WO2020164254A1 - 光学扩散膜的制备方法及背光模组 - Google Patents

光学扩散膜的制备方法及背光模组 Download PDF

Info

Publication number
WO2020164254A1
WO2020164254A1 PCT/CN2019/112744 CN2019112744W WO2020164254A1 WO 2020164254 A1 WO2020164254 A1 WO 2020164254A1 CN 2019112744 W CN2019112744 W CN 2019112744W WO 2020164254 A1 WO2020164254 A1 WO 2020164254A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
cellulose
diffusion film
optical diffusion
backlight module
Prior art date
Application number
PCT/CN2019/112744
Other languages
English (en)
French (fr)
Inventor
曾燚
查宝
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Publication of WO2020164254A1 publication Critical patent/WO2020164254A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • C08L1/04Oxycellulose; Hydrocellulose, e.g. microcrystalline cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements

Definitions

  • This application relates to the field of display technology, and in particular to a method for preparing an optical diffusion film and a backlight module.
  • the mainstream Thin Film Transistor Liquid Crystal Display (TFT-LCD) on the market is a backlit liquid crystal display, that is, the liquid crystal panel itself does not emit light, and a backlight module is required to provide a light source to display images. Therefore, the display effect of the liquid crystal display is closely related to the backlight module.
  • the backlight modules on the market are classified into direct-lit backlights and edge-lit backlights according to different light source incident methods.
  • the backlight modules of these two modes need to apply a diffuser film to obtain a surface light source with uniform light intensity/chromaticity.
  • Optical diffuser films are widely used in liquid crystal displays, advertising light boxes, lighting fixtures and other devices that require light sources, especially in liquid crystal display devices.
  • the diffuser film is a key component of the backlight module.
  • the main function of the optical diffusion film is to increase the brightness of the light, and to soften the light received by the light guide plate, to provide a uniform surface light source for the display, and to broaden the viewing angle.
  • the purpose of the diffusion film is to uniformly convert a linear light source or a point light source into a surface light source. Its working principle is to use light to pass through a medium with different refractive indexes, and the light produces many phenomena of refraction, reflection, and scattering, resulting in optical diffusion effect.
  • the existing optical diffusion film used in the backlight module cannot effectively absorb the yellow (between red and green) and cyan (between green and blue) stray light generated in the backlight module, resulting in The color purity of the backlight module is low, which further reduces the display effect of the liquid crystal display.
  • the existing optical diffusion film and backlight module cannot effectively absorb the yellow, cyan and other stray light generated in the backlight module, resulting in low color purity of the backlight module and further reducing the display effect of the liquid crystal display.
  • the existing optical diffusion film and backlight module cannot effectively absorb stray light such as yellow and cyan generated in the backlight module, resulting in low color purity of the backlight module, and further reducing the display effect of the liquid crystal display.
  • the present application provides a method for preparing an optical diffusion film and a backlight module, which can improve the color purity of the backlight module, so as to solve the problem that the existing optical diffusion film and backlight module cannot effectively absorb the yellow and cyan colors generated in the backlight module Other stray light causes the color purity of the backlight module to be low, which further reduces the technical problem of the display effect of the liquid crystal display.
  • This application provides a method for preparing an optical diffusion film, the method comprising:
  • the first solid compound is a cellulose molecular polymer.
  • the solution B contains dye molecules, and the dye molecules are xanthene organics, indigo organics, azos One or a combination of organic matter, anthraquinone organic matter, dioxazine organic matter, and triarylmethane organic matter; the main absorption peaks of the dye molecules are between 460-510 nm and 560-610 nm.
  • the dye molecule is a halogenated xanthene organic substance, and its chemical formula is:
  • the R group is one of an alkyl group, an aryl group, an alkaryl group, a sulfonic acid group, an amine group, a cyano group, etc.; the X group is a halogen.
  • the molecular structure of the second solid compound includes a dye molecular group and a cellulose molecular polymer group.
  • the group is grafted onto the polymer group of the cellulose molecule.
  • the polymer precursor solution includes one of acrylic resin, epoxy resin, and organosilane resin.
  • the present application also provides a backlight module.
  • the backlight module at least includes an optical diffusion film, and the optical diffusion film is formed by curing the cellulose nanocrystalline dispersion into a film.
  • the cellulose nanocrystal dispersion includes a polymer precursor solution and a cellulose nanocrystal structure dispersed in the polymer precursor solution.
  • the polymer precursor solution includes one of acrylic resin, epoxy resin, and organosilane resin.
  • the molecular structure of the cellulose nanocrystalline structure includes a dye molecular group and a cellulose molecular polymer group, and the dye molecular group is grafted to the cellulose. On the molecular polymer group.
  • the beneficial effects of this application are: the preparation method of the optical diffusion film and the backlight module provided by this application apply the cellulose composite material to the optical diffusion film, which effectively absorbs the yellow, cyan and other stray light in the backlight module.
  • the color purity of the backlight module is further improved, and the color gamut of the display device is further improved.
  • Figure 1 is a flow chart of the method for preparing the optical diffusion film of the present application.
  • FIG. 2 is a schematic diagram of the structure of the first embodiment of the backlight module of this application.
  • FIG. 3 is a schematic structural diagram of a second embodiment of a backlight module of this application.
  • This application is aimed at the existing optical diffusion film and backlight module, which cannot effectively absorb the yellow, cyan and other stray light generated in the backlight module, resulting in low color purity of the backlight module and further reducing the technical problem of the display effect of the liquid crystal display
  • This embodiment can solve this defect.
  • the present application provides a process flow of a method for preparing an optical diffusion film, and the method includes:
  • the S10 further includes:
  • the mass fraction of hydrochloric acid in the hydrochloric acid solution is between 25% and 37%;
  • the metal hydrochloride is CrCl 3 , FeCl 3 , MnCl 2 , CoCl 2 , NiCl 2 , ZnCl 2 , CuCl 2 , AlCl 3
  • the first solid compound is a cellulose molecular polymer; the molecular structure of the cellulose molecular polymer is specifically as follows:
  • the S20 further includes:
  • the first solid compound is added to the surfactant solution and stirred vigorously for 60 minutes to form dispersion A.
  • the function of the surfactant solution is to activate the first solid compound.
  • the S30 further includes:
  • the solution B contains dye molecules, and the dye molecules are one of xanthene organics, indigo organics, azo organics, anthraquinone organics, dioxazine organics, and triarylmethane organics. Or a combination of at least two.
  • the R group can be a suitable alkyl group, aryl group, alkaryl group, sulfonic acid group, amine group, cyano group, etc.
  • the X group is halogen.
  • substituents on the aromatic ring of the dye group such as alkyl, aryl, alkaryl, carboxyl, sulfonic acid, halogen, hydroxyl, amine, cyano, etc. to adjust the color of the dye. Improve the thermal stability, light stability and chemical stability of dyes.
  • the dye molecule is a halogenated xanthene organic substance, and its chemical formula is:
  • the R group is one of an alkyl group, an aryl group, an alkaryl group, a sulfonic acid group, an amine group, a cyano group, etc.; the X group is a halogen.
  • the main absorption peak of the dye needs to be between 460-510 nm and 560-610 nm to achieve the effect of absorbing stray light.
  • it is a xanthene dye.
  • the S40 further includes:
  • the solution B and the dispersion solution A are mixed and stirred uniformly, and the reaction is carried out under certain conditions; after the reaction is completed, a centrifugal treatment is performed and the supernatant liquid is removed to form a second solid compound.
  • the molecular structure of the second solid compound includes a dye molecular group and a cellulose molecular polymer group, and the dye molecular group is grafted onto the cellulose molecular polymer group.
  • the reaction between the solution B and the dispersion A can utilize the hydroxyl/amino/halogen group on the aromatic ring of the dye molecule to perform arylamination, etherification, acylation, dehalogenation and the like.
  • substitution reaction the reaction process of xanthene dyes can be expressed as:
  • the above reaction is under the condition of proper KOH and N,N-dimethylformamide (DMF), and the second solid compound can be obtained by heating and refluxing after proper amount of 20% dilute hydrochloric acid solution, filtering, ethanol washing and drying. .
  • DMF N,N-dimethylformamide
  • S50 Disperse the second solid compound into the polymer precursor solution, stir and ultrasonically disperse for 60-100 minutes to form a cellulose nanocrystal dispersion.
  • the S50 further includes:
  • the second solid compound is dispersed in the polymer precursor solution, fully stirred and ultrasonically dispersed for 60-100 minutes to form a cellulose nanocrystal dispersion.
  • the polymer precursor solution includes one of acrylic resin, epoxy resin and organosilane resin; preferably a material with good inertness and light transmittance, such as PDMS (polydimethylsiloxane) Wait.
  • PDMS polydimethylsiloxane
  • the S60 further includes:
  • the cellulose nanocrystal dispersion liquid is added to a curing agent to be cured into a film to form an optical diffusion film.
  • the optical diffusion film contains a cellulose composite material, which can obtain a good diffusion effect.
  • the dye molecules modified on the cellulose can absorb yellow (between red and green) and cyan (between green and blue). Between) and other stray light, improve the color purity of the backlight, thereby improving the color gamut of the LCD.
  • the diffusion effect of cellulose can increase the absorption efficiency of dye molecules.
  • the present application also provides a backlight module.
  • the backlight module at least includes an optical diffusion film, and the optical diffusion film is formed by curing the cellulose nanocrystalline dispersion into a film.
  • the cellulose nanocrystal dispersion includes a polymer precursor solution and a cellulose nanocrystal structure dispersed in the polymer precursor solution.
  • the polymer precursor solution includes one of acrylic resin, epoxy resin, and organosilane resin.
  • the molecular structure of the cellulose nanocrystalline structure includes a dye molecular group and a cellulose molecular polymer group, and the dye molecular group is grafted onto the cellulose molecular polymer group.
  • the dye molecules composed of the dye molecular groups are one or at least two of xanthene organics, indigo organics, azo organics, anthraquinone organics, dioxazine organics, and triarylmethane organics The combination.
  • substituents on the aromatic ring of the dye molecular group such as alkyl, aryl, alkaryl, carboxyl, sulfonic acid, halogen, hydroxyl, amine, cyano, etc. to adjust the color of the dye.
  • the main absorption peak of the dye needs to be between 460-510 nanometers and 560-610 nanometers to achieve the effect of absorbing stray light, and is preferably a xanthene dye.
  • the cellulose molecular polymer composed of the cellulose molecular polymer group is mainly made by reacting cellulose crystallites with a hydrochloric acid solution, and the molecular structure of the cellulose molecular polymer is preferably:
  • the backlight module 10 is an edge-type backlight module, and includes a light guide plate 11, a reflector structure 12, a light source 13, and an optical diffusion film 14.
  • the light source is a light emitting diode (LED)
  • the light source 13 is arranged on the edge of the reflector structure 12, and is formed by reflection and diffusion to form a surface light source for the display panel.
  • the optical diffusion film 14 is a cellulose nanocrystal dispersion liquid. It is cured into a film.
  • the cellulose composite material in the optical diffusion film 14 enhances the light diffusion function of the emitted light and can absorb stray light to improve the color purity of the backlight. Further enhance the display color gamut.
  • the emitted light passing through the optical diffusion film 14 irradiates the liquid crystal panel, it is filtered by the color filter in the liquid crystal panel to form red, green, and blue monochromatic light according to the pixels, and finally control different brightness through liquid crystal molecules
  • the combination of red, green, and blue pixel light-emitting areas achieves the target color of the display.
  • FIG. 3 it is a schematic structural diagram of a second embodiment of a backlight module 20 of this application.
  • the backlight module 20 is a direct-type backlight module, including an OLED light-emitting device 21, a glass substrate 22, and an optical diffusion film 23.
  • the optical diffusion film 23 is formed by curing a cellulose nanocrystalline dispersion into a film. .
  • the OLED light emitting device 21 forms a surface light source through reflection and diffusion to provide to the display panel.
  • the cellulose composite material in the optical diffusion film 23 enhances the light diffusion function of the emitted light and can absorb Stray light improves the color purity of the backlight and further enhances the color gamut of the display.
  • the emitted light passing through the optical diffusion film 23 irradiates the display panel, it is filtered by the color filter in the display panel to form red, green, and blue monochromatic light according to the pixels, and finally passes through different brightness red and green light.
  • the combination of blue pixel light-emitting area achieves the target color displayed.
  • the beneficial effects of this application are: the preparation method of the optical diffusion film and the backlight module provided by this application apply the cellulose composite material to the optical diffusion film, which effectively absorbs the yellow, cyan and other stray light in the backlight module.
  • the color purity of the backlight module is further improved, and the color gamut of the display device is further improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)

Abstract

一种光学扩散膜的制备方法及背光模组,包括:将纤维素微晶除杂后得到第一固体化合物后加入到表面活性剂溶液中,剧烈搅拌后形成分散液A;将染料溶解于蒸馏水中形成的溶液B与所述分散液A混合进行离心处理形成第二固体化合物后分散至聚合物前驱体溶液中,搅拌并超声分散形成纤维素纳米晶分散液;最后固化成光学扩散膜。

Description

光学扩散膜的制备方法及背光模组 技术领域
本申请涉及显示技术领域,尤其涉及一种光学扩散膜的制备方法及背光模组。
背景技术
目前市场上主流的薄膜晶体管显示器(Thin Film Transistor Liquid Crystal Display,TFT-LCD)为背光型液晶显示器,即液晶面板本身不发光,需借助背光模组提供光源以显示图像。因此,液晶显示器的显示效果与背光模组息息相关。市面上的背光模组依照光源入射方式不同,分为直下式背光与侧入式背光。这两种模式的背光模组均需应用扩散膜,以得到光强/色度均一的面光源。
光学扩散膜广泛应用于液晶显示、广告灯箱、照明灯具等需要光源的装置中,特别是在液晶显示装置中,扩散膜是背光模块中的关键零部件。光学扩散膜的主要作用是提升光线亮度,并将导光板收到的光线柔散化,为显示器提供一个均匀的面光源,起到拓宽视角的作用。扩散膜的目的是将线性光源或点状光源均匀转换成面光源,其作用原理是利用光在具有不同折射率的介质中穿过,光线产生许多折射、反射、散射的现象,造成光学扩散的效果。现有的光学扩散膜应用于背光模组中,不能有效的吸收背光模组中产生的黄色(介于红色与绿色之间)、青色(介于绿色与蓝色之间)等杂光,造成背光模组的色彩纯度低,进一步降低了液晶显示器的显示效果。
综上所述,现有的光学扩散膜及背光模组,不能有效吸收背光模组中产生的黄色、青色等杂光,造成背光模组的色彩纯度低,进一步降低了液晶显示器的显示效果。
技术问题
现有的光学扩散膜及背光模组,不能有效吸收背光模组中产生的黄色、青色等杂光,造成背光模组的色彩纯度低,进一步降低了液晶显示器的显示效果。
技术解决方案
本申请提供一种光学扩散膜的制备方法及背光模组,能够提升背光模组的色彩纯度,以解决现有的光学扩散膜及背光模组,不能有效吸收背光模组中产生的黄色、青色等杂光,造成背光模组的色彩纯度低,进一步降低了液晶显示器的显示效果的技术问题。
为解决上述问题,本申请提供的技术方案如下:
本申请提供一种光学扩散膜的制备方法,所述方法包括:
S10,将纤维素微晶溶于盐酸溶液中,并加入金属盐酸盐作为催化剂,105℃~115℃煮沸并搅拌120~240分钟后,冷却后除去无定形部分,并进行水洗与氨水洗,得到第一固体化合物;
S20,将所述第一固体化合物加入到表面活性剂溶液中,剧烈搅拌60分钟,形成分散液A;
S30,将染料溶解于蒸馏水中,形成溶液B;
S40,将所述溶液B与所述分散液A混合并搅拌均匀,然后进 行离心处理并除去上清液,形成第二固体化合物;
S50,将所述第二固体化合物分散至聚合物前驱体溶液中,搅拌并超声分散60~100分钟后,形成纤维素纳米晶分散液;
S60,将所述纤维素纳米晶分散液固化成膜,形成光学扩散膜。
在本申请实施例所提供的光学扩散膜的制备方法中,所述步骤S10中,所述第一固体化合物为纤维素分子聚合物。
在本申请实施例所提供的光学扩散膜的制备方法中,所述步骤S30中,所述溶液B包含有染料分子,所述染料分子为氧杂蒽类有机物、靛族类有机物、偶氮类有机物、蒽醌类有机物、二恶嗪类有机物以及三芳甲烷类有机物中的一种或至少两种的组合;所述染料分子的主吸收峰处于460~510nm以及560~610nm之间。
在本申请实施例所提供的光学扩散膜的制备方法中,所述染料分子为卤代氧杂蒽类有机物,其化学式为:
Figure PCTCN2019112744-appb-000001
其中,所述R基团为烷基、芳基、烷芳基、磺酸基、胺基以及氰基等中的一种;所述X基团为卤素。
在本申请实施例所提供的光学扩散膜的制备方法中,所述步骤S40中,所述第二固体化合物的分子结构包括染料分子基团以 及纤维素分子聚合物基团,所述染料分子基团接枝于所述纤维素分子聚合物基团上。
在本申请实施例所提供的光学扩散膜的制备方法中,所述步骤S50中,所述聚合物前驱体溶液包括丙烯酸树脂、环氧树脂以及有机硅烷类树脂中的一种。
本申请还提供一种背光模组,所述背光模组至少包括光学扩散膜,所述光学扩散膜是纤维素纳米晶分散液经固化成膜而成。
在本申请实施例所提供的背光模组中,所述纤维素纳米晶分散液包括聚合物前驱体溶液以及分散于所述聚合物前驱体溶液中的纤维素纳米晶结构。
在本申请实施例所提供的背光模组中,所述聚合物前驱体溶液包括丙烯酸树脂、环氧树脂以及有机硅烷类树脂中的一种。
在本申请实施例所提供的背光模组中,所述纤维素纳米晶结构的分子结构包括染料分子基团以及纤维素分子聚合物基团,所述染料分子基团接枝于所述纤维素分子聚合物基团上。
有益效果
本申请的有益效果为:本申请所提供的光学扩散膜的制备方法及背光模组,将纤维素复合材料应用于光学扩散膜中,有效吸收了背光模组中的黄色、青色等杂光,进一步提升了背光模组的色彩纯度,更进一步提高了显示装置的色域。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将 对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请光学扩散膜的制备方法流程图。
图2为本申请背光模组第一实施例结构示意图。
图3为本申请背光模组第二实施例结构示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。在图中,结构相似的单元是用以相同标号表示。
本申请针对现有的光学扩散膜及背光模组,不能有效吸收背光模组中产生的黄色、青色等杂光,造成背光模组的色彩纯度低,进一步降低了液晶显示器的显示效果的技术问题,本实施例能够解决该缺陷。
如图1所示,本申请提供一种光学扩散膜的制备方法流程,所述方法包括:
S10,将纤维素微晶溶于盐酸溶液中,并加入金属盐酸盐作为催化剂,105℃~115℃煮沸并搅拌120~240分钟后,冷却后除去无定形部分,并进行水洗与氨水洗,得到第一固体化合物。
具体的,所述S10还包括:
首先将一定量的纤维素微晶加入到盐酸溶液中,并加入金属盐酸盐作为催化剂;之后将混合液体在105℃~115℃下煮沸,并搅拌120~240分钟;之后冷却混合液体并去除无定形部分;然后将剩余溶液进行水洗与氨水洗,得到第一固体化合物。
其中,所述盐酸溶液中盐酸的质量分数在25%~37%之间;所述金属盐酸盐为CrCl 3、FeCl 3、MnCl 2、CoCl 2、NiCl 2、ZnCl 2、CuCl 2、AlCl 3等材料中的一种或至少两种的组合;所述第一固体化合物为纤维素分子聚合物;所述纤维素分子聚合物的分子结构具体如下:
Figure PCTCN2019112744-appb-000002
S20,将所述第一固体化合物加入到表面活性剂溶液中,剧烈搅拌60分钟,形成分散液A。
具体的,所述S20还包括:
将所述第一固体化合物加入到表面活性剂溶液中,剧烈搅拌60分钟,形成分散液A。所述表面活性剂溶液的作用是对所述第一固体化合物起到活化作用。
S30,将染料溶解于蒸馏水中,形成溶液B。
具体的,所述S30还包括:
将染料溶解于蒸馏水中,并搅拌均匀形成溶液B。
其中,所述溶液B包含有染料分子,所述染料分子为氧杂蒽类有机物、靛族类有机物、偶氮类有机物、蒽醌类有机物、二恶嗪类有机物以及三芳甲烷类有机物中的一种或至少两种的组合。
所述氧杂蒽类有机物的化学分子式如下:
Figure PCTCN2019112744-appb-000003
所述靛族类有机物的化学分子式如下:
Figure PCTCN2019112744-appb-000004
所述偶氮类有机物的化学分子式如下:
Figure PCTCN2019112744-appb-000005
所述蒽醌类有机物的化学分子式如下:
Figure PCTCN2019112744-appb-000006
所述二恶嗪类有机物的化学分子式如下:
Figure PCTCN2019112744-appb-000007
所述三芳甲烷类有机物的化学分子式如下:
Figure PCTCN2019112744-appb-000008
其中,R基团可以为合适的烷基、芳基、烷芳基、磺酸基、胺基以及氰基等,X基团为卤素。
另外,染料基团芳环上可以存在合适的取代基,如烷基,芳基,烷芳基,羧基,磺酸基,卤素,羟基,胺基,氰基等等,以调整染料的色彩,提升染料的热稳定性、光稳定性、化学稳定性等。
优选地,所述染料分子为卤代氧杂蒽类有机物,其化学式为:
Figure PCTCN2019112744-appb-000009
其中,所述R基团为烷基、芳基、烷芳基、磺酸基、胺基以及氰基等中的一种;所述X基团为卤素。
优选地,所述染料的主吸收峰需处于460~510nm及560~610nm之间,以达到吸收杂光的作用。优选为氧杂蒽类染料。
S40,将所述溶液B与所述分散液A混合并搅拌均匀,然后进行离心处理并除去上清液,形成第二固体化合物。
具体的,所述S40还包括:
将所述溶液B与所述分散液A混合并搅拌均匀,在一定条件下进行反应;反应完成之后进行离心处理并除去上清液,形成第二固体化合物。
其中,所述第二固体化合物的分子结构包括染料分子基团以及纤维素分子聚合物基团,所述染料分子基团接枝于所述纤维素分子聚合物基团上。
所述溶液B与所述分散液A的反应,可以利用所述染料分子芳环上羟基/胺基/卤素基团,进行芳胺化、醚化,酰化,脱卤反应等。以卤素参与的取代反应举例,氧杂蒽类染料的反应过程可以表示为:
Figure PCTCN2019112744-appb-000010
以上反应在适量的KOH和N,N-二甲基甲酰胺(DMF)条件下,加热回流反应,经过适量的20%稀盐酸溶液,过滤、乙醇洗、干燥后可以获得所述第二固体化合物。
S50,将所述第二固体化合物分散至聚合物前驱体溶液中,搅拌并超声分散60~100分钟后,形成纤维素纳米晶分散液。
具体的,所述S50还包括:
将所述第二固体化合物分散至聚合物前驱体溶液中,充分搅拌并超声分散60~100分钟后,形成纤维素纳米晶分散液。
其中,所述聚合物前驱体溶液包括丙烯酸树脂、环氧树脂以及有机硅烷类树脂中的一种;优选为拥有较好惰性及光透过率材料,如PDMS(聚二甲基硅氧烷)等。
S60,将所述纤维素纳米晶分散液固化成膜,形成光学扩散膜。
具体的,所述S60还包括:
将所述纤维素纳米晶分散液加入固化剂固化成膜,形成光学扩散膜。所述光学扩散膜含有纤维素复合材料,可以获得较好的扩散效果,同时修饰在纤维素上的染料分子可以吸收黄色(介于红色与绿色之间)、青色(介于绿色与蓝色之间)等杂光,提升背光色彩纯度,从而提高液晶显示器的色域。同时,纤维素的扩散 效果可以增加染料分子的吸收效率。
本申请还提供一种背光模组,所述背光模组至少包括光学扩散膜,所述光学扩散膜是纤维素纳米晶分散液经固化成膜而成。具体地,所述纤维素纳米晶分散液包括聚合物前驱体溶液以及分散于所述聚合物前驱体溶液中的纤维素纳米晶结构。
具体地,所述聚合物前驱体溶液包括丙烯酸树脂、环氧树脂以及有机硅烷类树脂中的一种。
具体地,所述纤维素纳米晶结构的分子结构包括染料分子基团以及纤维素分子聚合物基团,所述染料分子基团接枝于所述纤维素分子聚合物基团上。
所述染料分子基团构成的染料分子为氧杂蒽类有机物、靛族类有机物、偶氮类有机物、蒽醌类有机物、二恶嗪类有机物以及三芳甲烷类有机物中的一种或至少两种的组合。染料分子基团的芳环上可以存在合适的取代基,如烷基、芳基、烷芳基、羧基、磺酸基、卤素、羟基、胺基、氰基等等,以调整染料的色彩,提升染料的热稳定性、光稳定性、化学稳定性等。优选地,所述染料的主吸收峰需处于460~510纳米及560~610纳米之间,以达到吸收杂光的作用,优选为氧杂蒽类染料。
所述纤维素分子聚合物基团构成的纤维素分子聚合物主要通过纤维素微晶与盐酸溶液反应制成,所述纤维素分子聚合物的分 子结构优选为:
Figure PCTCN2019112744-appb-000011
如图2所示,为本申请背光模组10第一实施例结构示意图。其中,所述背光模组10为侧入式背光模组,包括导光板11、反光板结构12、光源13以及光学扩散膜14。所述光源为发光二极管(LED),所述光源13设置在所述反光板结构12的边缘,通过反射和扩散形成面光源提供给显示面板,所述光学扩散膜14是纤维素纳米晶分散液经固化成膜而成。
当所述背光模组10的出射光经过所述光学扩散膜14时,所述光学扩散膜14中的纤维素复合材料增强出射光的光扩散的功能同时可吸收杂光来提升背光色彩纯度,进一步提升显示器色域。之后透过所述光学扩散膜14的出射光照射到液晶面板时,由液晶面板中的彩色滤光片进行光过滤,按照像素形成红、绿、蓝单色光,最终通过液晶分子控制不同亮度红、绿、蓝像素发光区域组合达到显示的目标色彩。
如图3所示,为本申请背光模组20第二实施例结构示意图。
其中,所述背光模组20为直入式背光模组,包括OLED发光器件21、玻璃基板22、以及光学扩散膜23,所述光学扩散膜23是纤维素纳米晶分散液经固化成膜而成。所述OLED发光器件 21通过反射和扩散形成面光源提供给显示面板。
当所述OLED发光器件21的出射光透过所述玻璃基板22并经过所述光学扩散膜23时,所述光学扩散膜23中的纤维素复合材料增强出射光的光扩散的功能同时可吸收杂光来提升背光色彩纯度,进一步提升显示器色域。之后透过所述光学扩散膜23的出射光照射到显示面板时,由显示面板中的彩色滤光片进行光过滤,按照像素形成红、绿、蓝单色光,最终通过不同亮度红、绿、蓝像素发光区域组合达到显示的目标色彩。
本申请的有益效果为:本申请所提供的光学扩散膜的制备方法及背光模组,将纤维素复合材料应用于光学扩散膜中,有效吸收了背光模组中的黄色、青色等杂光,进一步提升了背光模组的色彩纯度,更进一步提高了显示装置的色域。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (10)

  1. 一种光学扩散膜的制备方法,其中,所述方法包括:
    S10,将纤维素微晶溶于盐酸溶液中,并加入金属盐酸盐作为催化剂,105℃~115℃煮沸并搅拌120~240分钟后,冷却后除去无定形部分,并进行水洗与氨水洗,得到第一固体化合物;
    S20,将所述第一固体化合物加入到表面活性剂溶液中,剧烈搅拌60分钟,形成分散液A;
    S30,将染料溶解于蒸馏水中,形成溶液B;
    S40,将所述溶液B与所述分散液A混合并搅拌均匀,然后进行离心处理并除去上清液,形成第二固体化合物;
    S50,将所述第二固体化合物分散至聚合物前驱体溶液中,搅拌并超声分散60~100分钟后,形成纤维素纳米晶分散液;
    S60,将所述纤维素纳米晶分散液固化成膜,形成光学扩散膜。
  2. 根据权利要求1所述的光学扩散膜的制备方法,其中,所述步骤S10中,所述第一固体化合物为纤维素分子聚合物。
  3. 根据权利要求1所述的光学扩散膜的制备方法,其中,所述步骤S30中,所述溶液B包含有染料分子,所 述染料分子为氧杂蒽类有机物、靛族类有机物、偶氮类有机物、蒽醌类有机物、二恶嗪类有机物以及三芳甲烷类有机物中的一种或至少两种的组合,所述染料分子的主吸收峰处于460~510纳米以及560~610纳米之间。
  4. 根据权利要求3所述的光学扩散膜的制备方法,其中,所述染料分子为卤代氧杂蒽类有机物,其化学式为:
    Figure PCTCN2019112744-appb-100001
    其中,所述R基团为烷基、芳基、烷芳基、磺酸基、胺基以及氰基等中的一种;所述X基团为卤素。
  5. 根据权利要求1所述的光学扩散膜的制备方法,其中,所述步骤S40中,所述第二固体化合物的分子结构包括染料分子基团以及纤维素分子聚合物基团,所述染料分子基团接枝于所述纤维素分子聚合物基团上。
  6. 根据权利要求1所述的光学扩散膜的制备方法,其中,所述步骤S50中,所述聚合物前驱体溶液包括丙烯酸树脂、环氧树脂以及有机硅烷类树脂中的一种。
  7. 一种背光模组,其中,所述背光模组至少包括光学扩散膜,所述光学扩散膜是纤维素纳米晶分散液经固化成膜而成。
  8. 根据权利要求7所述的背光模组,其中,所述纤维素纳米晶分散液包括聚合物前驱体溶液以及分散于所述聚合物前驱体溶液中的纤维素纳米晶结构。
  9. 根据权利要求8所述的背光模组,其中,所述聚合物前驱体溶液包括丙烯酸树脂、环氧树脂以及有机硅烷类树脂中的一种。
  10. 根据权利要求8所述的背光模组,其中,所述纤维素纳米晶结构的分子结构包括染料分子基团以及纤维素分子聚合物基团,所述染料分子基团接枝于所述纤维素分子聚合物基团上。
PCT/CN2019/112744 2019-02-14 2019-10-23 光学扩散膜的制备方法及背光模组 WO2020164254A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910115406.7A CN109824928A (zh) 2019-02-14 2019-02-14 光学扩散膜的制备方法及背光模组
CN201910115406.7 2019-02-14

Publications (1)

Publication Number Publication Date
WO2020164254A1 true WO2020164254A1 (zh) 2020-08-20

Family

ID=66863728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112744 WO2020164254A1 (zh) 2019-02-14 2019-10-23 光学扩散膜的制备方法及背光模组

Country Status (2)

Country Link
CN (1) CN109824928A (zh)
WO (1) WO2020164254A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057415A (ja) * 2001-08-21 2003-02-26 Fuji Photo Film Co Ltd 光拡散フィルム、その製造方法、偏光板および液晶表示装置
WO2011148504A1 (ja) * 2010-05-28 2011-12-01 コニカミノルタオプト株式会社 光拡散フィルム、その製造方法、それを用いた偏光板、ロール状偏光板、及び液晶表示装置
CN102925036A (zh) * 2012-11-01 2013-02-13 昆山乐凯锦富光电科技有限公司 一种涂布组合物及光学扩散膜
CN109116625A (zh) * 2018-09-03 2019-01-01 深圳市华星光电技术有限公司 背光模组及其光学膜片

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070113077A (ko) * 2006-05-23 2007-11-28 제일모직주식회사 광학필름, 그를 포함하는 광학필터 및 디스플레이 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057415A (ja) * 2001-08-21 2003-02-26 Fuji Photo Film Co Ltd 光拡散フィルム、その製造方法、偏光板および液晶表示装置
WO2011148504A1 (ja) * 2010-05-28 2011-12-01 コニカミノルタオプト株式会社 光拡散フィルム、その製造方法、それを用いた偏光板、ロール状偏光板、及び液晶表示装置
CN102925036A (zh) * 2012-11-01 2013-02-13 昆山乐凯锦富光电科技有限公司 一种涂布组合物及光学扩散膜
CN109116625A (zh) * 2018-09-03 2019-01-01 深圳市华星光电技术有限公司 背光模组及其光学膜片

Also Published As

Publication number Publication date
CN109824928A (zh) 2019-05-31

Similar Documents

Publication Publication Date Title
JP5238490B2 (ja) カラーフィルタおよび液晶表示装置
TWI746811B (zh) 畫像顯示裝置
CN1942813A (zh) 具有垂直排列液晶膜的延迟膜及其制备方法
KR101891421B1 (ko) 위상차판, 위상차판을 이용한 적층 편광판, 및 위상차판을 이용한 표시 장치
CN1428639A (zh) 彩色滤光片、液晶显示装置及彩色滤光片的制造方法
JP2010134349A (ja) 液晶表示装置
US8310631B2 (en) Reflective polarizer with micro-beads and blue colorant
TW201512310A (zh) 顯示裝置
JP2007133131A (ja) カラーフィルタ用赤色着色組成物、カラーフィルタ、および液晶表示装置
CN1310043C (zh) 滤色器用着色组合物及使用该着色组合物形成的滤色器的显示装置
CN1559013A (zh) 制造偏振旋光片的含该偏振旋光片的器件的方法
CN104570173A (zh) 一种蓝光阻隔光学扩散结构及背光源器件
WO2018137262A1 (zh) 显示装置及其制备方法
CN1389745A (zh) 滤色片及液晶显示器件
CN105158960A (zh) 一种液晶显示面板及偏光片的制作方法
JP2011002561A (ja) 着色層用硬化性樹脂組成物の製造方法、カラーフィルタの製造方法および着色層用硬化性樹脂組成物
US7800726B2 (en) Polarizing plate containing polymer ball mixed anti-glare layer and liquid crystal display using the same
US7826004B2 (en) Liquid crystal display device
WO2020164254A1 (zh) 光学扩散膜的制备方法及背光模组
CN1127672C (zh) 反射型液晶显示元件
JP5297754B2 (ja) カラーフィルタ用赤色着色組成物及びこれを用いたカラーフィルタ
JP4192501B2 (ja) 液晶表示装置用カラーフィルター、および、半透過型液晶表示装置
CN108803238B (zh) 黑色矩阵复合材料及其制备方法
CN107748405B (zh) 彩色滤光片与背光模组
US20200033668A1 (en) Display panel, and process for manufacturing display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915029

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915029

Country of ref document: EP

Kind code of ref document: A1