸発器から抽出され液冷媒ポンプ
により昇圧された過冷却液冷媒をステータ室に供給して
ステータを冷却しているため、ステータを効果的に冷却
することができ、従って、ステータを冷却するのに要す
る液冷媒の量及びロータを冷却するのに要するガス冷媒
の量を最小限に抑制できる。According to the present invention, the interior of the motor casing is divided into a stator chamber for accommodating the stator and a rotor chamber for accommodating the rotor, and the supercooled liquid refrigerant extracted from the evaporator and pressurized by the liquid refrigerant pump is supplied to the stator. Since the stator is supplied to the chamber to cool the stator, the stator can be effectively cooled.Therefore, the amount of liquid refrigerant required to cool the stator and the amount of gas refrigerant required to cool the rotor are reduced. Can be minimized.
【0029】そして、中間冷却器で蒸発したガス冷媒を
ロータ室に供給してロータを冷却しているため、ロータ
の回転抵抗が少なくなり、従って、電動機の機械効率ひ
いては冷凍機の効率を向上できる。Since the rotor is cooled by supplying the gas refrigerant evaporated in the intercooler to the rotor chamber, the rotational resistance of the rotor is reduced, and therefore, the mechanical efficiency of the electric motor and the efficiency of the refrigerator can be improved. .
【0030】ロータ室から流出したガス冷媒を多段圧縮
機の中間吸込口又は第1段吸込口に切り換えて流入させ
る手段を設ければ、冷凍機の運転状態の如何に拘らずロ
ータを冷却するのに充分な量のガス冷媒をロータ室に供
給できる。By providing a means for switching the gas refrigerant flowing out of the rotor chamber into the intermediate suction port or the first-stage suction port of the multi-stage compressor and allowing it to flow in, the rotor can be cooled regardless of the operation state of the refrigerator. Enough gas refrigerant can be supplied to the rotor chamber.
【0031】更に、ロータ室から流出したガス冷媒の圧
力を圧力制御弁によって制御すれば、ロータを冷却する
のに必要なガス冷媒の量を安定的に確保できる。Furthermore, if the pressure of the gas refrigerant flowing out of the rotor chamber is controlled by the pressure control valve, the amount of gas refrigerant required for cooling the rotor can be stably secured.
【図1】本発明の実施形態を示す冷凍機の系統図であ
る。FIG. 1 is a system diagram of a refrigerator showing an embodiment of the present invention.
【図2】上記実施形態のガス冷媒を中間吸込口に戻す場
合のモリエル線図である。FIG. 2 is a Mollier diagram when the gas refrigerant of the embodiment is returned to an intermediate suction port.
【図3】上記実施形態のガス冷媒を第1段吸込口に戻す
場合のモリエル線図である。FIG. 3 is a Mollier chart when returning the gas refrigerant of the embodiment to the first stage suction port.
【図4】従来の冷凍機の系統図である。FIG. 4 is a system diagram of a conventional refrigerator.
【図5】従来の冷凍機のモリエル線図である。FIG. 5 is a Mollier diagram of a conventional refrigerator.
2 電動機 33 回転軸 34 ケーシング 3 ステータ 4 ロータ 41 ステータ室 42 ロータ室 1 多段ターボ圧縮機 21 吐出口 22 第1段吸込口 23 中間吸込口 27、28 羽根車 29 回転軸 30 ハウジング 15 入口ベーン 31、32 歯車 6 凝縮器 18 伝熱管 14 液溜め 7 中間冷却器 24 高圧側絞り機構 25 低圧側絞り機構 26 エリミネータ 5 蒸発器 16 伝熱管 43 液溜め 9 吸入管 10 吐出管 44 液冷媒ポンプ 45 ヘッドタンク 46 圧力制御弁 47、48 開閉弁 2 Motor 33 Rotary shaft 34 Casing 3 Stator 4 Rotor 41 Stator chamber 42 Rotor chamber 1 Multistage turbo compressor 21 Discharge port 22 First stage suction port 23 Intermediate suction port 27, 28 Impeller 29 Rotating shaft 30 Housing 15 Inlet vane 31, 32 Gear 6 Condenser 18 Heat transfer tube 14 Liquid reservoir 7 Intercooler 24 High-pressure side throttle mechanism 25 Low-pressure side throttle mechanism 26 Eliminator 5 Evaporator 16 Heat transfer tube 43 Liquid reservoir 9 Suction pipe 10 Discharge pipe 44 Liquid refrigerant pump 45 Head tank 46 Pressure control valve 47, 48 On-off valve
Claims (3)
この多段圧縮機から吐出されたガス冷媒を凝縮液化させ
る凝縮器と、この凝縮器で凝縮した液冷媒を減圧するこ
とによって冷却する中間冷却器と、この中間冷却器から
流出した液冷媒を蒸発させる蒸発器とを具備し、上記電
動機のケーシング内をステータを収容するステータ室と
ロータを収容するロータ室とに仕切り、上記蒸発器から
抽出され液冷媒ポンプにより昇温された過冷却液冷媒を
上記ステータ室に供給して上記ステータを冷却した後、
上記中間冷却器の下流側の冷媒回路に戻し、上記中間冷
却器で蒸発したガス冷媒を上記ロータ室に供給して上記
ロータを冷却した後、上記多段圧縮機の中間吸込口又は
第1段吸込口に戻すことを特徴とする冷凍機。1. A multi-stage compressor driven by an electric motor;
A condenser for condensing and liquefying the gas refrigerant discharged from the multistage compressor, an intercooler for cooling the liquid refrigerant condensed by the condenser by reducing the pressure, and evaporating the liquid refrigerant flowing out of the intercooler. An evaporator is provided, and the inside of the casing of the electric motor is partitioned into a stator chamber containing a stator and a rotor chamber containing a rotor, and the supercooled liquid refrigerant extracted from the evaporator and heated by a liquid refrigerant pump is supplied with the evaporator. After supplying to the stator chamber and cooling the stator,
After returning to the refrigerant circuit on the downstream side of the intercooler and supplying the gas refrigerant evaporated in the intercooler to the rotor chamber to cool the rotor, the intermediate suction port or the first-stage suction of the multi-stage compressor is provided. A refrigerator characterized by being returned to the mouth.
記多段圧縮機の中間吸込口又は第1段吸込口に切り換え
て流入させる手段を設けたことを特徴とする請求項1記
載の冷凍機。2. The refrigerator according to claim 1, further comprising means for switching the gas refrigerant flowing out of the rotor chamber to an intermediate suction port or a first-stage suction port of the multi-stage compressor to flow the refrigerant.
力を制御する圧力制御弁を設けたことを特徴とする請求
項1記載の冷凍機。3. The refrigerator according to claim 1, further comprising a pressure control valve for controlling a pressure of the gas refrigerant flowing out of the rotor chamber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31455797A JPH11132581A (en) | 1997-10-31 | 1997-10-31 | Refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31455797A JPH11132581A (en) | 1997-10-31 | 1997-10-31 | Refrigerator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11132581A true JPH11132581A (en) | 1999-05-21 |
Family
ID=18054729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31455797A Withdrawn JPH11132581A (en) | 1997-10-31 | 1997-10-31 | Refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11132581A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG89409A1 (en) * | 2000-10-13 | 2002-06-18 | Mitsubishi Heavy Ind Ltd | Multistage compression refrigeration machine for supplying refrigerant from intercooler to cool rotating machine and lubricating oil |
WO2002066872A1 (en) * | 2001-02-21 | 2002-08-29 | Mitsubishi Heavy Industries, Ltd. | Self-contained regulating valve, and compression type refrigerating machine having the same |
JP2007212112A (en) * | 2006-02-13 | 2007-08-23 | Ishikawajima Harima Heavy Ind Co Ltd | Hermetic turbo-compression refrigerating machine |
JP2009118693A (en) * | 2007-11-08 | 2009-05-28 | Kawasaki Heavy Ind Ltd | Device and method for cooling rotating machine rotor |
JP2015509696A (en) * | 2012-02-07 | 2015-03-30 | ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company | Airtight motor cooling and control |
-
1997
- 1997-10-31 JP JP31455797A patent/JPH11132581A/en not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG89409A1 (en) * | 2000-10-13 | 2002-06-18 | Mitsubishi Heavy Ind Ltd | Multistage compression refrigeration machine for supplying refrigerant from intercooler to cool rotating machine and lubricating oil |
US6460371B2 (en) | 2000-10-13 | 2002-10-08 | Mitsubishi Heavy Industries, Ltd. | Multistage compression refrigerating machine for supplying refrigerant from subcooler to cool rotating machine and lubricating oil |
WO2002066872A1 (en) * | 2001-02-21 | 2002-08-29 | Mitsubishi Heavy Industries, Ltd. | Self-contained regulating valve, and compression type refrigerating machine having the same |
US6672088B2 (en) | 2001-02-21 | 2004-01-06 | Mitsubishi Heavy Industries, Ltd. | Self-contained regulating valve, and compression type refrigerating machine having the same |
JP2007212112A (en) * | 2006-02-13 | 2007-08-23 | Ishikawajima Harima Heavy Ind Co Ltd | Hermetic turbo-compression refrigerating machine |
JP2009118693A (en) * | 2007-11-08 | 2009-05-28 | Kawasaki Heavy Ind Ltd | Device and method for cooling rotating machine rotor |
JP2015509696A (en) * | 2012-02-07 | 2015-03-30 | ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company | Airtight motor cooling and control |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3716061B2 (en) | Turbo refrigerator | |
JP2865844B2 (en) | Refrigeration system | |
US20030177782A1 (en) | Method for increasing efficiency of a vapor compression system by evaporator heating | |
JPH10132400A (en) | Parallel type freezer | |
JP5412193B2 (en) | Turbo refrigerator | |
JP2012504221A (en) | Increase in capacity when pulling down | |
JP2019100695A (en) | Refrigeration cycle device and method for driving refrigeration cycle device | |
CA3117235C (en) | System and method of mechanical compression refrigeration based on two-phase ejector | |
JPH11132581A (en) | Refrigerator | |
JP2002188865A (en) | Multiple stage compression type refrigerating machine | |
JP6176470B2 (en) | refrigerator | |
JP2010060202A (en) | Cooling structure in motor for refrigerator | |
JPH10292948A (en) | Refrigerator | |
JPH05223369A (en) | Refrigerator | |
JPS6022250B2 (en) | vapor compression refrigeration equipment | |
JP2004300928A (en) | Multistage compressor, heat pump and heat utilization device | |
JP7566597B2 (en) | Freezer | |
JP3617742B2 (en) | Scroll compressor and air conditioner | |
KR20000009209A (en) | Freezing cycle | |
JPH11281181A (en) | Cold storage chiller | |
JP2008071021A (en) | Automatic vending machine | |
WO2019111690A1 (en) | Refrigeration cycle system and method for driving refrigeration cycle system | |
WO2020057452A1 (en) | Scroll compressor and air-conditioning system comprising same | |
KR100373734B1 (en) | The refregerator using expansion with the function of condenser | |
JPS6161987A (en) | Sealed compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20050104 |