WO2020078493A1 - Selbsteinzugsvorrichtung mit umgelenktem federenergiespeicher - Google Patents
Selbsteinzugsvorrichtung mit umgelenktem federenergiespeicher Download PDFInfo
- Publication number
- WO2020078493A1 WO2020078493A1 PCT/DE2019/000264 DE2019000264W WO2020078493A1 WO 2020078493 A1 WO2020078493 A1 WO 2020078493A1 DE 2019000264 W DE2019000264 W DE 2019000264W WO 2020078493 A1 WO2020078493 A1 WO 2020078493A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- spring energy
- self
- housing
- retracting device
- driving element
- Prior art date
Links
- 238000004146 energy storage Methods 0.000 claims description 22
- 230000000295 complement effect Effects 0.000 claims 1
- 238000009434 installation Methods 0.000 abstract description 2
- 238000005096 rolling process Methods 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 230000036316 preload Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47B—TABLES; DESKS; OFFICE FURNITURE; CABINETS; DRAWERS; GENERAL DETAILS OF FURNITURE
- A47B88/00—Drawers for tables, cabinets or like furniture; Guides for drawers
- A47B88/40—Sliding drawers; Slides or guides therefor
- A47B88/453—Actuated drawers
- A47B88/46—Actuated drawers operated by mechanically-stored energy, e.g. by springs
- A47B88/467—Actuated drawers operated by mechanically-stored energy, e.g. by springs self-closing
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05F—DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
- E05F1/00—Closers or openers for wings, not otherwise provided for in this subclass
- E05F1/08—Closers or openers for wings, not otherwise provided for in this subclass spring-actuated, e.g. for horizontally sliding wings
- E05F1/16—Closers or openers for wings, not otherwise provided for in this subclass spring-actuated, e.g. for horizontally sliding wings for sliding wings
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
- E05Y2900/00—Application of doors, windows, wings or fittings thereof
- E05Y2900/20—Application of doors, windows, wings or fittings thereof for furniture, e.g. cabinets
Definitions
- the invention relates to a self-retracting device with a in a housing between a non-positively and / or positively secured parking position and an end position and back ver movable driving element, with a driving element and the housing connecting the first spring energy storage and with at least a second spring energy storage, both in position of the entrainment element are loaded in the park position and are discharged to a residual energy value when the entrainment element is in the end position, the first spring energy store being guided around a deflection disk rotatably mounted relative to a carriage, and the carriage relative to the housing in the direction of the loop that wraps around the deflection disk first spring energy store is loaded by means of the second spring energy store and the deflection disk has a circumferential guide groove.
- the problem underlying the present invention is to reduce the installation space required for such a self-retracting device and to simplify assembly.
- the deflection plate is supported on the slide by means of two external bearings pivoted in the slide. At least one tangential plane to the surface of the deflecting plate intersects both journals.
- the deflection plate is guided during a rotary movement by means of the carriage or by means of the bearing pin.
- the deflection plate of the self-retracting device is supported in the longitudinal direction and in the vertical direction by means of several rolling contact zones. This can be a point surface or line contact.
- the deflection disk is pressed against the two bearing journals by means of the first spring energy storage device that wraps around it. This contact pressure is increased by means of the second spring energy store, which presses a slide bearing the bearing against the deflection plate.
- Figure 1 Self-retracting device in the parking position
- Figure 2 Self-retracting device in the end position
- Figure 6 Section of the carriage assembly
- Figure 8 Variant of the sled assembly.
- FIGs 1 and 2 show a self-retracting device (10).
- Such self-retracting devices (10) are used to move moving pieces of furniture, such as drawers or sliding doors relative to a fixed piece of furniture, such as egg NEM furniture body, controlled to move into a closed or open end position.
- the self-closing device is attached to one piece of furniture and a driver to the piece of furniture moved relative to it.
- the driver contacts a driving element (41) of the self-closing device (10) and releases it from a parking position (11).
- the drawer or the sliding door is now conveyed into the end position by means of the self-closing device (10).
- the self-retracting device (10) has a housing (21) which consists of a lower housing shell (22) and an upper housing shell (35), cf. Figure 6 exists.
- the housing (21) On the top (23), the housing (21) has a longitudinal slot (24) through which the taking element (41) projects into the environment (1).
- the Mit fortunele element (41) is guided in the housing (21) by means of a guide pin pair (42) arranged on both sides and by means of a piston rod head (52) along a housing-side guide track (25).
- This guideway (25) has a straight section (26) oriented in the longitudinal direction (5) and a parking section (27) bent downward in the illustrations in FIGS.
- the driving element (41) with the guide pin pair (42) is in the parking section (27).
- the piston rod head (52) is in the straight section (26).
- both the guide pin pair (42) and the piston rod head (52) are in the straight section (26).
- a driving recess (43) of the driving element (41) points upwards.
- the driving element (41) can also be formed in several parts. For example, a pull pin (44) that limits the driving recess (43) can be folded down.
- the underside of the housing (21) and areas of the end wall (31) and the rear wall (28) are open in the exemplary embodiment. But they can also be closed.
- a hydraulic cylinder-piston unit (51) is also mounted in the housing (21).
- the cylinder-piston unit (51) has a cylinder (53) in which a piston which can be displaced by means of a piston rod (54) is guided.
- a piston which can be displaced by means of a piston rod (54) is guided.
- oil is throttled from a displacement space (55) located between the piston and the cylinder base into an outlet located between the piston and the cylinder head (56). common room ousted.
- the piston rod (54) carries the piston rods pivotally mounted in the receiving element (41)
- the self-closing unit (10) can also be designed without a cylinder-piston unit (51).
- the piston rod (54) of the cylinder-piston unit (10) is not connected to the driving element (41).
- the driving element (41) then has e.g. two pairs of guide pins (42).
- a return spring is arranged which loads the piston rod (54) with the piston rod head (52) in the direction of the driving element (41).
- the piston rod head (52) can detach from the driving element (41) in such an embodiment.
- the cylinder-piston unit (51) can be arranged in the housing (21) in such a way that the piston rod (54) faces the rear wall (28) of the housing (21) and the cylinder base (55) is oriented towards the driving element (41) is.
- the Zy cylinder (53) is slidably mounted in the housing (21).
- the Zylin derêt (55) can be connected to the driving element (41) or abut against it.
- a first Fe energy storage device (61) is held on the driving element (41) and in the housing (21).
- This first spring energy store (61) is suspended in a spring holder (36) in the housing (21).
- This first spring energy storage device (61) is a tension spring (61) in the exemplary embodiment. Its length relaxed to a residual value is, for example, 1.35 times the length of the housing (21) measured in the longitudinal direction (5).
- the loaded first Fede energy storage (61) shown in Figure 1 is 50% longer than the housing (21).
- the first spring energy store (21) is deflected
- the wrap angle of the spring energy storage device (61) around the steering wheel (71) is 181 degrees in the exemplary embodiment.
- the slide assembly (70) comprises a slide (81), the deflection disk (71), two bearing journals (91) and a second spring energy store (101).
- the carriage (81) with the deflection disc (71) and the bearing pin (91) is loaded relative to the Ge housing (21) by means of the second spring energy store (101) in the direction of the rear wall (28).
- the second Fe energy store (101) is attached to the housing (21) and to the slide (81).
- the slide assembly group (70) is guided in the longitudinal direction (5) by means of the deflection disk (71) which engages in a housing groove (29) by means of a guide bolt (74).
- the slide assembly (70) can also be designed without a guide on the housing side.
- the carriage (81) has a cuboid-shaped envelope contour. For example, approximately in the middle it has a transverse opening (82) with a rectangular cross section. This transverse breakthrough (82) ben on all sides of connecting webs (83). These connecting webs (83) connect two guide plates (84) lying parallel to one another. The guide plates (84) limit the carriage (81) in the transverse direction (6). They can be flush with the connecting webs (83) in the height direction (7).
- the slide (81) At its end facing the end wall (31) of the housing (21), the slide (81) has a spring bushing (85) opening into the transverse opening (82). This spring guide (85) is oriented, for example, in the longitudinal direction of the slide (89).
- the slide (81) has two bearing journal receptacles (86).
- This Lagerapap fenabilityn (86) are oriented in the transverse direction (6).
- the journal receptacles (86) are arranged symmetrically to a central transverse plane of the carriage (81) oriented in the longitudinal direction of the carriage (89).
- the individual trunnion receptacle (86) has an insertion depression (87) on each guide plate (84) which opens into a receptacle (88) in the form of a cylindrical section.
- the guide plates (84) protrude from the connecting webs (83) like a fork.
- the distance between the guide plates (84) here is 78% of the total width of the slide (81).
- the width of the carriage (81) is, for example, 95% of the inside width of the housing (21).
- FIG. 4 shows the deflection plate (71). The redirect
- the disc (71) has a hollow hub (73) in the exemplary embodiment, in which e.g. the guide bolt (74) is inserted when the deflection plate (71) is installed.
- the redirect bolt (74) is inserted when the deflection plate (71) is installed.
- the guide groove (77) has a central U-shaped channel section (78) which on both sides faces away from a concave outer channel
- the width of the deflection disc (71) over the disc horns (75) in the exemplary embodiment is 99% of the distance between the two guide plates (84) in the region of the bearing journal receptacles (86).
- the deflection disc (71) can also be designed without a hub. In this case, the two disc horns (75) can be circular discs.
- a bearing journal (91) is shown in FIG. Both La gerzapfen (91) are identical in the embodiment.
- the individual bearing journal (91) is constructed, for example, from five sections (92-94) which are coaxial with one another. In the exemplary embodiment, its length corresponds to the width of the carriage (81) in the transverse direction (6).
- the individual journal (91) is symmetrical with respect to its normal to the transverse direction (6) oriented center plane.
- a cylindrical bearing section (92) is adjacent to each of the end faces (95). Its diameter is, for example, 96% of the diameter of a bearing journal receptacle (86). Adjacent to the respective bearing section (92) is also a collar section (93) of cylindrical design. Its diameter is slightly larger than the diameter of the receptacle (88).
- the bearing journal (91) has a central guide section (94). This is designed as a circumferential guide collar (94). Its length in the transverse direction (6) is a quarter of the length of the bearing journal in the exemplary embodiment
- this length can be up to 56% of the length of the bearing journal (91). Its diameter is 25% larger than the diameter of the bearing section (92).
- the guide collar (94) is rounded in the transverse direction (6).
- the bearing journal (91) can also be designed without a guide collar (94) or with more than one guide collar (94).
- the driving element (41) with the cylinder-piston unit (51) is first inserted into the lower housing shell (22). Then the carriage (81) with the set bearing journal (91) in the lower housing shell (22). Here, the carriage (81) with the transverse opening (82) on the housing-side spring receptacle (32) is inserted ge. Now, for example, designed as a tension spring second spring energy storage (101) in the housing-side spring receptacle (32) and in the spring bushing (85) of the carriage (81) can be hung. For example, the carriage (81) is now in the position shown in FIG. 2.
- the deflection plate (71) with the inserted guide pin (74) can be used so that the guide pin (74) engages in the housing groove (29) and the lateral surfaces (76) of the deflection plate (71) on the collar sections (93) Fit bearing journal (91).
- the first spring energy storage (61) can be suspended in the driving element (41) and in the housing (21) and guided around the deflection plate (71).
- the upper housing shell (35) can be put on and the housing (21) can be joined. For example, it is screwed or welded. Another order of assembly is also conceivable.
- FIG. 6 shows a view of the rear wall (28) of the self-closing device (10).
- the required width of the housing (21) in the upper region (33) results from the cylinder-piston unit (51).
- the carriage (81) determines the width of the housing (21).
- the width of the lower region (34) is 75% of the width of the upper region (33) of the housing (21).
- the housing (21) is used in the illustration of FIG. 6 with the lower region (34), for example in a carrier profile (15).
- the self-closing device (10) is, for example, in the end position (12) shown in FIG. 2.
- the piston rod (54) of the cylinder-piston unit (51) is retracted.
- the first spring energy store (61) is discharged to a residual energy value.
- the tension spring (61) is, for example, stretched by 30% compared to its completely relieved nominal length. It loads the deflection plate (71) against the bearing journal (91).
- the journals (91) are, for example, symmetrical to the bisector of the wrap angle. For example, the radial axis intersecting the central axis (72) of the deflection disk (71) through the center lines (96) of the bearing journal (91) form an angle of 54 degrees. At least one tangential plane to the deflection disk (71) intersects both bearing journals (91).
- the two bearing journals (91) are thus offset from one another on the side of the deflection disk (71) facing the slide (81).
- a tangential plane oriented normal to the longitudinal direction of the slide (89) divides 27% of the volume of both bearing journals (91) from the deflection disk (71).
- One of the deflection plate (71) facing the tangential plane to both journals (91) has a smaller distance from the center axis (72) of the deflection plate (71) than each tangential plane parallel to this tangent tangent to the first spring energy store (61).
- the last-mentioned tangential plane is oriented, for example, normally to halve the wrap angle.
- This bisector is, for example, in the
- the second spring energy store (101) When the driver element (41) is in the end position (12), the second spring energy store (101) is also connected to a residual relieved of the energy value. For example, this Buchfe (101) is 20% longer than its unloaded nominal length.
- the second spring energy storage (101) loads the carriage (81) in the direction of the first spring energy storage (61).
- the forces of both spring energy stores (61, 101) act together on the contact points (111) between the steering disc (71) and the bearing journal (91).
- the force vectors caused by both spring energy stores (61, 101) point from opposite directions to contact points (111).
- the contact between the deflection plate (71) and the bearing journal (91) is additionally secured. This prevents movement of the deflection disk (71) in the longitudinal direction (5) and in the height direction (7).
- the carriage (81) engages around the first spring energy store (61) both in the upper run (62) and in the lower run (63).
- the first spring energy store (61) is thus guided by means of the slide (81).
- the cantilever guide plates (84) of the carriage (81) are on both sides of the deflection plate (71).
- FIG. 7 shows a sectional view of the deflection disk (71), a bearing pin (91) and the slide (81).
- the sectional plane of this view is spanned by the central axis (72) of the steering disc (71) and a radial connecting this with the center line (96) of a bearing pin (91).
- the first spring energy store (61) and the housing (21) are not shown in this view.
- the slide (21) overlaps the deflection disk (71) with its two guide plates (84) in some areas.
- the carriage thus limits movement of the deflection disk (71) in the transverse direction (6). So that leads Carriage (81) in this embodiment, the deflection disc (71) during a rotary movement.
- the bearing pins (91) are rotatably mounted in the slide (81).
- the bearings of the bearing sections (92) in the receptacles (88) are designed as plain bearings in the exemplary embodiment.
- the respective collar sections (93) prevent the journals (91) from moving in the transverse direction (6).
- the deflection plate (71) At the Bundabschnit ten (93) is the deflection plate (71) with its disc horns (75).
- the contact points (111) are in the transverse direction (6) oriented contact lines.
- sections (94) of the trunnions (91) are immersed in the guide groove (77). In the exemplary embodiment, they have no contact with the guide groove (77).
- the driver pulls the driving element (41) relative to the housing (21) in the opening direction (13), starting from the end position (12) shown in FIG. 2.
- the first spring energy storage (61) is loaded. In doing so, it loads the deflection plate (71) in the opening direction (13).
- the deflection disc (71) pushes the carriage (81) also in the opening direction (13).
- the deflection disk (71) is rotated about its central axis (72). It rolls on both bearings journal (91), which are rotated here.
- the second spring energy storage (101) is loaded. The elongation of the first Fe energy storage (61) is less than the stroke of the entraining element (41) in the longitudinal direction (5).
- the spring-loaded deflection shortens the stroke.
- the piston rod (54) is pulled out relative to the cylinder (53).
- the driver element (41) is moved further, it reaches the parking position (11), cf. Figure 1.
- the first spring energy storage (61) and the second spring energy storage (101) are loaded to their respective maximum operating values.
- the driving element (41) is non-positively and / or positively secured in the housing (21). The driver is released. The sliding door or drawer can now be opened further.
- the shortening first spring energy store (61) rotates the deflection disk (71) in the representations of FIGS. 1 and 2 in a clockwise direction.
- the deflection plate (71) in these Ansich th the bearing journals (91) mounted in the slide counterclockwise.
- the second spring energy storage (101) is relieved.
- the carriage (81) is moved in the closing direction (14).
- the forces of both spring energy stores (61, 101) are superimposed.
- the two spring energy stores (61, 101)) act together with a low spring stiffness to accelerate the driving element. ment (41).
- This acceleration force acts counter to the deceleration force of the cylinder-piston unit (51).
- the result of these forces slowly pulls the sliding door or drawer into the closed end position, for example. Here the door or drawer stops without striking.
- the first spring energy store (61) can lift off the deflection plate (71).
- the deflection disc (71) is e.g. suddenly relieved.
- a migration of the deflection plate (71) is prevented by means of the guide collar (94), the slide (81) and the position of the bearing pin (91) relative to the deflection plate (71).
- Due to the deflection an elongation of the first spring energy store (61) allows only a maximum of half the amount of this elongation as the path of the deflection disk (71).
- the carriage (81) is displaced in the closing direction (14) by means of the second spring energy store (101).
- the first spring energy store (61) is again received in the guide groove (77).
- the carriage assembly (70) can also have two second spring energy storage devices (101). These are then arranged, for example, parallel to one another and each held on the slide (81) and on the housing (21). In this case, a second spring receptacle (32) is provided in the housing (21).
- FIG. 7 A variant of the slide assembly (70) is shown in FIG. The sectional plane of this illustration corresponds to the sectional plane of FIG. 7.
- the width of the carriage (81) corresponds to the width of the steering disc (71).
- the bearing journals (91) with their bearing sections (92) are also in the slide (81). rotatably mounted.
- directly on the Lürab sections (92) adjoins the guide section (94).
- Its outer diameter corresponds to the outer diameter of the bearing journal (91) shown in FIG.
- the deflection plate (71) is na na formed in this embodiment.
- the disc horns (75) limit the steering disc (71) in the transverse direction (6).
- the cross section of the guide groove (77) of the deflection plate (71) corresponds to the cross section of the guide groove (77) shown in FIG.
- the deflection disk (71) touches the individual bearing journal (91) in two rolling contact zones (111). On the side of the individual journal (91), these roller contact zones (111) lie in the outer radii (97) of the guide sections (94). On the deflection disc (71), the rolling contact zones (111) are in the outer channel sections (79). Depending on the load, these rolling contact zones (111) can be points or small areas.
- the Man tel vom (76) of the disc horns (75) are in this embodiment, for example, without contact with the bearing journal (91).
- the width in the transverse direction (6) of the variant of the slide assembly (70) shown in FIG. 8 is e.g. 20% less than the width of the embodiment shown in FIG.
- the function of a self-retracting device (10) with the slide assembly (70) shown in FIG. 8 corresponds to the function of the self-retracting device (10) described in connection with the first embodiment. Due to the preloads of the first spring energy store (61) and the second spring energy store (101), the slide assembly (70) is prevented from tipping. If necessary an additional guide of the carriage (81) or the deflection disk (71) in the housing (21) can be provided.
- the bearing pins (91) are held in the transverse direction (6) by means of the guide sections (94). They guide by means of the guide sections (94) around the steering disc (71) during their rotational movement.
- the leadership of the order steering disc (71) in the longitudinal direction (5) and in the height direction (7) corresponds to the guide mentioned in connection with the first embodiment.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Bearings For Parts Moving Linearly (AREA)
- Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
Abstract
Die Erfindung betrifft eine Selbsteinzugsvorrichtung (10) mit einem in einem Gehäuse (21) zwischen einer kraft- und/oder formschlüssig gesicherten Parkposition (11) und einer Endposition (12) und zurück verfahrbaren Mitnahmeelement (41), mit einem ersten Federenergiespeicher (61) und mit mindestens einem zweiten Federenergiespeicher (101), die beide bei Lage des Mitnahmeelements (41) in der Parkposition (11) geladen sind und bei Lage des Mitnahmeelements (41) in der Endposition (12) auf einen Restenergiewert entladen sind, wobei der erste Federenergiespeicher (61) um eine relativ zu einem Schlitten drehbar gelagerte Umlenkscheibe (71) geführt ist und wobei der Schlitten (81) relativ zum Gehäuse (21) in Richtung des die Umlenkscheibe (71) umschlingenden ersten Federenergiespeichers (61) mittels des zweiten Federenergiespeichers (101) belastet ist und wobei die Umlenkscheibe (71) eine umlaufende Führungsnut (77) hat. Die Umlenkscheibe (71) ist am Schlitten (81) mittels zweier außenliegender, im Schlitten drehbar gelagerter Lagerzapfen (91) abgestützt. Mindestens eine Tangentialebene an die Mantelfläche der Umlenkscheibe (71) schneidet beide Lagerzapfen (91). Mit der vorliegenden Erfindung wird der Bauraum einer Selbsteinzugsvorrichtung verringert und ihre Montage vereinfacht.
Description
SelbsteinzugsVorrich ung mit umgelenktem Federenergiespeicher
Beschreibung :
Die Erfindung betrifft eine Selbsteinzugsvorrichtung mit einem in einem Gehäuse zwischen einer kraft- und/oder formschlüssig gesicherten Parkposition und einer Endposition und zurück ver fahrbaren Mitnahmeelement, mit einem das Mitnahmeelement und das Gehäuse verbindenden ersten Federenergiespeicher und mit mindestens einem zweiten Federenergiespeicher, die beide bei Lage des Mitnahmeelements in der Parkposition geladen sind und bei Lage des Mitnahmeelements in der Endposition auf einen Restenergiewert entladen sind, wobei der erste Federenergie speicher um eine relativ zu einem Schlitten drehbar gelagerte Umlenkscheibe geführt ist und wobei der Schlitten relativ zum Gehäuse in Richtung des die Umlenkscheibe umschlingenden ers ten Federenergiespeichers mittels des zweiten Federenergie speichers belastet ist und wobei die Umlenkscheibe eine umlau fende Führungsnut hat .
Bestätigungskopie
Aus der DE 10 2008 021 458 Al ist eine derartige Selbstein zugsvorrichtung bekannt.
Der vorliegenden Erfindung liegt die Problemstellung zugrunde, den für eine derartige Selbsteinzugsvorrichtung erforderlichen Bauraum zu verringern und die Montage zu vereinfachen.
Diese Problemstellung wird mit den Merkmalen des Hauptanspru ches gelöst. Dazu ist die Umlenkscheibe am Schlitten mittels zweier außenliegender, im Schlitten drehbar gelagerter Lager zapfen abgestützt. Mindestens eine Tangentialebene an die Man telfläche der Umlenkscheibe schneidet beide Lagerzapfen. Au ßerdem ist die Umlenkscheibe bei einer Drehbewegung mittels des Schlittens oder mittels der Lagerzapfen geführt.
Die Umlenkscheibe der Selbsteinzugsvorrichtung ist in der Längsrichtung und in der Höhenrichtung mittels mehrere Wälz kontaktzonen abgestützt. Dies kann jeweils ein Punkt- Flächen oder Linienkontakt sein. Hierbei wird die Umlenkscheibe mit tels des sie umschlingenden ersten Federenergiespeichers gegen zwei Lagerzapfen gedrückt. Diese Anpresskraft wird mittels des zweiten Federenergiespeichers verstärkt, der einen die Lager zapfen tragenden Schlitten gegen die Umlenkscheibe drückt.
Hiermit wird die Lage der Umlenkscheibe in der Längsrichtung und in der Höhenrichtung bestimmt. In der quer zur Längsrich tung und quer zur Höhenrichtung orientierten Querrichtung ist die Bewegung der Umlenkscheibe entweder mittels des Schlittens oder mittels der Lagerzapfen begrenzt.
Weitere Einzelheiten der Erfindung ergeben sich aus den Unter ansprüchen und der nachfolgenden Beschreibung schematisch dar gestellter Ausführungsformen.
Figur 1 : Selbsteinzugsvorrichtung in der Parkposition;
Figur 2: Selbsteinzugsvorrichtung in der Endposition;
Figur 3: Schlitten;
Figur 4 : Umlenkscheibe;
Figur 5: Lagerzapfen;
Figur 6: Ansicht der Selbsteinzugsvorrichtung von der
Rückwand;
Figur 6: Schnitt der Schlittenbaugruppe;
Figur 8 : Variante der Schlittenbaugruppe.
Die Figuren 1 und 2 zeigen eine Selbsteinzugsvorrichtung (10). Derartige Selbsteinzugsvorrichtungen (10) werden eingesetzt, um bewegte Möbelstückteile, wie z.B. Schubladen oder Schiebe türen relativ zu einem feststehenden Möbelstückteil, z.B. ei nem Möbelkorpus, gesteuert in eine geschlossene oder geöffnete Endlage zu verfahren. Hierbei ist die Selbsteinzugsvorrichtung an dem einen Möbelstückteil und ein Mitnehmer an dem relativ hierzu bewegten Möbelstückteil befestigt. Vor dem Erreichen der geschlossenen oder der geöffneten Endlage kontaktiert der Mitnehmer ein Mitnahmeelement (41) der Selbsteinzugsvorrich tung (10) und löst dieses aus einer Parkposition (11). Die Schublade oder die Schiebetür wird nun mittels der Selbstein zugsvorrichtung (10) in die Endlage gefördert. In der Endlage der Schiebetür oder der Schublade steht das Mitnahmeele ment (41) in einer Endposition (12), vgl. Figur 2.
Die Selbsteinzugsvorrichtung (10) hat ein Gehäuse (21), das aus einer Gehäuseunterschale (22) und einer Gehäuseober schale (35), vgl. Figur 6, besteht. An der Oberseite (23) hat das Gehäuse (21) einen Längsschlitz (24), durch den das Mit nahmeelement (41) in die Umgebung (1) ragt. Das Mitnahmeele ment (41) ist im Gehäuse (21) mittels eines beidseitig ange ordneten Führungszapfenpaars (42) und mittels eines Kolben stangenkopfes (52) entlang einer gehäuseseitigen Führungs bahn (25) geführt. Diese Führungsbahn (25) hat einen in der Längsrichtung (5) orientierten geraden Abschnitt (26) und ei nen in den Darstellungen der Figuren 1 und 2 nach unten gebo genen Parkabschnitt (27). In der Parkposition (11) steht das Mitnahmeelement (41) mit dem Führungszapfenpaar (42) im Park abschnitt (27). Der Kolbenstangenkopf (52) steht im geraden Abschnitt (26) . In der in der Figur 2 dargestellten Endposi tion (12) stehen sowohl das Führungszapfenpaar (42) als auch der Kolbenstangenkopf (52) im geraden Abschnitt (26). Eine Mitnahmeausnehmung (43) des Mitnahmeelements (41) zeigt nach oben. Das Mitnahmeelement (41) kann auch mehrteilig ausgebil det sein. So kann beispielsweise ein die Mitnahmeausneh mung (43) begrenzender Zugzapfen (44) abklappbar sein. Die Un terseite des Gehäuses (21) sowie Bereiche der Stirnwand (31) und der Rückwand (28) sind im Ausführungsbeispiel offen. Sie können aber auch geschlossen ausgebildet sein.
Im Gehäuse (21) ist im Ausführungsbeispiel weiterhin eine z.B. hydraulische Zylinder-Kolben-Einheit (51) gelagert. Die Zylin- der-Kolben-Einheit (51) weist einen Zylinder (53) auf, in dem ein mittels einer Kolbenstange (54) verschiebbarer Kolben ge führt ist. Beispielsweise beim Einfahren der Kolbenstange (54) wird Öl aus einem zwischen dem Kolben und dem Zylinderbo den (55) liegenden Verdrängungsraum gedrosselt in einen zwi schen dem Kolben und dem Zylinderkopf (56) liegenden Aus-
gleichsraum verdrängt. Die Kolbenstange (54) trägt den im Mit nahmeelement (41) schwenkbar gelagerten Kolbenstangen
kopf (52) . Die Selbsteinzugseinheit (10) kann auch ohne eine Zylinder-Kolben-Einheit (51) ausgebildet sein.
Es ist auch denkbar, die Kolbenstange (54) der Zylinder-Kol ben-Einheit (10) nicht mit dem Mitnahmeelement (41) zu verbin den. Das Mitnahmeelement (41) hat dann z.B. zwei Führungszap fenpaare (42). Im Verdrängungsraum ist in diesem Fall bei spielsweise eine Rückstellfeder angeordnet, die die Kolben stange (54) mit dem Kolbenstangenkopf (52) in Richtung des Mitnahmeelements (41) belastet. Beispielsweise bei einem schnellen Verfahren des Mitnahmeelements (41) in Richtung der Parkposition (11) kann sich bei einer derartigen Ausführung der Kolbenstangenkopf (52) vom Mitnahmeelement (41) lösen.
Die Zylinder-Kolben-Einheit (51) kann so im Gehäuse (21) ange ordnet sein, dass die Kolbenstange (54) zur Rückwand (28) des Gehäuses (21) zeigt und der Zylinderboden (55) zum Mitnahme element (41) orientiert ist. Beispielsweise ist dann der Zy linder (53) verschiebbar im Gehäuse (21) gelagert. Der Zylin derboden (55) kann mit dem Mitnahmeelement (41) verbunden sein oder an diesem anliegen.
Am Mitnahmeelement (41) und im Gehäuse (21) ist ein erster Fe derenergiespeicher (61) gehalten. Im Gehäuse (21) ist dieser erste Federenergiespeicher (61) in einer Federhaltung (36) eingehängt. Dieser erste Federenergiespeicher (61) ist im Aus führungsbeispiel eine Zugfeder (61). Seine auf einen Restener giewert entspannte Länge beträgt beispielsweise das 1,35-fache der in der Längsrichtung (5) gemessenen Länge des Gehäu ses (21). Der in der Figur 1 dargestellte geladene erste Fede renergiespeicher (61) ist 50 % länger als das Gehäuse (21).
Der erste Federenergiespeicher (21) ist um eine Umlenk
scheibe (71) einer Schlittenbaugruppe (70) geführt. Der Umschlingungswinkel des Federenergiespeichers (61) um die Um lenkscheibe (71) beträgt im Ausführungsbeispiel 181 Grad.
Die Schlittenbaugruppe (70) umfasst einen Schlitten (81), die Umlenkscheibe (71), zwei Lagerzapfen (91) und einen zweiten Federenergiespeicher (101). Der Schlitten (81) mit der Umlenk scheibe (71) und den Lagerzapfen (91) wird relativ zum Ge häuse (21) mittels des zweiten Federenergiespeichers (101) in Richtung der Rückwand (28) belastet. Hierzu ist der zweite Fe derenergiespeicher (101) am Gehäuse (21) und am Schlitten (81) angeschlagen. Im Ausführungsbeispiel ist die Schlittenbau gruppe (70) mittels der in eine Gehäusenut (29) mittels eines Führungsbolzens (74) eingreifenden Umlenkscheibe (71) in der Längsrichtung (5) geführt. Die Schlittenbaugruppe (70) kann auch ohne gehäuseseitige Führung ausgebildet sein.
In der Figur 3 ist der Schlitten (81) der Schlittenbau
gruppe (70) dargestellt. Der Schlitten (81) hat eine quader förmige Hüllkontur. Z.B. annährend mittig hat er einen Quer durchbruch (82) mit rechteckigem Querschnitt. Dieser Quer durchbruch (82) ist allseitig von Verbindungsstegen (83) umge ben. Diese Verbindungsstege (83) verbinden zwei parallel zuei nander liegende Führungsplatten (84). Die Führungsplatten (84) begrenzen den Schlitten (81) in der Querrichtung (6). Sie kön nen in der Höhenrichtung (7) bündig mit den Verbindungsste gen (83) sein. An seinem zur Stirnwand (31) des Gehäuses (21) zeigenden Ende hat der Schlitten (81) eine in den Querdurch bruch (82) mündende Federdurchführung (85). Diese Federdurch führung (85) ist beispielsweise in der Schlittenlängsrich tung (89) orientiert.
An dem der Federdurchführung (85) abgewandten Ende hat der Schlitten (81) zwei Lagerzapfenaufnahmen (86) . Diese Lagerzap fenaufnahmen (86) sind in der Querrichtung (6) orientiert. Im Ausführungsbeispiel sind die Lagerzapfenaufnahmen (86) symmet risch zu einer in der Schlittenlängsrichtung (89) orientierten Mittenquerebene des Schlittens (81) angeordnet. Die einzelne Lagerzapfenaufnahme (86) hat an jeder Führungsplatte (84) eine Einführeinsenkung (87), die in eine zylinderabschnittsförmige Aufnahme (88) mündet. Hierbei stehen die Führungsplatten (84) gabelartig aus den Verbindungsstegen (83) hervor. Der Abstand zwischen den Führungsplatten (84) beträgt hier 78 % der Ge samtbreite des Schlittens (81). Die Breite des Schlittens (81) beträgt beispielsweise 95 % der Innenbreite des Gehäuses (21).
Die Figur 4 zeigt die Umlenkscheibe (71) . Die Umlenk
scheibe (71) hat im Ausführungsbeispiel eine Hohlnabe (73), in dem z.B. bei montierter Umlenkscheibe (71) der Führungsbol zen (74) eingesetzt ist. Beispielsweise ist die Umlenk
scheibe (71) mittels des Führungsbolzens (74) in der Gehäusenut (29) führbar. Konzentrisch zur Hohlnabe (73) hat die Um lenkscheibe (71) zwei kongruent zueinander ausgebildete Schei benhörner (75) . Beide Scheibenhörner (75) haben zylindrische Mantelflächen (76) . Diese Scheibenhörner (75) begrenzen eine umlaufende Führungsnut (77). Die Führungsnut (77) hat einen zentrale u-förmigen Rinnenabschnitt (78), der nach außen hin beidseitig von einem konkav gewölbten Außenrinnenab
schnitt (79) begrenzt ist. Der Radius der Krümmungen des Au ßenrinnenabschnitts (79) beträgt beispielsweise das Dreifache des Radius des Rinnenabschnitts (78). Die Breite der Umlenk scheibe (71) über die Scheibenhörner (75) beträgt im Ausfüh rungsbeispiel 99 % des Abstandes der beiden Führungsplat ten (84) im Bereich der Lagerzapfenaufnahmen (86). Die Umlenk scheibe (71) kann auch ohne Nabe ausgebildet sein. In diesem
Fall können die beiden Scheibenhörner (75) kreisförmige Scheiben sein.
In der Figur 5 ist ein Lagerzapfen (91) dargestellt. Beide La gerzapfen (91) sind im Ausführungsbeispiel identisch ausgebildet. Der einzelne Lagerzapfen (91) ist aus beispielsweise fünf zueinander koaxialen Abschnitten (92 - 94) aufgebaut. Seine Länge entspricht im Ausführungsbeispiel der Breite des Schlittens (81) in der Querrichtung (6). Der einzelne Lagerzap fen (91) ist symmetrisch in Bezug auf seine normal zur Quer richtung (6) orientierte Mittenebene aufgebaut. An jede der Stirnseiten (95) grenzt ein zylindrisch ausgebildeter Lagerabschnitt (92) an. Sein Durchmesser beträgt beispielsweise 96 % des Durchmessers einer Lagerzapfenaufnahme (86). An den jewei ligen Lagerabschnitt (92) grenzt ein ebenfalls zylindrisch ausgebildeter Bundabschnitt (93) an. Sein Durchmesser ist ge ringfügig größer als der Durchmesser der Aufnahme (88).
Weiterhin hat der Lagerzapfen (91) einen zentralen Führungsab schnitt (94). Dieser ist als umlaufender Führungsbund (94) ausgebildet. Seine Länge in der Querrichtung (6) beträgt im Ausführungsbeispiel ein Viertel der Länge des Lagerzap
fens (91). Diese Länge kann im Ausführungsfall bis zu 56 % der Länge des Lagerzapfens (91) betragen. Sein Durchmesser ist um 25 % größer als der Durchmesser des Lagerabschnitts (92). Der Führungsbund (94) ist in der Querrichtung (6) abgerundet. Der Lagerzapfen (91) kann auch ohne Führungsbund (94) oder mit mehr als einem Führungsbund (94) ausgebildet sein.
Beim Zusammenbau der Selbsteinzugsvorrichtung (10) wird bei spielsweise zunächst das Mitnahmeelement (41) mit der Zylin- der-Kolben-Einheit (51) in die Gehäuseunterschale (22) einge setzt. Anschließend wird der Schlitten (81) mit den darin ein-
gesetzten Lagerzapfen (91) in die Gehäuseunterschale (22) ein gelegt. Hierbei wird der Schlitten (81) mit dem Querdurch bruch (82) über die gehäuseseitige Federaufnahme (32) ge steckt. Nun kann beispielsweise der als Zugfeder ausgebildete zweite Federenergiespeicher (101) in die gehäuseseitige Feder aufnahme (32) und in die Federdurchführung (85) des Schlit tens (81) eingehängt werden. Beispielsweise steht der Schlit ten (81) jetzt in der in der Figur 2 dargestellten Position. Nun kann die Umlenkscheibe (71) mit dem eingesetzten Führungs bolzen (74) so eingesetzt werden, dass der Führungsbolzen (74) in die Gehäusenut (29) eingreift und die Mantelflächen (76) der Umlenkscheibe (71) an den Bundabschnitten (93) der Lager zapfen (91) anliegen. Abschließend kann der erste Federener giespeicher (61) im Mitnahmeelement (41) und im Gehäuse (21) eingehängt werden und um die Umlenkscheibe (71) geführt wer den. Abschließend kann die Gehäuseoberschale (35) aufgesetzt werden und das Gehäuse (21) gefügt werden. Beispielsweise wird es verschraubt oder verschweißt. Auch eine andere Reihenfolge des Zusammenbaus ist denkbar.
Der für die Selbsteinzugsvorrichtung (10) erforderliche Bau raum wird durch die äußeren Abmessungen des Gehäuses (21) be stimmt. Die Figur 6 zeigt eine Ansicht auf die Rückwand (28) der Selbsteinzugsvorrichtung (10). Die erforderliche Breite des Gehäuses (21) im oberen Bereich (33) ergibt sich durch die Zylinder-Kolben-Einheit (51). Im unteren Bereich (34) bestimmt der Schlitten (81) die Breite des Gehäuses (21) . Beispiels weise beträgt die Breite des unteren Bereichs (34) 75 % der Breite des oberen Bereichs (33) des Gehäuses (21). Das Ge häuse (21) ist in der Darstellung der Figur 6 mit dem unteren Bereich (34) z.B. in ein Trägerprofil (15) eingesetzt.
Nach dem Zusammenbau steht die Selbsteinzugsvorrichtung (10) beispielsweise in der in der Figur 2 dargestellten Endposi tion (12). Die Kolbenstange (54) der Zylinder-Kolben-Ein- heit (51) ist eingefahren. Der erste Federenergiespeicher (61) ist auf einen Restenergiewert entladen. Die Zugfeder (61) ist beispielsweise um 30 % gegenüber ihrer vollständig entlasteten Nennlänge gedehnt. Sie belastet die Umlenkscheibe (71) gegen die Lagerzapfen (91). Die Lagerzapfen (91) sind z.B. symmet risch zur Winkelhalbierenden des Umschlingungswinkels angeord net. Beispielsweise schließen die die Mittelachse (72) der Um lenkscheibe (71) schneidenden Radialen durch die Mittelli nien (96) der Lagerzapfen (91) einen Winkel von 54 Grad ein. Mindestens eine Tangentialebene an die Umlenkscheibe (71) schneidet beide Lagerzapfen (91). Die beiden Lagerzapfen (91) liegen damit versetzt zueinander auf der dem Schlitten (81) zugewandten Seite der Umlenkscheibe (71). Im Ausführungsbei spiel teilt eine normal zur Schlittenlängsrichtung (89) orien tierte Tangentialebene an die Umlenkscheibe (71) 27 % des Vo lumens beider Lagerzapfens (91) ab.
Eine der Umlenkscheibe (71) zugewandte Tangentialebene an beide Lagerzapfen (91) hat einen geringeren Abstand zur Mit telachse (72) der Umlenkscheibe (71) als jede zu dieser Tan gentialebene parallele Tangente an den ersten Federenergie speicher (61). Die letztgenannte Tangentialebene ist bei spielsweise normal zur Halbierenden des Umschlingungswinkels orientiert. Diese Halbierende ist beispielsweise in der
Schlittenlängsrichtung (89) orientiert. Im Ausführungsbeispiel liegt diese Tangentialebene an den Führungsabschnitten (94) der Lagerzapfen (91) an.
Auch der zweite Federenergiespeicher (101) ist bei Lage des Mitnahmeelements (41) in der Endposition (12) auf einen Res-
tenergiewert entlastet. Beispielsweise ist diese Zugfe der (101) um 20 % gegenüber ihrer unbelasteten Nennlänge ge längt. Der zweite Federenergiespeicher (101) belastet den Schlitten (81) in Richtung des ersten Federenergiespei chers (61). Die Kräfte beider Federenergiespeicher (61, 101) wirken zusammen auf die Kontaktstellen (111) zwischen der Um lenkscheibe (71) und den Lagerzapfen (91). Die von beiden Fe derenergiespeichern (61, 101) bewirkten Kraftvektoren zeigen aus entgegengesetzten Richtungen auf Kontaktstellen (111). Der Kontakt zwischen der Umlenkscheibe (71) und den Lagerzap fen (91) wird so zusätzlich gesichert. Sowohl eine Bewegung der Umlenkscheibe (71) in der Längsrichtung (5) als auch in der Höhenrichtung (7) wird damit verhindert.
Der Schlitten (81) umgreift im Ausführungsbeispiel den ersten Federenergiespeicher (61) sowohl im Obertrum (62) als auch im Untertrum (63). Damit ist der erste Federenergiespeicher (61) mittels des Schlittens (81) geführt. Die auskragenden Füh rungsplatten (84) des Schlittens (81) liegen beidseitig der Umlenkscheibe (71) .
Die Figur 7 zeigt eine Schnittansicht der Umlenkscheibe (71), eines Lagerzapfens (91) und des Schlittens (81). Die Schnitt ebene dieser Ansicht wird durch die Mittelachse (72) der Um lenkscheibe (71) und einer diese mit der Mittellinie (96) ei nes Lagerzapfens (91) verbindenden Radialen aufgespannt. Der erste Federenergiespeicher (61) und das Gehäuse (21) sind in dieser Ansicht nicht dargestellt.
In der Darstellung der Figur 7 übergreift der Schlitten (21) mit seinen beiden Führungsplatten (84) die Umlenkscheibe (71) bereichsweise. Der Schlitten begrenzt somit eine Bewegung der Umlenkscheibe (71) in der Querrichtung (6). Damit führt der
Schlitten (81) in diesem Ausführungsbeispiel die Umlenk scheibe (71) bei einer Drehbewegung.
Die Lagerzapfen (91) sind drehbar im Schlitten (81) gelagert. Die Lagerungen der Lagerabschnitte (92) in den Aufnahmen (88) sind im Ausführungsbeispiel als Gleitlagerungen ausgeführt.
Die jeweiligen Bundabschnitte (93) verhindern ein Wandern der Lagerzapfen (91) in der Querrichtung (6). An den Bundabschnit ten (93) liegt die Umlenkscheibe (71) mit ihren Scheibenhör nern (75) an. Die Kontaktstellen (111) sind in Querrich tung (6) orientierte Kontaktlinien . Die Führungsab
schnitte (94) der Lagerzapfen (91) sind in die Führungs nut (77) eingetaucht. Im Ausführungsbeispiel haben sie keinen Kontakt mit der Führungsnut (77).
Beispielsweise beim Öffnen der Schiebetür oder der Schublade zieht der Mitnehmer ausgehend von der in der Figur 2 darge stellten Endposition (12) das Mitnahmeelement (41) relativ zum Gehäuse (21) in der Öffnungsrichtung (13). Der erste Feder energiespeicher (61) wird geladen. Hierbei belastet er die Um- lenkscheibe (71) in der Öffnungsrichtung (13). Die Umlenk scheibe (71) schiebt den Schlitten (81) ebenfalls in die Öff nungsrichtung (13). Gleichzeitig wird die Umlenkscheibe (71) um ihre Mittelachse (72) gedreht. Sie wälzt an beiden Lager zapfen (91) ab, die hierbei gedreht werden. Der zweite Feder energiespeicher (101) wird geladen. Die Dehnung des ersten Fe derenergiespeichers (61) ist geringer als der Hub des Mitnah meelements (41) in der Längsrichtung (5). Die federbelastete Umlenkung bewirkt eine Hubverkürzung. Beim Verfahren des Mit nahmeelements (41) in der Öffnungsrichtung (13) wird die Kol benstange (54) relativ zum Zylinder (53) herausgezogen.
Beim weiteren Verfahren des Mitnahmeelements (41) erreicht dieses die Parkposition (11), vgl. Figur 1. Der erste Feder energiespeicher (61) und der zweite Federenergiespeicher (101) sind auf ihre jeweiligen maximalen Betriebswerte geladen. Das Mitnahmeelement (41) ist kraft- und/oder formschlüssig im Ge häuse (21) gesichert. Der Mitnehmer wird freigegeben. Die Schiebetür oder die Schublade kann nun weiter geöffnet werden.
Beim Schließen der Schiebetür oder der Schublade kontaktiert in einem an die z.B. geschlossene Endlage angrenzenden Teilhub der Mitnehmer das Mitnahmeelement (41). Das Mitnahmeele ment (41) wird aus der Parkposition (11) gelöst. Sein Füh rungszapfenpaar (42) schwenkt in den geraden Abschnitt (26) der Führungsbahn (25). Hierbei belastet das in der Schließ richtung (14) verfahrende Mitnahmeelement (41) die Kolben stange (54). Diese wird in den Zylinder (53) eingeschoben.
Hierbei wird gedrosselt z.B. Öl aus dem Verdrängungsraum in den Ausgleichraum verdrängt. Die Bewegung des Mitnahmeele ments (41) wird verzögert. Gleichzeitig zieht der erste Feder energiespeicher (61) das Mitnahmeelement (41) in Richtung der Endposition (12).
Der sich verkürzende erste Federenergiespeicher (61) dreht die Umlenkscheibe (71) in den Darstellungen der Figuren 1 und 2 im Uhrzeigersinn. Die Umlenkscheibe (71) dreht in diesen Ansich ten die im Schlitten gelagerten Lagerzapfen (91) im Gegenuhr zeigersinn. Mit abnehmender Anpresskraft des ersten Federener giespeichers (61) wird der zweite Federenergiespeicher (101) entlastet. Der Schlitten (81) wird in der Schließrichtung (14) verschoben. Beispielsweise überlagern sich die Kräfte beider Federenergiespeicher (61, 101). Im Ausführungsbeispiel wirken die beiden Federenergiespeicher (61, 101)) zusammen mit einer geringen Federsteifigkeit beschleunigend auf das Mitnahmeele-
ment (41). Diese Beschleunigungskraft wirkt entgegen der Verzögerungskraft der Zylinder-Kolben-Einheit (51) . Die Resultie rende dieser Kräfte zieht die Schiebetür oder die Schublade langsam in die z.B. geschlossene Endlage. Hier bleibt die Tür oder die Schublade stehen, ohne anzuschlagen.
Beispielsweise bei einem schnellen Schließen kann der erste Federenergiespeicher (61) von der Umlenkscheibe (71) abheben. Die Umlenkscheibe (71) wird z.B. schlagartig entlastet. Ein Auswandern der Umlenkscheibe (71) wird mittels der Führungs bunde (94), des Schlittens (81) und der Lage der Lagerzap fen (91) relativ zur Umlenkscheibe (71) verhindert. Aufgrund der Umlenkung lässt eine Längung des ersten Federenergiespeichers (61) nur maximal den halben Betrag dieser Längung als Weg der Umlenkscheibe (71) zu. Gleichzeitig wird beim Entlas ten der Umlenkscheibe (71) ein Verschieben des Schlittens (81) in der Schließrichtung (14) mittels des zweiten Federenergiespeichers (101) ausgelöst. Der erste Federenergiespeicher (61) wird wieder in der Führungsnut (77) aufgenommen.
Die Schlittenbaugruppe (70) kann auch zwei zweite Federener giespeicher (101) aufweisen. Diese sind dann beispielsweise parallel zueinander angeordnet und jeweils am Schlitten (81) und am Gehäuse (21) gehalten. Im Gehäuse (21) ist in diesem Fall eine zweite Federaufnahme (32) vorgesehen.
In der Figur 8 ist eine Variante der Schlittenbaugruppe (70) gargestellt. Die Schnittebene dieser Darstellung entspricht der Schnittebene der Figur 7.
Die Breite des Schlittens (81) entspricht der Breite der Um lenkscheibe (71). Im Schlitten (81) sind auch in dieser Variante die Lagerzapfen (91) mit ihren Lagerabschnitten (92)
drehbar gelagert. Beispielsweise unmittelbar an die Lagerab schnitte (92) grenzt der Führungsabschnitt (94) an. Sein Au ßendurchmesser entspricht dem Außendurchmesser des in der Fi gur 5 dargestellten Lagerzapfens (91).
Die Umlenkscheibe (71) ist in diesem Ausführungsbeispiel na benlos ausgebildet. Die Scheibenhörner (75) begrenzen die Um lenkscheibe (71) in der Querrichtung (6) . Der Querschnitt der Führungsnut (77) der Umlenkscheibe (71) entspricht dem Quer schnitt der in der Figur 4 dargestellten Führungsnut (77).
Die Umlenkscheibe (71) berührt den einzelnen Lagerzapfen (91) in zwei Wälzkontaktzonen (111) . Auf der Seite des einzelnen Lagerzapfens (91) liegen diese Wälzkontaktzonen (111) in den Außenradien (97) der Führungsabschnitte (94). An der Umlenk scheibe (71) liegen die Wälzkontaktzonen (111) in den Außen rinnenabschnitten (79) . Je nach Belastung können diese Wälz kontaktzonen (111) Punkte oder kleine Flächen sein. Die Man telflächen (76) der Scheibenhörner (75) sind in diesem Ausfüh rungsbeispiel ohne Kontakt zu den Lagerzapfen (91).
Die Breite in der Querrichtung (6) der in der Figur 8 darge stellten Variante der Schlittenbaugruppe (70) ist z.B. um 20 % geringer als die Breite der in der Figur 7 dargestellten Aus führungsform.
Die Funktion einer Selbsteinzugsvorrichtung (10) mit der in der Figur 8 dargestellten Schlittenbaugruppe (70) entspricht der Funktion der im Zusammenhang mit dem ersten Ausführungs beispiel beschriebenen Selbsteinzugsvorrichtung (10). Aufgrund der Vorspannungen des ersten Federenergiespeichers (61) und des zweiten Federenergiespeichers (101) wird die Schlittenbau gruppe (70) an einem Kippen gehindert. Gegebenenfalls kann
eine zusätzliche Führung des Schlittens (81) oder der Umlenk scheibe (71) im Gehäuse (21) vorgesehen sein.
Die Lagerzapfen (91) sind in diesem Ausführungsbeispiel mit- tels der Führungsabschnitte (94) in der Querrichtung (6) ge halten. Sie führen mittels der Führungsabschnitte (94) die Um lenkscheibe (71) bei ihrer Drehbewegung. Die Führung der Um lenkscheibe (71) in der Längsrichtung (5) und in der Höhen richtung (7) entspricht der im Zusammenhang mit dem ersten Ausführungsbeispiel genannten Führung.
Auch Kombinationen der einzelnen Ausführungsbeispiele sind denkbar .
Bezugszeichenliste :
1 Umgebung
5 Längsrichtung
6 Querrichtung
7 Höhenrichtung
10 SelbsteinzugsVorrichtung
11 Parkposition
12 Endposition
13 Öffnungsriehtung
14 Schließrichtung
15 Tragprofil
21 Gehäuse
22 Gehäuseunterschale
23 Oberseite
24 Längsschlitz
25 Führungsbahn
26 gerader Abschnitt
27 Parkabschnitt
28 Rückwand
29 Gehäusenut
31 Stirnwand
32 Federaufnahme für (101)
33 oberer Bereich von (21)
34 unterer Bereich von (21)
35 Gehäuseoberschale
36 Federhalterung für (61)
41 Mitnahmeelement
42 Führungszapfenpaar
43 Mitnahmeausnehmung
44 Zugzapfen
51 Zylinder-Kolben-Einheit
52 Kolbenstangenkopf
53 Zylinder
54 Kolbenstange
55 Zylinderboden
56 Zylinderkopf
61 erster Federenergiespeicher, Zugfeder
62 Obertrum
63 Untertrum
70 Schlittenbaugruppe
71 Umlenkscheibe
72 Mittelachse von (71)
73 Hohlnabe
74 Führungsbolzen
75 Scheibenhörner
76 Mantelflächen von (75)
77 Führungsnut
78 u-förmiger Rinnenabschnitt
79 Außenrinnenabschnitt
81 Schlitten
82 Querdurchbruch
83 Verbindungsstege
84 Führungsplatten
85 Federdurchführung
86 Lagerzapfenaufnahmen
87 Einführeinsenkung
88 Aufnahme
89 Schlittenlängsrichtung
91 Lagerzapfen
92 Abschnitt von (91) Lagerabschnitt
93 Abschnitt von (91) Bundabschnitt
94 Abschnitt von (91) Führungsabschnitt , Führungsbund
95 Stirnseiten
96 Mittellinien
97 Außenradien 101 zweiter Federenergiespeicher, Zugfeder
111 Kontaktstellen zwischen (71) und (91) ,
Wälzkontaktzonen
Claims
1. Selbsteinzugsvorrichtung (10) mit einem in einem Ge häuse (21) zwischen einer kraft- und/oder formschlüssig gesi cherten Parkposition (11) und einer Endposition (12) und zu rück verfahrbaren Mitnahmeelement (41), mit einem das Mitnah meelement (41) und das Gehäuse (21) verbindenden ersten Feder energiespeicher (61) und mit mindestens einem zweiten Feder energiespeicher (101), die beide bei Lage des Mitnahmeele ments (41) in der Parkposition (11) geladen sind und bei Lage des Mitnahmeelements (41) in der Endposition (12) auf einen Restenergiewert entladen sind, wobei der erste Federenergie speicher (61) um eine relativ zu einem Schlitten (81) drehbar gelagerte Umlenkscheibe (71) geführt ist und wobei der Schlit ten (81) relativ zum Gehäuse (21) in Richtung des die Umlenk scheibe (71) umschlingenden ersten Federenergiespeichers (61) mittels des zweiten Federenergiespeichers (101) belastet ist und wobei die Umlenkscheibe (71) eine umlaufende Führungs nut (77) hat, dadurch gekennzeichnet,
- dass die Umlenkscheibe (71) am Schlitten (81) mittels
zweier außenliegender, im Schlitten (81) drehbar gelagerter Lagerzapfen (91) abgestützt ist,
- dass mindestens eine Tangentialebene an die Mantelflä
che (76) der Umlenkscheibe (71) beide Lagerzapfen (91) schneidet und
- dass die Umlenkscheibe (71) bei einer Drehbewegung mittels des Schlittens (81) oder mittels der Lagerzapfen (91) ge führt ist.
2. Selbsteinzugsvorrichtung (10) nach Anspruch 1, dadurch ge kennzeichnet, dass sie eine mittels des Mitnahmeelements (41) belastbare, im Gehäuse (21) gelagerte Zylinder-Kolben-Ein- heit (51) umfasst.
3. Selbsteinzugsvorrichtung (10) nach Anspruch 1, dadurch ge kennzeichnet, dass die Lagerzapfen (91) einen zentralen Füh rungsabschnitt (94) aufweisen.
4. Selbsteinzugsvorrichtung (10) nach Anspruch 3, dadurch ge kennzeichnet, dass der Führungsabschnitt (94) zumindest be reichsweise komplementär zur Führungsnut (77) ausgebildet ist.
5. Selbsteinzugsvorrichtung (10) nach Anspruch 1, dadurch ge kennzeichnet, dass die Lagerzapfen (91) symmetrisch zur Hal bierenden des Umschlingungswinkels des ersten Federenergie speichers (61) angeordnet sind.
6. Selbsteinzugsvorrichtung (10) nach Anspruch 1, dadurch ge kennzeichnet, dass eine der Umlenkscheibe (71) zugewandte Tan gentialebene an beide Lagerzapfen (91) einen geringeren Ab stand zu einer Mittelachse (72) der Umlenkscheibe (71) hat als jede hierzu parallele Tangente an den ersten Federenergiespei cher ( 61 ) .
7. Selbsteinzugsvorrichtung (10) nach Anspruch 1, dadurch ge kennzeichnet, dass die Umlenkscheibe (71) nabenlos ausgebildet ist .
8. Selbsteinzugsvorrichtung (10) nach Anspruch 1, dadurch ge kennzeichnet, dass der Schlitten (81) oder die Umlenk scheibe (71) im Gehäuse (21) geführt ist.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19797545.1A EP3863473B1 (de) | 2018-10-14 | 2019-10-13 | Selbsteinzugsvorrichtung mit umgelenktem federenergiespeicher |
ES19797545T ES2937013T3 (es) | 2018-10-14 | 2019-10-13 | Dispositivo de cierre automático con acumulador de energía de resorte desviado |
PL19797545.1T PL3863473T3 (pl) | 2018-10-14 | 2019-10-13 | Samoczynne urządzenie dociągające, wyposażone w odchylony sprężynowy zasobnik energii |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018008206.8A DE102018008206B3 (de) | 2018-10-14 | 2018-10-14 | Selbsteinzugsvorrichtung mit umgelenktem Federenergiespeicher |
DE102018008206.8 | 2018-10-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020078493A1 true WO2020078493A1 (de) | 2020-04-23 |
Family
ID=68426046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2019/000264 WO2020078493A1 (de) | 2018-10-14 | 2019-10-13 | Selbsteinzugsvorrichtung mit umgelenktem federenergiespeicher |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3863473B1 (de) |
DE (1) | DE102018008206B3 (de) |
ES (1) | ES2937013T3 (de) |
PL (1) | PL3863473T3 (de) |
WO (1) | WO2020078493A1 (de) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1743550A1 (de) * | 2005-07-15 | 2007-01-17 | Alfit AG | Verschiebungsautomatik für Möbelauszüge, insbesondere Schubladen |
DE102008021458A1 (de) | 2008-04-29 | 2010-01-07 | Zimmer, Günther | Beschleunigungsvorrichtung mit zwei Energiespeichern |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4806609B2 (ja) * | 2005-11-21 | 2011-11-02 | トックベアリング株式会社 | 引き込みユニット |
-
2018
- 2018-10-14 DE DE102018008206.8A patent/DE102018008206B3/de active Active
-
2019
- 2019-10-13 EP EP19797545.1A patent/EP3863473B1/de active Active
- 2019-10-13 WO PCT/DE2019/000264 patent/WO2020078493A1/de unknown
- 2019-10-13 PL PL19797545.1T patent/PL3863473T3/pl unknown
- 2019-10-13 ES ES19797545T patent/ES2937013T3/es active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1743550A1 (de) * | 2005-07-15 | 2007-01-17 | Alfit AG | Verschiebungsautomatik für Möbelauszüge, insbesondere Schubladen |
DE102008021458A1 (de) | 2008-04-29 | 2010-01-07 | Zimmer, Günther | Beschleunigungsvorrichtung mit zwei Energiespeichern |
Also Published As
Publication number | Publication date |
---|---|
ES2937013T3 (es) | 2023-03-23 |
PL3863473T3 (pl) | 2023-04-24 |
DE102018008206B3 (de) | 2020-03-19 |
EP3863473A1 (de) | 2021-08-18 |
EP3863473B1 (de) | 2022-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2120645B1 (de) | Zugvorrichtung mit ab- oder umgelenkter zugfeder | |
EP3070248B1 (de) | Kombinierte beschleunigungs- und verzögerungsvorrichtung mit überlastschutz | |
EP2673443B1 (de) | Beschleunigungs- und verzögerungsvorrichtung mit mitnahmelement-schwenkgelenk | |
WO2008071168A1 (de) | Kombinierte verzögerungs- und beschleunigungsvorrichtung | |
WO2007121731A1 (de) | Führungssystem mit beschleunigungs- und verzögerungsvorrichtung | |
WO2008101666A2 (de) | Kühl- und/oder gefriergerät | |
WO2020078496A1 (de) | Einzugsvorrichtung für zwei endlagen | |
EP0894933A2 (de) | Behälter mit einer Tür | |
EP2625364A2 (de) | Mitteltür-zuziehvorrichtung | |
DE102014012961B3 (de) | Einzugsvorrichtung mit Dämpfungsvorrichtung | |
WO2020078492A1 (de) | Selbsteinzugsvorrichtung mit speicherladevorrichtung | |
EP3863473A1 (de) | Selbsteinzugsvorrichtung mit umgelenktem federenergiespeicher | |
DE1915751C3 (de) | Schwenklagerung für Türhaltebänder von Türfeststellern für Kraftwagentüren | |
EP2904940B1 (de) | Vorrichtung zur Führung eines Auszugs und Möbel mit einer solchen Vorrichtung | |
DE3820328C2 (de) | Bremse für einen OE-Spinnrotor | |
EP3478917B1 (de) | Mitteltür-zuziehvorrichtung mit übertragungsschlitten | |
EP1247931B1 (de) | Schliessfolgeregler | |
DE102022003805B4 (de) | Einzugs- und Auszugsvorrichtung mit bidirektionalen Einzugsvorrichtungen | |
EP3864246B1 (de) | Verzögerungsvorrichtung mit mehrteiligem mitnahmeelement | |
DE102022003806A1 (de) | Einzugs- und Auszugsvorrichtung mit zwei schaltbaren Axialkupplungen | |
DE102019100698B4 (de) | Türschließerdämpfung | |
EP3109578A1 (de) | Haushaltsgerätevorrichtung | |
WO2024068244A1 (de) | Dämpfungsscharnier und funktionseinheit mit einem dämpfungsscharnier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19797545 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019797545 Country of ref document: EP Effective date: 20210514 |