WO2020077722A1 - 一种黑色矩阵分散液及其制备方法、显示面板 - Google Patents

一种黑色矩阵分散液及其制备方法、显示面板 Download PDF

Info

Publication number
WO2020077722A1
WO2020077722A1 PCT/CN2018/116084 CN2018116084W WO2020077722A1 WO 2020077722 A1 WO2020077722 A1 WO 2020077722A1 CN 2018116084 W CN2018116084 W CN 2018116084W WO 2020077722 A1 WO2020077722 A1 WO 2020077722A1
Authority
WO
WIPO (PCT)
Prior art keywords
black matrix
metal nanoparticles
dye
coating layer
dispersion resin
Prior art date
Application number
PCT/CN2018/116084
Other languages
English (en)
French (fr)
Inventor
查宝
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Publication of WO2020077722A1 publication Critical patent/WO2020077722A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs

Definitions

  • the present application relates to the technical field of display manufacturing, in particular to a black matrix dispersion liquid, a preparation method thereof, and a display panel.
  • the thin film transistor liquid crystal display TFT-LCD module is composed of a backlight system, a color filter (CF), and a thin film transistor (TFT), and liquid crystal between the TFT and the CF substrate.
  • the color film CF mainly divides the light in the backlight into three colors of red (R), green (G), and blue (B), and the black matrix between the RGB pixels (Black Matrix, BM) is used to separate the sub-pixels of each color, block the gap between the sub-pixels of each color, and prevent color mixing and light leakage.
  • the traditional technology is to separate the RGB pixels of the color film CF with BM.
  • BM According to the material composition of BM, it can be divided into types such as metal oxide, carbon black, titanium black and pigment.
  • carbon black BM is applied to industrial production by coating.
  • the main reason for using carbon black BM is its high light absorption rate, high thermal stability and low cost.
  • the problem is that carbon black BM has a high dielectric constant, which easily leads to the failure of TFTs in LCDs.
  • carbon black BM mainly uses carbon black particles (Carbon) to absorb light, its particle properties have a certain effect on light Reflection, especially for longer wavelengths, has higher reflectivity.
  • the present application provides a black matrix dispersion liquid, a preparation method thereof, and a display panel, which can obtain a black matrix material with low conductivity, low reflectance, and high absorbance, thereby improving the display performance of the display panel.
  • the present application provides a method for preparing a black matrix dispersion liquid.
  • the method includes the following steps:
  • Step S10 adding the metal nanoparticles to the alkaline solution containing ammonia, and then adding tetraethyl orthosilicate to form a silica coating layer wrapped on the surface of the metal nanoparticles;
  • Step S20 preparing a dye mixture solution containing red dye and blue dye, and the red dye and the blue dye are evenly distributed in the dye mixture solution;
  • Step S30 the metal nanoparticles coated with the silica coating layer on the surface are added to the dispersion resin together with the dye mixture to mix, so that the surface coated with the silica coating layer
  • the metal nanoparticles are evenly distributed in the dispersion resin, and the red dye and the blue dye are cross-linked with the dispersion resin and fixed in the dispersion resin to form the black matrix dispersion liquid.
  • step S10 the following step is further included: one or more metals among gold, silver, copper, aluminum, iron, titanium, and nickel are added to In citrate, seed crystals are added to form the metal nanoparticles.
  • the step S10 includes the following steps:
  • Step S101 adding metal nanoparticles to the alkaline solution with a volume ratio of water: ethanol: ammonia water of 10: 75: 3;
  • Step S102 adding the tetraethyl orthosilicate again, and under the catalytic action of the ammonia water, the tetraethyl orthosilicate is hydrolyzed to silicic acid;
  • Step S103 the silicic acid undergoes a condensation reaction with each other to form the silica coating layer that wraps the metal nanoparticles.
  • the thickness of the silica coating layer is between 20 nm and 50 nm.
  • the raw material containing the blue dye includes one of triarylmethane derivatives, dimer triarylmethane derivatives and phthalocyanine series derivatives or More than one.
  • the raw material containing the red dye includes one or more than one derivatives of perylene.
  • the step S30 further includes the following steps:
  • Step S301 adding the metal nanoparticles with the silica coating layer on the surface together with the dye mixture and the dye fluorescence quenching agent to the dispersion resin to mix;
  • Step S302 adding cross-linking agent, monomer and active agent, mixing well;
  • Step S303 the metal nanoparticles coated with the silica coating layer on the surface are uniformly dispersed in the dispersion resin, and the red dye and the blue dye are polymerized by the monomer, In addition, the cross-linking agent and the dispersing resin all undergo cross-linking reaction to be fixed in the dispersing resin.
  • the present application also provides a black matrix dispersion prepared by the above preparation method, which includes:
  • Metal nanoparticles, a silica coating layer is wrapped on the surface of the metal nanoparticles, and is evenly distributed in the dispersion resin;
  • both the red dye and the blue dye undergo cross-linking reaction with the dispersion resin and are fixed in the dispersion resin to form the black matrix dispersion liquid.
  • the material of the metal nanoparticles includes one or more metals among gold, silver, copper, aluminum, iron, titanium, and nickel.
  • the thickness of the silica coating layer is between 20 nm and 50 nm.
  • the raw material of the blue dye includes one or more of triarylmethane derivatives, dimer triarylmethane derivatives, and phthalocyanine series derivatives.
  • the raw material of the red dye includes one or more than one derivatives of perylene.
  • the present application also provides a display panel prepared by using the above black matrix dispersion liquid, including: an array substrate and a counter substrate that are oppositely arranged, and a liquid crystal layer between the array substrate and the counter substrate;
  • the array substrate or the opposite substrate includes a black matrix corresponding to a gap between two adjacent pixel units
  • the material of the black matrix includes metal nanoparticles uniformly distributed in the dispersion resin and coated with a silica coating layer, and blue dye molecules and red dyes fixed uniformly in the dispersion resin through chemical bonds molecule.
  • the display panel of the present application the display panel further includes a color film corresponding to the pixel unit, wherein the color film is prepared on the array substrate corresponding to the pixel unit, and the black matrix corresponds to two adjacent The gap between the pixel units is prepared on the opposite substrate;
  • the color film is prepared on the counter substrate corresponding to the pixel unit, and the black matrix is prepared on the array substrate corresponding to a gap between two adjacent pixel units.
  • the beneficial effects of the present application are: compared with the black matrix in the existing display panel, the black matrix dispersion liquid provided by the present application and its preparation method, display panel, by adding a layer of transparent silica on the outer layer of the metal nanoparticles (SiO2) protective layer can reduce the conductivity of metal nanoparticles.
  • SiO2 metal nanoparticles
  • the black matrix made of metal nanoparticles containing blue dye, red dye and silicon dioxide coated on the surface can make use of the locality of metal nanoparticles Domain surface plasmon resonance (LSPR) method to improve the absorption of light by the dye, can achieve full absorption in the visible light (380 ⁇ 780nm) range, so that the black matrix material achieves high absorbance (Optical Density, OD), low reflectance Characteristics, which in turn improves the performance of the display panel.
  • LSPR metal nanoparticles Domain surface plasmon resonance
  • FIG. 1 is a flow chart of a method for preparing a black matrix dispersion liquid provided by an embodiment of this application;
  • FIG. 2 is a schematic structural diagram of metal nanoparticles coated with a silica coating layer provided on an embodiment of the present application
  • FIG. 3 is a flowchart of the method of step S30 in FIG. 1.
  • This application is directed to the black matrix material of the display panel of the prior art, because of its high dielectric constant, it is easy to cause the TFT device to fail, and there is a technical problem that the reflectivity of light is high, which affects the performance of the display panel, this implementation Examples can solve this defect.
  • FIG. 1 it is a flowchart of a method for preparing a black matrix dispersion liquid provided by an embodiment of the present application. The method includes the following steps:
  • Step S10 adding the metal nanoparticles to the alkaline solution containing ammonia, and then adding tetraethyl orthosilicate to form a silica coating layer wrapped on the surface of the metal nanoparticles;
  • the metal nanoparticles can be prepared by the citrate-seed growth method, specifically including the following steps: gold, silver, copper, aluminum, One or more metal particles of iron, titanium, and nickel are added to the citrate, and then seed crystals are added, and the size of the metal nanoparticles is adjusted by the amount of the seed crystals, thereby forming the Metal nanoparticles.
  • the metal nanoparticles are not limited to the above materials, but may also be other metal materials; preferably, the particle size of the metal nanoparticles is between 10 nm and 100 nm.
  • step S10 includes the following steps:
  • Step S101 adding metal nanoparticles to the alkaline solution with a volume ratio of water: ethanol: ammonia water of 10: 75: 3;
  • the metal nanoparticles prepared by the above method are added to the first mixing system of water (10 mL): ethanol (75 mL): ammonia water (3 mL).
  • Step S102 adding the tetraethyl orthosilicate again, and under the catalytic action of the ammonia water, the tetraethyl orthosilicate is hydrolyzed to silicic acid;
  • the tetraethyl orthosilicate can be hydrolyzed to silicic acid under the catalytic condition of ammonia.
  • Step S103 the silicic acid undergoes a condensation reaction with each other to form the silica coating layer that wraps the metal nanoparticles.
  • the silicic acid can uniformly nucleate on the surface of the metal nanoparticles 20 through a condensation reaction to form a silica coating layer 21, and the thickness of the silica coating layer 21 is controlled at 20 nm to 50 nm Preferably; the thickness of the silica cladding layer 21 is 30nm; forming a second mixed system.
  • Step S20 preparing a dye mixture solution containing red dye and blue dye, and the red dye and the blue dye are evenly distributed in the dye mixture solution;
  • the raw material containing the blue dye includes one or more of triarylmethane derivatives, dimer triarylmethane derivatives and phthalocyanine series derivatives; forming a third mixed system.
  • R1, R2, R3, R4, R5, R6 may be a linear alkane group, a branched alkane group, a chain group containing an ester group, or an F-substituted alkane derivative group; R1 The carbon chain length of R2, R3, R4, R5, R6 is 1-25.
  • R1, R2, R3, R4, R5, R6 are linear alkane groups, branched alkane groups, chain groups containing ester groups, or F-substituted alkane derivative groups; R1, R2 , R3, R4, R5, R6 carbon chain length is 1-25; X- is F-, Cl-, Br-, CF3SO3-, CF2HSO3- or CFH2SO3- and other anions.
  • the center of the phthalocyanine may contain Cu or may not contain Cu
  • R1 to R8 may be linear alkane groups, branched alkane groups, chain groups containing ester groups, Or F substituted alkane derivative group; the carbon chain length of R1-R8 is 1-25; secondly, R1-R8 may also contain a cyclic structure, as shown in the following structural formula:
  • R9 to R13 may be a linear alkane group, a branched alkane group, a chain group containing an ester group, or an F-substituted alkane derivative group, and the carbon chain length of R9 to R14 is 1- 25.
  • the raw material containing the red dye includes one or more than one perylene derivatives.
  • R1, R2, R3, R4, R5, R6, R7, R8 may be a linear alkane group, a branched alkane group, a chain group containing an ester group, or an F-substituted alkane derivative group Group; R1 ⁇ R8 carbon chain length is 1-25; Second, R1, R2, R3, R4, R5, R6, R7, R8 may also contain a cyclic structure, specifically including the following structural formula:
  • R9 ⁇ R14 may be a linear alkane group, a branched alkane group, a chain group containing an ester group, or an F-substituted alkane derivative group; the carbon chain length of R9 ⁇ R14 is 1- 25.
  • the blue dye absorbs light in the range of 580 nm to 780 nm
  • the red dye absorbs light in the range of 380 nm to 600 nm; in this way, full absorption can be achieved in the range of visible light (380 nm to 780 nm).
  • Step S30 the metal nanoparticles coated with the silica coating layer on the surface are added to the dispersion resin together with the dye mixture to mix, so that the surface coated with the silica coating layer
  • the metal nanoparticles are evenly distributed in the dispersion resin, and the red dye and the blue dye are cross-linked with the dispersion resin and fixed in the dispersion resin to form the black matrix dispersion liquid.
  • the step S30 includes the following steps:
  • Step S301 adding the metal nanoparticles with the silica coating layer on the surface together with the dye mixture and the dye fluorescence quenching agent to the dispersion resin to mix;
  • Step S302 adding cross-linking agent, monomer and active agent, mixing well;
  • the metal nanoparticles coated with the silica coating layer on the surface have light-shielding properties, and the conductivity is greatly reduced due to the coating of the silica coating layer. It is 5.1% ⁇ 8.0%.
  • the dye mixture can be used to absorb visible light, and its component ratio is 15% -25%. Preferably, the ratio between the metal nanoparticles and the dye mixture may be 3.1% to 5.0%.
  • the dye fluorescence quencher can prevent the dye from generating fluorescence, and its component ratio is 3% to 5%.
  • the dispersant can disperse the particles, and its component ratio is 3.5% to 4.1%.
  • the cross-linking agent can increase the molecular weight through a cross-linking reaction, and its component ratio is 5.7% to 7.3%.
  • the monomer is used to increase the molecular weight, and its component ratio is 1.8% to 2.3%.
  • the photoinitiator is used to activate it by light, and its component ratio is 0.8% to 1.1%.
  • the components of the active agent account for 2% to 2.4%.
  • Solvent, used for dissolving, calculating, adjusting viscosity, etc., its component ratio is 59.9% ⁇ 63.7%.
  • Step S303 the metal nanoparticles coated with the silica coating layer on the surface are uniformly dispersed in the dispersion resin, and the red dye and the blue dye are polymerized by the monomer, In addition, the cross-linking agent and the dispersing resin all undergo cross-linking reaction to be fixed in the dispersing resin.
  • a black matrix dispersion liquid with high absorbance and low reflectance can be formed, which can be used for preparing a black matrix in a display panel.
  • the present application also provides a black matrix dispersion prepared by the above preparation method.
  • the present application also provides a display panel prepared using the above black matrix dispersion liquid, the display panel comprising: an array substrate and a counter substrate that are oppositely disposed, and a liquid crystal layer between the array substrate and the counter substrate
  • the array substrate or the opposite substrate includes a black matrix corresponding to a gap between adjacent two pixel units; wherein, the material of the black matrix includes a surface uniformly distributed in a dispersed resin coated with silica The metal nanoparticles of the coating layer and the blue dye molecules and red dye molecules uniformly fixed in the dispersion resin through chemical bonds.
  • the display panel further includes a color film corresponding to the pixel unit, the color film corresponding to the pixel unit is prepared on the array substrate, and the black matrix corresponds to a gap between two adjacent pixel units The part is prepared on the counter substrate.
  • the color film is prepared on the counter substrate corresponding to the pixel unit, and the black matrix is prepared on the array substrate corresponding to a gap between two adjacent pixel units.
  • the display panel further includes other conventional film layers, such as a thin film transistor layer, a polarizer, etc., which is not limited herein.
  • the black matrix dispersion liquid provided by this application, its preparation method, and display panel by adding a transparent silica protective layer on the outer layer of the metal nanoparticles, to reduce the conductivity of the metal nanoparticles, by containing blue dye, red
  • the dye and the metal nanoparticles coated with silicon dioxide are black matrix made of materials.
  • the localized surface plasmon resonance of the metal nanoparticles can be used to enhance the absorption of light by the dye, and full absorption can be achieved in the visible light range. , So that the black matrix material realizes the characteristics of high absorbance and low reflectivity, thereby further improving the performance of the display panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Liquid Crystal (AREA)

Abstract

一种黑色矩阵分散液及其制备方法、显示面板,所述显示面板包括:阵列基板、液晶层以及对向基板;所述阵列基板或所述对向基板中包括黑色矩阵;所述黑色矩阵的材料中包括均匀分布于分散树脂中的表面包裹有二氧化硅包裹层(21)的金属纳米颗粒(20),以及通过化学键均匀固定于所述分散树脂中的蓝色染料分子与红色染料分子。

Description

一种黑色矩阵分散液及其制备方法、显示面板 技术领域
本申请涉及显示制造技术领域,尤其涉及一种黑色矩阵分散液及其制备方法、显示面板。
背景技术
薄膜晶体管液晶显示TFT-LCD模组,是由背光系统,彩膜滤光片(CF),和薄膜晶体管(TFT),以及在TFT和CF基板间的液晶组成。传统的液晶显示面板中,彩膜CF主要是将背光源中的光分为红(R)、绿(G)、蓝(B)三色光,而在RGB pixel之间的黑色矩阵(Black Matrix,BM)是用于分隔各色子像素,遮挡各色子像素之间的空隙,防止混色和漏光。目前,传统技术是将彩膜CF的RGB pixel之间用BM分隔。
根据BM的材料组成,可以其分为金属氧化物、炭黑、钛金黑和颜料等类型。目前炭黑BM通过涂布的方式应用于工业生产中,之所以采用炭黑BM主要在于其高的光吸收率、高热稳定性和低成本。但是问题在于炭黑BM具有高的介电常数,容易导致LCD中的TFT失效;此外,由于炭黑BM主要是利用炭黑颗粒(Carbon black)来吸光,其颗粒属性,对光具有存在一定的反射,特别是对波长较长的光反射率更高。
因此,现有技术存在缺陷,急需改进。
技术问题
本申请提供一种黑色矩阵分散液及其制备方法、显示面板,能够获得一种具有低导电性、低反射率以及高吸光度的黑色矩阵材料,从而提升显示面板的显示性能。
技术解决方案
为解决上述问题,本申请提供的技术方案如下:
本申请提供一种黑色矩阵分散液的制备方法,所述方法包括以下步骤:
步骤S10,将金属纳米颗粒加入到含有氨水的碱性溶液中,再加入正硅酸四乙酯,形成包裹于所述金属纳米颗粒表面的二氧化硅包裹层;
步骤S20,制备包含有红色染料与蓝色染料的染料混合液,且所述红色染料与所述蓝色染料均匀的分布于所述染料混合液中;
步骤S30,将表面包裹有所述二氧化硅包裹层的所述金属纳米颗粒与所述染料混合液一同加入到分散树脂中,进行混合,使得表面包裹有所述二氧化硅包裹层的所述金属纳米颗粒均匀的分布于所述分散树脂中,以及使所述红色染料以及所述蓝色染料均与所述分散树脂发生交联反应并固定于所述分散树脂中,形成所述黑色矩阵分散液。
在本申请的黑色矩阵分散液的制备方法中,在所述步骤S10之前还包括以下步骤:将金、银、铜、铝、铁、钛、镍中的一种或一种以上的金属加入到柠檬酸盐中,再加入籽晶,形成所述金属纳米颗粒。
在本申请的黑色矩阵分散液的制备方法中,所述步骤S10包括以下步骤:
步骤S101,将金属纳米颗粒加入到水:乙醇:氨水的体积比为10:75:3的所述碱性溶液中;
步骤S102,再加入所述正硅酸四乙酯,在所述氨水的催化作用下,所述正硅酸四乙酯水解成硅酸;
步骤S103,所述硅酸经彼此间发生缩合反应,形成包裹所述金属纳米颗粒的所述二氧化硅包裹层。
在本申请的黑色矩阵分散液的制备方法中,所述二氧化硅包裹层的厚度在20nm~50nm之间。 在本申请的黑色矩阵分散液的制备方法中,含有所述蓝色染料的原料包括三芳基甲烷类衍生物、二聚体的三芳基甲烷类衍生物以及酞菁系列衍生物中的一种或一种以上。
在本申请的黑色矩阵分散液的制备方法中,含有所述红色染料的原料包括二萘嵌苯类的衍生物中的一种或一种以上。
在本申请的黑色矩阵分散液的制备方法中,所述步骤S30还包括以下步骤:
步骤S301,将表面包裹有所述二氧化硅包裹层的所述金属纳米颗粒与所述染料混合液以及染料荧光淬灭剂一同加入到分散树脂中,进行混合;
步骤S302,再加入交联剂、单聚物以及活性剂,混合均匀;
步骤S303,表面包裹有所述二氧化硅包裹层的所述金属纳米颗粒均匀的分散于所述分散树脂中,所述红色染料以及所述蓝色染料通过所述单聚物均发生聚合反应,并通过所述交联剂均与所述分散树脂发生交联反应,以固定于所述分散树脂中。
本申请还提供一种采用上述制备方法制备的黑色矩阵分散液,其中,包括:
分散树脂;
金属纳米颗粒,所述金属纳米颗粒表面包裹有二氧化硅包裹层,且均匀的分布于所述分散树脂中;
红色染料,均匀的分布于所述分散树脂中;
蓝色染料,均匀的分布于所述分散树脂中;
其中,所述红色染料以及所述蓝色染料均与所述分散树脂发生交联反应并固定于所述分散树脂中,形成所述黑色矩阵分散液。
在本申请的黑色矩阵分散液中,所述金属纳米颗粒的材料包括金、银、铜、铝、铁、钛、镍中的一种或一种以上的金属。
在本申请的黑色矩阵分散液中,所述二氧化硅包裹层的厚度在20nm~50nm之间。
在本申请的黑色矩阵分散液中,所述蓝色染料的原料包括三芳基甲烷类衍生物、二聚体的三芳基甲烷类衍生物以及酞菁系列衍生物中的一种或一种以上。
在本申请的黑色矩阵分散液中,所述红色染料的原料包括二萘嵌苯类的衍生物中的一种或一种以上。
本申请还提供一种采用上述黑色矩阵分散液制备的显示面板,包括:相对设置的阵列基板与对向基板,以及位于所述阵列基板与所述对向基板之间的液晶层;
所述阵列基板或所述对向基板中包括对应相邻两像素单元之间间隙部位的黑色矩阵;
其中,所述黑色矩阵的材料中包括均匀分布于分散树脂中的表面包裹有二氧化硅包裹层的金属纳米颗粒,以及通过化学键均匀的固定于所述分散树脂中的蓝色染料分子与红色染料分子。在本申请的显示面板中,所述显示面板还包括对应所述像素单元的彩膜,其中,所述彩膜对应所述像素单元制备于所述阵列基板上,所述黑色矩阵对应相邻两所述像素单元之间的间隙部位制备于所述对向基板上;
或者,所述彩膜对应所述像素单元制备于所述对向基板上,所述黑色矩阵对应相邻两所述像素单元之间的间隙部位制备于所述阵列基板上。
有益效果
本申请的有益效果为:相较于现有显示面板中的黑色矩阵,本申请提供的黑色矩阵分散液及其制备方法、显示面板,通过在金属纳米颗粒外层添加一层透明的二氧化硅(SiO2)保护层,可以降低金属纳米颗粒的导电性,通过包含有蓝色染料、红色染料以及表面包裹有二氧化硅的金属纳米颗粒为材料制成的黑色矩阵,可以利用金属纳米颗粒的局域表面等离子体共振 (LSPR)的方式来提升染料对光的吸收,可以在可见光(380~780nm)范围内实现全吸收,从而使黑色矩阵材料实现高吸光度(Optical Density,OD)、低反射率的特性,进而提高显示面板的性能。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的黑色矩阵分散液的制备方法流程图;
图2为本申请实施例提供的表面包裹有二氧化硅包裹层的金属纳米颗粒的结构示意图;
图3为图1中步骤S30的方法流程图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。在图中,结构相似的单元是用以相同标号表示。
本申请针对现有技术的显示面板的黑色矩阵材料,由于具有较高的介电常数,容易导致TFT器件失效,以及存在对光的反射率较高,而影响显示面板性能的技术问题,本实施例能够解决该缺陷。
如图1所示,为本申请实施例提供的黑色矩阵分散液的制备方法流程图。所述方法包括以下步骤:
步骤S10,将金属纳米颗粒加入到含有氨水的碱性溶液中,再加入正硅酸四乙酯,形成包裹于所述金属纳米颗粒表面的二氧化硅包裹层;
其中,首先是所述金属纳米颗粒(Metal-Nanoparticle MNP)的制备,所述金属纳米颗粒可以通过柠檬酸盐-籽晶生长法制备,具体还包括以下步骤:将金、银、铜、铝、铁、钛、镍中的一种或一种以上的金属颗粒加入到柠檬酸盐中,再加入籽晶,通过所述籽晶的用量来调控所述金属纳米颗粒尺寸的大小,从而形成所述金属纳米颗粒。其中,所述金属纳米颗粒并不限于上述材料,还可以为其他金属材料;优选的,所述金属纳米颗粒的粒径大小为10nm~100nm之间。
具体地,所述步骤S10包括以下步骤:
步骤S101,将金属纳米颗粒加入到水:乙醇:氨水的体积比为10:75:3的所述碱性溶液中;
其中,将上述方法制备的所述金属纳米颗粒加入到水(10mL):乙醇(75mL):氨水(3mL)的第一混合体系中。
步骤S102,再加入所述正硅酸四乙酯,在所述氨水的催化作用下,所述正硅酸四乙酯水解成硅酸;
其中,采用Stober溶胶凝胶法以正硅酸四乙酯(TEOS,6mL)为硅源,在氨水催化条件下,所述正硅酸四乙酯可以水解成硅酸。
步骤S103,所述硅酸经彼此间发生缩合反应,形成包裹所述金属纳米颗粒的所述二氧化硅包裹层。
具体如图2所示,所述硅酸经过缩合反应可以在金属纳米颗粒20表面均匀成核,形成一层二氧化硅包裹层21,所述二氧化硅包裹层21的厚度控制在20nm~50nm之间;优选的,所述二氧化硅包裹层21的厚度为30nm;形成第二混合体系。
步骤S20,制备包含有红色染料与蓝色染料的染料混合液,且所述红色染料与所述蓝色染料均匀的分布于所述染料混合液中;
其中,含有所述蓝色染料的原料包括三芳基甲烷类衍生物、二聚体的三芳基甲烷类衍生物以及酞菁系列衍生物中的一种或一种以上;形成第三混合体系。
具体地,所述三芳基甲烷类衍生物的结构式如下所示:
Figure PCTCN2018116084-appb-000001
其中,R1、R2、R3、R4、R5、R6可以为直链烷烃基团、有支链的烷烃基团、含有酯基的链状物基团、或F取代烷烃衍生物基团;R1、R2、R3、R4、R5、R6的碳链长度为1-25。
所述二聚体的三芳基甲烷类衍生物的结构式如下:
Figure PCTCN2018116084-appb-000002
其中,R1、R2、R3、R4、R5、R6为直链烷烃基团、有支链的烷烃基团、含有酯基的链状物基团、或F取代烷烃衍生物基团;R1、R2、R3、R4、R5、R6的碳链长度为1-25;X-为F-、Cl-、Br-、CF3SO3-、CF2HSO3-或CFH2SO3-等阴离子。
所述酞菁系列衍生物的结构式如下:
Figure PCTCN2018116084-appb-000003
其中,在酞菁的中心可以是含有Cu或者也可以是不含有Cu的物质,R1~R8可以是直链烷烃基团、有支链的烷烃基团、含有酯基的链状物基团、或F取代烷烃衍生物基团;R1~R8的碳链长度为1-25;其次,R1~R8也可以是含有环状结构,具体如下列结构式所示:
Figure PCTCN2018116084-appb-000004
其中,R9~R13可以是直链烷烃基团、有支链的烷烃基团、含有酯基的链状物基团、或F取代烷烃衍生物基团,R9~R14的碳链长度为1-25。
另外,含有所述红色染料的原料包括二萘嵌苯类的衍生物中的一种或一种以上。
具体地,所述二萘嵌苯类的衍生物的结构式如下:
Figure PCTCN2018116084-appb-000005
其中,R1、R2、R3、R4、R5、R6、R7、R8可以是直链烷烃基团、有支链的烷烃基团、含有酯基的链状物基团、或F取代烷烃衍生物基团;R1~R8的碳链长度为1-25;其次,R1、R2、R3、R4、R5、R6、R7、R8也可以是含有环状结构,具体包括如下结构式:
Figure PCTCN2018116084-appb-000006
其中,R9~R14可以是直链烷烃基团、有支链的烷烃基团、含有酯基的链状物基团、或F取代烷烃衍生物基团;R9~R14的碳链长度为1-25。
由于所述蓝色染料的吸收光的范围在580nm~780nm之间,所述红色染料的吸光范围集中在380nm~600nm之间;这样可以在可见光(380nm~780nm)范围内实现全吸收。
步骤S30,将表面包裹有所述二氧化硅包裹层的所述金属纳米颗粒与所述染料混合液一同加入到分散树脂中,进行混合,使得表面包裹有所述二氧化硅包裹层的所述金属纳米颗粒均匀的分布于所述分散树脂中,以及使所述红色染料以及所述蓝色染料均与所述分散树脂发生交联反应并固定于所述分散树脂中,形成所述黑色矩阵分散液。
具体如图3所示,所述步骤S30包括以下步骤:
步骤S301,将表面包裹有所述二氧化硅包裹层的所述金属纳米颗粒与所述染料混合液以及染料荧光淬灭剂一同加入到分散树脂中,进行混合;
步骤S302,再加入交联剂、单聚物以及活性剂,混合均匀;
当然,此处并不对上述材料的添加顺序进行限定,还可添加其他制程可接受的辅料,形成第四混合体系,其组分及比例如下:
其中,表面包裹有所述二氧化硅包裹层的所述金属纳米颗粒具有遮光性,由于有所述二氧化硅包裹层的包被,使其导电性大大降低,优选的,该组分的比例为5.1%~8.0%。所述染料混合液可用于吸收可见光,其组分占比为15%~25%。优选的,所述金属纳米颗粒与所述染料混合液之间的比例可以是3.1%~5.0%。所述染料荧光淬灭剂可以避免染料产生荧光,其组分占比为3%~5%。分散剂可以使粒子分散化,其组分占比为3.5%~4.1%。所述交联剂可以通过交联反应使分子量增大,其组分占比为5.7%~7.3%。所述单聚物与所述交联剂一样用于增大分子量,其组分占比为1.8%~2.3%。光引发剂用于通过光使其活性化,其组分占比为0.8%~1.1%。所述活性剂的组分占比为2%~2.4%。溶剂,用于溶解、分算,调整粘度等,其组分占比为59.9%~63.7%。
步骤S303,表面包裹有所述二氧化硅包裹层的所述金属纳米颗粒均匀的分散于所述分散树脂中,所述红色染料以及所述蓝色染料通过所述单聚物均发生聚合反应,并通过所述交联剂均与所述分散树脂发生交联反应,以固定于所述分散树脂中。
有上述步骤即可形成具有高吸光度、低反射率的黑色矩阵分散液,可用于显示面板中黑色矩阵的制备。
本申请还提供一种采用上述制备方法制备的黑色矩阵分散液。
本申请还提供一种采用上述黑色矩阵分散液制备的显示面板,所述显示面板包括:相对设置的阵列基板与对向基板,以及位于所述阵列基板与所述对向基板之间的液晶层;所述阵列基板或者所述对向基板中包括对应相邻两像素单元之间间隙部位的黑色矩阵;其中,所述黑色矩阵的材料中包括均匀分布于分散树脂中的表面包裹有二氧化硅包裹层的金属纳米颗粒,以及通过化学键均匀的固定于所述分散树脂中的蓝色染料分子与红色染料分子。
其中,所述显示面板还包括对应所述像素单元的彩膜,所述彩膜对应所述像素单元制备于所述阵列基板上,所述黑色矩阵对应相邻两所述像素单元之间的间隙部位制备于所述对向基板上。
或者,所述彩膜对应所述像素单元制备于所述对向基板上,所述黑色矩阵对应相邻两所述像素单元之间的间隙部位制备于所述阵列基板上。
可以理解的是,所述显示面板还包括其他常规膜层,如薄膜晶体管层、偏光片等,此处不做限制。
本申请提供的黑色矩阵分散液及其制备方法、显示面板,通过在金属纳米颗粒外层添加一层透明的二氧化硅保护层,降低金属纳米颗粒的导电性,通过包含有蓝色染料、红色染料以及表面包裹有二氧化硅的金属纳米颗粒为材料制成的黑色矩阵,可以利用金属纳米颗粒的局域表面等离子体共振的方式来提升染料对光的吸收,可以在可见光范围内实现全吸收,从而使黑色矩阵材料实现高吸光度、低反射率的特性,进而提高显示面板的性能。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (14)

  1. 一种黑色矩阵分散液的制备方法,其中,所述方法包括以下步骤:步骤S10,将金属纳米颗粒加入到含有氨水的碱性溶液中,再加入正硅酸四乙酯,形成包裹于所述金属纳米颗粒表面的二氧化硅包裹层;步骤S20,制备包含有红色染料与蓝色染料的染料混合液,且所述红色染料与所述蓝色染料均匀的分布于所述染料混合液中;
    步骤S30,将表面包裹有所述二氧化硅包裹层的所述金属纳米颗粒与所述染料混合液一同加入到分散树脂中,进行混合,使得表面包裹有所述二氧化硅包裹层的所述金属纳米颗粒均匀的分布于所述分散树脂中,以及使所述红色染料以及所述蓝色染料均与所述分散树脂发生交联反应并固定于所述分散树脂中,形成所述黑色矩阵分散液。
  2. 根据权利要求1所述的制备方法,其中,在所述步骤S10之前还包括以下步骤:将金、银、铜、铝、铁、钛、镍中的一种或一种以上的金属加入到柠檬酸盐中,再加入籽晶,形成所述金属纳米颗粒。
  3. 根据权利要求1所述的制备方法,其中,所述步骤S10包括以下步骤:
    步骤S101,将金属纳米颗粒加入到水:乙醇:氨水的体积比为10:75:3的所述碱性溶液中;
    步骤S102,再加入所述正硅酸四乙酯,在所述氨水的催化作用下,所述正硅酸四乙酯水解成硅酸;
    步骤S103,所述硅酸经彼此间发生缩合反应,形成包裹所述金属纳米颗粒的所述二氧化硅包裹层。
  4. 根据权利要求1所述的制备方法,其中,所述二氧化硅包裹层的厚度在20nm~50nm之间。
  5. 根据权利要求1所述的制备方法,其中,含有所述蓝色染料的原料包括三芳基甲烷类衍生物、二聚体的三芳基甲烷类衍生物以及酞菁系列衍生物中的一种或一种以上。
  6. 根据权利要求1所述的制备方法,其中,含有所述红色染料的原料包括二萘嵌苯类的衍生物中的一种或一种以上。
  7. 根据权利要求1所述的制备方法,其中,所述步骤S30还包括以下步骤:
    步骤S301,将表面包裹有所述二氧化硅包裹层的所述金属纳米颗粒与所述染料混合液以及染料荧光淬灭剂一同加入到分散树脂中,进行混合;
    步骤S302,再加入交联剂、单聚物以及活性剂,混合均匀;
    步骤S303,表面包裹有所述二氧化硅包裹层的所述金属纳米颗粒均匀的分散于所述分散树脂中,所述红色染料以及所述蓝色染料通过所述单聚物均发生聚合反应,并通过所述交联剂均与所述分散树脂发生交联反应,以固定于所述分散树脂中。
  8. 一种采用权利要求1所述的制备方法制备的黑色矩阵分散液,其中,包括:
    分散树脂;
    金属纳米颗粒,所述金属纳米颗粒表面包裹有二氧化硅包裹层,且均匀的分布于所述分散树脂中;
    红色染料,均匀的分布于所述分散树脂中;
    蓝色染料,均匀的分布于所述分散树脂中;
    其中,所述红色染料以及所述蓝色染料均与所述分散树脂发生交联反应并固定于所述分散树脂中,形成所述黑色矩阵分散液。
  9. 根据权利要求8所述的黑色矩阵分散液,其中,所述金属纳米颗粒的材料包括金、银、铜、铝、铁、钛、镍中的一种或一种以上的金属。
  10. 根据权利要求8所述的黑色矩阵分散液,其中,所述二氧化硅包裹层的厚度在20nm~50nm之间。
  11. 根据权利要求8所述的黑色矩阵分散液,其中,所述蓝色染料的原料包括三芳基甲烷类衍生物、二聚体的三芳基甲烷类衍生物以及酞菁系列衍生物中的一种或一种以上。
  12. 根据权利要求8所述的黑色矩阵分散液,其中,所述红色染料的原料包括二萘嵌苯类的衍生物中的一种或一种以上。
  13. 一种采用权利要求8所述的黑色矩阵分散液制备的显示面板,其包括:相对设置的阵列基板与对向基板,以及位于所述阵列基板与所述对向基板之间的液晶层;
    所述阵列基板或所述对向基板中包括对应相邻两像素单元之间间隙部位的黑色矩阵;
    其中,所述黑色矩阵的材料中包括均匀分布于分散树脂中的表面包裹有二氧化硅包裹层的金属纳米颗粒,以及通过化学键均匀的固定于所述分散树脂中的蓝色染料分子与红色染料分子。
  14. 根据权利要求13所述的显示面板,其中,所述显示面板还包括对应所述像素单元的彩膜,其中,所述彩膜对应所述像素单元制备于所述阵列基板上,所述黑色矩阵对应相邻两所述像素单元之间的间隙部位制备于所述对向基板上;
    或者,所述彩膜对应所述像素单元制备于所述对向基板上,所述黑色矩阵对应相邻两所述像素单元之间的间隙部位制备于所述阵列基板上。
PCT/CN2018/116084 2018-10-15 2018-11-19 一种黑色矩阵分散液及其制备方法、显示面板 WO2020077722A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811194402.4A CN109254445B (zh) 2018-10-15 2018-10-15 一种黑色矩阵分散液及其制备方法、显示面板
CN201811194402.4 2018-10-15

Publications (1)

Publication Number Publication Date
WO2020077722A1 true WO2020077722A1 (zh) 2020-04-23

Family

ID=65046331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116084 WO2020077722A1 (zh) 2018-10-15 2018-11-19 一种黑色矩阵分散液及其制备方法、显示面板

Country Status (2)

Country Link
CN (1) CN109254445B (zh)
WO (1) WO2020077722A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0836257A (ja) * 1994-07-21 1996-02-06 Sekisui Chem Co Ltd 着色レジスト組成物
CN1274432A (zh) * 1998-07-14 2000-11-22 伯韦尔科学公司 光敏黑色基体组合物及其制法
CN103525398A (zh) * 2013-10-21 2014-01-22 京东方科技集团股份有限公司 一种量子点复合颗粒及其制备方法、光电元件和光电设备
CN105629362A (zh) * 2015-12-29 2016-06-01 东南大学 一种量子点与等离子体耦合的彩色滤色片制备方法
CN106547168A (zh) * 2016-10-28 2017-03-29 深圳市华星光电技术有限公司 一种黑色矩阵材料组合物及应用
CN106873234A (zh) * 2017-03-16 2017-06-20 京东方科技集团股份有限公司 发光显示器件及其制作方法、发光显示装置
CN107298974A (zh) * 2016-09-21 2017-10-27 华东师范大学 一种多层包裹的量子点核壳复合粒子及其制备方法和应用

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1229305C (zh) * 2003-07-11 2005-11-30 吉林大学 超声处理制备铁氧体-二氧化硅核壳纳米粒子的方法
US7579081B2 (en) * 2004-07-08 2009-08-25 Rohm And Haas Company Opacifying particles
TWI389850B (zh) * 2004-09-21 2013-03-21 Sumitomo Osaka Cement Co Ltd 黑色材料、黑色微粒子分散液及使用該分散液之黑色遮光膜,以及附有黑色遮光膜之基材
CN101318660B (zh) * 2008-07-12 2010-08-18 太原理工大学 一种空心二氧化硅球的制备方法
JP5183754B2 (ja) * 2010-02-12 2013-04-17 キヤノン株式会社 光学素子
KR101986401B1 (ko) * 2012-06-25 2019-06-05 제이에스알 가부시끼가이샤 경화성 조성물, 경화막 및 표시 소자
WO2014064767A1 (ja) * 2012-10-23 2014-05-01 Dic株式会社 液晶表示装置
KR102343665B1 (ko) * 2014-07-09 2021-12-24 키모토 컴파니 리미티드 광학기기용 차광재 및 그의 제조방법
CN106492287B (zh) * 2016-10-27 2019-06-14 国家纳米科学中心 一种铁基磁性纳米颗粒区域修饰人工晶状体及其制备方法和用途
WO2018105679A1 (ja) * 2016-12-08 2018-06-14 シャープ株式会社 ブラックマトリックス用組成物、ブラックマトリックス、およびブラックマトリックスの製造方法
CN106855681B (zh) * 2017-01-03 2020-12-04 京东方科技集团股份有限公司 用于黑矩阵的组合物及其制备方法、显示基板和显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0836257A (ja) * 1994-07-21 1996-02-06 Sekisui Chem Co Ltd 着色レジスト組成物
CN1274432A (zh) * 1998-07-14 2000-11-22 伯韦尔科学公司 光敏黑色基体组合物及其制法
CN103525398A (zh) * 2013-10-21 2014-01-22 京东方科技集团股份有限公司 一种量子点复合颗粒及其制备方法、光电元件和光电设备
CN105629362A (zh) * 2015-12-29 2016-06-01 东南大学 一种量子点与等离子体耦合的彩色滤色片制备方法
CN107298974A (zh) * 2016-09-21 2017-10-27 华东师范大学 一种多层包裹的量子点核壳复合粒子及其制备方法和应用
CN106547168A (zh) * 2016-10-28 2017-03-29 深圳市华星光电技术有限公司 一种黑色矩阵材料组合物及应用
CN106873234A (zh) * 2017-03-16 2017-06-20 京东方科技集团股份有限公司 发光显示器件及其制作方法、发光显示装置

Also Published As

Publication number Publication date
CN109254445B (zh) 2020-12-25
CN109254445A (zh) 2019-01-22

Similar Documents

Publication Publication Date Title
WO2017092130A1 (zh) Coa型液晶显示面板的制作方法及coa型液晶显示面板
Ko et al. Super ultra-high resolution liquid-crystal-display using perovskite quantum-dot functional color-filters
TWI470316B (zh) 半透射型液晶顯示裝置用彩色濾光片基板、其製造方法、及半透射型液晶顯示裝置
TWI471647B (zh) 液晶顯示裝置用彩色濾光片基板及液晶顯示裝置
KR102119066B1 (ko) 액정 디스플레이장치 및 그 구동방법
CN106019454A (zh) 金属线栅偏光片与液晶显示装置
WO2017177497A1 (zh) 液晶显示装置及其制作方法
JP5869831B2 (ja) 液晶表示装置及びその製造方法
JP4742789B2 (ja) アルカリ現像用感光性透明樹脂組成物、および半透過型液晶表示装置
TW201312174A (zh) 偏光元件及偏光板
WO2018137262A1 (zh) 显示装置及其制备方法
WO2020199463A1 (zh) 颜料分散液的制备方法
TW201131217A (en) Color filter substrate and liquid crystal display device
WO2020077722A1 (zh) 一种黑色矩阵分散液及其制备方法、显示面板
JP4360100B2 (ja) 染料系偏光フィルム
WO2023173712A1 (zh) 氧化锆单体型分散液及其制备方法、光学膜和显示屏
CN1297539A (zh) 反射型液晶显示元件
CN101020778A (zh) 胶材、利用此胶材贴合的偏光板及其制造方法
CN108803238B (zh) 黑色矩阵复合材料及其制备方法
WO2014190735A1 (zh) 取向和平坦化材料组合物,含有其的显示装置及显示颜色调整方法
CN111752047B (zh) 光取向膜及其制造方法、相位差基板以及液晶显示装置
TW201207448A (en) Color filter substrate for liquid crystal display device and liquid crystal display device
JP3025981B2 (ja) アクティブマトリクス液晶表示素子および投射型アクティブマトリクス液晶表示装置
WO2020164254A1 (zh) 光学扩散膜的制备方法及背光模组
JP2002071938A (ja) カラーフィルターおよび液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18937050

Country of ref document: EP

Kind code of ref document: A1