WO2020077725A1 - 一种阵列基板及其制造方法和一种液晶显示面板 - Google Patents

一种阵列基板及其制造方法和一种液晶显示面板 Download PDF

Info

Publication number
WO2020077725A1
WO2020077725A1 PCT/CN2018/116143 CN2018116143W WO2020077725A1 WO 2020077725 A1 WO2020077725 A1 WO 2020077725A1 CN 2018116143 W CN2018116143 W CN 2018116143W WO 2020077725 A1 WO2020077725 A1 WO 2020077725A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoresist
glass substrate
manufacturing
metal
oxidizing
Prior art date
Application number
PCT/CN2018/116143
Other languages
English (en)
French (fr)
Inventor
马远洋
陈黎暄
林旭林
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US16/337,797 priority Critical patent/US20200192136A1/en
Publication of WO2020077725A1 publication Critical patent/WO2020077725A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133796Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers having conducting property
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13398Spacer materials; Spacer properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • G02F1/136295Materials; Compositions; Manufacture processes

Definitions

  • the invention relates to the field of display, in particular to a liquid crystal display, and in particular to a method of manufacturing an array substrate.
  • liquid crystal displays have become the most commonly used display devices.
  • the contrast of the liquid crystal panel is an important indicator to measure the optical performance of the liquid crystal display, but there are curved metal structures with arcs in the liquid crystal panel. This structure will cause light leakage problems. In turn, the contrast of the LCD panel will be reduced.
  • the vertical structure of the metal can be directly eliminated, the horizontal metal trace can be moved below the black gate area outside the sub-pixel display area, and the pixel electrode can be designed to change the pixel structure in the horizontal and vertical directions. Light leakage improves contrast; but for some large-scale, high-resolution high-end displays, in order to ensure the charging efficiency and the relative sufficient storage capacitance, the light leakage phenomenon cannot be improved by removing the above metal structure.
  • the invention provides a method for manufacturing an array substrate, which is used to improve the phenomenon of light leakage in some high-resolution liquid crystal panels that must have a metal structure.
  • the technical solution of the present invention provides a method for manufacturing an array substrate, including the following steps:
  • Exposure that is, selective exposure of the photoresist-coated glass substrate
  • etching that is, etching the film on the surface of the glass substrate without photoresist to form a patterned metal line
  • Oxidation that is, a metal oxide is formed by oxidation reaction at least on the side of the patterned metal line.
  • step S106 may be the following steps:
  • Metal oxide that is, the CVD equipment is used to oxidize the patterned metal line on the glass substrate.
  • the method of oxidizing the metal is: placing the glass substrate in the cavity of the CVD equipment and introducing oxygen or ozone into it, and the oxidation time is 80 to 120 seconds.
  • the step S106 may also be the following steps:
  • the first method is to pass oxygen or ozone or clean and dry compressed air into the cavity containing the glass substrate, and keep the temperature in the cavity below 150 ° C and the gas flow rate below 3000 standard ml / min.
  • the oxidation time in the method of oxidizing metal does not exceed 240 seconds.
  • Another method is to oxidize the metal on the glass substrate with a diluted solution of a strong oxidant.
  • the diluted solution of the strong oxidant is covered on the patterned metal side surface by brushing.
  • the technical solution of the present invention also provides an array substrate prepared by using the above manufacturing method.
  • the technical solution of the present invention further provides a liquid crystal display panel including the above array substrate.
  • the technical solution of the present invention provides another method for manufacturing an array substrate, including the following steps:
  • Exposure that is, selective exposure of the photoresist-coated glass substrate
  • etching that is, etching the film on the surface of the glass substrate without photoresist to form a patterned metal line
  • Oxidation that is, a metal oxide is formed by oxidation reaction at least on the side of the patterned metal line.
  • the glass substrate is baked after the development and before the etching, so that the unexposed photoresist is more firmly attached to the film surface.
  • step S106 may be the following steps:
  • Metal oxide that is, the CVD equipment is used to oxidize the patterned metal line on the glass substrate.
  • the method of oxidizing the metal is: placing the glass substrate in the cavity of the CVD equipment and introducing oxygen or ozone into it, and the oxidation time is 80 to 120 seconds.
  • the step S106 may also be the following steps:
  • the first method is to pass oxygen or ozone or clean and dry compressed air into the cavity containing the glass substrate, and keep the temperature in the cavity below 150 ° C and the gas flow rate below 3000 standard ml / min.
  • the oxidation time in the method of oxidizing metal does not exceed 240 seconds.
  • Another method is to oxidize the metal on the glass substrate with a diluted solution of a strong oxidant.
  • the diluted solution of the strong oxidant is covered on the patterned metal side surface by brushing.
  • the manufacturing method of the array substrate provided by the present invention includes an oxidation process, one of which is the two steps of removing photoresist in the prior art and chemical vapor deposition using CVD equipment
  • the metal on the glass substrate is subjected to oxidation treatment.
  • This method uses a CVD equipment to oxidize the metal. It has a faster oxidation rate and does not change the normal array process sequence. Therefore, the above-mentioned liquid crystal display manufacturing method It can improve the light leakage phenomenon to improve the contrast of the liquid crystal panel, and can also ensure the production efficiency and productivity of the liquid crystal panel; another oxidation is on the glass substrate between the two steps of etching and photoresist removal in the prior art The metal is oxidized.
  • This method oxidizes the metal before removing the photoresist on the upper layer of the metal. Because the photoresist is covered, the upper surface of the metal will not be damaged when the metal is oxidized. Therefore, the above-mentioned liquid crystal display manufacturing method can not only improve light leakage This phenomenon improves the contrast of the LCD panel, and the conductivity of the metal can also be guaranteed.
  • the array substrate prepared by the above method and the liquid crystal panel containing the array substrate provided by the present invention not only retain the cross-shaped metal structure with an arc shape to ensure charging efficiency and storage capacitance, but also improve the metal wire after oxidation treatment Light leakage phenomenon to improve the contrast of the LCD panel.
  • FIG. 1 is a partial flowchart of a method for manufacturing an array substrate provided by an embodiment of the present invention.
  • FIG. 2 is an oxidation flowchart in the method for manufacturing the above array substrate provided by an embodiment of the present invention.
  • FIG. 3 is another flow chart of oxidation in the method for manufacturing an array substrate provided by an embodiment of the present invention.
  • FIG. 1 a partial flowchart of a method for manufacturing an array substrate provided by an embodiment of the present invention is shown.
  • the manufacturing method includes at least the following steps:
  • PVD Physical Vapor Deposition
  • CVD Chemical Vapor Deposition
  • first, third, and fifth layers of film coated on the glass substrate are used as scanning lines, signal lines, and electrode plates.
  • the coating materials used for them are all metals.
  • PVD coating is used; glass substrate
  • the second and fourth layers of film deposited on each have the role of an insulating layer, and the insulating materials are all CVD coated.
  • this method of manufacturing an array substrate includes a step of oxidizing metal wires in the middle and late stages, the method steps described herein are all directed to the above-mentioned metal plating film.
  • the glass substrate needs to be washed with ionized water before the photoresist is applied; the photoresist can also be replaced with a photoresist, they all refer to the etching resistance whose solubility changes after exposure to light or radiation such as ultraviolet light Thin-film material is a key material in the photolithography process. It is used here to assist in the formation of fine patterns on the glass substrate; after coating with the photoresist, it needs to be baked for a while to evaporate part of the photoresist and increase the photoresist material and The adhesion of the above film.
  • Exposure that is, selective exposure of the photoresist-coated glass substrate
  • the specific method is to irradiate the glass substrate coated with photoresist liquid with ultraviolet light through a photomask, the mask is made according to the corresponding circuit diagram, and the irradiation time is determined according to the solidified state of the photoresist layer, And the exposed and unexposed colors of the photoresist layer will be different.
  • the glass substrate needs to be baked to make the unexposed photoresist more firmly attached to the surface of the film to ensure that the metal pattern below it can be retained later.
  • etching that is, etching the film on the surface of the glass substrate without photoresist to form a patterned metal line
  • the etching solution used should be an acid solution.
  • Oxidation that is, a metal oxide is formed by oxidation reaction at least on the side of the patterned metal line.
  • FIG. 2 shows an oxidation flow chart in the above method for manufacturing an array substrate.
  • the oxidation process includes at least the following steps:
  • photoresist removal liquid can be used for photoresist removal, and organic solvent should be used after photoresist stripping.
  • the metal wire is oxidized.
  • the metal oxide is aimed at the metal film.
  • the first, third, and fifth layers on the glass substrate are metal films, which are coated by PVD, and the second and fourth layers on the glass substrate are insulating.
  • the film is deposited by CVD, that is, after the photoresist is removed from the metal film, the CVD equipment should be used to deposit the insulating film.
  • the present invention is to pass an oxidizing gas into the cavity of the CVD equipment to oxidize the metal film between the above two steps of removing the photoresist and depositing the insulating film by CVD, wherein the oxidizing gas may be oxygen, ozone and their mixed gas It can also be other oxidizing gas or a mixture of multiple oxidizing gases.
  • the oxidation time is 80 ⁇ 120 seconds to avoid over-oxidizing the metal.
  • the oxidation gas pressure during the oxidation and the frequency of the applied AC voltage do not need to be specified, and the insulating film can be deposited according to the requirements of subsequent CVD
  • the final purpose is to facilitate the later CVD deposition of insulating film.
  • the present invention does not affect the process of the normal array process at all, and the oxidation speed of the CVD equipment is also fast. Therefore, the present invention can reduce the depolarization, reduce the light leakage and improve the contrast of the display, while ensuring the production efficiency and productivity of the liquid crystal panel.
  • the oxidation process includes at least the following steps:
  • the precautions for removing the photoresist are the same as in the first oxidation process described above.
  • the metal oxide is aimed at the metal film.
  • the metal is oxidized between the steps of etching the corresponding metal film and removing the photoresist.
  • the photoresist covering the upper surface of the metal can be The upper surface of the metal is protected to ensure the conductivity of the metal wire, and the method of oxidizing the metal has the following four embodiments:
  • Embodiment 1 Oxygen is introduced into the cavity containing the glass substrate, and the temperature in the cavity is kept below 150 ° C, and the gas flow rate is lower than 3000 standard milliliters / minute.
  • Embodiment 2 Ozone is introduced into the cavity containing the glass substrate, and the temperature in the cavity is kept below 150 ° C, and the gas flow rate is lower than 3000 standard ml / min.
  • Embodiment 3 Pass clean and dry compressed air into the cavity containing the glass substrate, and keep the temperature in the cavity lower than 150 ° C and the gas flow rate lower than 3000 standard ml / min.
  • the cavity described in the above three embodiments may be any container that can provide the above-mentioned oxidizing environment, and the gas introduced into the cavity may be other oxidizing gases or It is a mixture of oxidizing gases, and the oxidation time in the above three methods of oxidizing metals does not exceed 240 seconds to avoid over-oxidizing the metal.
  • Embodiment 4 Use a diluted solution of a strong oxidant to oxidize the patterned metal lines on the glass substrate.
  • the strong oxidant may be hydrogen peroxide or other highly oxidizing liquid.
  • the diluted solution of the strong oxidant may be evenly applied to the side of the patterned metal by brushing, or may be thinner.
  • the tube of the drop drops the diluted solution of the strong oxidant evenly on the side of the patterned metal.
  • the oxidation of the metal wire on the glass substrate by the diluted solution using a strong oxidant produces oxidation on the side of the metal without causing corrosion of the metal, and the process of oxidizing the metal wire should be minimized.
  • the amount of the applied solution and the oxidation time should be determined according to the oxidation of the metal, and remember not to cause corrosion of the metal.
  • the present invention can not only reduce the light leakage generated by the metal to improve the contrast of the display, but also the oxidation treatment will not cause damage to the upper surface of the metal, ensuring the conductivity of the metal wire.
  • the manufacturing method of the array substrate provided by the present invention includes an oxidation process, one of which is the two steps of removing photoresist in the prior art and chemical vapor deposition using CVD equipment
  • the metal on the glass substrate is subjected to oxidation treatment.
  • This method uses a CVD equipment to oxidize the metal. It has a faster oxidation rate and does not change the normal array process sequence. Therefore, the above-mentioned liquid crystal display manufacturing method It can improve the light leakage phenomenon to improve the contrast of the liquid crystal panel, and can also ensure the production efficiency and productivity of the liquid crystal panel; another oxidation is on the glass substrate between the two steps of etching and photoresist removal in the prior art The metal is oxidized.
  • This method oxidizes the metal before removing the photoresist on the upper layer of the metal. Because the photoresist is covered, the upper surface of the metal will not be damaged when the metal is oxidized. Therefore, the above-mentioned liquid crystal display manufacturing method can not only improve light leakage This phenomenon improves the contrast of the LCD panel, and the conductivity of the metal can also be guaranteed.
  • the array substrate prepared by the above method and the liquid crystal panel containing the array substrate provided by the present invention not only retain the cross-shaped metal structure with an arc shape to ensure charging efficiency and storage capacitance, but also improve the metal wire after oxidation treatment Light leakage phenomenon to improve the contrast of the LCD panel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

阵列基板的制造方法,在去光阻和利用CVD设备进行化学气相沉积这两个步骤之间对玻璃基板上的图案化的金属线进行氧化处理,此方法直接利用CVD设备对金属进行氧化,不仅能改善漏光的问题从而提高液晶面板对比度,而且也能保证液晶面板的生产效率及产能。

Description

一种阵列基板及其制造方法和一种液晶显示面板 技术领域
本发明涉及显示领域,尤其涉及液晶显示器,具体涉及阵列基板的制造方法。
背景技术
生活中,液晶显示器已经成为最常用的显示装置了,其中,液晶面板的对比度是衡量液晶显示器光学性能重要指标,但是液晶面板内存在带有弧形的交叉金属结构,此结构会导致漏光问题,进而会降低液晶面板的对比度。现有技术中,可以通过将金属竖线直接取消、将金属横向走线移动到子像素显示区域外的黑栅区下方以及将像素电极设计为水平和垂直方向等改变像素结构的方式来有效降低漏光,提高对比度;但是对于一些大尺寸、高分辨率的高阶显示器,为了保证充电效率和存储电容的相对充足,不能通过移除上述金属结构的操作来改善其漏光现象。
综上所述,某些必须具备金属结构的高分辨率的液晶面板存在着漏光的问题,因此,现有技术有改进的空间。
技术问题
本发明提供了阵列基板的制造方法,用于改善某些必须具备金属结构的高分辨率的液晶面板存在着漏光的现象。
技术解决方案
为解决上述问题,本发明的技术方案提供一种阵列基板的制造方法,包括如下步骤:
S101、镀膜,即在玻璃基板的表面镀上一层膜;
S102、上光阻,即在所述膜的表面涂上一层光阻液;
S103、曝光,即对所述涂有光阻液的玻璃基板进行选择性曝光;
S104、显影,即溶解曝光的所述光阻;
S105、蚀刻,即蚀刻所述玻璃基板表面的无光阻覆盖的所述膜形成图案化的金属线;
S106、氧化,即至少在图案化的所述金属线的侧面通过氧化反应形成金属氧化物。
其中,所述步骤S106可以是如下步骤:
S10611、去光阻,即去除所述玻璃基板上的所述光阻;
S10612、氧化金属,即利用CVD设备对所述玻璃基板上的图案化的所述金属线进行氧化处理。
其中,所述氧化金属的方法是:将所述玻璃基板置于CVD设备腔内并且向其中通入氧气或者臭氧,所述氧化时间为80~120秒。
所述步骤S106也可以是如下步骤:
S10621、氧化金属,即对所述玻璃基板上的图案化的所述金属线进行氧化处理;
S10622、去光阻,即去除所述玻璃基板上的所述光阻。
其中,所述氧化金属有多种方法。
第一种方法是:向装有所述玻璃基板的腔内通入氧气或者臭氧或者洁净干燥的压缩空气,并且保持所述腔内温度低于150℃、气体流量低于3000标准毫升/分钟。
并且,所述氧化金属的方法中的所述氧化时间不超过240秒。
另一种方法是:利用强氧化剂的稀释溶液对所述玻璃基板上的金属进行氧化处理。
其中,所述强氧化剂的稀释溶液是利用涂刷方式覆盖在图案化的所述金属侧面。
本发明的技术方案还提供一种采用如上述制造方法制备的阵列基板。
本发明的技术方案另外还提供一种包含如上述的阵列基板的液晶显示面板。
除此之外,本发明的技术方案提供另外一种阵列基板的制造方法,包括如下步骤:
S101、镀膜,即在玻璃基板的表面镀上一层膜;
S102、上光阻,即在所述膜的表面涂上一层光阻液;
S103、曝光,即对所述涂有光阻液的玻璃基板进行选择性曝光;
S104、显影,即溶解曝光的所述光阻;
S105、蚀刻,即蚀刻所述玻璃基板表面的无光阻覆盖的所述膜形成图案化的金属线;
S106、氧化,即至少在图案化的所述金属线的侧面通过氧化反应形成金属氧化物。
其中,在所述显影后和刻蚀前对所述玻璃基板进行烘烤,使未曝光的光阻更加坚固的依附在上述膜表面。
其中,所述步骤S106可以是如下步骤:
S10611、去光阻,即去除所述玻璃基板上的所述光阻;
S10612、氧化金属,即利用CVD设备对所述玻璃基板上的图案化的所述金属线进行氧化处理。
其中,所述氧化金属的方法是:将所述玻璃基板置于CVD设备腔内并且向其中通入氧气或者臭氧,所述氧化时间为80~120秒。
所述步骤S106也可以是如下步骤:
S10621、氧化金属,即对所述玻璃基板上的图案化的所述金属线进行氧化处理;
S10622、去光阻,即去除所述玻璃基板上的所述光阻。
其中,所述氧化金属有多种方法。
第一种方法是:向装有所述玻璃基板的腔内通入氧气或者臭氧或者洁净干燥的压缩空气,并且保持所述腔内温度低于150℃、气体流量低于3000标准毫升/分钟。
并且,所述氧化金属的方法中的所述氧化时间不超过240秒。
另一种方法是:利用强氧化剂的稀释溶液对所述玻璃基板上的金属进行氧化处理。
其中,所述强氧化剂的稀释溶液是利用涂刷方式覆盖在图案化的所述金属侧面。
有益效果
本发明的有益效果为:本发明提供的阵列基板的制造方法,均包含了氧化过程,其中一种氧化是在现有技术中的去光阻和利用CVD设备进行化学气相沉积这两个步骤之间对玻璃基板上的的金属进行氧化处理,此方法利用CVD设备对金属进行氧化,在具备较快的氧化速度的同时也不会改变正常的阵列制程顺序,因此,上述液晶显示器的制造方法不仅能改善漏光现象从而提高液晶面板对比度,而且也能保证液晶面板的生产效率及产能;另一种氧化是在现有技术中的蚀刻和去光阻这两个步骤之间对玻璃基板上的的金属进行氧化处理,此方法在去除金属上层的光阻之前氧化金属,由于有光阻的覆盖,氧化处理金属时不会造成其上表面受损,因此,上述液晶显示器的制造方法不仅能改善漏光现象从而提高液晶面板对比度,而且金属的导电能力也能得到保障。
本发明提供的利用上述方法制备的阵列基板以及包含所述阵列基板的液晶面板不仅保留了带有弧形的交叉金属结构以保证充电效率及存储电容,而且经过对氧化处理的金属导线也改善了漏光现象以提高液晶面板的对比度。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种阵列基板的制造方法的部分流程图。
图2为本发明实施例提供的上述阵列基板的制造方法中一种氧化流程图。
图3为本发明实施例提供的上述阵列基板的制造方法中另一种氧化流程图。
本发明的最佳实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“上”、“下”、“内”、“外”、“表面”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
另外,还需要说明的是,附图提供的仅仅是和本发明关系比较密切的结构和/或步骤,省略了一些与发明关系不大的细节,目的在于简化附图,使发明点一目了然,而不是表明实际中装置和/或方法就是和附图一模一样,不作为实际中装置和/或方法的限制。
如图1,表示了本发明实施例提供的一种阵列基板的制造方法的部分流程图,在该实施例中,所述制造方法至少包括如下步骤:
S101、镀膜,即在玻璃基板的表面镀上一层膜;
需要注意的是,在玻璃基板上会依次镀上很多层膜,根据所镀膜的材料种类会采用不同的镀膜方式,一般而言,有PVD和CVD两种镀膜方式。所述PVD是Physical Vapor Deposition(物理气相沉积)的缩写,是指在真空条件下,采用低电压、大电流的电弧放电技术,利用气体放电使靶材蒸发并使被蒸发物质与气体都发生电离,利用电场的加速作用,使被蒸发物质及其反应产物沉积在工件上;所述CVD是Chemical Vapor Deposition(化学气相沉积)的缩写,用含有目标元素的气体,接收能量后通过化学反应,制备固体薄膜。
需要了解的是,玻璃基板上所镀的第一、三、五层膜分别用作扫描线、信号线、电极板,它们所用的镀膜材料都是金属,此处都采用PVD镀膜方式;玻璃基板上所镀的第二、四层膜都有绝缘层的作用,所述绝缘材料都采用CVD镀膜方式。
由于此制造阵列基板的方法中后期包含对金属线的氧化步骤,因此,在此描述的方法步骤都是针对上述镀金属膜而言。
S102、上光阻,即在所述膜的表面涂上一层光阻液;
其中,在上光阻之前需要用离子水将所述玻璃基板洗净;所述光阻液也可以用光刻胶代替,它们都是指通过紫外光等光照或辐射以后溶解度发生变化的耐蚀刻薄膜材料,是光刻工艺中的关键材料,此处用作辅助形成玻璃基板上的细微图形;在涂有光阻液以后需要烘烤一段时间,将光刻液的部分挥发,同时增加光阻材料与上述膜的粘合度。
S103、曝光,即对所述涂有光阻液的玻璃基板进行选择性曝光;
其中,具体做法是用紫外光透过光罩对所述涂有光阻液的玻璃基板进行照射,所述面罩是根据相应的电路图制定而成,所述照射时间根据光阻层的凝固状态而定,并且光阻层曝光和未曝光的颜色会不同。
S104、显影,即溶解曝光的所述光阻;
其中,务必等到所述玻璃基板上的光阻定型后,再用显影液溶解所述曝光的光阻,以保证不会对金属图案造成破坏,并且用离子水冲走所述曝光的光阻以保证后期金属图案的准确;
需要注意的是,显影以后需要对玻璃基板进行烘烤,使未曝光的光阻更加坚固的依附在上述膜表面,以保证其下方的金属图案后期可以保留下来。
S105、蚀刻,即蚀刻所述玻璃基板表面的无光阻覆盖的所述膜形成图案化的金属线;
其中,所用到的蚀刻液应该是酸液。
S106、氧化,即至少在图案化的所述金属线的侧面通过氧化反应形成金属氧化物。
如图2,表示了上述阵列基板的制造方法中一种氧化流程图,在该实施例中,所述氧化过程至少包括如下步骤:
S10611、去光阻,即去除所述玻璃基板上的所述光阻;
其中,去光阻可以用专门的去光阻液,并且待光阻剥离以后要用有机溶
液冲走已反应的所述光阻以保证图案化的所述玻璃基板的干净;
S10612、氧化金属,即利用CVD设备对所述玻璃基板上的图案化的所述
金属线进行氧化处理。
可以理解的是,氧化金属针对的是金属膜,前面已经提到玻璃基板上的第一、三、五层膜是金属膜,依靠PVD方式镀膜,玻璃基板上的第二、四层膜是绝缘膜,依靠CVD方式镀膜,即在对金属膜进行完去光阻以后理应就要利用CVD设备沉积绝缘膜。
本发明就是在上述去光阻和CVD沉积绝缘膜两个步骤之间向CVD设备腔内通入氧化性气体来氧化金属膜,其中,所述氧化性气体可以是氧气、臭氧以及它们的混合气体,也可以其他具有氧化性的气体或者多种具有氧化性的气体混合物。除此之外,所述氧化时间为80~120秒,避免对金属过氧化,所述氧化期间的氧化气压以及施加的交流电压的频率大小也不必特意规定,可以根据后续CVD沉积绝缘膜的需求来进行施加,最终目的是便于后期的CVD沉积绝缘膜的进行。
因此,本发明完全不影响正常阵列制程的工序,而且CVD设备氧化速度也快,故此发明在达到减少消偏、降低漏光以至提高显示器对比度的同时,液晶面板的生产效率及产能也得到保证。
如图3,表示了上述阵列基板的制造方法中另一种氧化流程图,在该实施例中,所述氧化过程至少包括如下步骤:
S10621、氧化金属,即对所述玻璃基板上的图案化的所述金属线进行氧化处理;
S10622、去光阻,即去除所述玻璃基板上的所述光阻。
其中,去光阻的注意事项和上述第一种氧化过程中一样。
可以理解的是,氧化金属针对的是金属膜,本发明即在对相应的金属膜进行蚀刻和去光阻两个步骤之间对金属进行氧化,所述覆盖在金属上表面的光阻可以对金属上表面进行保护,使金属导线的导电能力得到保障,其中所述氧化金属的方法有如下四种实施例:
实施例一:向装有所述玻璃基板的腔内通入氧气,并且保持所述腔内温度低于150℃、气体流量低于3000标准毫升/分钟。
实施例二:向装有所述玻璃基板的腔内通入臭氧,并且保持所述腔内温度低于150℃、气体流量低于3000标准毫升/分钟。
实施例三:向装有所述玻璃基板的腔内通入洁净干燥的压缩空气,并且保持所述腔内温度低于150℃、气体流量低于3000标准毫升/分钟。
需要注意的是,上述三种实施例中所述的腔内可以是任意能够提供上述氧化环境的容器,通入腔内的通入的气体除了上述三种气体,也可以是其他氧化性气体或者是氧化性气体的混合物,并且上述三种氧化金属的方法中的氧化时间不超过240秒,以免对金属过氧化。
实施例四:利用强氧化剂的稀释溶液对所述玻璃基板上的图案化的金属线进行氧化处理。
其中,强氧化剂可以是双氧水或是其他具有强氧化性的液体,可以通过涂刷的方式将所述强氧化剂的稀释溶液均匀地涂抹在图案化的所述金属的侧面,也可以是用较细的管子将所述强氧化剂的稀释溶液均匀滴在图案化的所述金属的侧面。
需要注意的是,所述利用强氧化剂的稀释溶液对所述玻璃基板上的金属线进行氧化是对金属侧面产生氧化作用而不引起所述金属腐蚀,并且氧化金属线的过程中应尽量减少对非金属层的氧化,需要注意的是涂抹的溶液的量以及氧化时间要根据金属氧化情况而定,切记不要引起所述金属腐蚀。
因此,本发明不仅可以降低金属产生的漏光以致提高显示器对比度,而且氧化处理也不会造成金属上表面受损,保证了金属导线的导电能力。
本发明的有益效果为:本发明提供的阵列基板的制造方法,均包含了氧化过程,其中一种氧化是在现有技术中的去光阻和利用CVD设备进行化学气相沉积这两个步骤之间对玻璃基板上的的金属进行氧化处理,此方法利用CVD设备对金属进行氧化,在具备较快的氧化速度的同时也不会改变正常的阵列制程顺序,因此,上述液晶显示器的制造方法不仅能改善漏光现象从而提高液晶面板对比度,而且也能保证液晶面板的生产效率及产能;另一种氧化是在现有技术中的蚀刻和去光阻这两个步骤之间对玻璃基板上的的金属进行氧化处理,此方法在去除金属上层的光阻之前氧化金属,由于有光阻的覆盖,氧化处理金属时不会造成其上表面受损,因此,上述液晶显示器的制造方法不仅能改善漏光现象从而提高液晶面板对比度,而且金属的导电能力也能得到保障。
本发明提供的利用上述方法制备的阵列基板以及包含所述阵列基板的液晶面板不仅保留了带有弧形的交叉金属结构以保证充电效率及存储电容,而且经过对氧化处理的金属导线也改善了漏光现象以提高液晶面板的对比度。
以上对本发明实施例所提供的液晶显示器的制造方法进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例的技术方案的范围。

Claims (18)

  1. 一种阵列基板的制造方法,其包括如下步骤:
    S101、镀膜,即在玻璃基板的表面镀上一层膜;
    S102、上光阻,即在所述膜的表面涂上一层光阻液;
    S103、曝光,即对所述涂有光阻液的玻璃基板进行选择性曝光;
    S104、显影,即溶解曝光的所述光阻;
    S105、蚀刻,即蚀刻所述玻璃基板表面的无光阻覆盖的所述膜形成图案化的金属线;
    S106、氧化,即至少在图案化的所述金属线的侧面通过氧化反应形成金属氧化物。
  2. 如权利要求1所述的制造方法,其中,所述步骤S106包括如下步骤:
    S10611、去光阻,即去除所述玻璃基板上的所述光阻;
    S10612、氧化金属,即利用CVD设备对所述玻璃基板上的图案化的所述金属线进行氧化处理。
  3. 如权利要求2所述的制造方法,其中,所述的氧化金属的方法是:将所述玻璃基板置于CVD设备腔内并且向其中通入氧气或者臭氧,所述氧化时间为80~120秒。
  4. 如权利要求1所述的制造方法,其中,所述步骤S106包括如下步骤:
    S10621、氧化金属,即对所述玻璃基板上的图案化的所述金属线进行氧化处理;
    S10622、去光阻,即去除所述玻璃基板上的所述光阻。
  5. 如权利要求4所述的制造方法,其中,所述的氧化金属的方法是:向装有所述玻璃基板的腔内通入氧气或者臭氧或者洁净干燥的压缩空气,并且保持所述腔内温度低于150℃、气体流量低于3000标准毫升/分钟。
  6. 如权利要求5所述的制造方法,其中,所述氧化金属的方法中的所述氧化时间不超过240秒。
  7. 如权利要求4所述的制造方法,其中,所述氧化金属的方法是:利用强氧化剂的稀释溶液对图案化的所述金属进行氧化处理。
  8. 如权利要求7所述的制造方法,其中,所述强氧化剂的稀释溶液是利用涂刷方式覆盖在图案化的所述金属侧面。
  9. 一种阵列基板的制造方法,其中,包括如下步骤:
    S101、镀膜,即在玻璃基板的表面镀上一层膜;
    S102、上光阻,即在所述膜的表面涂上一层光阻液;
    S103、曝光,即对所述涂有光阻液的玻璃基板进行选择性曝光;
    S104、显影,即溶解曝光的所述光阻;
    S105、蚀刻,即蚀刻所述玻璃基板表面的无光阻覆盖的所述膜形成图案化的金属线;
    S106、氧化,即至少在图案化的所述金属线的侧面通过氧化反应形成金属氧化物。
    其中,在所述显影后和刻蚀前对所述玻璃基板进行烘烤,使未曝光的光阻更加坚固的依附在上述膜表面。
  10. 如权利要求9所述的制造方法,其中,所述步骤S106包括如下步骤:
    S10611、去光阻,即去除所述玻璃基板上的所述光阻;
    S10612、氧化金属,即利用CVD设备对所述玻璃基板上的图案化的所述金属线进行氧化处理。
  11. 如权利要求10所述的制造方法,其中,所述的氧化金属的方法是:将所述玻璃基板置于CVD设备腔内并且向其中通入氧气或者臭氧,所述氧化时间为80~120秒。
  12. 如权利要求9所述的制造方法,其中,所述步骤S106包括如下步骤:
    S10621、氧化金属,即对所述玻璃基板上的图案化的所述金属线进行氧化处理;
    S10622、去光阻,即去除所述玻璃基板上的所述光阻。
  13. 如权利要求11所述的制造方法,其中,所述的氧化金属的方法是:向装有所述玻璃基板的腔内通入氧气或者臭氧或者洁净干燥的压缩空气,并且保持所述腔内温度低于150℃、气体流量低于3000标准毫升/分钟。
  14. 如权利要求12所述的制造方法,其中,所述氧化金属的方法中的所述氧化时间不超过240秒。
  15. 如权利要求11所述的制造方法,其中,所述氧化金属的方法是:利用强氧化剂的稀释溶液对图案化的所述金属进行氧化处理。
  16. 如权利要求14所述的制造方法,其中,所述强氧化剂的稀释溶液是利用涂刷方式覆盖在图案化的所述金属侧面。
  17. 一种采用如权利要求1~8任一权利要求所述的制造方法制备的阵列基板。
  18. 一种包含如权利要求9所述的阵列基板的液晶显示面板。
PCT/CN2018/116143 2018-10-15 2018-11-19 一种阵列基板及其制造方法和一种液晶显示面板 WO2020077725A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/337,797 US20200192136A1 (en) 2018-10-15 2018-11-19 Array substrate, method for manufacturing the same, and liquid crystal display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811195510.3A CN109148490B (zh) 2018-10-15 2018-10-15 一种阵列基板及其制造方法和一种液晶显示面板
CN201811195510.3 2018-10-15

Publications (1)

Publication Number Publication Date
WO2020077725A1 true WO2020077725A1 (zh) 2020-04-23

Family

ID=64811821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116143 WO2020077725A1 (zh) 2018-10-15 2018-11-19 一种阵列基板及其制造方法和一种液晶显示面板

Country Status (3)

Country Link
US (1) US20200192136A1 (zh)
CN (1) CN109148490B (zh)
WO (1) WO2020077725A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110047798A (zh) * 2019-04-03 2019-07-23 深圳市华星光电半导体显示技术有限公司 金属线、显示面板的制作方法及显示面板
CN110415607A (zh) * 2019-07-24 2019-11-05 深圳市华星光电技术有限公司 显示面板及其制作方法
CN112327536B (zh) * 2020-11-03 2023-10-17 Tcl华星光电技术有限公司 显示面板、显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104965324A (zh) * 2015-07-23 2015-10-07 昆山龙腾光电有限公司 液晶显示装置的制造方法
US20150353767A1 (en) * 2014-06-10 2015-12-10 Samsung Display Co., Ltd. Resin composition, method of manufacturing display apparatus by using the same, and display apparatus manufactured by using the method
CN105390443A (zh) * 2015-12-03 2016-03-09 深圳市华星光电技术有限公司 Tft基板的制作方法
US20160141307A1 (en) * 2014-11-17 2016-05-19 Samsung Display Co., Ltd. Array substrate and manufacturing method thereof
CN105842904A (zh) * 2016-05-25 2016-08-10 京东方科技集团股份有限公司 阵列基板、显示装置及制备方法
CN108594550A (zh) * 2018-04-25 2018-09-28 深圳市华星光电半导体显示技术有限公司 阵列基板及其制作方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4166105B2 (ja) * 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
CN1309036C (zh) * 2004-12-13 2007-04-04 友达光电股份有限公司 薄膜晶体管元件的制造方法
TWI316763B (en) * 2006-12-01 2009-11-01 Au Optronics Corp Lcd pixel array structure and fabrication method thereof
TWI535028B (zh) * 2009-12-21 2016-05-21 半導體能源研究所股份有限公司 薄膜電晶體
JP2014038911A (ja) * 2012-08-13 2014-02-27 Sony Corp 薄膜トランジスタおよびその製造方法、並びに表示装置および電子機器
CN103066017A (zh) * 2012-12-28 2013-04-24 北京京东方光电科技有限公司 一种阵列基板的制备方法
CN105448815B (zh) * 2014-09-02 2018-09-18 中芯国际集成电路制造(上海)有限公司 接触孔的清洗方法及半导体器件
CN104701326A (zh) * 2015-03-19 2015-06-10 京东方科技集团股份有限公司 阵列基板及其制造方法和显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150353767A1 (en) * 2014-06-10 2015-12-10 Samsung Display Co., Ltd. Resin composition, method of manufacturing display apparatus by using the same, and display apparatus manufactured by using the method
US20160141307A1 (en) * 2014-11-17 2016-05-19 Samsung Display Co., Ltd. Array substrate and manufacturing method thereof
CN104965324A (zh) * 2015-07-23 2015-10-07 昆山龙腾光电有限公司 液晶显示装置的制造方法
CN105390443A (zh) * 2015-12-03 2016-03-09 深圳市华星光电技术有限公司 Tft基板的制作方法
CN105842904A (zh) * 2016-05-25 2016-08-10 京东方科技集团股份有限公司 阵列基板、显示装置及制备方法
CN108594550A (zh) * 2018-04-25 2018-09-28 深圳市华星光电半导体显示技术有限公司 阵列基板及其制作方法

Also Published As

Publication number Publication date
CN109148490A (zh) 2019-01-04
US20200192136A1 (en) 2020-06-18
CN109148490B (zh) 2021-04-27

Similar Documents

Publication Publication Date Title
WO2020077725A1 (zh) 一种阵列基板及其制造方法和一种液晶显示面板
US6759181B2 (en) Protective layer for corrosion prevention during lithography and etch
WO2015147429A1 (ko) 단결정 구리를 이용한 나노 망사 다층 구조의 전극 및 그 제조방법
JP2011070194A (ja) Tft−lcdアレイ基板及びその製造方法
CN107369715A (zh) 一种薄膜晶体管的制造方法
CN110010431B (zh) 一种具有防离子反馈膜的微通道板的制备方法
CN105070765B (zh) 薄膜晶体管、阵列基板、显示装置及制造方法
CN101963726B (zh) Ffs型tft-lcd阵列基板及其制造方法
JP3611618B2 (ja) 非晶質導電膜のパターニング方法
US20210225903A1 (en) Etching method, manufacturing method of thin film transistor, process device and display device
WO2019109445A1 (zh) Tft 阵列基板的制作方法及显示装置的制作方法
JP2020016845A (ja) フォトマスクおよびその製造方法
JP5165388B2 (ja) 積層構造及びそれを用いた電気回路用電極
WO2018094595A1 (zh) 阵列基板的制造方法
US7358195B2 (en) Method for fabricating liquid crystal display device
CN109860106A (zh) 一种显示基板的制备方法
JPS583251A (ja) 半導体装置の製造方法
CN101963727A (zh) Ffs型tft-lcd阵列基板及其制造方法
KR20080025545A (ko) 그레이톤 블랭크 마스크와 포토마스크 및 그 제조방법
WO2020199278A1 (zh) 金属线、显示面板的制作方法及显示面板
CN114923962A (zh) 基于五氧化二磷掺杂石墨烯的气体传感器及制备方法
JPH038212A (ja) 膜配線及びその製造方法
JPH06324349A (ja) 半導体装置の製造方法および製造装置
CN114229838A (zh) 一种石墨烯器件、多层膜及其制作方法和应用
JPS6314190A (ja) Ito膜上に薄膜を形成する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18937366

Country of ref document: EP

Kind code of ref document: A1