EP3863473B1 - Selbsteinzugsvorrichtung mit umgelenktem federenergiespeicher - Google Patents

Selbsteinzugsvorrichtung mit umgelenktem federenergiespeicher Download PDF

Info

Publication number
EP3863473B1
EP3863473B1 EP19797545.1A EP19797545A EP3863473B1 EP 3863473 B1 EP3863473 B1 EP 3863473B1 EP 19797545 A EP19797545 A EP 19797545A EP 3863473 B1 EP3863473 B1 EP 3863473B1
Authority
EP
European Patent Office
Prior art keywords
carriage
spring energy
housing
energy store
deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19797545.1A
Other languages
English (en)
French (fr)
Other versions
EP3863473A1 (de
Inventor
Martin Zimmer
Günther Zimmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP3863473A1 publication Critical patent/EP3863473A1/de
Application granted granted Critical
Publication of EP3863473B1 publication Critical patent/EP3863473B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47BTABLES; DESKS; OFFICE FURNITURE; CABINETS; DRAWERS; GENERAL DETAILS OF FURNITURE
    • A47B88/00Drawers for tables, cabinets or like furniture; Guides for drawers
    • A47B88/40Sliding drawers; Slides or guides therefor
    • A47B88/453Actuated drawers
    • A47B88/46Actuated drawers operated by mechanically-stored energy, e.g. by springs
    • A47B88/467Actuated drawers operated by mechanically-stored energy, e.g. by springs self-closing
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F1/00Closers or openers for wings, not otherwise provided for in this subclass
    • E05F1/08Closers or openers for wings, not otherwise provided for in this subclass spring-actuated, e.g. for horizontally sliding wings
    • E05F1/16Closers or openers for wings, not otherwise provided for in this subclass spring-actuated, e.g. for horizontally sliding wings for sliding wings
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/20Application of doors, windows, wings or fittings thereof for furniture, e.g. cabinets

Definitions

  • the invention relates to a self-closing device with a housing (21) and a carriage (81), with a driver element that can be moved in the housing between a parking position secured by a non-positive and/or positive fit and an end position and back, with a first element that connects the driver element and the housing Spring energy store and with at least one second spring energy store, both of which are charged when the driver element is in the parking position and are discharged to a residual energy value when the driver element is in the end position, the first spring energy store being guided around a deflection disk which is rotatably mounted relative to the carriage and wherein the carriage is loaded relative to the housing in the direction of the first spring energy storage device, which wraps around the deflection disk, by means of the second spring energy storage device, and the deflection disk has a circumferential guide groove.
  • the present invention is based on the problem of reducing the installation space required for such a self-closing device and simplifying assembly.
  • the deflection pulley is supported on the carriage by means of two external bearing journals which are rotatably mounted in the carriage. At least one plane tangential to the lateral surface of the deflection pulley intersects both bearing journals.
  • the deflection pulley is guided during a rotary movement by means of the carriage or by means of the bearing journal.
  • the deflection sheave of the self-closing device is supported in the longitudinal direction and in the height direction by means of several rolling contact zones. This can be a point, surface or line contact.
  • the deflection disk is pressed against two bearing journals by means of the first spring energy store that wraps around it. This pressing force is increased by means of the second spring energy accumulator, which presses a carriage carrying the bearing journals against the deflection disk. This determines the position of the deflection pulley in the longitudinal direction and in the vertical direction.
  • the movement of the deflection disk is limited either by means of the carriage or by means of the bearing pins.
  • the Figures 1 and 2 show a self-closing device (10).
  • Such self-closing devices (10) are used to move moving furniture parts, such as drawers or sliding doors, relative to a fixed furniture part, such as a furniture body, in a controlled manner into a closed or open end position.
  • the self-closing device is fastened to one piece of furniture and a driver is fastened to the piece of furniture that is moved relative thereto.
  • the driver contacts a driver element (41) of the self-closing device (10) and releases it from a parking position (11).
  • the drawer or the sliding door is now conveyed to the end position by the self-closing device (10).
  • the driver element (41) In the end position of the sliding door or the drawer, the driver element (41) is in an end position (12), cf. figure 2 .
  • the self-closing device (10) has a housing (21) consisting of a lower housing shell (22) and an upper housing shell (35), cf. figure 6 , consists. On the upper side (23), the housing (21) has a longitudinal slot (24) through which the driver element (41) protrudes into the environment (1).
  • the driver element (41) is guided in the housing (21) by means of a pair of guide pins (42) arranged on both sides and by means of a piston rod head (52) along a guide track (25) on the housing side.
  • This track (25) in the longitudinal direction (5) oriented straight section (26) and in the representations of Figures 1 and 2 downwardly curved parking section (27).
  • the driver element (41) with the pair of guide pins (42) is in the parking section (27).
  • the piston rod head (52) is in the straight section (26).
  • end position (12) are both the pair of guide pins (42) and the piston rod head (52) in the straight section (26).
  • a driver recess (43) of the driver element (41) points upwards.
  • the driver element (41) can also be designed in several parts. For example, a pull pin (44) delimiting the driving recess (43) can be folded down.
  • the bottom of the housing (21) and areas of the front wall (31) and the rear wall (28) are open in the embodiment. But they can also be closed.
  • a hydraulic cylinder-piston unit (51), for example, is also mounted in the housing (21).
  • the cylinder-piston unit (51) has a cylinder (53) in which a piston that can be displaced by means of a piston rod (54) is guided.
  • the piston rod (54) carries the piston rod head (52) which is pivotably mounted in the driver element (41).
  • the self-closing unit (10) can also be designed without a cylinder-piston unit (51).
  • the driver element (41) has, for example, two pairs of guide pins (42).
  • a restoring spring is arranged in the displacement chamber and loads the piston rod (54) with the piston rod head (52) in the direction of the driver element (41). For example, if the driver element (41) is moved quickly in the direction of the parking position (11), the piston rod head (52) can become detached from the driver element (41) in such an embodiment.
  • the cylinder-piston unit (51) can be arranged in the housing (21) in such a way that the piston rod (54) points towards the rear wall (28) of the housing (21) and the cylinder base (55) is oriented towards the driver element (41). For example, the cylinder (53) is then slidably mounted in the housing (21).
  • the cylinder base (55) can be connected to the driver element (41) or rest against it.
  • a first spring energy store (61) is held on the driver element (41) and in the housing (21).
  • This first spring energy store (61) is suspended in a spring holder (36) in the housing (21).
  • This first spring energy store (61) is a tension spring (61) in the exemplary embodiment. Its length, relaxed to a residual energy value, is, for example, 1.35 times the length of the housing (21) measured in the longitudinal direction (5).
  • the Indian figure 1 shown charged first spring energy store (61) is 50% longer than the housing (21).
  • the first spring energy store (21) is guided around a deflection disk (71) of a carriage assembly (70).
  • the angle of wrap of the spring energy store (61) around the deflection disk (71) is 181 degrees in the exemplary embodiment.
  • the carriage assembly (70) comprises a carriage (81), the deflection disk (71), two bearing journals (91) and a second spring energy store (101).
  • the carriage (81) with the deflection disk (71) and the bearing journal (91) is loaded relative to the housing (21) by means of the second spring energy store (101) in the direction of the rear wall (28).
  • the second spring energy store (101) is attached to the housing (21) and to the carriage (81).
  • the carriage assembly (70) is guided in the longitudinal direction (5) by means of the deflection disk (71) engaging in a housing groove (29) by means of a guide bolt (74).
  • the carriage assembly (70) can also be designed without a guide on the housing side.
  • the carriage (81) of the carriage assembly (70) is shown.
  • the carriage (81) has a cuboid enveloping contour. For example, it has a transverse opening (82) with a rectangular cross-section approximately in the middle. This transverse opening (82) is surrounded on all sides by connecting webs (83). These connecting webs (83) connect two parallel guide plates (84).
  • the guide plates (84) delimit the carriage (81) in the transverse direction (6). You can be flush with the connecting webs (83) in the height direction (7).
  • the carriage (81) has a spring bushing (85) opening into the transverse opening (82). This spring bushing (85) is oriented, for example, in the longitudinal direction (89) of the slide.
  • the carriage (81) has two bearing pin receptacles (86). These trunnion mounts (86) are oriented in the transverse direction (6).
  • the bearing journal receptacles (86) are arranged symmetrically to a central transverse plane of the carriage (81) oriented in the longitudinal direction (89) of the carriage.
  • the individual bearing pin receptacle (86) has an insertion recess (87) on each guide plate (84) which opens into a receptacle (88) in the shape of a section of a cylinder.
  • the guide plates (84) protrude like a fork from the connecting webs (83).
  • the distance between the guide plates (84) is 78% of the overall width of the carriage (81).
  • the width of the carriage (81) is, for example, 95% of the inside width of the housing (21).
  • the figure 4 shows the deflection disk (71).
  • the deflection disk (71) has a hollow hub (73) in which, for example, the guide pin (74) is inserted when the deflection disk (71) is installed.
  • the deflection disk (71) can be guided in the housing groove (29) by means of the guide pin (74).
  • the deflection disk (71) Concentrically to the hollow hub (73), the deflection disk (71) has two congruent disk horns (75). Both disc horns (75) have cylindrical lateral surfaces (76). These disc horns (75) delimit a circumferential guide groove (77).
  • the guide groove (77) has a central U-shaped channel section (78) which is delimited towards the outside on both sides by a concave outer channel section (79).
  • the radius of curvature of the outer channel section (79) is, for example, three times the radius of the channel section (78).
  • the width of the deflection disk (71) over the disk horns (75) is 99% of the distance between the two guide plates (84) in the region of the bearing pin receptacles (86).
  • the deflection disk (71) can also be designed without a hub. In this case, the two disc horns (75) can be circular discs.
  • bearing journal (91) is shown. Both bearing journals (91) are of identical design in the exemplary embodiment.
  • the individual bearing journal (91) is made up of, for example, five mutually coaxial sections (92-94). In the exemplary embodiment, its length corresponds to the width of the carriage (81) in the transverse direction (6).
  • the individual bearing journal (91) is constructed symmetrically in relation to its central plane oriented normal to the transverse direction (6).
  • a cylindrical bearing section (92) adjoins each of the end faces (95). Its diameter is, for example, 96% of the diameter of a bearing journal receptacle (86).
  • a likewise cylindrical collar section (93) adjoins the respective bearing section (92). Its diameter is slightly larger than the diameter of the receptacle (88).
  • the bearing pin (91) has a central guide section (94). This is designed as a peripheral guide collar (94). In the exemplary embodiment, its length in the transverse direction (6) is a quarter of the length of the bearing journal (91). In the embodiment, this length can be up to 56% of the length of the bearing journal (91). Its diameter is 25% larger than the diameter of the bearing section (92).
  • the guide collar (94) is rounded in the transverse direction (6).
  • the bearing pin (91) can also be designed without a guide collar (94) or with more than one guide collar (94).
  • the driver element (41) with the cylinder-piston unit (51) is first inserted into the lower housing shell (22). Then the carriage (81) with the inserted therein Bearing pin (91) inserted in the lower housing shell (22). Here, the carriage (81) with the transverse opening (82) is placed over the housing-side spring mount (32).
  • the second spring energy store (101) designed as a tension spring, can be hung in the spring receptacle (32) on the housing and in the spring bushing (85) of the carriage (81).
  • the carriage (81) is now in the figure 2 shown position.
  • the deflection disk (71) with the inserted guide bolt (74) can now be inserted in such a way that the guide bolt (74) engages in the housing groove (29) and the lateral surfaces (76) of the deflection disk (71) on the collar sections (93) of the bearing journals (91).
  • the first spring energy store (61) can be hung in the driver element (41) and in the housing (21) and guided around the deflection disk (71).
  • the housing upper shell (35) can be put on and the housing (21) can be joined. For example, it is screwed or welded. A different order of assembly is also conceivable.
  • the space required for the self-closing device (10) is determined by the external dimensions of the housing (21).
  • the figure 6 shows a view of the rear wall (28) of the self-closing device (10).
  • the required width of the housing (21) in the upper area (33) results from the cylinder-piston unit (51).
  • the carriage (81) determines the width of the housing (21).
  • the width of the lower area (34) is 75% of the width of the upper area (33) of the housing (21).
  • the housing (21) is shown in the illustration figure 6 used with the lower area (34), for example, in a carrier profile (15).
  • the self-closing device (10) is, for example, in the figure 2 illustrated end position (12).
  • the piston rod (54) of the cylinder-piston unit (51) is retracted.
  • the first spring energy store (61) is discharged to a residual energy value.
  • the tension spring (61) is stretched, for example, by 30% compared to its fully unloaded nominal length. It loads the deflection disk (71) against the bearing journal (91).
  • the bearing journals (91) are arranged, for example, symmetrically to the bisecting line of the angle of wrap. For example, the radials intersecting the center axis (72) of the deflection disk (71) enclose an angle of 54 degrees through the center lines (96) of the bearing journals (91).
  • At least one plane tangent to the deflection disk (71) intersects both bearing journals (91).
  • the two bearing journals (91) are thus offset from one another on the side of the deflection disk (71) facing the carriage (81).
  • a tangential plane oriented normal to the longitudinal direction (89) of the carriage divides 27% of the volume of both bearing journals (91) from the deflection disk (71).
  • a tangential plane on both bearing journals (91) facing the deflection disk (71) has a smaller distance to the central axis (72) of the deflection disk (71) than each tangent to the first spring energy store (61) parallel to this tangential plane.
  • the latter tangential plane is oriented, for example, normal to the bisecting line of the angle of wrap.
  • This bisector is oriented, for example, in the longitudinal direction (89) of the slide. In the exemplary embodiment, this tangential plane lies against the guide sections (94) of the bearing journals (91).
  • the second spring energy store (101) is also at a residual energy value when the driver element (41) is in the end position (12). relieved. For example, this tension spring (101) is 20% longer than its unloaded nominal length.
  • the second spring energy store (101) loads the slide (81) in the direction of the first spring energy store (61).
  • the forces of both spring energy stores (61, 101) act together on the contact points (111) between the deflection disk (71) and the bearing journal (91).
  • the force vectors caused by the two spring energy stores (61, 101) point to contact points (111) from opposite directions.
  • the contact between the deflection disc (71) and the bearing journal (91) is thus additionally secured. A movement of the deflection disk (71) in the longitudinal direction (5) as well as in the vertical direction (7) is thus prevented.
  • the carriage (81) encompasses the first spring energy store (61) both in the upper run (62) and in the lower run (63).
  • the first spring energy store (61) is thus guided by means of the carriage (81).
  • the projecting guide plates (84) of the carriage (81) lie on both sides of the deflection disk (71).
  • the figure 7 shows a sectional view of the deflection disk (71), a bearing journal (91) and the carriage (81).
  • the sectional plane of this view is spanned by the central axis (72) of the deflection disk (71) and a radial line connecting this to the central line (96) of a bearing journal (91).
  • the first spring energy store (61) and the housing (21) are not shown in this view.
  • the bearing pins (91) are rotatably mounted in the carriage (81).
  • the bearings of the bearing sections (92) in the receptacles (88) are designed as plain bearings in the exemplary embodiment.
  • the respective collar sections (93) prevent the bearing journals (91) from moving in the transverse direction (6).
  • the deflection disk (71) rests with its disk horns (75) on the collar sections (93).
  • the contact points (111) are contact lines oriented in the transverse direction (6).
  • the guide sections (94) of the bearing pins (91) are immersed in the guide groove (77). In the embodiment, they have no contact with the guide groove (77).
  • the driver pulls from the in the figure 2 shown end position (12), the driver element (41) relative to the housing (21) in the opening direction (13).
  • the first spring energy store (61) is loaded. In doing so, it loads the deflection disk (71) in the opening direction (13).
  • the deflection disk (71) also pushes the carriage (81) in the opening direction (13).
  • the deflection disk (71) is rotated about its central axis (72). It rolls off on both bearing journals (91), which are rotated in the process.
  • the second spring energy store (101) is charged.
  • the expansion of the first spring energy store (61) is less than the stroke of the driver element (41) in the longitudinal direction (5).
  • the spring-loaded deflection shortens the stroke.
  • the carrier element (41) moves further, it reaches the parking position (11), cf. figure 1 .
  • the first spring energy store (61) and the second spring energy store (101) are charged to their respective maximum operating values.
  • the driver element (41) is secured in the housing (21) in a non-positive and/or positive manner.
  • the carrier is released.
  • the sliding door or drawer can now be opened further.
  • the driver When the sliding door or the drawer is closed, the driver contacts the driver element (41) in a partial stroke adjacent to the closed end position, for example.
  • the driver element (41) is released from the parking position (11). Its guide pin pair (42) pivots into the straight section (26) of the guide track (25).
  • the driver element (41) moving in the closing direction (14) loads the piston rod (54). This is pushed into the cylinder (53).
  • oil is displaced from the displacement chamber into the compensation chamber.
  • the movement of the driver element (41) is delayed.
  • the first spring energy store (61) pulls the driver element (41) in the direction of the end position (12).
  • the shortening first spring energy store (61) rotates the deflection disc (71) in the illustrations Figures 1 and 2 clockwise. In these views, the deflection disk (71) rotates the bearing journals (91) mounted in the carriage counterclockwise. As the contact pressure of the first spring energy store (61) decreases, the load on the second spring energy store (101) is relieved. The carriage (81) is moved in the closing direction (14). For example, the forces of both spring energy stores (61, 101) are superimposed. In the exemplary embodiment, the two spring energy accumulators (61, 101)) together with a low spring rigidity have an accelerating effect on the driver element (41). This acceleration force counteracts the deceleration force of the cylinder-piston unit (51). The resultant of these forces slowly pulls the sliding door or drawer into the closed end position, for example. Here the door or the drawer remains without hitting.
  • the first spring energy store (61) can lift off the deflection disk (71).
  • the deflection pulley (71) is relieved abruptly, for example. Migration of the deflection disk (71) is prevented by means of the guide collars (94), the carriage (81) and the position of the bearing journals (91) relative to the deflection disk (71). Due to the deflection, an elongation of the first spring energy store (61) only allows a maximum of half the amount of this elongation as a displacement of the deflection disk (71).
  • the carriage (81) is displaced in the closing direction (14) by means of the second spring energy store (101).
  • the first spring energy store (61) is again accommodated in the guide groove (77).
  • the carriage assembly (70) can also have two second spring energy stores (101). These are then arranged parallel to one another, for example, and each is held on the carriage (81) and on the housing (21). In this case, a second spring seat (32) is provided in the housing (21).
  • the width of the carriage (81) corresponds to the width of the deflection pulley (71).
  • the bearing journals (91) with their bearing sections (92) are also in the carriage (81). pivoted.
  • the guide section (94) directly adjoins the bearing sections (92). Its outer diameter corresponds to the outer diameter of the bearing pin (91) shown in FIG.
  • the deflection disk (71) is designed without a hub.
  • the disc horns (75) delimit the deflection disc (71) in the transverse direction (6).
  • the cross section of the guide groove (77) of the deflection disc (71) corresponds to the cross section in the figure 4 shown guide groove (77).
  • the deflection disk (71) touches the individual bearing journal (91) in two rolling contact zones (111). On the side of the individual bearing journal (91), these rolling contact zones (111) lie in the outer radii (97) of the guide sections (94). The rolling contact zones (111) are located in the outer channel sections (79) on the deflection disk (71). Depending on the load, these rolling contact zones (111) can be points or small areas. In this exemplary embodiment, the lateral surfaces (76) of the disk horns (75) are not in contact with the bearing journals (91).
  • the width in the transverse direction (6) of the in the figure 8 shown variant of the carriage assembly (70) is, for example, 20% less than the width in the figure 7 illustrated embodiment.
  • the function of a self-closing device (10) with the in the figure 8 illustrated carriage assembly (70) corresponds to the function of the self-closing device (10) described in connection with the first embodiment.
  • the carriage assembly (70) is prevented from tipping due to the prestressing of the first spring energy store (61) and the second spring energy store (101). If necessary an additional guide for the carriage (81) or the deflection disk (71) can be provided in the housing (21).
  • the bearing journals (91) are held in the transverse direction (6) by means of the guide sections (94).
  • the guide sections (94) guide the deflection disk (71) during its rotary movement.
  • the guidance of the deflection disk (71) in the longitudinal direction (5) and in the vertical direction (7) corresponds to the guidance mentioned in connection with the first exemplary embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bearings For Parts Moving Linearly (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Description

  • Die Erfindung betrifft eine Selbsteinzugsvorrichtung mit einem Gehäuse (21) und einem Schlitten (81), mit einem in dem Gehäuse zwischen einer kraft- und/oder formschlüssig gesicherten Parkposition und einer Endposition und zurück verfahrbaren Mitnahmeelement, mit einem das Mitnahmeelement und das Gehäuse verbindenden ersten Federenergiespeicher und mit mindestens einem zweiten Federenergiespeicher, die beide bei Lage des Mitnahmeelements in der Parkposition geladen sind und bei Lage des Mitnahmeelements in der Endposition auf einen Restenergiewert entladen sind, wobei der erste Federenergiespeicher um eine relativ zu dem Schlitten drehbar gelagerte Umlenkscheibe geführt ist und wobei der Schlitten relativ zum Gehäuse in Richtung des die Umlenkscheibe umschlingenden ersten Federenergiespeichers mittels des zweiten Federenergiespeichers belastet ist und wobei die Umlenkscheibe eine umlaufende Führungsnut hat.
  • Aus der DE 10 2008 021 458 A1 ist eine derartige Selbsteinzugsvorrichtung bekannt.
  • Der vorliegenden Erfindung liegt die Problemstellung zugrunde, den für eine derartige Selbsteinzugsvorrichtung erforderlichen Bauraum zu verringern und die Montage zu vereinfachen.
  • Diese Problemstellung wird mit den Merkmalen des Hauptanspruches gelöst. Dazu ist die Umlenkscheibe am Schlitten mittels zweier außenliegender, im Schlitten drehbar gelagerter Lagerzapfen abgestützt. Mindestens eine Tangentialebene an die Mantelfläche der Umlenkscheibe schneidet beide Lagerzapfen. Außerdem ist die Umlenkscheibe bei einer Drehbewegung mittels des Schlittens oder mittels der Lagerzapfen geführt.
  • Die Umlenkscheibe der Selbsteinzugsvorrichtung ist in der Längsrichtung und in der Höhenrichtung mittels mehrere Wälzkontaktzonen abgestützt. Dies kann jeweils ein Punkt- Flächen- oder Linienkontakt sein. Hierbei wird die Umlenkscheibe mittels des sie umschlingenden ersten Federenergiespeichers gegen zwei Lagerzapfen gedrückt. Diese Anpresskraft wird mittels des zweiten Federenergiespeichers verstärkt, der einen die Lagerzapfen tragenden Schlitten gegen die Umlenkscheibe drückt. Hiermit wird die Lage der Umlenkscheibe in der Längsrichtung und in der Höhenrichtung bestimmt. In der quer zur Längsrichtung und quer zur Höhenrichtung orientierten Querrichtung ist die Bewegung der Umlenkscheibe entweder mittels des Schlittens oder mittels der Lagerzapfen begrenzt.
  • Weitere Einzelheiten der Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung schematisch dargestellter Ausführungsformen.
  • Figur 1:
    Selbsteinzugsvorrichtung in der Parkposition;
    Figur 2:
    Selbsteinzugsvorrichtung in der Endposition;
    Figur 3:
    Schlitten;
    Figur 4:
    Umlenkscheibe;
    Figur 5:
    Lagerzapfen;
    Figur 6:
    Ansicht der Selbsteinzugsvorrichtung von der Rückwand;
    Figur 6:
    Schnitt der Schlittenbaugruppe;
    Figur 8:
    Variante der Schlittenbaugruppe.
  • Die Figuren 1 und 2 zeigen eine Selbsteinzugsvorrichtung (10). Derartige Selbsteinzugsvorrichtungen (10) werden eingesetzt, um bewegte Möbelstückteile, wie z.B. Schubladen oder Schiebetüren relativ zu einem feststehenden Möbelstückteil, z.B. einem Möbelkorpus, gesteuert in eine geschlossene oder geöffnete Endlage zu verfahren. Hierbei ist die Selbsteinzugsvorrichtung an dem einen Möbelstückteil und ein Mitnehmer an dem relativ hierzu bewegten Möbelstückteil befestigt. Vor dem Erreichen der geschlossenen oder der geöffneten Endlage kontaktiert der Mitnehmer ein Mitnahmeelement (41) der Selbsteinzugsvorrichtung (10) und löst dieses aus einer Parkposition (11). Die Schublade oder die Schiebetür wird nun mittels der Selbsteinzugsvorrichtung (10) in die Endlage gefördert. In der Endlage der Schiebetür oder der Schublade steht das Mitnahmeelement (41) in einer Endposition (12), vgl. Figur 2.
  • Die Selbsteinzugsvorrichtung (10) hat ein Gehäuse (21), das aus einer Gehäuseunterschale (22) und einer Gehäuseoberschale (35), vgl. Figur 6, besteht. An der Oberseite (23) hat das Gehäuse (21) einen Längsschlitz (24), durch den das Mitnahmeelement (41) in die Umgebung (1) ragt. Das Mitnahmeelement (41) ist im Gehäuse (21) mittels eines beidseitig angeordneten Führungszapfenpaars (42) und mittels eines Kolbenstangenkopfes (52) entlang einer gehäuseseitigen Führungsbahn (25) geführt. Diese Führungsbahn (25) hat einen in der Längsrichtung (5) orientierten geraden Abschnitt (26) und einen in den Darstellungen der Figuren 1 und 2 nach unten gebogenen Parkabschnitt (27). In der Parkposition (11) steht das Mitnahmeelement (41) mit dem Führungszapfenpaar (42) im Parkabschnitt (27). Der Kolbenstangenkopf (52) steht im geraden Abschnitt (26). In der in der Figur 2 dargestellten Endposition (12) stehen sowohl das Führungszapfenpaar (42) als auch der Kolbenstangenkopf (52) im geraden Abschnitt (26). Eine Mitnahmeausnehmung (43) des Mitnahmeelements (41) zeigt nach oben. Das Mitnahmeelement (41) kann auch mehrteilig ausgebildet sein. So kann beispielsweise ein die Mitnahmeausnehmung (43) begrenzender Zugzapfen (44) abklappbar sein. Die Unterseite des Gehäuses (21) sowie Bereiche der Stirnwand (31) und der Rückwand (28) sind im Ausführungsbeispiel offen. Sie können aber auch geschlossen ausgebildet sein.
  • Im Gehäuse (21) ist im Ausführungsbeispiel weiterhin eine z.B. hydraulische Zylinder-Kolben-Einheit (51) gelagert. Die Zylinder-Kolben-Einheit (51) weist einen Zylinder (53) auf, in dem ein mittels einer Kolbenstange (54) verschiebbarer Kolben geführt ist. Beispielsweise beim Einfahren der Kolbenstange (54) wird Öl aus einem zwischen dem Kolben und dem Zylinderboden (55) liegenden Verdrängungsraum gedrosselt in einen zwischen dem Kolben und dem Zylinderkopf (56) liegenden Ausgleichsraum verdrängt. Die Kolbenstange (54) trägt den im Mitnahmeelement (41) schwenkbar gelagerten Kolbenstangenkopf (52). Die Selbsteinzugseinheit (10) kann auch ohne eine Zylinder-Kolben-Einheit (51) ausgebildet sein.
  • Es ist auch denkbar, die Kolbenstange (54) der Zylinder-Kolben-Einheit (10) nicht mit dem Mitnahmeelement (41) zu verbinden. Das Mitnahmeelement (41) hat dann z.B. zwei Führungszapfenpaare (42). Im Verdrängungsraum ist in diesem Fall beispielsweise eine Rückstellfeder angeordnet, die die Kolbenstange (54) mit dem Kolbenstangenkopf (52) in Richtung des Mitnahmeelements (41) belastet. Beispielsweise bei einem schnellen Verfahren des Mitnahmeelements (41) in Richtung der Parkposition (11) kann sich bei einer derartigen Ausführung der Kolbenstangenkopf (52) vom Mitnahmeelement (41) lösen.
  • Die Zylinder-Kolben-Einheit (51) kann so im Gehäuse (21) angeordnet sein, dass die Kolbenstange (54) zur Rückwand (28) des Gehäuses (21) zeigt und der Zylinderboden (55) zum Mitnahmeelement (41) orientiert ist. Beispielsweise ist dann der Zylinder (53) verschiebbar im Gehäuse (21) gelagert. Der Zylinderboden (55) kann mit dem Mitnahmeelement (41) verbunden sein oder an diesem anliegen.
  • Am Mitnahmeelement (41) und im Gehäuse (21) ist ein erster Federenergiespeicher (61) gehalten. Im Gehäuse (21) ist dieser erste Federenergiespeicher (61) in einer Federhaltung (36) eingehängt. Dieser erste Federenergiespeicher (61) ist im Ausführungsbeispiel eine Zugfeder (61). Seine auf einen Restenergiewert entspannte Länge beträgt beispielsweise das 1,35-fache der in der Längsrichtung (5) gemessenen Länge des Gehäuses (21). Der in der Figur 1 dargestellte geladene erste Federenergiespeicher (61) ist 50 % länger als das Gehäuse (21).
  • Der erste Federenergiespeicher (21) ist um eine Umlenkscheibe (71) einer Schlittenbaugruppe (70) geführt. Der Umschlingungswinkel des Federenergiespeichers (61) um die Umlenkscheibe (71) beträgt im Ausführungsbeispiel 181 Grad.
  • Die Schlittenbaugruppe (70) umfasst einen Schlitten (81), die Umlenkscheibe (71), zwei Lagerzapfen (91) und einen zweiten Federenergiespeicher (101). Der Schlitten (81) mit der Umlenkscheibe (71) und den Lagerzapfen (91) wird relativ zum Gehäuse (21) mittels des zweiten Federenergiespeichers (101) in Richtung der Rückwand (28) belastet. Hierzu ist der zweite Federenergiespeicher (101) am Gehäuse (21) und am Schlitten (81) angeschlagen. Im Ausführungsbeispiel ist die Schlittenbaugruppe (70) mittels der in eine Gehäusenut (29) mittels eines Führungsbolzens (74) eingreifenden Umlenkscheibe (71) in der Längsrichtung (5) geführt. Die Schlittenbaugruppe (70) kann auch ohne gehäuseseitige Führung ausgebildet sein.
  • In der Figur 3 ist der Schlitten (81) der Schlittenbaugruppe (70) dargestellt. Der Schlitten (81) hat eine quaderförmige Hüllkontur. Z.B. annährend mittig hat er einen Querdurchbruch (82) mit rechteckigem Querschnitt. Dieser Querdurchbruch (82) ist allseitig von Verbindungsstegen (83) umgeben. Diese Verbindungsstege (83) verbinden zwei parallel zueinander liegende Führungsplatten (84). Die Führungsplatten (84) begrenzen den Schlitten (81) in der Querrichtung (6). Sie können in der Höhenrichtung (7) bündig mit den Verbindungsstegen (83) sein. An seinem zur Stirnwand (31) des Gehäuses (21) zeigenden Ende hat der Schlitten (81) eine in den Querdurchbruch (82) mündende Federdurchführung (85). Diese Federdurchführung (85) ist beispielsweise in der Schlittenlängsrichtung (89) orientiert.
  • An dem der Federdurchführung (85) abgewandten Ende hat der Schlitten (81) zwei Lagerzapfenaufnahmen (86). Diese Lagerzapfenaufnahmen (86) sind in der Querrichtung (6) orientiert. Im Ausführungsbeispiel sind die Lagerzapfenaufnahmen (86) symmetrisch zu einer in der Schlittenlängsrichtung (89) orientierten Mittenquerebene des Schlittens (81) angeordnet. Die einzelne Lagerzapfenaufnahme (86) hat an jeder Führungsplatte (84) eine Einführeinsenkung (87), die in eine zylinderabschnittsförmige Aufnahme (88) mündet. Hierbei stehen die Führungsplatten (84) gabelartig aus den Verbindungsstegen (83) hervor. Der Abstand zwischen den Führungsplatten (84) beträgt hier 78 % der Gesamtbreite des Schlittens (81). Die Breite des Schlittens (81) beträgt beispielsweise 95 % der Innenbreite des Gehäuses (21).
  • Die Figur 4 zeigt die Umlenkscheibe (71). Die Umlenkscheibe (71) hat im Ausführungsbeispiel eine Hohlnabe (73), in dem z.B. bei montierter Umlenkscheibe (71) der Führungsbolzen (74) eingesetzt ist. Beispielsweise ist die Umlenkscheibe (71) mittels des Führungsbolzens (74) in der Gehäusenut (29) führbar. Konzentrisch zur Hohlnabe (73) hat die Umlenkscheibe (71) zwei kongruent zueinander ausgebildete Scheibenhörner (75). Beide Scheibenhörner (75) haben zylindrische Mantelflächen (76). Diese Scheibenhörner (75) begrenzen eine umlaufende Führungsnut (77). Die Führungsnut (77) hat einen zentrale u-förmigen Rinnenabschnitt (78), der nach außen hin beidseitig von einem konkav gewölbten Außenrinnenabschnitt (79) begrenzt ist. Der Radius der Krümmungen des Au-βenrinnenabschnitts (79) beträgt beispielsweise das Dreifache des Radius des Rinnenabschnitts (78). Die Breite der Umlenkscheibe (71) über die Scheibenhörner (75) beträgt im Ausführungsbeispiel 99 % des Abstandes der beiden Führungsplatten (84) im Bereich der Lagerzapfenaufnahmen (86). Die Umlenkscheibe (71) kann auch ohne Nabe ausgebildet sein. In diesem Fall können die beiden Scheibenhörner (75) kreisförmige Scheiben sein.
  • In der Figur 5 ist ein Lagerzapfen (91) dargestellt. Beide Lagerzapfen (91) sind im Ausführungsbeispiel identisch ausgebildet. Der einzelne Lagerzapfen (91) ist aus beispielsweise fünf zueinander koaxialen Abschnitten (92 - 94) aufgebaut. Seine Länge entspricht im Ausführungsbeispiel der Breite des Schlittens (81) in der Querrichtung (6). Der einzelne Lagerzapfen (91) ist symmetrisch in Bezug auf seine normal zur Querrichtung (6) orientierte Mittenebene aufgebaut. An jede der Stirnseiten (95) grenzt ein zylindrisch ausgebildeter Lagerabschnitt (92) an. Sein Durchmesser beträgt beispielsweise 96 % des Durchmessers einer Lagerzapfenaufnahme (86). An den jeweiligen Lagerabschnitt (92) grenzt ein ebenfalls zylindrisch ausgebildeter Bundabschnitt (93) an. Sein Durchmesser ist geringfügig größer als der Durchmesser der Aufnahme (88).
  • Weiterhin hat der Lagerzapfen (91) einen zentralen Führungsabschnitt (94). Dieser ist als umlaufender Führungsbund (94) ausgebildet. Seine Länge in der Querrichtung (6) beträgt im Ausführungsbeispiel ein Viertel der Länge des Lagerzapfens (91). Diese Länge kann im Ausführungsfall bis zu 56 % der Länge des Lagerzapfens (91) betragen. Sein Durchmesser ist um 25 % größer als der Durchmesser des Lagerabschnitts (92). Der Führungsbund (94) ist in der Querrichtung (6) abgerundet. Der Lagerzapfen (91) kann auch ohne Führungsbund (94) oder mit mehr als einem Führungsbund (94) ausgebildet sein.
  • Beim Zusammenbau der Selbsteinzugsvorrichtung (10) wird beispielsweise zunächst das Mitnahmeelement (41) mit der Zylinder-Kolben-Einheit (51) in die Gehäuseunterschale (22) eingesetzt. Anschließend wird der Schlitten (81) mit den darin eingesetzten Lagerzapfen (91) in die Gehäuseunterschale (22) eingelegt. Hierbei wird der Schlitten (81) mit dem Querdurchbruch (82) über die gehäuseseitige Federaufnahme (32) gesteckt. Nun kann beispielsweise der als Zugfeder ausgebildete zweite Federenergiespeicher (101) in die gehäuseseitige Federaufnahme (32) und in die Federdurchführung (85) des Schlittens (81) eingehängt werden. Beispielsweise steht der Schlitten (81) jetzt in der in der Figur 2 dargestellten Position. Nun kann die Umlenkscheibe (71) mit dem eingesetzten Führungsbolzen (74) so eingesetzt werden, dass der Führungsbolzen (74) in die Gehäusenut (29) eingreift und die Mantelflächen (76) der Umlenkscheibe (71) an den Bundabschnitten (93) der Lagerzapfen (91) anliegen. Abschließend kann der erste Federenergiespeicher (61) im Mitnahmeelement (41) und im Gehäuse (21) eingehängt werden und um die Umlenkscheibe (71) geführt werden. Abschließend kann die Gehäuseoberschale (35) aufgesetzt werden und das Gehäuse (21) gefügt werden. Beispielsweise wird es verschraubt oder verschweißt. Auch eine andere Reihenfolge des Zusammenbaus ist denkbar.
  • Der für die Selbsteinzugsvorrichtung (10) erforderliche Bauraum wird durch die äußeren Abmessungen des Gehäuses (21) bestimmt. Die Figur 6 zeigt eine Ansicht auf die Rückwand (28) der Selbsteinzugsvorrichtung (10). Die erforderliche Breite des Gehäuses (21) im oberen Bereich (33) ergibt sich durch die Zylinder-Kolben-Einheit (51). Im unteren Bereich (34) bestimmt der Schlitten (81) die Breite des Gehäuses (21). Beispielsweise beträgt die Breite des unteren Bereichs (34) 75 % der Breite des oberen Bereichs (33) des Gehäuses (21). Das Gehäuse (21) ist in der Darstellung der Figur 6 mit dem unteren Bereich (34) z.B. in ein Trägerprofil (15) eingesetzt.
  • Nach dem Zusammenbau steht die Selbsteinzugsvorrichtung (10) beispielsweise in der in der Figur 2 dargestellten Endposition (12). Die Kolbenstange (54) der Zylinder-Kolben-Einheit (51) ist eingefahren. Der erste Federenergiespeicher (61) ist auf einen Restenergiewert entladen. Die Zugfeder (61) ist beispielsweise um 30 % gegenüber ihrer vollständig entlasteten Nennlänge gedehnt. Sie belastet die Umlenkscheibe (71) gegen die Lagerzapfen (91). Die Lagerzapfen (91) sind z.B. symmetrisch zur Winkelhalbierenden des Umschlingungswinkels angeordnet. Beispielsweise schließen die die Mittelachse (72) der Umlenkscheibe (71) schneidenden Radialen durch die Mittellinien (96) der Lagerzapfen (91) einen Winkel von 54 Grad ein. Mindestens eine Tangentialebene an die Umlenkscheibe (71) schneidet beide Lagerzapfen (91). Die beiden Lagerzapfen (91) liegen damit versetzt zueinander auf der dem Schlitten (81) zugewandten Seite der Umlenkscheibe (71). Im Ausführungsbeispiel teilt eine normal zur Schlittenlängsrichtung (89) orientierte Tangentialebene an die Umlenkscheibe (71) 27 % des Volumens beider Lagerzapfens (91) ab.
  • Eine der Umlenkscheibe (71) zugewandte Tangentialebene an beide Lagerzapfen (91) hat einen geringeren Abstand zur Mittelachse (72) der Umlenkscheibe (71) als jede zu dieser Tangentialebene parallele Tangente an den ersten Federenergiespeicher (61). Die letztgenannte Tangentialebene ist beispielsweise normal zur Halbierenden des Umschlingungswinkels orientiert. Diese Halbierende ist beispielsweise in der Schlittenlängsrichtung (89) orientiert. Im Ausführungsbeispiel liegt diese Tangentialebene an den Führungsabschnitten (94) der Lagerzapfen (91) an.
  • Auch der zweite Federenergiespeicher (101) ist bei Lage des Mitnahmeelements (41) in der Endposition (12) auf einen Restenergiewert entlastet. Beispielsweise ist diese Zugfeder (101) um 20 % gegenüber ihrer unbelasteten Nennlänge gelängt. Der zweite Federenergiespeicher (101) belastet den Schlitten (81) in Richtung des ersten Federenergiespeichers (61). Die Kräfte beider Federenergiespeicher (61, 101) wirken zusammen auf die Kontaktstellen (111) zwischen der Umlenkscheibe (71) und den Lagerzapfen (91). Die von beiden Federenergiespeichern (61, 101) bewirkten Kraftvektoren zeigen aus entgegengesetzten Richtungen auf Kontaktstellen (111). Der Kontakt zwischen der Umlenkscheibe (71) und den Lagerzapfen (91) wird so zusätzlich gesichert. Sowohl eine Bewegung der Umlenkscheibe (71) in der Längsrichtung (5) als auch in der Höhenrichtung (7) wird damit verhindert.
  • Der Schlitten (81) umgreift im Ausführungsbeispiel den ersten Federenergiespeicher (61) sowohl im Obertrum (62) als auch im Untertrum (63). Damit ist der erste Federenergiespeicher (61) mittels des Schlittens (81) geführt. Die auskragenden Führungsplatten (84) des Schlittens (81) liegen beidseitig der Umlenkscheibe (71).
  • Die Figur 7 zeigt eine Schnittansicht der Umlenkscheibe (71), eines Lagerzapfens (91) und des Schlittens (81). Die Schnittebene dieser Ansicht wird durch die Mittelachse (72) der Umlenkscheibe (71) und einer diese mit der Mittellinie (96) eines Lagerzapfens (91) verbindenden Radialen aufgespannt. Der erste Federenergiespeicher (61) und das Gehäuse (21) sind in dieser Ansicht nicht dargestellt.
  • In der Darstellung der Figur 7 übergreift der Schlitten (21) mit seinen beiden Führungsplatten (84) die Umlenkscheibe (71) bereichsweise. Der Schlitten begrenzt somit eine Bewegung der Umlenkscheibe (71) in der Querrichtung (6). Damit führt der Schlitten (81) in diesem Ausführungsbeispiel die Umlenkscheibe (71) bei einer Drehbewegung.
  • Die Lagerzapfen (91) sind drehbar im Schlitten (81) gelagert. Die Lagerungen der Lagerabschnitte (92) in den Aufnahmen (88) sind im Ausführungsbeispiel als Gleitlagerungen ausgeführt. Die jeweiligen Bundabschnitte (93) verhindern ein Wandern der Lagerzapfen (91) in der Querrichtung (6). An den Bundabschnitten (93) liegt die Umlenkscheibe (71) mit ihren Scheibenhörnern (75) an. Die Kontaktstellen (111) sind in Querrichtung (6) orientierte Kontaktlinien. Die Führungsabschnitte (94) der Lagerzapfen (91) sind in die Führungsnut (77) eingetaucht. Im Ausführungsbeispiel haben sie keinen Kontakt mit der Führungsnut (77).
  • Beispielsweise beim Öffnen der Schiebetür oder der Schublade zieht der Mitnehmer ausgehend von der in der Figur 2 dargestellten Endposition (12) das Mitnahmeelement (41) relativ zum Gehäuse (21) in der Öffnungsrichtung (13). Der erste Federenergiespeicher (61) wird geladen. Hierbei belastet er die Umlenkscheibe (71) in der Öffnungsrichtung (13). Die Umlenkscheibe (71) schiebt den Schlitten (81) ebenfalls in die Öffnungsrichtung (13). Gleichzeitig wird die Umlenkscheibe (71) um ihre Mittelachse (72) gedreht. Sie wälzt an beiden Lagerzapfen (91) ab, die hierbei gedreht werden. Der zweite Federenergiespeicher (101) wird geladen. Die Dehnung des ersten Federenergiespeichers (61) ist geringer als der Hub des Mitnahmeelements (41) in der Längsrichtung (5). Die federbelastete Umlenkung bewirkt eine Hubverkürzung. Beim Verfahren des Mitnahmeelements (41) in der Öffnungsrichtung (13) wird die Kolbenstange (54) relativ zum Zylinder (53) herausgezogen.
  • Beim weiteren Verfahren des Mitnahmeelements (41) erreicht dieses die Parkposition (11), vgl. Figur 1. Der erste Federenergiespeicher (61) und der zweite Federenergiespeicher (101) sind auf ihre jeweiligen maximalen Betriebswerte geladen. Das Mitnahmeelement (41) ist kraft- und/oder formschlüssig im Gehäuse (21) gesichert. Der Mitnehmer wird freigegeben. Die Schiebetür oder die Schublade kann nun weiter geöffnet werden.
  • Beim Schließen der Schiebetür oder der Schublade kontaktiert in einem an die z.B. geschlossene Endlage angrenzenden Teilhub der Mitnehmer das Mitnahmeelement (41). Das Mitnahmeelement (41) wird aus der Parkposition (11) gelöst. Sein Führungszapfenpaar (42) schwenkt in den geraden Abschnitt (26) der Führungsbahn (25). Hierbei belastet das in der Schließrichtung (14) verfahrende Mitnahmeelement (41) die Kolbenstange (54). Diese wird in den Zylinder (53) eingeschoben. Hierbei wird gedrosselt z.B. Öl aus dem Verdrängungsraum in den Ausgleichraum verdrängt. Die Bewegung des Mitnahmeelements (41) wird verzögert. Gleichzeitig zieht der erste Federenergiespeicher (61) das Mitnahmeelement (41) in Richtung der Endposition (12).
  • Der sich verkürzende erste Federenergiespeicher (61) dreht die Umlenkscheibe (71) in den Darstellungen der Figuren 1 und 2 im Uhrzeigersinn. Die Umlenkscheibe (71) dreht in diesen Ansichten die im Schlitten gelagerten Lagerzapfen (91) im Gegenuhrzeigersinn. Mit abnehmender Anpresskraft des ersten Federenergiespeichers (61) wird der zweite Federenergiespeicher (101) entlastet. Der Schlitten (81) wird in der Schließrichtung (14) verschoben. Beispielsweise überlagern sich die Kräfte beider Federenergiespeicher (61, 101). Im Ausführungsbeispiel wirken die beiden Federenergiespeicher (61, 101)) zusammen mit einer geringen Federsteifigkeit beschleunigend auf das Mitnahmeelement (41). Diese Beschleunigungskraft wirkt entgegen der Verzögerungskraft der Zylinder-Kolben-Einheit (51). Die Resultierende dieser Kräfte zieht die Schiebetür oder die Schublade langsam in die z.B. geschlossene Endlage. Hier bleibt die Tür oder die Schublade stehen, ohne anzuschlagen.
  • Beispielsweise bei einem schnellen Schließen kann der erste Federenergiespeicher (61) von der Umlenkscheibe (71) abheben. Die Umlenkscheibe (71) wird z.B. schlagartig entlastet. Ein Auswandern der Umlenkscheibe (71) wird mittels der Führungsbunde (94), des Schlittens (81) und der Lage der Lagerzapfen (91) relativ zur Umlenkscheibe (71) verhindert. Aufgrund der Umlenkung lässt eine Längung des ersten Federenergiespeichers (61) nur maximal den halben Betrag dieser Längung als Weg der Umlenkscheibe (71) zu. Gleichzeitig wird beim Entlasten der Umlenkscheibe (71) ein Verschieben des Schlittens (81) in der Schließrichtung (14) mittels des zweiten Federenergiespeichers (101) ausgelöst. Der erste Federenergiespeicher (61) wird wieder in der Führungsnut (77) aufgenommen.
  • Die Schlittenbaugruppe (70) kann auch zwei zweite Federenergiespeicher (101) aufweisen. Diese sind dann beispielsweise parallel zueinander angeordnet und jeweils am Schlitten (81) und am Gehäuse (21) gehalten. Im Gehäuse (21) ist in diesem Fall eine zweite Federaufnahme (32) vorgesehen.
  • In der Figur 8 ist eine Variante der Schlittenbaugruppe (70) gargestellt. Die Schnittebene dieser Darstellung entspricht der Schnittebene der Figur 7.
  • Die Breite des Schlittens (81) entspricht der Breite der Umlenkscheibe (71). Im Schlitten (81) sind auch in dieser Variante die Lagerzapfen (91) mit ihren Lagerabschnitten (92) drehbar gelagert. Beispielsweise unmittelbar an die Lagerabschnitte (92) grenzt der Führungsabschnitt (94) an. Sein Außendurchmesser entspricht dem Außendurchmesser des in der Figur 5 dargestellten Lagerzapfens (91).
  • Die Umlenkscheibe (71) ist in diesem Ausführungsbeispiel nabenlos ausgebildet. Die Scheibenhörner (75) begrenzen die Umlenkscheibe (71) in der Querrichtung (6). Der Querschnitt der Führungsnut (77) der Umlenkscheibe (71) entspricht dem Querschnitt der in der Figur 4 dargestellten Führungsnut (77).
  • Die Umlenkscheibe (71) berührt den einzelnen Lagerzapfen (91) in zwei Wälzkontaktzonen (111). Auf der Seite des einzelnen Lagerzapfens (91) liegen diese Wälzkontaktzonen (111) in den Außenradien (97) der Führungsabschnitte (94). An der Umlenkscheibe (71) liegen die Wälzkontaktzonen (111) in den Außenrinnenabschnitten (79). Je nach Belastung können diese Wälzkontaktzonen (111) Punkte oder kleine Flächen sein. Die Mantelflächen (76) der Scheibenhörner (75) sind in diesem Ausführungsbeispiel ohne Kontakt zu den Lagerzapfen (91).
  • Die Breite in der Querrichtung (6) der in der Figur 8 dargestellten Variante der Schlittenbaugruppe (70) ist z.B. um 20 % geringer als die Breite der in der Figur 7 dargestellten Ausführungsform.
  • Die Funktion einer Selbsteinzugsvorrichtung (10) mit der in der Figur 8 dargestellten Schlittenbaugruppe (70) entspricht der Funktion der im Zusammenhang mit dem ersten Ausführungsbeispiel beschriebenen Selbsteinzugsvorrichtung (10). Aufgrund der Vorspannungen des ersten Federenergiespeichers (61) und des zweiten Federenergiespeichers (101) wird die Schlittenbaugruppe (70) an einem Kippen gehindert. Gegebenenfalls kann eine zusätzliche Führung des Schlittens (81) oder der Umlenkscheibe (71) im Gehäuse (21) vorgesehen sein.
  • Die Lagerzapfen (91) sind in diesem Ausführungsbeispiel mittels der Führungsabschnitte (94) in der Querrichtung (6) gehalten. Sie führen mittels der Führungsabschnitte (94) die Umlenkscheibe (71) bei ihrer Drehbewegung. Die Führung der Umlenkscheibe (71) in der Längsrichtung (5) und in der Höhenrichtung (7) entspricht der im Zusammenhang mit dem ersten Ausführungsbeispiel genannten Führung.
  • Auch Kombinationen der einzelnen Ausführungsbeispiele sind im Rahmen der durch die Ansprüche definierten Erfindung denkbar.
  • Bezugszeichenliste:
  • 1
    Umgebung
    5
    Längsrichtung
    6
    Querrichtung
    7
    Höhenrichtung
    10
    Selbsteinzugsvorrichtung
    11
    Parkposition
    12
    Endposition
    13
    Öffnungsrichtung
    14
    Schließrichtung
    15
    Tragprofil
    21
    Gehäuse
    22
    Gehäuseunterschale
    23
    Oberseite
    24
    Längsschlitz
    25
    Führungsbahn
    26
    gerader Abschnitt
    27
    Parkabschnitt
    28
    Rückwand
    29
    Gehäusenut
    31
    Stirnwand
    32
    Federaufnahme für (101)
    33
    oberer Bereich von (21)
    34
    unterer Bereich von (21)
    35
    Gehäuseoberschale
    36
    Federhalterung für (61)
    41
    Mitnahmeelement
    42
    Führungszapfenpaar
    43
    Mitnahmeausnehmung
    44
    Zugzapfen
    51
    Zylinder-Kolben-Einheit
    52
    Kolbenstangenkopf
    53
    Zylinder
    54
    Kolbenstange
    55
    Zylinderboden
    56
    Zylinderkopf
    61
    erster Federenergiespeicher, Zugfeder
    62
    Obertrum
    63
    Untertrum
    70
    Schlittenbaugruppe
    71
    Umlenkscheibe
    72
    Mittelachse von (71)
    73
    Hohlnabe
    74
    Führungsbolzen
    75
    Scheibenhörner
    76
    Mantelflächen von (75)
    77
    Führungsnut
    78
    u-förmiger Rinnenabschnitt
    79
    Außenrinnenabschnitt
    81
    Schlitten
    82
    Querdurchbruch
    83
    Verbindungsstege
    84
    Führungsplatten
    85
    Federdurchführung
    86
    Lagerzapfenaufnahmen
    87
    Einführeinsenkung
    88
    Aufnahme
    89
    Schlittenlängsrichtung
    91
    Lagerzapfen
    92
    Abschnitt von (91), Lagerabschnitt
    93
    Abschnitt von (91), Bundabschnitt
    94
    Abschnitt von (91), Führungsabschnitt, Führungsbund
    95
    Stirnseiten
    96
    Mittellinien
    97
    Außenradien
    101
    zweiter Federenergiespeicher, Zugfeder
    111
    Kontaktstellen zwischen (71) und (91), Wälzkontaktzonen

Claims (8)

  1. Selbsteinzugsvorrichtung (10) mit einem Gehäuse (21) und einem Schlitten (81), mit einem in dem Gehäuse (21) zwischen einer kraft- und/oder formschlüssig gesicherten Parkposition (11) und einer Endposition (12) und zurück verfahrbaren Mitnahmeelement (41), mit einem das Mitnahmeelement (41) und das Gehäuse (21) verbindenden ersten Federenergiespeicher (61) und mit mindestens einem zweiten Federenergiespeicher (101), die beide bei Lage des Mitnahmeelements (41) in der Parkposition (11) geladen sind und bei Lage des Mitnahmeelements (41) in der Endposition (12) auf einen Restenergiewert entladen sind, wobei der erste Federenergiespeicher (61) um eine relativ zu dem Schlitten (81) drehbar gelagerte Umlenkscheibe (71) geführt ist und wobei der Schlitten (81) relativ zum Gehäuse (21) in Richtung des die Umlenkscheibe (71) umschlingenden ersten Federenergiespeichers (61) mittels des zweiten Federenergiespeichers (101) belastet ist und wobei die Umlenkscheibe (71) eine umlaufende Führungsnut (77) hat, dadurch gekennzeichnet,
    - dass die Umlenkscheibe (71) am Schlitten (81) mittels zweier außenliegender, im Schlitten (81) drehbar gelagerter Lagerzapfen (91) abgestützt ist,
    - dass mindestens eine Tangentialebene an die Mantelfläche (76) der Umlenkscheibe (71) beide Lagerzapfen (91) schneidet und
    - dass die Umlenkscheibe (71) bei einer Drehbewegung mittels des Schlittens (81) oder mittels der Lagerzapfen (91) geführt ist.
  2. Selbsteinzugsvorrichtung (10) nach Anspruch 1, dadurch gekennzeichnet, dass sie eine mittels des Mitnahmeelements (41) belastbare, im Gehäuse (21) gelagerte Zylinder-Kolben-Einheit (51) umfasst.
  3. Selbsteinzugsvorrichtung (10) nach Anspruch 1, dadurch gekennzeichnet, dass die Lagerzapfen (91) einen zentralen Führungsabschnitt (94) aufweisen.
  4. Selbsteinzugsvorrichtung (10) nach Anspruch 3, dadurch gekennzeichnet, dass der Führungsabschnitt (94) zumindest bereichsweise komplementär zur Führungsnut (77) ausgebildet ist.
  5. Selbsteinzugsvorrichtung (10) nach Anspruch 1, dadurch gekennzeichnet, dass die Lagerzapfen (91) symmetrisch zur Halbierenden des Umschlingungswinkels des ersten Federenergiespeichers (61) angeordnet sind.
  6. Selbsteinzugsvorrichtung (10) nach Anspruch 1, dadurch gekennzeichnet, dass eine der Umlenkscheibe (71) zugewandte Tangentialebene an beide Lagerzapfen (91) einen geringeren Abstand zu einer Mittelachse (72) der Umlenkscheibe (71) hat als jede hierzu parallele Tangente an den ersten Federenergiespeicher (61).
  7. Selbsteinzugsvorrichtung (10) nach Anspruch 1, dadurch gekennzeichnet, dass die Umlenkscheibe (71) nabenlos ausgebildet ist.
  8. Selbsteinzugsvorrichtung (10) nach Anspruch 1, dadurch gekennzeichnet, dass der Schlitten (81) oder die Umlenkscheibe (71) im Gehäuse (21) geführt ist.
EP19797545.1A 2018-10-14 2019-10-13 Selbsteinzugsvorrichtung mit umgelenktem federenergiespeicher Active EP3863473B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018008206.8A DE102018008206B3 (de) 2018-10-14 2018-10-14 Selbsteinzugsvorrichtung mit umgelenktem Federenergiespeicher
PCT/DE2019/000264 WO2020078493A1 (de) 2018-10-14 2019-10-13 Selbsteinzugsvorrichtung mit umgelenktem federenergiespeicher

Publications (2)

Publication Number Publication Date
EP3863473A1 EP3863473A1 (de) 2021-08-18
EP3863473B1 true EP3863473B1 (de) 2022-11-02

Family

ID=68426046

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19797545.1A Active EP3863473B1 (de) 2018-10-14 2019-10-13 Selbsteinzugsvorrichtung mit umgelenktem federenergiespeicher

Country Status (5)

Country Link
EP (1) EP3863473B1 (de)
DE (1) DE102018008206B3 (de)
ES (1) ES2937013T3 (de)
PL (1) PL3863473T3 (de)
WO (1) WO2020078493A1 (de)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202005014050U1 (de) * 2005-07-15 2007-01-04 Alfit Ag Verschiebungsautomatik für Möbelauszüge, insbesondere Schubladen
JP4806609B2 (ja) * 2005-11-21 2011-11-02 トックベアリング株式会社 引き込みユニット
DE102008021458A1 (de) * 2008-04-29 2010-01-07 Zimmer, Günther Beschleunigungsvorrichtung mit zwei Energiespeichern

Also Published As

Publication number Publication date
EP3863473A1 (de) 2021-08-18
PL3863473T3 (pl) 2023-04-24
ES2937013T3 (es) 2023-03-23
WO2020078493A1 (de) 2020-04-23
DE102018008206B3 (de) 2020-03-19

Similar Documents

Publication Publication Date Title
EP2120645B1 (de) Zugvorrichtung mit ab- oder umgelenkter zugfeder
EP3070248B1 (de) Kombinierte beschleunigungs- und verzögerungsvorrichtung mit überlastschutz
EP2013434B1 (de) Führungssystem mit beschleunigungs- und verzögerungsvorrichtung
EP2673443B1 (de) Beschleunigungs- und verzögerungsvorrichtung mit mitnahmelement-schwenkgelenk
EP3995657B1 (de) Türfeststeller
EP3070251A1 (de) Beschleunigungs- und verzögerungsvorrichtung mit geräuscharmer bewegung
EP3034750B1 (de) Türbetätiger
EP3478916B1 (de) Einzugsvorrichtung für objekte mit grosser massenträgheit
EP3863473B1 (de) Selbsteinzugsvorrichtung mit umgelenktem federenergiespeicher
EP3461980B1 (de) Auslöseeinheit und möbelstück mit einer derartigen einheit
EP3581746B1 (de) Kombinierte dämpfungs- und zuziehvorrichtung für eine mitteltür
DE102010047485A1 (de) Mitteltür-Zuziehvorrichtung
DE1915751C3 (de) Schwenklagerung für Türhaltebänder von Türfeststellern für Kraftwagentüren
DE102018008203B4 (de) Selbsteinzugsvorrichtung mit Speicherladevorrichtung
DE102014012961B3 (de) Einzugsvorrichtung mit Dämpfungsvorrichtung
EP2873793A1 (de) OBENTÜRSCHLIEßER
AT518621B1 (de) Stellantrieb
DE102008047708B4 (de) Scharnier
DE10011245C2 (de) Schiebetür zum Verschließen einer Wandöffnung
DE3120065A1 (de) Moebelscharnier
DE3109553A1 (de) Haltevorrichtung fuer eine schwenktuer
DE102011120231A1 (de) Kraftspeichereinrichtung für eine schwenkbar an einer Kraftfahrzeugkarosserie angeordnete Klappe
DE102022003806A1 (de) Einzugs- und Auszugsvorrichtung mit zwei schaltbaren Axialkupplungen
DE102022003805A1 (de) Einzugs- und Auszugsvorrichtung mit bidirektionalen Einzugsvorrichtungen
WO2020078494A1 (de) Verzögerungsvorrichtung mit mehrteiligem mitnahmeelement

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210511

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220524

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1528115

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019006163

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221102

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2937013

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230302

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230202

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230302

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230203

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230130

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019006163

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231023

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231102

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231030

Year of fee payment: 5

Ref country code: FR

Payment date: 20231024

Year of fee payment: 5

Ref country code: DE

Payment date: 20231101

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231002

Year of fee payment: 5