WO2020078291A1 - 一种提高相位测量精度的方法和装置 - Google Patents

一种提高相位测量精度的方法和装置 Download PDF

Info

Publication number
WO2020078291A1
WO2020078291A1 PCT/CN2019/110890 CN2019110890W WO2020078291A1 WO 2020078291 A1 WO2020078291 A1 WO 2020078291A1 CN 2019110890 W CN2019110890 W CN 2019110890W WO 2020078291 A1 WO2020078291 A1 WO 2020078291A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
frequency domain
sliding window
frequency
fitting
Prior art date
Application number
PCT/CN2019/110890
Other languages
English (en)
French (fr)
Inventor
章勇
石璟
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to US17/281,970 priority Critical patent/US11525849B2/en
Priority to JP2021519111A priority patent/JP6976485B2/ja
Priority to EP19874352.8A priority patent/EP3836454B1/en
Priority to KR1020217005707A priority patent/KR102303289B1/ko
Publication of WO2020078291A1 publication Critical patent/WO2020078291A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R25/00Arrangements for measuring phase angle between a voltage and a current or between voltages or currents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R25/00Arrangements for measuring phase angle between a voltage and a current or between voltages or currents
    • G01R25/04Arrangements for measuring phase angle between a voltage and a current or between voltages or currents involving adjustment of a phase shifter to produce a predetermined phase difference, e.g. zero difference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1657Implicit acknowledgement of correct or incorrect reception, e.g. with a moving window
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/24Testing correct operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/022Channel estimation of frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0083Signalling arrangements
    • H04L2027/0087Out-of-band signals, (e.g. pilots)

Definitions

  • the present application relates to the technical field of data processing, and in particular to a method for improving the accuracy of phase measurement and a device for improving the accuracy of phase measurement.
  • the receiving end usually uses a phase calibration factor to calibrate the phase of the received signal.
  • the existing method for determining the phase calibration factor is to linearly fit the phase of the communication system corresponding to the entire frequency band, and determine the phase calibration of the entire frequency band according to the fitting result.
  • Factor because the phase frequency characteristics of analog devices or transmission networks cannot be completely ideal, that is, the phase is not completely linear in the entire frequency band, so linear fitting the entire frequency band will cause errors and reduce the accuracy of phase calibration.
  • the embodiments of the present application provide a method for improving the accuracy of phase measurement to improve the accuracy of phase measurement.
  • the embodiments of the present application also provide a device for improving the accuracy of the phase measurement to ensure the implementation and application of the above method.
  • the present application discloses a method for improving the accuracy of phase measurement, which specifically includes receiving a measurement signal, wherein the measurement signal is generated according to a frequency domain calibration sequence, and the frequency domain calibration sequence includes N frequency domain calibration Signal, each frequency domain calibration signal corresponds to a specified frequency point, the specified frequency point belongs to a specified frequency band, and N is an integer greater than 1; frequency domain transformation is performed on the measurement signal to obtain a frequency domain measurement sequence, and the frequency domain measurement
  • the sequence includes N frequency domain measurement signals, and each frequency domain measurement signal corresponds to a specified frequency point; the phase corresponding to each frequency domain measurement signal is determined separately, and the phase between frequency domain measurement signals corresponding to two adjacent specified frequency points is determined Difference; based on the phase, phase difference, and window function, sliding window phase fitting is performed on the frequency domain measurement sequence to obtain phase fitting information corresponding to each sliding window; determining each according to the phase fitting information of each sliding window
  • the phase calibration information corresponding to the sliding window adopts the phase calibration information of each sliding window to form the phase calibration information in
  • the performing sliding window phase fitting on the frequency domain measurement sequence according to the phase, phase difference and window function to obtain phase fitting information corresponding to each sliding window includes: using a window function, according to Set a sliding step to slide on the frequency domain measurement sequence; after each sliding window obtains a corresponding sliding window, linearly fit the phase of each frequency domain measurement signal in the sliding window according to the phase and phase difference, Obtain the phase fitting information of each sliding window.
  • the phase fitting information includes a phase linear fitting function, and linearly fitting the phase of each frequency domain measurement signal in the sliding window according to the phase and the phase difference to obtain the phase of each sliding window
  • the fitting information includes: determining the initial phase value according to the phase of the frequency domain measurement signal corresponding to each frequency domain measurement signal in the sliding window; and determining the phase value of the frequency domain measurement signal corresponding to two adjacent specified frequency points in the sliding window
  • the difference determines the fitting slope; according to the initial value of the phase and the fitting slope, the phase linear fitting function corresponding to the sliding window is determined.
  • the separately determining the phase corresponding to each frequency domain measurement signal and determining the phase difference between the frequency domain measurement signals corresponding to two adjacent designated frequency points include: performing channel estimation on the frequency domain measurement sequence, Obtain the frequency domain channel response corresponding to each frequency domain measurement signal, and each frequency domain channel response corresponds to a specified frequency point; determine the phase corresponding to each frequency domain channel response; determine each frequency domain measurement based on the phase corresponding to each frequency domain channel response The phase corresponding to the signal and the phase difference between the measurement signals in the frequency domain corresponding to the two adjacent specified frequency points.
  • the determining the phase corresponding to each frequency domain channel response includes: performing time domain transformation on each frequency domain channel response to obtain a corresponding time domain function; performing windowing and noise suppression processing on each time domain function; Perform frequency domain transformation on each time-domain function after windowing and noise suppression processing to obtain each frequency-domain function; calculate the phase corresponding to each frequency-domain function.
  • An embodiment of the present application further provides an apparatus for improving phase measurement accuracy, which specifically includes: a signal receiving module configured to receive a measurement signal, wherein the measurement signal is generated according to a frequency domain calibration sequence, and the frequency domain calibration sequence includes N Frequency domain calibration signals, each frequency domain calibration signal corresponds to a designated frequency point, the designated frequency point belongs to a designated frequency band, and N is an integer greater than 1; the frequency domain transform module is configured to perform frequency domain transform on the measurement signal Obtaining a frequency domain measurement sequence, the frequency domain measurement sequence including N frequency domain measurement signals, each frequency domain measurement signal corresponding to a specified frequency point; a phase determination module configured to determine the phase corresponding to each frequency domain measurement signal, and Determine the phase difference between the frequency domain measurement signals corresponding to two adjacent specified frequency points; the phase fitting module is configured to perform sliding window phase simulation on the frequency domain measurement sequence according to the phase, phase difference and window function To obtain the phase fitting information corresponding to each sliding window; the calibration information determination module is configured to determine the pair of sliding windows based on the phase fitting information of each
  • the phase fitting module includes: a sliding module configured to use a window function to slide on the frequency domain measurement sequence according to a set sliding step; a phase fitting module configured to obtain a corresponding After the sliding window, the phase of each frequency domain measurement signal in each sliding window is linearly fitted according to the phase and the phase difference to obtain phase fitting information of each sliding window.
  • the phase fitting information includes a phase linear fitting function
  • the phase fitting module is specifically configured to determine the initial phase value according to the phase of the frequency domain measurement signal corresponding to each frequency domain measurement signal in the sliding window ; Determine the fitting slope according to the phase difference of the frequency domain measurement signals corresponding to the two adjacent specified frequency points in the sliding window; determine the linear fitting of the phase corresponding to the sliding window according to the initial value of the phase and the fitting slope function.
  • the phase determination module includes: a channel estimation module configured to perform channel estimation on the frequency domain measurement sequence to obtain a frequency domain channel response corresponding to each frequency domain measurement signal, and each frequency domain channel response corresponds to a specified Frequency point; response phase module, configured to determine the phase corresponding to each frequency domain channel response; signal phase determination module, configured to determine the phase corresponding to each frequency domain measurement signal and the adjacent two according to the phase corresponding to each frequency domain channel response
  • the specified frequency corresponds to the phase difference between the measured signals in the frequency domain.
  • the response phase module is specifically configured to perform time-domain transformation on each frequency-domain channel response to obtain a corresponding time-domain function; perform windowed noise suppression processing on each time-domain function separately; The processed time-domain functions are respectively transformed in the frequency domain to obtain each frequency-domain function; the phase corresponding to each frequency-domain function is calculated.
  • the embodiments of the present application include the following advantages:
  • the receiver may first perform frequency domain transformation on the measurement signal to obtain a frequency domain measurement sequence, and then separately determine the phase corresponding to each frequency domain measurement signal, and determine the two adjacent designations.
  • the frequency point corresponds to the phase difference between the measurement signals in the frequency domain; furthermore, in the phase fitting process, a sliding window phase fitting can be performed on the frequency domain measurement sequence according to the phase, phase difference and window function to obtain each Phase fitting information corresponding to the sliding window, where each sliding window can correspond to a sub-band in the specified frequency band, realizing the phase fitting of the phase within the sub-band each time; then according to the phase fitting of each sliding window
  • the information determines the phase calibration information corresponding to each sliding window.
  • phase calibration information of each sliding window is used to form the phase calibration information in the specified frequency band; that is, the phase calibration information of each sub-band is used to form the phase calibration information of the specified frequency band.
  • the phase of is more linear than the phase in the entire specified frequency band, so it is in line with the prior art to fit the entire specified frequency band once , Embodiments of the present application can reduce the fitting error, improve the accuracy of the calibration phase.
  • FIG. 1 is a step flowchart of an embodiment of a method for improving phase measurement accuracy of the present application
  • FIG. 2 is a flowchart of steps of an alternative embodiment of a method for improving phase measurement accuracy of the present application
  • 3a is a schematic diagram of a frequency domain calibration signal corresponding to a frequency position in a frequency domain calibration sequence according to an embodiment of the present application
  • 3b is a schematic diagram of a reference signal according to an embodiment of the present application.
  • 3c is a schematic diagram of a measurement signal according to an embodiment of the present application.
  • FIG. 3d is a schematic diagram of a frequency position of a frequency domain measurement signal in a frequency domain measurement sequence according to an embodiment of the present application
  • 3e is a schematic diagram of a sliding window according to an embodiment of the present application.
  • 3f is a schematic diagram of calculating a phase calibration factor at each frequency point in an actual sequence in the frequency domain according to an embodiment of the present application
  • FIG. 4 is a structural block diagram of an embodiment of an apparatus for improving phase measurement accuracy of the present application.
  • FIG. 5 is a structural block diagram of another embodiment of an apparatus for improving phase measurement accuracy of the present application.
  • FIG. 6 schematically shows a block diagram of a computing processing device for performing the method according to the present application.
  • FIG. 7 schematically shows a storage unit for holding or carrying program code implementing the method according to the present application.
  • the specified frequency band can be divided into multiple sub-bands, and then the phases in each sub-band are fitted separately to obtain phase calibration information corresponding to each sub-band, and then the Phase calibration information, which constitutes the phase calibration information of the specified frequency band; where the phase in each sub-band is more linear than the phase in the entire specified frequency band, so compared with the prior art of fitting the entire specified frequency band once
  • the embodiment of the present application can reduce the fitting error and improve the accuracy of the phase calibration.
  • FIG. 1 a flowchart of steps of an embodiment of a method for improving phase measurement accuracy of the present application is shown, which may specifically include the following steps:
  • Step 101 Receive a measurement signal, wherein the measurement signal is generated according to a frequency domain calibration sequence, and the frequency domain calibration sequence includes N frequency domain calibration signals, and each frequency domain calibration signal corresponds to a designated frequency point, and the designated frequency The point belongs to the specified frequency band, and N is an integer greater than 1.
  • a signal in a specified frequency band can be sent from a transmitter to a receiver, and the receiver can determine phase calibration information in the specified frequency band according to the received signal; wherein, the signal transmitted by the transmitter and the signal received by the receiver are Time domain signal, the specified frequency band can be specified, and can be set according to requirements; for example, both the receiver and the transmitter are configured as the fourth generation communication system (the 4th Generation communication system, 4G communication system), and the specified frequency band can be It is the frequency band corresponding to the 4G communication system.
  • the fourth generation communication system the 4th Generation communication system, 4G communication system
  • the transmitter can generate a time-domain signal according to a frequency-domain calibration sequence, and the frequency-domain calibration sequence can be composed of N frequency-domain calibration signals that are sequentially spaced at a set frequency; wherein, each frequency-domain calibration signal can correspond to a specified frequency band A specified frequency point, N is an integer greater than 1, and the set frequency can be set as required.
  • the transmitter can be based on the frequency domain
  • the time-domain signal generated by the calibration sequence is called the reference signal, and the time-domain signal received by the receiver is called the measurement signal.
  • Step 102 Perform frequency domain transformation on the measurement signal to obtain a frequency domain measurement sequence.
  • the frequency domain measurement sequence includes N frequency domain measurement signals, and each frequency domain measurement signal corresponds to a specified frequency point.
  • the receiver may perform frequency domain transformation on the measurement signal to obtain a corresponding frequency domain signal, wherein the frequency domain signal corresponding to the measurement signal may be a frequency domain sequence (in order to perform the measurement with the above frequency domain calibration sequence Differentiate, the frequency domain sequence may be called a frequency domain measurement sequence), and the frequency domain measurement sequence may be composed of frequency domain measurement signals corresponding to N specified frequency points. Then, the phase calibration information corresponding to the specified frequency band can be determined by analyzing and processing the frequency domain signal.
  • Step 103 Determine the phase corresponding to each frequency domain measurement signal, and determine the phase difference between the frequency domain measurement signals corresponding to two adjacent specified frequency points.
  • Step 104 Perform sliding window phase fitting on the frequency domain measurement sequence according to the phase, phase difference, and window function to obtain phase fitting information corresponding to each sliding window.
  • the phase corresponding to each frequency domain measurement signal in the frequency domain measurement sequence may be separately determined, and the phase between the frequency domain measurement signals corresponding to two adjacent designated frequency points Phase difference; and then phase fit the frequency domain measurement sequence according to the phase and the phase difference.
  • channel estimation may be performed on the frequency domain measurement sequence, and the phase and phase difference may be determined according to the result of the channel estimation.
  • a sliding window phase fitting method may be used to perform phase fitting on the frequency domain measurement sequence; wherein, the sliding window phase fitting may refer to using a window function to measure in the frequency domain Slide on the sequence, and then fit the phase of the frequency domain measurement sequence in the sliding window to the sliding window obtained after each window function sliding, to obtain phase fitting information corresponding to each sliding window.
  • the phase of the frequency domain measurement signal in each sliding window can be measured according to the phase corresponding to each frequency domain measurement signal in each sliding window and the phase difference between the frequency domain measurement signals corresponding to two adjacent specified frequency points Perform fitting;
  • the type of the window function can be set according to requirements, such as Hamming window, Hanning window, etc., which is not limited in this application.
  • the corresponding sliding window can correspond to a sub-band, that is, in the process of the window function sliding on the frequency domain measurement sequence, the specified frequency band can be divided into multiple sub-bands; therefore, the sliding window
  • the corresponding phase fitting information is also the phase fitting information corresponding to the corresponding sub-band, and each phase fitting information may correspond to one sub-band.
  • Step 105 Determine the phase calibration information corresponding to each sliding window according to the phase fitting information of each sliding window, and use the phase calibration information of each sliding window to compose the phase calibration information in the specified frequency band.
  • the receiver can calibrate the phase of the received signal according to the phase calibration information in the specified frequency band.
  • the receiver may first perform frequency domain transformation on the measurement signal to obtain a frequency domain measurement sequence, and then separately determine the phase corresponding to each frequency domain measurement signal, and determine the two adjacent designations.
  • the frequency point corresponds to the phase difference between the measurement signals in the frequency domain; furthermore, in the phase fitting process, a sliding window phase fitting can be performed on the frequency domain measurement sequence according to the phase, phase difference and window function to obtain each Phase fitting information corresponding to the sliding window, where each sliding window can correspond to a sub-band in the specified frequency band, realizing the phase fitting of the phase within the sub-band each time; then according to the phase fitting of each sliding window
  • the information determines the phase calibration information corresponding to each sliding window.
  • phase calibration information of each sliding window is used to form the phase calibration information in the specified frequency band; that is, the phase calibration information of each sub-band is used to form the phase calibration information of the specified frequency band.
  • the phase of is more linear than the phase in the entire specified frequency band, so it is in line with the prior art to fit the entire specified frequency band once , Embodiments of the present application can reduce the fitting error, improve the accuracy of the calibration phase.
  • each sub-band in the specified frequency band may be regarded as linear, and then phase fitting the frequency domain measurement sequence, where phase fitting the frequency domain measurement sequence may It is a linear fit of the phase.
  • FIG. 2 shows a flowchart of steps of another alternative embodiment of the method for improving the accuracy of phase measurement of the present application, which may specifically include the following steps:
  • Step 201 Receive a measurement signal.
  • Step 202 Perform frequency domain transformation on the measurement signal to obtain a frequency domain measurement sequence, where the frequency domain measurement sequence includes N frequency domain measurement signals.
  • the transmitter may determine the frequency domain calibration sequence, and perform a time domain transformation on the frequency domain calibration sequence to obtain a reference signal and transmit it, and then the receiver may receive the corresponding measurement signal.
  • the frequency difference between two adjacent frequency domain calibration signals in the frequency domain calibration sequence can be set to the set frequency.
  • the position of the corresponding frequency point of each frequency domain calibration signal in the frequency domain calibration sequence is shown in FIG. 3a.
  • the frequency domain signal can be transformed into the frequency domain signal by frequency domain measurement.
  • the frequency domain signal can be a frequency domain measurement sequence, and the frequency domain measurement sequence can include N frequency domain measurement signals; in turn, each frequency in the frequency domain sequence can be Domain to measure the phase of the signal for fitting.
  • the receiver can perform frequency domain transformation on the measurement signal of FIG.
  • the phase of each frequency domain measurement signal in the frequency domain measurement sequence can be determined first, and then the frequency domain measurement sequence can be sliding window according to the phase of each frequency domain measurement signal Phase fitting to determine the phase fitting information of each sliding window.
  • the step of determining the phase of each frequency-domain measurement signal in the frequency-domain measurement sequence refer to steps 203-205.
  • Step 203 Perform channel estimation on the frequency domain measurement sequence to obtain a frequency domain channel response corresponding to each frequency domain measurement signal.
  • Step 204 Determine the phase corresponding to each frequency domain channel response.
  • Step 205 Determine the phase corresponding to each frequency domain measurement signal and the phase difference between the frequency domain measurement signals corresponding to two adjacent designated frequency points according to the phase corresponding to each frequency domain channel response.
  • channel estimation may be performed on the frequency domain measurement sequence, and the frequency domain channel response corresponding to each frequency domain measurement signal in the frequency domain measurement sequence may be calculated; and then the frequency domain channel response corresponding to each frequency domain measurement signal To determine the phase of each frequency domain measurement signal.
  • each frequency domain measurement signal in the frequency domain measurement sequence can be multiplied with the frequency domain calibration signal of the corresponding frequency in the frequency domain calibration sequence to obtain the frequency domain channel response corresponding to each frequency domain measurement signal.
  • the phase corresponding to each frequency domain channel response can be calculated, and the phase of each frequency domain channel response can be used as the phase of the corresponding frequency domain measurement signal; and the phase difference between the frequency domain channel responses corresponding to two adjacent specified frequency points can be calculated.
  • the phase difference is taken as the phase difference between the frequency-domain measurement signals corresponding to the two adjacent specified frequency points.
  • Step 41 Perform time domain transformation on each frequency domain channel response to obtain a corresponding time domain function.
  • Step 42 Perform windowing and noise suppression processing on each time-domain function separately.
  • Step 43 Perform frequency domain transformation on each time domain function after windowing and noise suppression processing to obtain each frequency domain function.
  • Step 44 Calculate the phase corresponding to each frequency domain function.
  • the frequency domain channel response corresponding to the i-th frequency domain measurement signal in the frequency domain measurement sequence can be recorded as H est (i), and each frequency domain channel response after the second frequency domain channel response starts, the corresponding frequency is ⁇ f * i + f init , ⁇ f is the set frequency, and f init is the frequency of the first frequency domain channel response; where, i is an integer greater than 0 and not greater than N.
  • each frequency domain channel response can be recorded as h est (i); then each time domain function h est (i) can be windowed separately Noise processing, get the time-domain function after windowing and noise reduction, recorded as h ' est (i);
  • a simple time-domain windowing method is as follows: retain N / 4 samples around the peak, you can take the peak Before N * 1/16, and after peak N * 3/16, the rest are all set to 0; the embodiments of the present application do not limit the window function and method of windowing noise reduction processing.
  • each time-domain function after windowing and noise suppression processing is separately transformed in the frequency domain to obtain the corresponding frequency-domain function, which is recorded as H ' est (i); then each frequency-domain function H' est (i) corresponding
  • the phase of is denoted as ⁇ (i), and the phase difference ⁇ (j) between the frequency domain functions corresponding to two adjacent frequency points is calculated, where j is an integer greater than 0 and not greater than N-1.
  • the phase ⁇ (i) corresponding to each frequency domain measurement signal and the phase difference ⁇ (j) between the frequency domain measurement signals corresponding to two adjacent specified frequency points are obtained.
  • Step 206 Use the window function to slide on the frequency domain measurement sequence according to the set sliding step.
  • Step 207 After each sliding window obtains a corresponding sliding window, linearly fit the phase of each frequency domain measurement signal in the sliding window according to the phase and the phase difference, to obtain phase fitting information of each sliding window.
  • a window function can be used to slide on the frequency domain measurement sequence, and after sliding the window function once, the phase of the measurement signal in each frequency domain in the sliding window and the corresponding frequency of two adjacent frequency points can be used The phase difference of the domain measurement signal is fitted to the phase of each frequency domain measurement signal in the sliding window to determine the phase fitting information corresponding to the sliding window.
  • the length of the window function can be set according to requirements such as n * ⁇ f, and the sliding distance of the window function on the frequency domain measurement sequence can become the sliding distance, or it can be set according to requirements such as m * ⁇ f; where m and n are greater than 0 Integer, m ⁇ n, n is much smaller than N.
  • the phase of the frequency domain measurement signal in each sliding window can be regarded as linear, so the phase of the frequency domain measurement signal in each sliding window can be linearly fitted to obtain the corresponding phase fitting information.
  • Sub-step 71 For each sliding window, determine the initial value of the phase according to the phase of each frequency domain measurement signal in the sliding window.
  • Substep 72 Determine the fitting slope according to the phase difference of the frequency domain measurement signals corresponding to the two adjacent specified frequency points in the sliding window.
  • Sub-step 73 Determine the phase linear fitting function corresponding to the sliding window according to the initial phase value and the fitting slope.
  • the initial value of the phase can be determined according to the phase of each frequency domain measurement signal in the sliding window; wherein, the average of the phase corresponding to each frequency domain measurement signal in the sliding window can be calculated Value, the average value of the phase is taken as the initial value of the phase, that is, ⁇ init .
  • the fitting slope can be determined according to the phase difference of the frequency domain measurement signals corresponding to two adjacent specified frequency points in the sliding window; wherein, the phase difference of the frequency domain measurement signals corresponding to any two adjacent specified frequency points can be calculated
  • the average value of the phase difference is used as the fitting slope, that is, the above k ⁇ .
  • Step 208 Determine the phase calibration information corresponding to each sliding window according to the phase fitting information of each sliding window, and use the phase calibration information of each sliding window to compose the phase calibration information in the specified frequency band.
  • CORDIC Coordinat Rotation Digital Computer
  • the phase calibration information in the specified frequency band includes: ⁇ w 1 ((L w / 2) + ⁇ L), w 2 ((L w / 2) + ⁇ L), w 3 ((L w / 2) + ⁇ L), ..., w (Nn) / m ((L w / 2) + ⁇ L) ⁇ .
  • the receiver when the transmitter transmits the actual signal in the specified frequency band, the receiver can calculate the phase calibration factor corresponding to each frequency point in the specified frequency band according to the phase calibration information corresponding to the specified frequency band, and then The phase calibration factor corresponding to the frequency point performs phase calibration on the received signal.
  • phase calibration factor corresponding to each frequency point for a sliding window at the edge of the bandwidth of the specified frequency band, it is necessary to calculate the (n + m) / 2 * ⁇ f frequency points corresponding to the sliding window near the upper or lower edge
  • the phase calibration factor of, for a sliding window that is at the non-edge of the bandwidth of the specified frequency band calculate the phase calibration factor corresponding to the m * ⁇ f frequency points in the middle of the sliding window.
  • the receiver may first perform frequency domain transformation on the measurement signal to obtain a frequency domain measurement sequence, and then separately determine the phase corresponding to each frequency domain measurement signal, and determine the two adjacent designations.
  • the frequency point corresponds to the phase difference between the measurement signals in the frequency domain; furthermore, in the phase fitting process, a sliding window phase fitting can be performed on the frequency domain measurement sequence according to the phase, phase difference and window function to obtain each Phase fitting information corresponding to the sliding window, where each sliding window can correspond to a sub-band in the specified frequency band, realizing the phase fitting of the phase within the sub-band each time; then according to the phase fitting of each sliding window
  • the information determines the phase calibration information corresponding to each sliding window.
  • phase calibration information of each sliding window is used to form the phase calibration information in the specified frequency band; that is, the phase calibration information of each sub-band is used to form the phase calibration information of the specified frequency band.
  • the phase of is more linear than the phase in the entire specified frequency band, so it is in line with the prior art to fit the entire specified frequency band once , Embodiments of the present application can reduce the fitting error, improve the accuracy of the calibration phase.
  • the phase corresponding to the frequency domain channel response corresponding to each frequency domain measurement signal in the frequency domain measurement sequence can be determined to determine the phase corresponding to each frequency domain measurement signal, and the frequency domain corresponding to two adjacent designated frequency points The phase difference between the measured signals; where, in determining the phase of the frequency domain channel response corresponding to each frequency domain measurement signal, the time domain transform can be performed on each frequency domain channel response to obtain the corresponding time domain function, respectively
  • Each time-domain function performs windowing and noise suppression processing, and performs frequency-domain transformation on each time-domain function after windowing and noise-reduction processing respectively to obtain each frequency-domain function and calculate the phase corresponding to each frequency-domain function.
  • windowing the frequency domain channel response function to suppress noise the accuracy of the phase corresponding to each frequency domain channel response is improved, thereby further improving the accuracy of the phase calibration.
  • FIG. 4 shows a structural block diagram of an embodiment of an apparatus for improving phase measurement accuracy of the present application, which may specifically include the following modules:
  • the signal receiving module 401 is configured to receive a measurement signal, wherein the measurement signal is generated according to a frequency domain calibration sequence, and the frequency domain calibration sequence includes N frequency domain calibration signals, each frequency domain calibration signal corresponding to a specified frequency point, The specified frequency point belongs to a specified frequency band, and N is an integer greater than 1;
  • the frequency domain transformation module 402 is configured to perform frequency domain transformation on the measurement signal to obtain a frequency domain measurement sequence, where the frequency domain measurement sequence includes N frequency domain measurement signals, and each frequency domain measurement signal corresponds to a specified frequency point;
  • the phase determination module 403 is configured to separately determine the phase corresponding to each frequency domain measurement signal and determine the phase difference between the frequency domain measurement signals corresponding to two adjacent specified frequency points;
  • the phase fitting module 404 is configured to perform sliding window phase fitting on the frequency domain measurement sequence according to the phase, phase difference and window function to obtain phase fitting information corresponding to each sliding window;
  • the calibration information determination module 405 is configured to determine the phase calibration information corresponding to each sliding window according to the phase fitting information of each sliding window, and use the phase calibration information of each sliding window to compose the phase calibration information in the specified frequency band.
  • FIG. 5 a structural block diagram of another embodiment of an apparatus for improving phase measurement accuracy of the present application is shown.
  • the phase fitting module 404 includes:
  • the sliding module 4041 is configured to use a window function to slide on the frequency domain measurement sequence according to a set sliding step;
  • the phase fitting module 4042 is configured to linearly fit the phase of each frequency domain measurement signal in each sliding window according to the phase and the phase difference according to the phase and the phase difference, to obtain the phase of each sliding window. ⁇ ⁇ He information.
  • the phase fitting information includes a phase linear fitting function
  • the phase fitting module 4042 is specifically configured to determine the initial phase value according to the phase of the frequency domain measurement signal corresponding to each frequency domain measurement signal in the sliding window; according to the frequency corresponding to the two adjacent specified frequency points in the sliding window The phase difference of the signal is measured in the domain to determine the fitting slope; the phase linear fitting function corresponding to the sliding window is determined according to the initial value of the phase and the fitting slope.
  • the phase determination module 403 includes:
  • the channel estimation module 4031 is configured to perform channel estimation on the frequency domain measurement sequence to obtain a frequency domain channel response corresponding to each frequency domain measurement signal, and each frequency domain channel response corresponds to a specified frequency point;
  • the response phase module 4032 is configured to determine the phase corresponding to each frequency domain channel response
  • the signal phase determination module 4033 is configured to determine the phase corresponding to each frequency domain measurement signal and the phase difference between the frequency domain measurement signals corresponding to two adjacent specified frequency points according to the phase corresponding to each frequency domain channel response.
  • the response phase module 4032 is specifically configured to perform time domain transformation on each frequency domain channel response to obtain a corresponding time domain function; and perform windowing and noise suppression processing on each time domain function ; Perform frequency domain transformation on each time-domain function after windowing and noise suppression processing to obtain each frequency-domain function; calculate the phase corresponding to each frequency-domain function.
  • the receiver may first perform frequency domain transformation on the measurement signal to obtain a frequency domain measurement sequence, and then separately determine the phase corresponding to each frequency domain measurement signal, and determine the two adjacent designations.
  • the frequency point corresponds to the phase difference between the measurement signals in the frequency domain; furthermore, in the phase fitting process, a sliding window phase fitting can be performed on the frequency domain measurement sequence according to the phase, phase difference and window function to obtain each Phase fitting information corresponding to the sliding window, where each sliding window can correspond to a sub-band in the specified frequency band, realizing the phase fitting of the phase within the sub-band each time; then according to the phase fitting of each sliding window
  • the information determines the phase calibration information corresponding to each sliding window.
  • phase calibration information of each sliding window is used to form the phase calibration information in the specified frequency band; that is, the phase calibration information of each sub-band is used to form the phase calibration information of the specified frequency band.
  • the phase of is more linear than the phase in the entire specified frequency band, so it is in line with the prior art to fit the entire specified frequency band once , Embodiments of the present application can reduce the fitting error, improve the accuracy of the calibration phase.
  • the description is relatively simple, and the relevant part can be referred to the description of the method embodiment.
  • the device embodiments described above are only schematic, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in One place, or it can be distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of this embodiment. Those of ordinary skill in the art can understand and implement without paying creative labor.
  • the various component embodiments of the present application may be implemented by hardware, or implemented by software modules running on one or more processors, or implemented by a combination thereof.
  • a microprocessor or a digital signal processor (DSP) may be used to implement some or all functions of some or all components in the computing processing device according to the embodiments of the present application.
  • DSP digital signal processor
  • the present application may also be implemented as a device or device program (e.g., computer program and computer program product) for performing part or all of the methods described herein.
  • Such a program implementing the present application may be stored on a computer-readable medium, or may have the form of one or more signals.
  • Such a signal can be downloaded from an Internet website, or provided on a carrier signal, or provided in any other form.
  • FIG. 6 shows a computing processing device that can implement the method according to the present application.
  • the computing processing device traditionally includes a processor 1010 and a computer program product or computer readable medium in the form of a memory 1020.
  • the memory 1020 may be an electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the memory 1020 has a storage space 1030 for the program code 1031 for performing any method steps in the above method.
  • the storage space 1030 for program codes may include respective program codes 1031 for implementing various steps in the above method, respectively. These program codes can be read from or written into one or more computer program products.
  • Such computer program products include program code carriers such as hard disks, compact disks (CDs), memory cards or floppy disks.
  • Such a computer program product is usually a portable or fixed storage unit as described with reference to FIG. 7.
  • the storage unit may have storage sections, storage spaces, and the like arranged similarly to the memory 1020 in the computing processing device of FIG. 6.
  • the program code may be compressed in an appropriate form, for example.
  • the storage unit includes computer readable code 1031 ', that is, code that can be read by, for example, a processor such as 1010, which when executed by a computing processing device causes the computing processing device to perform The various steps.
  • any reference signs between parentheses should not be constructed as limitations on the claims.
  • the word “comprising” does not exclude the presence of elements or steps not listed in a claim.
  • the word “a” or “one” before an element does not exclude the presence of multiple such elements.
  • the application can be realized by means of hardware including several different elements and by means of a suitably programmed computer. In the unit claims enumerating several devices, several of these devices may be embodied by the same hardware item.
  • the use of the words first, second, and third does not indicate any order. These words can be interpreted as names.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Measuring Frequencies, Analyzing Spectra (AREA)
  • Measuring Phase Differences (AREA)

Abstract

一种提高相位测量精度的方法和装置,其中,所述方法包括:接收测量信号(101);对所述测量信号进行频域变换得到频域测量序列(102);分别确定各频域测量信号对应的相位,以及确定相邻两个指定频点对应频域测量信号之间的相位差(103);依据所述相位、相位差和窗函数,对所述频域测量序列进行滑窗式相位拟合,得到各滑窗对应的相位拟合信息(104);依据各滑窗的相位拟合信息确定各滑窗对应的相位校准信息,采用各滑窗的相位校准信息组成指定频段内的相位校准信息(105);进而减少拟合误差,提高相位校准的精度。

Description

一种提高相位测量精度的方法和装置
本申请要求在2018年10月19日提交中国专利局、申请号为201811224077.1、发明名称为“一种提高相位测量精度的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及数据处理技术领域,特别是涉及一种提高相位测量精度的方法和一种提高相位测量精度的装置。
背景技术
信号从发射机发出到接收机到接收到的过程中,由于信道环境的影响使得信号出现损耗、衰落等等现象,造成接收机接收到的无线信号与发射机发射的无线信号存在相位偏移。因此为了能在接收端准确的恢复发射端的发送信号,需要在接收端对接收的信号进行相位的校准。
接收端通常会采用相位校准因子来校准接收信号的相位,其中,现有确定相位校准因子的方法是,对通信系统对应整个频段的相位进行线性拟合,依据拟合结果确定整个频段的相位校准因子;由于模拟器件或传输网络的相频特性并不能做到完全理想,即相位在整个频段内并非完全线性的,因此对整个频段进行线性拟合,会引起误差,降低了相位校准的精度。
发明内容
本申请实施例提供一种提高相位测量精度的方法,以提高相位相位测量精度。
相应的,本申请实施例还提供了一种提高相位测量精度的装置,用以保证上述方法的实现及应用。
为了解决上述问题,本申请公开了一种提高相位测量精度的方法,具体包括:接收测量信号,其中,所述测量信号按照频域校准序列生成,所述频域校准序列包括N个频域校准信号,每个频域校准信号对应一个指定频点, 所述指定频点属于指定频段,N为大于1的整数;对所述测量信号进行频域变换得到频域测量序列,所述频域测量序列包括N个频域测量信号,每个频域测量信号对应一个指定频点;分别确定各频域测量信号对应的相位,以及确定相邻两个指定频点对应频域测量信号之间的相位差;依据所述相位、相位差和窗函数,对所述频域测量序列进行滑窗式相位拟合,得到各滑窗对应的相位拟合信息;依据各滑窗的相位拟合信息确定各滑窗对应的相位校准信息,采用各滑窗的相位校准信息组成指定频段内的相位校准信息。
可选地,所述依据所述相位、相位差和窗函数,对所述频域测量序列进行滑窗式相位拟合,得到各滑窗对应的相位拟合信息,包括:采用窗函数,按照设定滑动步长在所述频域测量序列上滑动;每次滑动得到对应的滑窗后,依据所述相位和相位差对所述滑窗内各频域测量信号的相位进行线性拟合,得到各滑窗的相位拟合信息。
可选地,所述相位拟合信息包括相位线性拟合函数,所述依据所述相位和相位差对所述滑窗内各频域测量信号的相位进行线性拟合,得到各滑窗的相位拟合信息,包括:依据所述滑窗内各频域测量信号对应频域测量信号的相位,确定相位初始值;依据所述滑窗内相邻两个指定频点对应频域测量信号的相位差,确定拟合斜率;依据所述相位初始值和拟合斜率,确定所述滑窗对应的相位线性拟合函数。
可选地,所述分别确定各频域测量信号对应的相位,以及确定相邻两个指定频点对应频域测量信号之间的相位差,包括:对所述频域测量序列进行信道估计,得到各频域测量信号对应的频域信道响应,每个频域信道响应对应一个指定频点;确定各频域信道响应对应的相位;依据各频域信道响应对应的相位,确定各频域测量信号对应的相位以及相邻两个指定频点对应频域测量信号之间的相位差。
可选地,所述确定各频域信道响应对应的相位,包括:分别对各频域信道响应进行时域变换,得到对应的时域函数;分别对各时域函数进行加窗抑噪处理;对加窗抑噪处理后的各时域函数分别进行频域变换,得到各频域函数;计算各频域函数对应的相位。
本申请实施例还提供了一种提高相位测量精度的装置,具体包括:信号 接收模块,配置为接收测量信号,其中,所述测量信号按照频域校准序列生成,所述频域校准序列包括N个频域校准信号,每个频域校准信号对应一个指定频点,所述指定频点属于指定频段,N为大于1的整数;频域变换模块,配置为对所述测量信号进行频域变换得到频域测量序列,所述频域测量序列包括N个频域测量信号,每个频域测量信号对应一个指定频点;相位确定模块,配置为分别确定各频域测量信号对应的相位,以及确定相邻两个指定频点对应频域测量信号之间的相位差;相位拟合模块,配置为依据所述相位、相位差和窗函数,对所述频域测量序列进行滑窗式相位拟合,得到各滑窗对应的相位拟合信息;校准信息确定模块,配置为依据各滑窗的相位拟合信息确定各滑窗对应的相位校准信息,采用各滑窗的相位校准信息组成指定频段内的相位校准信息。
可选地,所述相位拟合模块包括:滑动模块,配置为采用窗函数,按照设定滑动步长在所述频域测量序列上滑动;相位拟合模块,配置为每次滑动得到对应的滑窗后,依据所述相位和相位差对每个滑窗内各频域测量信号的相位进行线性拟合,得到各滑窗的相位拟合信息。
可选地,所述相位拟合信息包括相位线性拟合函数,所述相位拟合模块,具体配置为依据所述滑窗内各频域测量信号对应频域测量信号的相位,确定相位初始值;依据所述滑窗内相邻两个指定频点对应频域测量信号的相位差,确定拟合斜率;依据所述相位初始值和拟合斜率,确定所述滑窗对应的相位线性拟合函数。
可选地,所述相位确定模块包括:信道估计模块,配置为对所述频域测量序列进行信道估计,得到各频域测量信号对应的频域信道响应,每个频域信道响应对应一个指定频点;响应相位模块,配置为确定各频域信道响应对应的相位;信号相位确定模块,配置为依据各频域信道响应对应的相位,确定各频域测量信号对应的相位以及相邻两个指定频点对应频域测量信号之间的相位差。
可选地,所述响应相位模块,具体配置为分别对各频域信道响应进行时域变换,得到对应的时域函数;分别对各时域函数进行加窗抑噪处理;对加窗抑噪处理后的各时域函数分别进行频域变换,得到各频域函数;计算各频 域函数对应的相位。
与现有技术相比,本申请实施例包括以下优点:
本申请实施例中,接收机在接收测量信号后,可以先对所述测量信号进行频域变换得到频域测量序列,然后分别确定各频域测量信号对应的相位,以及确定相邻两个指定频点对应频域测量信号之间的相位差;进而在相位拟合过程中,可以依据所述相位、相位差和窗函数,对所述频域测量序列进行滑窗式相位拟合,得到各滑窗对应的相位拟合信息,其中,每个滑窗可以对应指定频段中的一个子频段,实现了每次对子频段内的相位进行相位拟合;然后再依据各滑窗的相位拟合信息确定各滑窗对应的相位校准信息,采用各滑窗的相位校准信息组成指定频段内的相位校准信息;即采用各子频段的相位校准信息组成指定频段的相位校准信息,由于各个子频段内的相位相对于整个指定频段内的相位,更趋于线性,因此与现有技术对整个指定频段进行一次拟合相比,本申请实施例能够减少拟合误差,提高相位校准的精度。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请的一种提高相位测量精度的方法实施例的步骤流程图;
图2是本申请的一种提高相位测量精度的方法可选实施例的步骤流程图;
图3a是本申请实施例的一种频域校准序列中频域校准信号对应频率位置的示意图;
图3b是本申请实施例的一种参考信号的示意图;
图3c是本申请实施例的一种测量信号的示意图;
图3d是本申请实施例的一种频域测量序列中频域测量信号对应频率位置的示意图;
图3e是本申请实施例的一种滑窗示意图;
图3f是本申请实施例的一种计算频域实际序列中各频点的相位校准因子的示意图;
图4是本申请的一种提高相位测量精度的装置实施例的结构框图;
图5是本申请的另一种提高相位测量精度的装置实施例的结构框图;
图6示意性地示出了用于执行根据本申请的方法的计算处理设备的框图;以及
图7示意性地示出了用于保持或者携带实现根据本申请的方法的程序代码的存储单元。
具体实施例
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的核心构思之一在于,可以将指定频段划分为多个子频段,然后分别对每个子频段内的相位进行拟合,得到各子频段对应的相位校准信息,再采用各子频段的相位校准信息,组成该指定频段的相位校准信息;其中,各个子频段内的相位相对于整个指定频段内的相位,更趋于线性,因此与现有技术对整个指定频段进行一次拟合相比,本申请实施例能够减少拟合误差,提高相位校准的精度。
参照图1,示出了本申请的一种提高相位测量精度的方法实施例的步骤流程图,具体可以包括如下步骤:
步骤101、接收测量信号,其中,所述测量信号按照频域校准序列生成,所述频域校准序列包括N个频域校准信号,每个频域校准信号对应一个指定频点,所述指定频点属于指定频段,N为大于1的整数。
本申请实施例中,可以从发射机向接收机发送指定频段内的信号,接收机可以依据接收的信号确定指定频段内的相位校准信息;其中,发射机发射 的信号和接收机接收的信号是时域信号,所述指定频段可以指定的频段,可以按照需求设置;例如接收机和发射机均配置为第四代通信系统(the 4th Generation communication system,4G通信系统)中,所述指定频段可以是4G通信系统对应的频段。其中,发射机可以按照频域校准序列生成时域信号,所述频域校准序列可以由依次间隔设定频率的N个频域校准信号组成;其中,每个频域校准信号可以对应指定频段内的一个指定频点,N为大于1的整数,所述设定频率可以按照需求设置。本申请实施例中,由于信号在传输过程中,会受到传输介质中多种因素的影响,使得接收机接收到的信号与发射机发射的信号存在不完全相同;因此可以将发射机依据频域校准序列生成的时域信号称为参考信号,将接收机接收到的时域信号称为测量信号。
步骤102、对所述测量信号进行频域变换得到频域测量序列,所述频域测量序列包括N个频域测量信号,每个频域测量信号对应一个指定频点。
接收机接收到测量信号后,可以对所述测量信号进行频域变换得到对应的频域信号,其中,所述测量信号对应的频域信号可以是频域序列(为了与上述频域校准序列进行区分,该频域序列可以称为频域测量序列),所述频域测量序列可以是由N个指定频点对应的频域测量信号组成。然后可以通过对所述频域信号的分析处理,确定指定频段对应的相位校准信息。
步骤103、分别确定各频域测量信号对应的相位,以及确定相邻两个指定频点对应频域测量信号之间的相位差。
步骤104、依据所述相位、相位差和窗函数,对所述频域测量序列进行滑窗式相位拟合,得到各滑窗对应的相位拟合信息。
本申请实施例在确定测量信号对应的频域测量序列后,可以先分别确定频域测量序列中各频域测量信号对应的相位,以及相邻两个指定频点对应频域测量信号之间的相位差;然后再依据所述相位和相位差,对所述频域测量序列进行相位拟合。例如,可以对所述频域测量序列进行信道估计,得依据所述信道估计的结果确定所述相位和相位差。
本申请实施例中,可以采用滑窗式相位拟合的方法,对所述频域测量序列进行相位拟合;其中,所述滑窗式相位拟合可以是指,采用窗函数在频域测量序列上滑动,然后对每次窗函数滑动后得到的滑窗,对该滑窗内的频域 测量序列的相位进行拟合,得到各个滑窗对应的相位拟合信息。其中,可以依据每个滑窗内的各频域测量信号对应的相位,以及相邻两个指定频点对应频域测量信号之间的相位差,对该滑窗内的频域测量信号的相位进行拟合;所述窗函数的类型可以按照需求设置,如汉明窗、汉宁窗等等,本申请对此不作限制。其中,窗函数每在频域测量序列滑动一次,对应的滑窗可以对应一个子频段,即窗函数在频域测量序列上滑动的过程中,可以将指定频段划分为多个子频段;因此滑窗对应的相位拟合信息,也是对应子频段对应的相位拟合信息,每个相位拟合信息可以与一个子频段对应。
步骤105、依据各滑窗的相位拟合信息确定各滑窗对应的相位校准信息,采用各滑窗的相位校准信息组成指定频段内的相位校准信息。
针对每个滑窗,可以依据该滑窗的相位拟合信息,确定其对应的相位校准信息,然后将各滑窗的相位校准信息进行组合,可得到指定频段内的相位校准信息;进而在实际应用过程中,接收机接收到发射机发射的指定频段的信号后,可以依据指定频段内的相位校准信息对接收到信号的相位进行校准。
本申请实施例中,接收机在接收测量信号后,可以先对所述测量信号进行频域变换得到频域测量序列,然后分别确定各频域测量信号对应的相位,以及确定相邻两个指定频点对应频域测量信号之间的相位差;进而在相位拟合过程中,可以依据所述相位、相位差和窗函数,对所述频域测量序列进行滑窗式相位拟合,得到各滑窗对应的相位拟合信息,其中,每个滑窗可以对应指定频段中的一个子频段,实现了每次对子频段内的相位进行相位拟合;然后再依据各滑窗的相位拟合信息确定各滑窗对应的相位校准信息,采用各滑窗的相位校准信息组成指定频段内的相位校准信息;即采用各子频段的相位校准信息组成指定频段的相位校准信息,由于各个子频段内的相位相对于整个指定频段内的相位,更趋于线性,因此与现有技术对整个指定频段进行一次拟合相比,本申请实施例能够减少拟合误差,提高相位校准的精度。
本申请的另一个实施例中,可以将指定频段中的各个子频段看成是线性的,然后再对所述频域测量序列进行相位拟合,其中,对频域测量序列进行相位拟合可以是相位的线性拟合。
参照图2,示出了本申请的另一种提高相位测量精度的方法可选实施例的步骤流程图,具体可以包括如下步骤:
步骤201、接收测量信号。
步骤202、对所述测量信号进行频域变换得到频域测量序列,所述频域测量序列包括N个频域测量信号。
本申请实施例中,发射机可以确定频域校准序列,通过对所述频域校准序列进行时域变换,得到参考信号并发射,进而接收机可以接收到对应的测量信号。其中,频域校准序列中相邻两个频域校准信号的频率差值可以设定为设定频率,频域校准序列中各频域校准信号对应频点的位置如图3a所示,黑色方块是频域校准序列中频域校准信号对应频点的位置,白色方块是其他频点的位置;其中,Δf为设定频率,Δf=4*Δf res,Δf res是实际应用中信号的频率间隔。对图3a对应的频域校准序列进行时域变换,可以得到如3b所示的参考信号,发射机可以发射图3b所示的参考信号,对应的,接收机可以接收到的测量信号如图3c所示;其中,图3b与图3c中的信号存在差异。
然后可以对测量信号进行频域变换得到频域信号,所述频域信号可以是频域测量序列,所述频域测量序列可以包括N个频域测量信号;进而可以对频域序列中各频域测量信号的相位进行拟合。例如,接收机接收到图3c的测量信号后,可以对图3c的测量信号进行频域变换,得到对应的频域测量序列;其中,频域测量序列中各频域测量信号对应频点的位置如图3d所示;其中图3d中各频域测量信号对应频点的位置,与图3a中各频域校准信号对应频点的位置相同,但各频域测量信号与对应频率的频域校准信号存在差异(图中未示出)。
其中,在对频域测量序列进行相位拟合的过程中,可以先确定频域测量序列中各频域测量信号的相位,再依据各频域测量信号的相位,对频域测量序列进行滑窗式相位拟合,确定各滑窗的相位拟合信息。其中,确定频域测量序列中各频域测量信号的相位的步骤,可以具体参照步骤203-步骤205。
步骤203、对所述频域测量序列进行信道估计,得到各频域测量信号对应的频域信道响应。
步骤204、确定各频域信道响应对应的相位。
步骤205、依据各频域信道响应对应的相位,确定各频域测量信号对应的相位以及相邻两个指定频点对应频域测量信号之间的相位差。
本申请实施例中,可以对所述频域测量序列进行信道估计,计算频域测量序列中各频域测量信号对应的频域信道响应;然后再依据各频域测量信号对应的频域信道响应,确定各频域测量信号的相位。其中,可以将频域测量序列中各频域测量信号,与频域校准序列中对应频率的频域校准信号相乘,可以得到各频域测量信号对应的频域信道响应。然后可以计算各频域信道响应对应的相位,将各频域信道响应的相位作为对应频域测量信号的相位;以及计算相邻两个指定频点对应频域信道响应之间的相位差,将该相位差作为该相邻两个指定频点对应频域测量信号之间的相位差。
其中,可以参照下述子步骤,实现确定各频域信道响应对应的相位:
步骤41、分别对各频域信道响应进行时域变换,得到对应的时域函数。
步骤42、分别对各时域函数进行加窗抑噪处理。
步骤43、对加窗抑噪处理后的各时域函数分别进行频域变换,得到各频域函数。
步骤44、计算各频域函数对应的相位。
其中,可以将频域测量序列中第i个频域测量信号对应频域信道响应记为H est(i),从第二个频域信道响应开始之后的各个频域信道响应,对应的频率为Δf*i+f init,Δf为设定频率,f init为第一个频域信道响应的频率;其中,i为大于0且不大于N的整数。然后对各个频域信道响应进行时域变换,得到各频域信道响应对应的时域函数,可记为h est(i);然后可以分别对各时域函数h est(i)进行加窗抑噪处理,得到加窗抑噪处理后的时域函数,记为h' est(i);例如,一种简单的时域加窗方法如下:保留峰值周围N/4个样点,可以取峰值前N*1/16,以及峰值后N*3/16,其余全部置0;本申请实施例不限制加窗抑噪处理的窗函数,以及加窗的方式。然后再将加窗抑噪处理后的各时域函数分别进行频域变换,得到对应的频域函数,记为H' est(i);然后可以计算各频域函数H' est(i)对应的相位,记为φ(i),以及计算相邻两个频点对应频域函数之间的相位差Δφ(j),其中,j为大于0且不大于N-1的整数。进而的得到各频域测量信号对应的相位φ(i),以及相邻两个指定频点对应频域测量信号之间的 相位差Δφ(j)。
步骤206、采用窗函数,按照设定滑动步长在所述频域测量序列上滑动。
步骤207、每次滑动得到对应的滑窗后,依据所述相位和相位差对所述滑窗内各频域测量信号的相位进行线性拟合,得到各滑窗的相位拟合信息。
本申请实施例中,可以采用窗函数在所述频域测量序列上滑动,每滑动一次窗函数后,可依据该滑窗内各频域测量信号的相位、以及相邻两个频点对应频域测量信号的相位差,对该滑窗内各频域测量信号的相位进行拟合,确定该滑窗对应的相位拟合信息。其中,窗函数的长度可以按照需求设置如n*Δf,窗函数在频域测量序列上滑动的距离可以成为滑动距离,也可按照需求设置如m*Δf;其中,m和n为大于0的整数,m≤n,n远小于N。
其中,可以将每个滑窗内的频域测量信号的相位看成是线性的,因此可以对每个滑窗内的频域测量信号的相位进行线性拟合,得到对应的相位拟合信息可以包括相位线性拟合函数,可以用公式:φw((L w/2)+ΔL)=φ init+k φ(ΔL)表示,其中,ΔL=(f-f w)/Δf res,L w/2=f w/Δf res,f是频域测量信号的频率,f w是窗函数中心频率,Δf res是实际应用中信号的频率间隔;φ init是相位初始值,k φ拟合斜率,两者均为常数。因此可以依据滑窗内的频域测量信号的相位,确定对应的φ init和k φ,可以得到该滑窗对应的相位拟合信息。
其中,可参照如下子步骤,确定各滑窗对应的相位拟合信息:
子步骤71、针对每个滑窗,依据所述滑窗内各频域测量信号的相位,确定相位初始值。
子步骤72、依据所述滑窗内相邻两个指定频点对应频域测量信号的相位差,确定拟合斜率。
子步骤73、依据所述相位初始值和拟合斜率,确定所述滑窗对应的相位线性拟合函数。
本申请实施例中,针对每个滑窗,可以依据所述滑窗内各频域测量信号的相位,确定相位初始值;其中,可以计算所述滑窗内各频域测量信号对应相位的平均值,将相位的平均值作为相位初始值即上述φ init。然后可以依据所述滑窗内相邻两个指定频点对应频域测量信号的相位差,确定拟合斜率;其中,可以计算任意相邻两个指定频点对应频域测量信号的相位差的平均 值,将相位差的平均值作为拟合斜率即上述k φ
本申请的一个示例中,窗函数的长度为n*Δf,滑动步长为m*Δf,则每次滑窗后,对滑窗内的n个频域测量信号的相位进行拟合;如图3e所示,n为3,m为1,第一个滑窗可以对第一个频域测量信号、第二个频域测量信号和第三个频域测量信号进行相位拟合,φ init=(φ(1)+φ(2)+φ(3))/3,k φ=(Δφ(1)+Δφ(2))/2。类似地,第二个滑窗可以对第二个频域测量信号、第三个频域测量信号和第四个频域测量信号进行相位拟合,可以得到φ init=(φ(2)+φ(3)+φ(4))/3,k φ=(Δφ(2)+Δφ(3))/2;依次类推,得到各个滑窗对应的相位线性拟合函数。
步骤208、依据各滑窗的相位拟合信息确定各滑窗对应的相位校准信息,采用各滑窗的相位校准信息组成指定频段内的相位校准信息。
然后可以通过查表、坐标旋转数字计算方法(Coordinate Rotation Digital Computer,CORDIC)等方式,确定各滑窗的相位拟合信息确定各滑窗对应的相位校准信息;例如第p个滑窗对应的相位线性拟合函数φw p((L w/2)+ΔL)=φ init+k φ(ΔL),则第p个滑窗对应的对应的相位校准信息可以是w p((L w/2)+ΔL)=exp(-j*φw p((L w/2)+ΔL));其中,p是大于0,且,不大于(N-n)/m的整数。然后采用各滑窗的相位校准信息组成指定频段内的相位校准信息,例如,指定频段内的相位校准信息包括:{w 1((L w/2)+ΔL),w 2((L w/2)+ΔL),w 3((L w/2)+ΔL),……,w (N-n)/m((L w/2)+ΔL)}。
本申请的一个可选实施例中,在发射机发射指定频段内的实际信号时,接收机可以依据指定频段对应的相位校准信息,计算指定频段内各频点对应的相位校准因子,再依据各频点对应的相位校准因子对接收的信号进行相位校准。其中,在计算各频点对应的相位校准因子过程中,对于处于指定频段带宽边缘的滑窗,需要计算该滑窗靠近上边缘或下边缘的(n+m)/2*Δf个频点对应的相位校准因子,对于处于指定频段带宽非边缘的滑窗,计算该滑窗中间的m*Δf个频点对应的相位校准因子。如图3f所示,对实际信号对应的频域实际序列的各个频点的相位校准因子进行计算,其中,n=3,m=1,因此第一个滑窗计算靠近上边缘的2*Δf=8*f res个频点对应的相位校准因子,第二滑窗计算中间Δf=4*f res个频点对应的相位校准因子,……,最后一个滑窗计 算靠近下边缘的2*Δf=8*f res个频点对应的相位校准因子。
本申请实施例中,接收机在接收测量信号后,可以先对所述测量信号进行频域变换得到频域测量序列,然后分别确定各频域测量信号对应的相位,以及确定相邻两个指定频点对应频域测量信号之间的相位差;进而在相位拟合过程中,可以依据所述相位、相位差和窗函数,对所述频域测量序列进行滑窗式相位拟合,得到各滑窗对应的相位拟合信息,其中,每个滑窗可以对应指定频段中的一个子频段,实现了每次对子频段内的相位进行相位拟合;然后再依据各滑窗的相位拟合信息确定各滑窗对应的相位校准信息,采用各滑窗的相位校准信息组成指定频段内的相位校准信息;即采用各子频段的相位校准信息组成指定频段的相位校准信息,由于各个子频段内的相位相对于整个指定频段内的相位,更趋于线性,因此与现有技术对整个指定频段进行一次拟合相比,本申请实施例能够减少拟合误差,提高相位校准的精度。
进一步,本申请实施例中,可以依据频域测量序列中各频域测量信号对应的频域信道响应的相位,确定各频域测量信号对应的相位,以及相邻两个指定频点对应频域测量信号之间的相位差;其中,在确定各频域测量信号对应的频域信道响应的相位过程中,可以分别对各频域信道响应进行时域变换,得到对应的时域函数,分别对各时域函数进行加窗抑噪处理,对加窗抑噪处理后的各时域函数分别进行频域变换,得到各频域函数,计算各频域函数对应的相位。进而通过对频域信道响应函数进行加窗抑噪,提高各频域信道响应对应的相位的准确性,从而进一步提高相位校准的精度。
需要说明的是,对于方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请实施例并不受所描述的动作顺序的限制,因为依据本申请实施例,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定是本申请实施例所必须的。
参照图4,示出了本申请一种提高相位测量精度的装置实施例的结构框图,具体可以包括如下模块:
信号接收模块401,配置为接收测量信号,其中,所述测量信号按照频域校准序列生成,所述频域校准序列包括N个频域校准信号,每个频域校准 信号对应一个指定频点,所述指定频点属于指定频段,N为大于1的整数;
频域变换模块402,配置为对所述测量信号进行频域变换得到频域测量序列,所述频域测量序列包括N个频域测量信号,每个频域测量信号对应一个指定频点;
相位确定模块403,配置为分别确定各频域测量信号对应的相位,以及确定相邻两个指定频点对应频域测量信号之间的相位差;
相位拟合模块404,配置为依据所述相位、相位差和窗函数,对所述频域测量序列进行滑窗式相位拟合,得到各滑窗对应的相位拟合信息;
校准信息确定模块405,配置为依据各滑窗的相位拟合信息确定各滑窗对应的相位校准信息,采用各滑窗的相位校准信息组成指定频段内的相位校准信息。
参照图5,示出了本申请另一种提高相位测量精度的装置实施例的结构框图。
本申请的另一个实施例中,所述相位拟合模块404包括:
滑动模块4041,配置为采用窗函数,按照设定滑动步长在所述频域测量序列上滑动;
相位拟合模块4042,配置为每次滑动得到对应的滑窗后,依据所述相位和相位差对每个滑窗内各频域测量信号的相位进行线性拟合,得到各滑窗的相位拟合信息。
本申请的另一个实施例中,所述相位拟合信息包括相位线性拟合函数,
所述相位拟合模块4042,具体配置为依据所述滑窗内各频域测量信号对应频域测量信号的相位,确定相位初始值;依据所述滑窗内相邻两个指定频点对应频域测量信号的相位差,确定拟合斜率;依据所述相位初始值和拟合斜率,确定所述滑窗对应的相位线性拟合函数。
本申请的另一个实施例中,,所述相位确定模块403包括:
信道估计模块4031,配置为对所述频域测量序列进行信道估计,得到各频域测量信号对应的频域信道响应,每个频域信道响应对应一个指定频点;
响应相位模块4032,配置为确定各频域信道响应对应的相位;
信号相位确定模块4033,配置为依据各频域信道响应对应的相位,确定 各频域测量信号对应的相位以及相邻两个指定频点对应频域测量信号之间的相位差。
本申请的另一个实施例中,所述响应相位模块4032,具体配置为分别对各频域信道响应进行时域变换,得到对应的时域函数;分别对各时域函数进行加窗抑噪处理;对加窗抑噪处理后的各时域函数分别进行频域变换,得到各频域函数;计算各频域函数对应的相位。
本申请实施例中,接收机在接收测量信号后,可以先对所述测量信号进行频域变换得到频域测量序列,然后分别确定各频域测量信号对应的相位,以及确定相邻两个指定频点对应频域测量信号之间的相位差;进而在相位拟合过程中,可以依据所述相位、相位差和窗函数,对所述频域测量序列进行滑窗式相位拟合,得到各滑窗对应的相位拟合信息,其中,每个滑窗可以对应指定频段中的一个子频段,实现了每次对子频段内的相位进行相位拟合;然后再依据各滑窗的相位拟合信息确定各滑窗对应的相位校准信息,采用各滑窗的相位校准信息组成指定频段内的相位校准信息;即采用各子频段的相位校准信息组成指定频段的相位校准信息,由于各个子频段内的相位相对于整个指定频段内的相位,更趋于线性,因此与现有技术对整个指定频段进行一次拟合相比,本申请实施例能够减少拟合误差,提高相位校准的精度。
对于装置实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本申请的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本申请实施例的计算处理设备中的一些或者全部部件的一些或者全部功能。本申请还可以实现为用于执行这里所描述的方法的一部分或者全部的设备 或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本申请的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
例如,图6示出了可以实现根据本申请的方法的计算处理设备。该计算处理设备传统上包括处理器1010和以存储器1020形式的计算机程序产品或者计算机可读介质。存储器1020可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器1020具有用于执行上述方法中的任何方法步骤的程序代码1031的存储空间1030。例如,用于程序代码的存储空间1030可以包括分别用于实现上面的方法中的各种步骤的各个程序代码1031。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如参考图7所述的便携式或者固定存储单元。该存储单元可以具有与图6的计算处理设备中的存储器1020类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码1031’,即可以由例如诸如1010之类的处理器读取的代码,这些代码当由计算处理设备运行时,导致该计算处理设备执行上面所描述的方法中的各个步骤。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本申请的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本申请可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来 具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (12)

  1. 一种提高相位测量精度的方法,其特征在于,包括:
    接收测量信号,其中,所述测量信号按照频域校准序列生成,所述频域校准序列包括N个频域校准信号,每个频域校准信号对应一个指定频点,所述指定频点属于指定频段,N为大于1的整数;
    对所述测量信号进行频域变换得到频域测量序列,所述频域测量序列包括N个频域测量信号,每个频域测量信号对应一个指定频点;
    分别确定各频域测量信号对应的相位,以及确定相邻两个指定频点对应频域测量信号之间的相位差;
    依据所述相位、相位差和窗函数,对所述频域测量序列进行滑窗式相位拟合,得到各滑窗对应的相位拟合信息;
    依据各滑窗的相位拟合信息确定各滑窗对应的相位校准信息,采用各滑窗的相位校准信息组成指定频段内的相位校准信息。
  2. 根据权利要求1所述的方法,其特征在于,所述依据所述相位、相位差和窗函数,对所述频域测量序列进行滑窗式相位拟合,得到各滑窗对应的相位拟合信息,包括:
    采用窗函数,按照设定滑动步长在所述频域测量序列上滑动;
    每次滑动得到对应的滑窗后,依据所述相位和相位差对所述滑窗内各频域测量信号的相位进行线性拟合,得到各滑窗的相位拟合信息。
  3. 根据权利要求2所述的方法,其特征在于,所述相位拟合信息包括相位线性拟合函数,
    所述依据所述相位和相位差对所述滑窗内各频域测量信号的相位进行线性拟合,得到各滑窗的相位拟合信息,包括:
    依据所述滑窗内各频域测量信号对应频域测量信号的相位,确定相位初始值;
    依据所述滑窗内相邻两个指定频点对应频域测量信号的相位差,确定拟合斜率;
    依据所述相位初始值和拟合斜率,确定所述滑窗对应的相位线性拟合函数。
  4. 根据权利要求1所述的方法,其特征在于,所述分别确定各频域测量信号对应的相位,以及确定相邻两个指定频点对应频域测量信号之间的相位差,包括:
    对所述频域测量序列进行信道估计,得到各频域测量信号对应的频域信道响应,每个频域信道响应对应一个指定频点;
    确定各频域信道响应对应的相位;
    依据各频域信道响应对应的相位,确定各频域测量信号对应的相位以及相邻两个指定频点对应频域测量信号之间的相位差。
  5. 根据权利要求4所述的方法,其特征在于,所述确定各频域信道响应对应的相位,包括:
    分别对各频域信道响应进行时域变换,得到对应的时域函数;
    分别对各时域函数进行加窗抑噪处理;
    对加窗抑噪处理后的各时域函数分别进行频域变换,得到各频域函数;
    计算各频域函数对应的相位。
  6. 一种提高相位测量精度的装置,其特征在于,包括:
    信号接收模块,配置为接收测量信号,其中,所述测量信号按照频域校准序列生成,所述频域校准序列包括N个频域校准信号,每个频域校准信号对应一个指定频点,所述指定频点属于指定频段,N为大于1的整数;
    频域变换模块,配置为对所述测量信号进行频域变换得到频域测量序列,所述频域测量序列包括N个频域测量信号,每个频域测量信号对应一个指定频点;
    相位确定模块,配置为分别确定各频域测量信号对应的相位,以及确定相邻两个指定频点对应频域测量信号之间的相位差;
    相位拟合模块,配置为依据所述相位、相位差和窗函数,对所述频域测量序列进行滑窗式相位拟合,得到各滑窗对应的相位拟合信息;
    校准信息确定模块,配置为依据各滑窗的相位拟合信息确定各滑窗对应的相位校准信息,采用各滑窗的相位校准信息组成指定频段内的相位校准信息。
  7. 根据权利要求6所述的装置,其特征在于,所述相位拟合模块包括:
    滑动模块,配置为采用窗函数,按照设定滑动步长在所述频域测量序列上滑动;
    相位拟合模块,配置为每次滑动得到对应的滑窗后,依据所述相位和相位差对每个滑窗内各频域测量信号的相位进行线性拟合,得到各滑窗的相位拟合信息。
  8. 根据权利要求7所述的装置,其特征在于,所述相位拟合信息包括相位线性拟合函数,
    所述相位拟合模块,具体配置为依据所述滑窗内各频域测量信号对应频域测量信号的相位,确定相位初始值;依据所述滑窗内相邻两个指定频点对应频域测量信号的相位差,确定拟合斜率;依据所述相位初始值和拟合斜率,确定所述滑窗对应的相位线性拟合函数。
  9. 根据权利要求6所述的装置,其特征在于,所述相位确定模块包括:
    信道估计模块,配置为对所述频域测量序列进行信道估计,得到各频域测量信号对应的频域信道响应,每个频域信道响应对应一个指定频点;
    响应相位模块,配置为确定各频域信道响应对应的相位;
    信号相位确定模块,配置为依据各频域信道响应对应的相位,确定各频域测量信号对应的相位以及相邻两个指定频点对应频域测量信号之间的相位差。
  10. 根据权利要求9所述的装置,其特征在于,
    所述响应相位模块,具体配置为分别对各频域信道响应进行时域变换,得到对应的时域函数;分别对各时域函数进行加窗抑噪处理;对加窗抑噪处理后的各时域函数分别进行频域变换,得到各频域函数;计算各频域函数对应的相位。
  11. 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行根据权利要求1-5中的任一个所述的提高相位测量精度的方法。
  12. 一种计算机可读介质,其中存储了如权利要求11所述的计算机程序。
PCT/CN2019/110890 2018-10-19 2019-10-12 一种提高相位测量精度的方法和装置 WO2020078291A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/281,970 US11525849B2 (en) 2018-10-19 2019-10-12 Method and device for improving phase measurement accuracy
JP2021519111A JP6976485B2 (ja) 2018-10-19 2019-10-12 位相測定精度を向上させる方法及び装置
EP19874352.8A EP3836454B1 (en) 2018-10-19 2019-10-12 Method and device for improving phase measurement accuracy
KR1020217005707A KR102303289B1 (ko) 2018-10-19 2019-10-12 위상 측정 정확도 향상을 위한 방법 및 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811224077.1 2018-10-19
CN201811224077.1A CN111077371B (zh) 2018-10-19 2018-10-19 一种提高相位测量精度的方法和装置

Publications (1)

Publication Number Publication Date
WO2020078291A1 true WO2020078291A1 (zh) 2020-04-23

Family

ID=70282997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110890 WO2020078291A1 (zh) 2018-10-19 2019-10-12 一种提高相位测量精度的方法和装置

Country Status (6)

Country Link
US (1) US11525849B2 (zh)
EP (1) EP3836454B1 (zh)
JP (1) JP6976485B2 (zh)
KR (1) KR102303289B1 (zh)
CN (1) CN111077371B (zh)
WO (1) WO2020078291A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115695095A (zh) * 2021-07-28 2023-02-03 大唐移动通信设备有限公司 随机相位的确定方法、装置、电子设备及存储介质
CN115706689A (zh) * 2021-08-04 2023-02-17 大唐移动通信设备有限公司 数据校准方法、设备、装置及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112285635B (zh) * 2020-12-29 2021-04-20 武汉中原电子信息有限公司 外接电流互感器的终端校正方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1273729A (zh) * 1998-06-18 2000-11-15 松下电器产业株式会社 校准装置
US20030185326A1 (en) * 2002-03-30 2003-10-02 Kolze Thomas J. Frequency drift and phase error compensation in a VOFDM receiver
CN1728694A (zh) * 2004-07-09 2006-02-01 Sst通信公司 Rf接收机失配校准系统和方法
CN101458334A (zh) * 2007-12-14 2009-06-17 电子科技大学 一种双基地合成孔径雷达成像的运动补偿方法
CN101588198A (zh) * 2008-05-19 2009-11-25 芯通科技(成都)有限公司 多载波智能天线校准中频处理方法和装置
CN103152109A (zh) * 2011-12-06 2013-06-12 Emscan公司 用于无线装置的测试台以及其校准方法
CN105264813A (zh) * 2013-03-15 2016-01-20 美国亚德诺半导体公司 正交误差检测和校正
CN107689842A (zh) * 2016-08-05 2018-02-13 北京信威通信技术股份有限公司 一种校准数据的方法及装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4701931B2 (ja) * 2005-09-02 2011-06-15 日本電気株式会社 信号処理の方法及び装置並びにコンピュータプログラム
CN101267422A (zh) * 2008-03-10 2008-09-17 电子科技大学 一种正交频分复用系统的频域信道估计方法
CN101420248B (zh) * 2008-12-05 2012-08-08 北京天碁科技有限公司 一种td-scdma终端频偏估计的方法及装置
CN101707582A (zh) * 2009-11-05 2010-05-12 东南大学 基于多相分解的多天线信道估计方法
CN102082745B (zh) * 2010-04-19 2013-10-16 电信科学技术研究院 天线校准信息的上报、天线校准因子的确定方法及设备
KR101022358B1 (ko) * 2010-05-14 2011-03-22 엘아이지넥스원 주식회사 위상보정 기반환경의 최소자승 디지털 주파수 변별장치 및 방법
JP5624527B2 (ja) * 2011-08-31 2014-11-12 日本放送協会 シングルキャリア受信装置
US8902095B2 (en) * 2011-09-12 2014-12-02 Nucript LLC Photonic assisted optical under-sampling with non-uniform sample intervals
US8837654B2 (en) * 2012-06-08 2014-09-16 Deere & Company Signal receiver with group delay and amplitude distortion compensation
US8737012B2 (en) * 2012-09-05 2014-05-27 Texas Instruments Incorporated System and method for automatic calibration of notch filter of hard disk drive
CN103399203B (zh) * 2013-08-09 2015-08-26 重庆大学 一种基于复合迭代算法的谐波参数高精度估计方法
CN104038465B (zh) * 2014-06-27 2017-07-11 华南师范大学 一种适用于co‑ofdm系统的多子块相位噪声估计补偿方法
EP2963646A1 (en) * 2014-07-01 2016-01-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Decoder and method for decoding an audio signal, encoder and method for encoding an audio signal
CN104614767A (zh) * 2014-12-11 2015-05-13 中国石油大学(华东) 基于分段延拓的时变地震子波相位校正方法
CN104717172B (zh) * 2015-03-06 2018-03-20 东南大学 一种发射机中iq不平衡的补偿方法和装置
US9941974B2 (en) * 2015-12-21 2018-04-10 Zte Corporation Techniques for receiving DFT spreading modulation signals
US10367677B2 (en) * 2016-05-13 2019-07-30 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
CN106878229B (zh) * 2017-01-11 2019-09-27 深圳市极致汇仪科技有限公司 基于初始相位补偿的iq不平衡估计和补偿方法及装置
EP4282813A3 (en) * 2017-06-19 2024-02-21 Rigetti & Co, LLC Parametrically activated quantum logic gates
CN110505169B (zh) * 2018-05-17 2020-11-06 大唐移动通信设备有限公司 一种相位校准方法及装置
US11150317B2 (en) * 2018-06-20 2021-10-19 Denso International America, Inc. Circular polarized angle of arrival measuring system
KR101944429B1 (ko) 2018-11-15 2019-01-30 엘아이지넥스원 주식회사 주파수 분석 방법 및 이를 지원하는 장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1273729A (zh) * 1998-06-18 2000-11-15 松下电器产业株式会社 校准装置
US20030185326A1 (en) * 2002-03-30 2003-10-02 Kolze Thomas J. Frequency drift and phase error compensation in a VOFDM receiver
CN1728694A (zh) * 2004-07-09 2006-02-01 Sst通信公司 Rf接收机失配校准系统和方法
CN101458334A (zh) * 2007-12-14 2009-06-17 电子科技大学 一种双基地合成孔径雷达成像的运动补偿方法
CN101588198A (zh) * 2008-05-19 2009-11-25 芯通科技(成都)有限公司 多载波智能天线校准中频处理方法和装置
CN103152109A (zh) * 2011-12-06 2013-06-12 Emscan公司 用于无线装置的测试台以及其校准方法
CN105264813A (zh) * 2013-03-15 2016-01-20 美国亚德诺半导体公司 正交误差检测和校正
CN107689842A (zh) * 2016-08-05 2018-02-13 北京信威通信技术股份有限公司 一种校准数据的方法及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115695095A (zh) * 2021-07-28 2023-02-03 大唐移动通信设备有限公司 随机相位的确定方法、装置、电子设备及存储介质
CN115706689A (zh) * 2021-08-04 2023-02-17 大唐移动通信设备有限公司 数据校准方法、设备、装置及存储介质
CN115706689B (zh) * 2021-08-04 2024-04-05 大唐移动通信设备有限公司 数据校准方法、设备、装置及存储介质

Also Published As

Publication number Publication date
US20210341521A1 (en) 2021-11-04
CN111077371B (zh) 2021-02-05
JP6976485B2 (ja) 2021-12-08
US11525849B2 (en) 2022-12-13
JP2021529494A (ja) 2021-10-28
EP3836454A4 (en) 2022-04-20
EP3836454A1 (en) 2021-06-16
KR20210035272A (ko) 2021-03-31
EP3836454B1 (en) 2023-10-04
KR102303289B1 (ko) 2021-09-16
CN111077371A (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
WO2020078291A1 (zh) 一种提高相位测量精度的方法和装置
US20200058320A1 (en) Voice activity detection method, relevant apparatus and device
US11323807B2 (en) Echo cancellation method and apparatus based on time delay estimation
US9232333B2 (en) Apparatus, systems, and methods for calibration of microphones
US10360927B2 (en) Method and apparatus for frame loss concealment in transform domain
CN109074814B (zh) 一种噪声检测方法及终端设备
JP7116801B2 (ja) 位相校正方法及び装置
CN107797099B (zh) 一种多通道数字接收机实时内定标处理方法及装置
US9936328B2 (en) Apparatus and method for estimating an overall mixing time based on at least a first pair of room impulse responses, as well as corresponding computer program
US11430454B2 (en) Methods and apparatus to identify sources of network streaming services using windowed sliding transforms
CN112530450A (zh) 频域中的样本精度延迟识别
CN114441897A (zh) 一种配电电缆线路局部放电脉冲到达时间差识别方法
JP5319788B2 (ja) オーディオ信号のアライメント方法
WO2019128167A1 (zh) 一种数字前端均衡的方法和装置
CN108362939A (zh) 一种线性调频信号的频域参数测量方法
WO2018120858A1 (zh) 一种信道估计方法及装置
US11112456B2 (en) Signal skew measurement method, apparatus, medium, and electronic device
WO2020083088A1 (zh) 一种音频渲染方法及装置
CN112073339B (zh) 一种确定校准信息的方法及装置
Lessard Error in Random Data Estimate Analysis (Information Is Paraphrased from Bendat & Piersol)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19874352

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217005707

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019874352

Country of ref document: EP

Effective date: 20210308

ENP Entry into the national phase

Ref document number: 2021519111

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE