JP2005180753A - Air conditioner and refrigerator - Google Patents

Air conditioner and refrigerator Download PDF

Info

Publication number
JP2005180753A
JP2005180753A JP2003420587A JP2003420587A JP2005180753A JP 2005180753 A JP2005180753 A JP 2005180753A JP 2003420587 A JP2003420587 A JP 2003420587A JP 2003420587 A JP2003420587 A JP 2003420587A JP 2005180753 A JP2005180753 A JP 2005180753A
Authority
JP
Japan
Prior art keywords
compressor
oil
refrigerant
air conditioner
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003420587A
Other languages
Japanese (ja)
Other versions
JP4273492B2 (en
Inventor
Hiromitsu Kikuchi
宏満 菊地
Tatsuo Ono
達生 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003420587A priority Critical patent/JP4273492B2/en
Publication of JP2005180753A publication Critical patent/JP2005180753A/en
Application granted granted Critical
Publication of JP4273492B2 publication Critical patent/JP4273492B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/18Refrigerant conversion

Landscapes

  • Air Conditioning Control Device (AREA)
  • Compressor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air-conditioner and a refrigerator that use existing piping to replace the heat-source equipment of a gas heat pump type system with that of an electric heat pump type system and that enable smooth start of a compressor by discharging liquid refrigerant in the compressor without producing an eddy current even if PAG oil with low volume resistivity is present in the compressor. <P>SOLUTION: In the air conditioner and the refrigerator, the existing piping of an air conditioner and a refrigerator that use PAG oil as refrigerator oil is reused to replace the heat-source equipment 1 of an electric heat pump type system that uses refrigerator oil other than PAG oil. The air conditioner and the refrigerator include a heating means for heating from the outside a compressor 10 built into the heat-source equipment 1, and a controller 32 that starts the compressor 10 after the compressor 10 has been heated by the heating means. The level of liquid that collects in the bottom of the compressor 10 prior to the start of the compressor 10 is kept lower than a conduit 28 inside the compressor 10. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、既設配管を再利用して、ガスヒートポンプ式システムから電気ヒートポンプ式システムの熱源機に置き換えた空気調和装置及び冷凍装置での圧縮機動作制御に関するものである。   The present invention relates to compressor operation control in an air-conditioning apparatus and a refrigeration apparatus in which an existing pipe is reused to replace a gas heat pump type system with a heat source unit of an electric heat pump type system.

ヒートポンプ式冷凍装置では、圧縮機の運転停止後に、ヒートポンプ式冷凍装置内の最も低温部分である圧縮機に、凝縮した液冷媒が移動し、圧縮機内の冷凍機油中に液冷媒が溶け込んで寝込むという現象が発生する傾向がある。従来は、この状態で圧縮機の再起動を行うと冷凍機油中に溶け込んだ液冷媒が気泡状になって冷凍機油が圧縮機外に持ち出されるフォーミング現象が発生したり、或いは、液冷媒を圧縮機が直接吸込むことにより、液圧縮が発生して圧縮機の故障の原因になる等の問題があるので、圧縮機が動作しない程度の微少電流で圧縮機内の導線部分を通電して密閉容器内の油溜め空間を加熱し、冷凍機油中に溶け込んだ液冷媒を速やかに外部排出させた後に、圧縮機を起動するような制御を行っていた。(例えば、特許文献1参照)。   In the heat pump refrigeration system, after the operation of the compressor is stopped, the condensed liquid refrigerant moves to the compressor which is the coldest part in the heat pump refrigeration apparatus, and the liquid refrigerant dissolves in the refrigeration oil in the compressor and sleeps. The phenomenon tends to occur. Conventionally, if the compressor is restarted in this state, the liquid refrigerant dissolved in the refrigerating machine oil will be in the form of bubbles, causing a forming phenomenon that the refrigerating machine oil is taken out of the compressor, or the liquid refrigerant is compressed. Since the compressor sucks directly, liquid compression occurs and causes problems such as failure of the compressor. Therefore, energize the lead wire in the compressor with a small current that does not allow the compressor to operate. The oil reservoir space was heated, and after the liquid refrigerant dissolved in the refrigeration oil was quickly discharged to the outside, control was performed to start the compressor. (For example, refer to Patent Document 1).

特開2000−292017号公報(第7頁、第1図)Japanese Unexamined Patent Publication No. 2000-292017 (page 7, FIG. 1)

しかし、既設配管を再利用して、ガスヒートポンプ式システムから電気ヒートポンプ式システムの熱源機に置き換えた空気調和装置及び冷凍装置では、ガスヒートポンプ式システムで使用される冷凍機油であるポリアルキレングリコール(PAG)オイルが既設配管内に残存し、冷媒の流れにより移動して圧縮機内に溜まってしまう場合がある。このPAGオイルは、電気ヒートポンプ式システムで使用される冷凍機油よりも体積抵抗率が小さいため、圧縮機内に液冷媒が滞留し、PAGオイルを多く含んだ液冷媒が圧縮機内の導線と接触すると、導線の絶縁抵抗が低下し、通電の際に過電流が発生する。
圧縮機内を加熱し、液冷媒を外部排出する方式には、上記のように圧縮機内の導線部分を通電して密閉容器内の油溜め空間を過熱する方式と、外部からクランクケースヒータで圧縮機内を加熱する方式とがある。圧縮機内の導線部分を通電する方式では、圧縮機内に滞留した液冷媒が圧縮機内の導線と接触し、かつPAGオイルの濃度が0.5%以上になると、上記の理由から通電の際に、圧縮機内に過電流が発生して短絡し易くなり、圧縮機を円滑に起動できないという問題があった。また、外部からクランクケースヒータで圧縮機内を加熱する方式でも、圧縮機内から充分な量の液冷媒を外部排出せずに、圧縮機内に滞留した液冷媒が圧縮機内の導線と接触した状態で圧縮機を起動すると、圧縮機内に過電流が発生して、上記と同様の問題が発生した。
However, in an air conditioner and a refrigeration system that replaces a gas heat pump system with a heat source machine of an electric heat pump system by reusing existing piping, a polyalkylene glycol (PAG) that is a refrigeration oil used in the gas heat pump system ) Oil may remain in the existing piping and may move due to the flow of refrigerant and accumulate in the compressor. Since this PAG oil has a smaller volume resistivity than the refrigeration oil used in the electric heat pump system, the liquid refrigerant stays in the compressor, and when the liquid refrigerant containing a lot of PAG oil comes into contact with the conductor in the compressor, The insulation resistance of the conducting wire is reduced, and an overcurrent is generated during energization.
The method of heating the inside of the compressor and discharging the liquid refrigerant to the outside includes the method of energizing the conducting wire part in the compressor to overheat the oil sump space in the sealed container as described above, and the inside of the compressor with a crankcase heater from the outside. There is a method of heating. In the method of energizing the conducting wire part in the compressor, when the liquid refrigerant staying in the compressor comes into contact with the conducting wire in the compressor and the concentration of the PAG oil becomes 0.5% or more, when energizing for the above reason, There is a problem that overcurrent is generated in the compressor and short-circuiting easily occurs, and the compressor cannot be started smoothly. In addition, even in a system in which the inside of the compressor is heated from the outside with a crankcase heater, the liquid refrigerant staying in the compressor is compressed without contacting a sufficient amount of liquid refrigerant from the compressor while being in contact with the conductor in the compressor. When the machine was started, an overcurrent was generated in the compressor, resulting in the same problem as described above.

なお、ガスヒートポンプ式システムとは、ガスエンジンで圧縮機を駆動させ、ヒートポンプ方式で冷房と暖房を行う空気調和装置及び冷凍装置のことである。また、電気ヒートポンプ式システムとは、電気モータで圧縮機を駆動させ、ヒートポンプ方式で冷房と暖房を行う空気調和装置及び冷凍装置のことである。また、ガスヒートポンプ式システムの冷凍機油としては、価格、入手性の面からPAGオイルが一般的によく使用されている。   In addition, a gas heat pump type | system | group is an air conditioning apparatus and refrigeration apparatus which drive a compressor with a gas engine and performs cooling and heating with a heat pump system. The electric heat pump system is an air conditioner and a refrigeration apparatus that drive a compressor with an electric motor and perform cooling and heating with a heat pump system. Moreover, as a refrigerating machine oil of a gas heat pump system, PAG oil is generally used from the viewpoint of price and availability.

本発明は、上記の課題を解決するためになされたものであり、ガスヒートポンプ式システムから電気ヒートポンプ式システムの熱源機に置き換えた空気調和装置及び冷凍装置であって、圧縮機内に体積抵抗率の低いPAGオイルが存在していても、過電流を発生せずに圧縮機内の液冷媒を排出し、圧縮機を円滑に起動することができる空気調和装置及び冷凍装置を得るものである。   The present invention has been made to solve the above problems, and is an air conditioner and a refrigeration apparatus in which a gas heat pump system is replaced with a heat source apparatus of an electric heat pump system, and the volume resistivity is reduced in the compressor. Even if low PAG oil is present, the liquid refrigerant in the compressor is discharged without generating an overcurrent, and an air conditioner and a refrigeration apparatus capable of smoothly starting the compressor are obtained.

本発明に係る空気調和装置及び冷凍装置は、冷凍機油としてPAGオイルを使用した空気調和装置及び冷凍装置の既設配管を再利用し、PAGオイル以外の冷凍機油を使用する電気ヒートポンプ式システムの熱源機に置き換えた空気調和装置及び冷凍装置であって、前記熱源機に内蔵された圧縮機を外部から加熱する加熱手段と、前記加熱手段で前記圧縮機を加熱した後に、前記圧縮機を起動する制御装置とを備え、前記圧縮機の起動前に前記圧縮機内の底部に溜まる液の液面が前記圧縮機内の導線よりも低くなるようにしたものである。   An air conditioner and a refrigerating apparatus according to the present invention are an air conditioner using PAG oil as a refrigerating machine oil and an existing heat pipe of a refrigerating apparatus that reuses existing piping of the refrigerating apparatus and uses a refrigerating machine oil other than PAG oil. An air conditioner and a refrigeration apparatus replaced by a heating means for heating a compressor built in the heat source machine from the outside, and a control for starting the compressor after heating the compressor by the heating means And the liquid level of the liquid collected at the bottom of the compressor before the compressor is started is lower than the conductor in the compressor.

本発明は、既設配管を再利用し、ガスヒートポンプ式システムから電気ヒートポンプ式システムの熱源機に置き換えた空気調和装置及び冷凍装置であって、PAGオイルが圧縮機に溜まった状態でも、外部加熱方式により圧縮機の密閉容器内の油溜め空間を加熱し、液冷媒の液面が圧縮機内の導線よりも低くなった後に、圧縮機を起動するので、過電流を発生せずに、圧縮機を円滑に起動することができる。   The present invention relates to an air conditioner and a refrigeration apparatus that reuses existing piping and replaces a gas heat pump type system with a heat source unit of an electric heat pump type system, and an external heating method even when PAG oil is accumulated in a compressor To heat the oil sump space in the airtight container of the compressor and start the compressor after the liquid refrigerant level is lower than the conductor in the compressor. It can start smoothly.

実施の形態1.
図1は、本発明の実施の形態1における空気調和装置を示す冷媒回路図であり、CFCやHCFC冷媒を使用していたガスヒートポンプ式システムを、塩素を含まないR407CやR410A等のHFC冷媒を使用した電気ヒートポンプ式システムの熱源機に置き換えたものである。
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram showing an air conditioner according to Embodiment 1 of the present invention. A gas heat pump system using CFC or HCFC refrigerant is replaced with H407 refrigerant such as R407C or R410A that does not contain chlorine. It was replaced with the heat source machine of the electric heat pump system used.

図1中、電気ヒートポンプ式システムの冷媒回路は、熱源機1と、ガスヒートポンプ式システムで使用されていた第1の接続配管3、第2の接続配管4と、この第1の接続配管3、第2の接続配管4で熱源機1と接続された室内機2とで主に構成されている。また、熱源機1は、熱源機側熱交換器5、第1の操作弁6、第2の操作弁7、アキュムレータ8、及び油分離器9(油分離手段)、圧縮機10、四方弁11とを有している。また、室内機2は、流量調整器12、利用側熱交換器13とを有している。   In FIG. 1, the refrigerant circuit of the electric heat pump type system includes a heat source unit 1, a first connection pipe 3, a second connection pipe 4 used in the gas heat pump type system, and the first connection pipe 3. It is mainly configured by the indoor unit 2 connected to the heat source unit 1 by the second connection pipe 4. The heat source unit 1 includes a heat source unit side heat exchanger 5, a first operation valve 6, a second operation valve 7, an accumulator 8, an oil separator 9 (oil separation means), a compressor 10, and a four-way valve 11. And have. The indoor unit 2 includes a flow rate regulator 12 and a use side heat exchanger 13.

次に、ガスヒートポンプ式システムを電気ヒートポンプ式システムの熱源機に置き換える手順について説明する。まず、ガスヒートポンプ式システムの冷媒回路からCFCまたはHCFC冷媒を回収し、次に、第1の接続配管3、第2の接続配管4からCFCまたはHCFC冷媒用の熱源機と室内機を取り外し、第1の接続配管3、第2の接続配管4に、図1に示すR407CまたはR410A冷媒用の熱源機1、室内機2を接続する。なお、接続される熱源機1には予めR407CまたはR410A冷媒を充填しておく必要がある。次に、第1の操作弁6と第2の操作弁7は閉じたままで、室内機2、第1の接続配管3、第2の接続配管4を真空引きし、その後第1の操作弁6と第2の操作弁7を開弁するとともに、R407CまたはR410A冷媒の追加充填を行い、通常の空調運転を実施する。   Next, a procedure for replacing the gas heat pump type system with a heat source machine of an electric heat pump type system will be described. First, CFC or HCFC refrigerant is recovered from the refrigerant circuit of the gas heat pump system, and then the CFC or HCFC refrigerant heat source unit and the indoor unit are removed from the first connection pipe 3 and the second connection pipe 4, The R407C or R410A refrigerant heat source unit 1 and the indoor unit 2 shown in FIG. 1 are connected to the first connection pipe 3 and the second connection pipe 4. In addition, it is necessary to fill the R407C or R410A refrigerant in advance to the heat source device 1 to be connected. Next, the first operation valve 6 and the second operation valve 7 are kept closed, and the indoor unit 2, the first connection pipe 3 and the second connection pipe 4 are evacuated, and then the first operation valve 6. And the second operation valve 7 are opened, and R407C or R410A refrigerant is additionally charged to perform normal air conditioning operation.

次に、熱源機1での圧縮機10の構成について、圧縮機10の部分断面図である図2に基づいて説明する。圧縮機10は、円形胴体部を有する密閉容器21内にモータ22、主軸23、圧縮要素24が配置され、密閉容器21から冷媒の吸入管25、吐出管26が突出して取り付けられ、モータ22の通電を行う充電部27が、3本の導線28でモータ22と接続されている構成をしている。図3が、圧縮機内の充電部の拡大断面図であり、充電部27とは、圧縮機10を通電する部分である。そして、圧縮機10の運転時には、ガス冷媒は吸入管25から密閉容器21内に流入し、圧縮要素24で圧縮され、高温、高圧にされた後、吐出管26を通って、圧縮機10から排出されることになる。   Next, the configuration of the compressor 10 in the heat source device 1 will be described based on FIG. 2 which is a partial cross-sectional view of the compressor 10. In the compressor 10, a motor 22, a main shaft 23, and a compression element 24 are disposed in a sealed container 21 having a circular body part, and a refrigerant suction pipe 25 and a discharge pipe 26 are attached to the sealed container 21 so as to protrude. The charging unit 27 that conducts electricity is configured to be connected to the motor 22 by three conductive wires 28. FIG. 3 is an enlarged cross-sectional view of a charging unit in the compressor, and the charging unit 27 is a part for energizing the compressor 10. During the operation of the compressor 10, the gas refrigerant flows into the sealed container 21 from the suction pipe 25, is compressed by the compression element 24, is brought to a high temperature and a high pressure, passes through the discharge pipe 26, and is discharged from the compressor 10. Will be discharged.

また、圧縮機10の密閉容器21の周りにクランクケースヒータ29を巻いて設置し、このクランクケースヒータ29で圧縮機10内の油溜め空間30を加熱し、油溜め空間30内の冷凍機油中に溶解している液冷媒を蒸発させ、圧縮機内から排出する。なお。圧縮機10に設置されたクランクケースヒータ温度センサ31の温度は、制御装置32により制御されている。   In addition, a crankcase heater 29 is installed around the sealed container 21 of the compressor 10, and the oil reservoir space 30 in the compressor 10 is heated by the crankcase heater 29, so that the refrigeration oil in the oil reservoir space 30 The liquid refrigerant dissolved in is evaporated and discharged from the compressor. Note that. The temperature of the crankcase heater temperature sensor 31 installed in the compressor 10 is controlled by the control device 32.

冷凍機油中の冷媒の溶解度曲線は図4に示すように、温度が高い程、溶解度が小さい傾向を示す。また、圧縮機10内の油溜め空間30の液冷媒の液面の高さは、冷媒の溶解度を小さくする程、低く抑えることができる。このため、圧縮機10内の温度を制御することにより、油溜め空間30の液冷媒の液面の高さを制御することができる。
本実施の形態では、液冷媒の液面が、充電部27と接続された導線28と接触しない高さになるように、クランクケースヒータ29で外部から圧縮機10を加熱し、クランクケースヒータ温度センサ31により、圧縮機10内の温度を予め設定した目標温度40℃(図4のC)になるように制御する。
ここで、冷凍機油中の冷媒の溶解度を考慮するのは、冷媒の沸点は冷凍機油の沸点より低いため、冷媒の方が先に蒸発するからである。
As shown in FIG. 4, the solubility curve of the refrigerant in the refrigeration oil shows a tendency that the solubility is lower as the temperature is higher. Further, the height of the liquid refrigerant level in the oil sump space 30 in the compressor 10 can be reduced as the refrigerant solubility is reduced. For this reason, by controlling the temperature in the compressor 10, the liquid level of the liquid refrigerant in the oil sump space 30 can be controlled.
In the present embodiment, the compressor 10 is heated from the outside by the crankcase heater 29 so that the liquid refrigerant has a level that does not come into contact with the conducting wire 28 connected to the charging unit 27, and the crankcase heater temperature is increased. The sensor 31 controls the temperature in the compressor 10 to be a preset target temperature of 40 ° C. (C in FIG. 4).
Here, the reason why the solubility of the refrigerant in the refrigerating machine oil is taken into account is that the refrigerant evaporates first because the boiling point of the refrigerant is lower than that of the refrigerating machine oil.

このように、本実施の形態は、ガスヒートポンプ式システムから電気ヒートポンプ式システムの熱源機に置き換えた空気調和装置及び冷凍装置で、ガスヒートポンプ式システムの冷凍機油として使用されるPAGオイルが圧縮機10内に存在していても、クランクケースヒータ29で圧縮機10を加熱することにより、液冷媒の液面の高低に関わらず、圧縮機10の起動前に、液冷媒を蒸発させて冷媒を圧縮機10の外部に排出することができる。また、PAGオイルが融けこんだ液冷媒の液面を導線28よりも低くした状態で圧縮機10を起動するようにするため、圧縮機10内のPAGオイルの濃度に関わらず、過電流を発生せずに、圧縮機10を円滑に起動することができる。   As described above, the present embodiment is an air conditioner and a refrigeration apparatus in which a gas heat pump system is replaced with a heat source apparatus of an electric heat pump system, and PAG oil used as a refrigeration oil in the gas heat pump system is a compressor 10. Even if the liquid refrigerant is present, the crankcase heater 29 heats the compressor 10 to compress the refrigerant by evaporating the liquid refrigerant before starting the compressor 10 regardless of the liquid level of the liquid refrigerant. It can be discharged outside the machine 10. In addition, in order to start the compressor 10 with the liquid refrigerant level in which the PAG oil is melted lower than the conductor 28, an overcurrent is generated regardless of the concentration of the PAG oil in the compressor 10. Without the compressor 10 being able to start smoothly.

次に、本発明が、冷媒としてR410Aを使用している空気調和装置及び冷凍装置で有効である理由について説明する。
例えば、20℃におけるR407C冷媒とR410A冷媒の液密度はそれぞれρlR407C=1159[kg/m]、ρlR410A=1085[kg/m]であるようにR410A冷媒は、R407C冷媒に比べて液密度が小さい。
現地工事でR407C冷媒と同質量のR410A冷媒を誤って封入する恐れがあり、この場合、R410A冷媒の方が容量が大きくなるため、R407C冷媒で液冷媒の液面が導線28に接触しなくても、R410A冷媒では接触するという事態が発生する。
Next, the reason why the present invention is effective in the air-conditioning apparatus and the refrigeration apparatus using R410A as the refrigerant will be described.
For example, the liquid density of R407C refrigerant and R410A refrigerant at 20 ° C. is ρ lR407C = 1159 [kg / m 3 ] and ρ lR410A = 1085 [kg / m 3 ], respectively, so that the R410A refrigerant is more liquid than the R407C refrigerant. The density is small.
There is a risk that the R410A refrigerant having the same mass as the R407C refrigerant will be accidentally sealed in the field work. In this case, the R410A refrigerant has a larger capacity, so the liquid surface of the liquid refrigerant does not contact the conductor 28 with the R407C refrigerant. However, a situation occurs in which the R410A refrigerant contacts.

また、R410A冷媒を使用した場合、R407C冷媒よりも高圧力となり、配管を細くする必要があるので、R407C冷媒と同量のR410A冷媒を封入すると、配管内を循環する冷媒量が減少し、圧縮機10内の油溜め空間30に溜まる液冷媒の量が多くなる可能性が高まる。
現地工事で、R407C冷媒と同質量のR410A冷媒を誤って封入した場合、R410A冷媒用に設計された回路では過充填になり、圧縮機10内が冷媒で液没する危険度が高まる。このように、R410A冷媒はR407C冷媒よりも、運転停止時に圧縮機内に溜まる冷媒の容量が多くなる恐れがあるので、本発明は、冷媒としてR407Cを使用している空気調和装置及び冷凍装置よりも、R410Aを使用している空気調和装置及び冷凍装置で特に有効である。
In addition, when the R410A refrigerant is used, the pressure is higher than that of the R407C refrigerant and the pipe needs to be made thinner. Therefore, if the same amount of the R410A refrigerant as the R407C refrigerant is sealed, the amount of refrigerant circulating in the pipe is reduced and compressed. The possibility that the amount of liquid refrigerant that accumulates in the oil sump space 30 in the machine 10 increases is increased.
If the R410A refrigerant having the same mass as the R407C refrigerant is mistakenly filled in the field work, the circuit designed for the R410A refrigerant will be overfilled, increasing the risk that the compressor 10 will be submerged with the refrigerant. As described above, the R410A refrigerant may have a larger capacity of refrigerant that accumulates in the compressor when the operation is stopped than the R407C refrigerant. Therefore, the present invention is more than the air conditioner and the refrigeration apparatus that use R407C as the refrigerant. This is particularly effective in an air conditioner and a refrigerating apparatus using R410A.

実施の形態2.
図5は、実施の形態2における圧縮機を示す部分断面図であり、圧縮機内温度により圧縮機10の動作制御をするようにしたものである。なお、図5中、図2と同じ構成及び相当する構成には同一の符号を付し説明を省略する。
図5中、33は圧縮機10の内部に配置された圧縮機内温度センサである。
次に、図5での温度制御につき図6のフローチャートに基づき説明する。
まず、圧縮機内温度センサ33から圧縮機内温度T1を読み取り(ステップS1)、モリエル線図を用いて圧縮機内温度T1から圧縮機10内の圧力Pを求める(ステップS2)。次に、クランクケースヒータ温度センサ31からクランクケースヒータ29の温度T2を読み取り(ステップS3)、制御装置32内に記憶された図4に示す関係図を基に、具体的には、縦軸の圧縮機10内の圧力Pの値と、横軸のクランクケースヒータの温度T2の値との交点Bから冷凍機油中の冷媒の溶解度Wを読み取る(ステップS4)。次に、溶解度の現在値Wが予め定められた溶解度の目標値Wmよりも大きいか否かを判定し(ステップS5)、大きい場合はクランクケースヒータ29の電源をON(ステップS6)にして加熱し、小さい場合は電源をOFF(ステップS7)になるように制御する。
なお、本実施の形態では、圧縮機内温度センサ33を圧縮機10の内部に配置したが、圧縮機内温度センサ33の代わりに、圧縮機10の外部に温度センサを配置し、圧縮機内温度T1として使用してもよい。
また、図4で冷凍機油中の冷媒の溶解度Wを求める場合に、本実施の形態ではクランクケースヒータ温度センサ31の温度T2を使用したが、代わりに圧縮機内温度センサ33の圧縮機内温度T1を使用してもよい。
Embodiment 2. FIG.
FIG. 5 is a partial cross-sectional view showing the compressor in the second embodiment, in which the operation of the compressor 10 is controlled based on the internal temperature of the compressor. In FIG. 5, the same components as those in FIG. 2 and the corresponding components are denoted by the same reference numerals, and description thereof is omitted.
In FIG. 5, reference numeral 33 denotes an in-compressor temperature sensor arranged inside the compressor 10.
Next, the temperature control in FIG. 5 will be described based on the flowchart in FIG.
First, the compressor temperature T1 is read from the compressor temperature sensor 33 (step S1), and the pressure P in the compressor 10 is obtained from the compressor temperature T1 using the Mollier diagram (step S2). Next, the temperature T2 of the crankcase heater 29 is read from the crankcase heater temperature sensor 31 (step S3), and based on the relationship diagram shown in FIG. The solubility W of the refrigerant in the refrigerating machine oil is read from the intersection B between the value of the pressure P in the compressor 10 and the value of the temperature T2 of the crankcase heater on the horizontal axis (step S4). Next, it is determined whether or not the current solubility value W is larger than a predetermined solubility target value Wm (step S5). If larger, the crankcase heater 29 is turned on (step S6) and heated. If it is smaller, the power is turned off (step S7).
In the present embodiment, the compressor internal temperature sensor 33 is arranged inside the compressor 10, but instead of the compressor internal temperature sensor 33, a temperature sensor is arranged outside the compressor 10 to obtain the compressor internal temperature T1. May be used.
4, when the solubility W of the refrigerant in the refrigeration oil is obtained, the temperature T2 of the crankcase heater temperature sensor 31 is used in the present embodiment. Instead, the compressor temperature T1 of the compressor temperature sensor 33 is used. May be used.

液冷媒が導線28と接触しないように、実施の形態1では、圧縮機10内の温度制御のみを考え、クランクケースヒータ29で圧縮機10内の温度を点Aから点Cへ40℃になるように制御しているが(図4)、実施の形態2では、圧縮機10内の温度と、冷凍機油中の冷媒の溶解度から、液冷媒の液面の高さをある程度予測し、圧縮機10内の温度を点Aから点Bへ20℃になるように制御しているため、クランクケースヒータ29の入力を必要最低限に抑えることができる。このように、本実施の形態では、液冷媒が多い、すなわち、冷凍機油中の冷媒の溶解度が大きい場合にのみ、クランクケースヒータ29で圧縮機10を加熱するため、木目細かい制御ができる。特に夏場は、外気温度が高いためクランクケースヒータ29で過度に加熱する必要はないため、本実施の形態の制御により、消費電力を節約でき有効である。   In the first embodiment, only the temperature control in the compressor 10 is considered so that the liquid refrigerant does not come into contact with the conductive wire 28, and the temperature in the compressor 10 is changed from point A to point C by the crankcase heater 29 at 40 ° C. In the second embodiment, the liquid level of the liquid refrigerant is predicted to some extent from the temperature in the compressor 10 and the solubility of the refrigerant in the refrigeration oil. Since the temperature within 10 is controlled to 20 ° C. from point A to point B, the input to the crankcase heater 29 can be minimized. As described above, in the present embodiment, the compressor 10 is heated by the crankcase heater 29 only when there is a large amount of liquid refrigerant, that is, when the solubility of the refrigerant in the refrigeration oil is high, so fine control can be performed. Particularly in summer, since the outside air temperature is high, it is not necessary to heat the crankcase heater 29 excessively. Therefore, the control according to the present embodiment is effective in saving power consumption.

実施の形態3.
図7は、実施の形態3における圧縮機を示す部分断面図であり、油面検知装置で検知した油面により圧縮機10の動作制御をするようにしたものである。なお、図7中、図2と同じ構成及び相当する構成には同一の符号を付し説明を省略する。
図7中、34は圧縮機10内に設置された油面検知装置である。また、図7の制御装置32は、油面検知装置34で検知された液冷媒の高さが所定の高さよりも高い場合にはクランクケースヒータ29の電源をONにし、所定の高さよりも低い場合にはクランクケースヒータ29の電源をOFFするようにしている。
このように、液冷媒の液面の高さを直接検知することで、クランクケースヒータ29の電源のON/OFF制御を行うことにより、更に木目細かい制御ができ、また省エネを図ることができる。
Embodiment 3 FIG.
FIG. 7 is a partial cross-sectional view showing the compressor in the third embodiment, in which the operation of the compressor 10 is controlled by the oil level detected by the oil level detection device. In FIG. 7, the same components as those in FIG.
In FIG. 7, 34 is an oil level detection device installed in the compressor 10. Further, the control device 32 in FIG. 7 turns on the power of the crankcase heater 29 when the height of the liquid refrigerant detected by the oil level detection device 34 is higher than a predetermined height, and is lower than the predetermined height. In this case, the crankcase heater 29 is turned off.
As described above, by directly detecting the height of the liquid coolant level, the power of the crankcase heater 29 is controlled to be turned on and off, so that finer control can be achieved and energy saving can be achieved.

本発明の実施の形態1における空気調和装置を示す冷媒回路図である。It is a refrigerant circuit figure which shows the air conditioning apparatus in Embodiment 1 of this invention. 本発明の実施の形態1を示す圧縮機の部分断面図である。It is a fragmentary sectional view of the compressor which shows Embodiment 1 of this invention. 本発明の実施の形態1を示す圧縮機内の充電部の拡大断面図である。It is an expanded sectional view of the charge part in the compressor which shows Embodiment 1 of this invention. 本発明の実施の形態2で使用される冷凍機油中の冷媒の溶解度曲線である。It is a solubility curve of the refrigerant | coolant in the refrigerating machine oil used in Embodiment 2 of this invention. 本発明の実施の形態2を示す圧縮機の部分断面図である。It is a fragmentary sectional view of the compressor which shows Embodiment 2 of this invention. 本発明の実施の形態2における圧縮機の加熱制御を示すフローチャートである。It is a flowchart which shows the heating control of the compressor in Embodiment 2 of this invention. 本発明の実施の形態3を示す圧縮機の部分断面図である。It is a fragmentary sectional view of the compressor which shows Embodiment 3 of this invention.

符号の説明Explanation of symbols

1 熱源機、2 室内機、3 第1の接続配管、4 第2の接続配管、5 熱源機側熱交換器、6 第1の操作弁、7 第2の操作弁、8 アキュムレータ、9 油分離器、10 圧縮機、11 四方弁、12 流量調整器、13 利用側熱交換器、21 密閉容器、22 モータ、23 主軸、24 圧縮要素、25 吸入管、26 吐出管、27 充電部、28 導線、29 クランクケースヒータ、30 油溜め空間、31 クランクケースヒータ温度センサ、32 制御装置、33 圧縮機内温度センサ、34 油面検知装置 DESCRIPTION OF SYMBOLS 1 Heat source machine, 2 Indoor unit, 3 1st connection piping, 4 2nd connection piping, 5 Heat source machine side heat exchanger, 6 1st operation valve, 7 2nd operation valve, 8 Accumulator, 9 Oil separation , 10 compressor, 11 four-way valve, 12 flow regulator, 13 use side heat exchanger, 21 sealed container, 22 motor, 23 spindle, 24 compression element, 25 suction pipe, 26 discharge pipe, 27 charging section, 28 lead wire , 29 Crankcase heater, 30 Oil reservoir space, 31 Crankcase heater temperature sensor, 32 Control device, 33 Compressor temperature sensor, 34 Oil level detection device

Claims (4)

冷凍機油としてPAGオイルを使用した空気調和装置及び冷凍装置の既設配管を再利用し、PAGオイル以外の冷凍機油を使用する電気ヒートポンプ式システムの熱源機に置き換えた空気調和装置及び冷凍装置であって、前記熱源機に内蔵された圧縮機を外部から加熱する加熱手段と、前記加熱手段で前記圧縮機を加熱した後に、前記圧縮機内のモータと接続された充電部で導線を通電して前記圧縮機を起動する制御装置とを備え、前記圧縮機の起動時に前記圧縮機内の底部に溜まる液の液面が前記導線よりも低くなるようにしたことを特徴とする空気調和装置及び冷凍装置。 An air conditioner and a refrigerating apparatus in which an existing air conditioner using PAG oil as a refrigerating machine oil and an existing pipe of the refrigerating apparatus are reused and replaced with a heat source machine of an electric heat pump system using a refrigerating machine oil other than PAG oil. A heating unit that heats the compressor built in the heat source unit from the outside, and after heating the compressor by the heating unit, the conductor is energized in a charging unit connected to a motor in the compressor to compress the compression An air conditioner and a refrigeration apparatus, characterized in that a liquid level of liquid accumulated at the bottom of the compressor when the compressor is started is lower than the conductor. 圧縮機内の温度を検出する温度検出手段を備え、制御装置は、前記検出温度を元に、圧縮機内の冷凍機油中の冷媒の溶解度を算出し、前記算出値が、予め設定した値よりも小さくなるように制御することを特徴とする請求項1に記載の空気調和装置及び冷凍装置。 The controller includes temperature detection means for detecting the temperature in the compressor, and the control device calculates the solubility of the refrigerant in the refrigeration oil in the compressor based on the detected temperature, and the calculated value is smaller than a preset value. It controls so that it may become. The air conditioning apparatus and refrigeration apparatus of Claim 1 characterized by the above-mentioned. 圧縮機内に油面検知装置を備え、制御装置は、前記検知した油面の高さに基づいて、加熱手段を制御することを特徴とする請求項1に記載の空気調和装置及び冷凍装置。 The air conditioner and the refrigeration apparatus according to claim 1, wherein an oil level detection device is provided in the compressor, and the control device controls a heating unit based on the detected oil level height. 冷媒はR410Aであることを特徴とする請求項1から請求項3のいずれかに記載の空気調和装置及び冷凍装置。 The air-conditioning apparatus and refrigeration apparatus according to any one of claims 1 to 3, wherein the refrigerant is R410A.
JP2003420587A 2003-12-18 2003-12-18 Air conditioning apparatus and refrigeration apparatus Expired - Lifetime JP4273492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003420587A JP4273492B2 (en) 2003-12-18 2003-12-18 Air conditioning apparatus and refrigeration apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003420587A JP4273492B2 (en) 2003-12-18 2003-12-18 Air conditioning apparatus and refrigeration apparatus

Publications (2)

Publication Number Publication Date
JP2005180753A true JP2005180753A (en) 2005-07-07
JP4273492B2 JP4273492B2 (en) 2009-06-03

Family

ID=34782068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003420587A Expired - Lifetime JP4273492B2 (en) 2003-12-18 2003-12-18 Air conditioning apparatus and refrigeration apparatus

Country Status (1)

Country Link
JP (1) JP4273492B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190864A (en) * 2008-05-14 2008-08-21 Daikin Ind Ltd Air conditioner
US8033123B2 (en) 2006-07-24 2011-10-11 Daikin Industries, Ltd. Air conditioner
JP2012189240A (en) * 2011-03-09 2012-10-04 Mitsubishi Electric Corp Air-conditioning apparatus
WO2020080064A1 (en) * 2018-10-18 2020-04-23 株式会社神戸製鋼所 Refrigeration apparatus
JPWO2021095237A1 (en) * 2019-11-15 2021-05-20

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8033123B2 (en) 2006-07-24 2011-10-11 Daikin Industries, Ltd. Air conditioner
JP2008190864A (en) * 2008-05-14 2008-08-21 Daikin Ind Ltd Air conditioner
JP2012189240A (en) * 2011-03-09 2012-10-04 Mitsubishi Electric Corp Air-conditioning apparatus
EP2498029A3 (en) * 2011-03-09 2014-05-07 Mitsubishi Electric Corporation Air-conditioning apparatus
US8966915B2 (en) 2011-03-09 2015-03-03 Mitsubishi Electric Corporation Air-conditioning apparatus utilizing compressor preheating
WO2020080064A1 (en) * 2018-10-18 2020-04-23 株式会社神戸製鋼所 Refrigeration apparatus
JPWO2021095237A1 (en) * 2019-11-15 2021-05-20
JP7399182B2 (en) 2019-11-15 2023-12-15 三菱電機株式会社 Cold heat source unit and refrigeration cycle equipment

Also Published As

Publication number Publication date
JP4273492B2 (en) 2009-06-03

Similar Documents

Publication Publication Date Title
EP2498029B1 (en) Air-conditioning apparatus
JP5353974B2 (en) Vehicle power supply
CN107429949B (en) Refrigeration cycle device
EP3249317B1 (en) Oil return circuit and oil return method for refrigerating cycle
JP2010071627A (en) Refrigerating device
WO2002064979A1 (en) Freezer
WO2007123087A1 (en) Refrigerating apparatus
JP2011047545A (en) Operation control method of multi-chamber type air conditioner
WO2017221300A1 (en) Air conditioner
JP3882841B2 (en) Air conditioner, heat source unit, and method of updating air conditioner
JP4273492B2 (en) Air conditioning apparatus and refrigeration apparatus
JP5772439B2 (en) Vehicle charging device
JP2009085463A (en) Air conditioner
JP4665736B2 (en) Control method for refrigeration cycle apparatus and refrigeration cycle apparatus using the same
JP2007322022A (en) Compressor device and refrigerant circulating device
JP2000292017A (en) Heat pump type refrigerating machine
KR20060087229A (en) Liquid refrigerants level regulating method and apparatus of an accumulator
CN111868447A (en) Refrigeration cycle device
JP5381749B2 (en) Refrigeration cycle equipment
JP6359181B2 (en) Refrigeration cycle equipment
JP2016017729A (en) Air conditioner
CN112682929A (en) Air conditioner
JP2006118788A (en) Air conditioner
WO2015104822A1 (en) Refrigeration cycle device
JPH09170826A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090220

R150 Certificate of patent or registration of utility model

Ref document number: 4273492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term