WO2020077653A1 - 一种锌空液流电池空气电极及其组成的电池系统 - Google Patents

一种锌空液流电池空气电极及其组成的电池系统 Download PDF

Info

Publication number
WO2020077653A1
WO2020077653A1 PCT/CN2018/111548 CN2018111548W WO2020077653A1 WO 2020077653 A1 WO2020077653 A1 WO 2020077653A1 CN 2018111548 W CN2018111548 W CN 2018111548W WO 2020077653 A1 WO2020077653 A1 WO 2020077653A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
layer
zinc
battery
electrolyte
Prior art date
Application number
PCT/CN2018/111548
Other languages
English (en)
French (fr)
Inventor
陈忠伟
Original Assignee
苏州沃泰丰能电池科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州沃泰丰能电池科技有限公司 filed Critical 苏州沃泰丰能电池科技有限公司
Publication of WO2020077653A1 publication Critical patent/WO2020077653A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • H01M12/085Zinc-halogen cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of metal-air batteries, an air electrode of a zinc air flow battery and a battery system composed thereof.
  • the redox reaction of oxygen is performed in the air electrode, and the redox reaction of the metal contained in the negative electrode is performed in the negative electrode, so that it can be charged and discharged.
  • air as a positive electrode active material has the advantages of high density, miniaturization, and weight reduction. Therefore, as metal-air batteries, there are currently lithium-air batteries, magnesium-air batteries, zinc-air batteries, aluminum-air batteries, and the like.
  • Rechargeable zinc-air batteries are highly promising technology due to many advantages.
  • zinc-air batteries use oxygen derived from atmospheric air, which is free and practically inexhaustible, eliminating the need to store a fuel source within the battery.
  • the catalyst used in the zinc-air battery electrochemically reduces oxygen, but is not used in the actual current generation reaction, which makes it theoretically possible to play a role in an infinite period.
  • zinc-air batteries use oxygen and zinc as active materials, so zinc-air batteries are affordable, safe, and environmentally friendly.
  • the first problem is the corrosion of the carbon contained in the cathode, which occurs during the charging phase of the battery.
  • the same cathode is used for charging and discharging cycles, and the cathode includes a porous carbon material that supports a desired catalyst.
  • These cathodes play an important role in the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) of the battery.
  • OER oxygen evolution reaction
  • ORR oxygen reduction reaction
  • side reactions occur, in which the carbon is corroded during the OER.
  • carbon is oxidized to CO 2 .
  • the catalyst supported on the carbon loses contact with the electrode, which makes the catalyst ineffective and causes a decline in battery performance.
  • the US patent US9590253 provides a dual-function catalyst for air batteries and fuel cells.
  • the dual-function catalyst has a catalytic activity for both oxygen reduction and oxygen precipitation reactions. Application prospects.
  • the second problem is that for flow batteries, the use of strong alkalis as electrolytes is highly corrosive to equipment, pipes, etc. Therefore, it is a very important safety standard to make liquid batteries leak-free throughout the circulation process.
  • the flow battery reaction process requires the participation of air, and the electrode must be in contact with the air. Therefore, the air electrode can easily seep out the electrolyte, which reduces the safety of the battery.
  • the third problem is the shape change that occurs at the anode and the formation of zinc dendrites that are also on the anode side.
  • the zinc particles on the anode are oxidized to zinc ions and move into the electrolyte. Then, due to the poor solubility of zinc ions in the alkaline electrolyte, almost at the same time, these ions are deposited as zinc oxide particles.
  • the zinc oxide particles are transformed into zinc particles. These zinc particles can move down in a long-term cycle due to gravity, and this can cause the shape of the anode to change.
  • the zinc particles can also form zinc dendrites on the anode. Changes in the shape of the anode can cause energy decay, and zinc dendrites can cause sudden failure of the battery.
  • Patent Document 1 International Publication No. 2013073292 proposes a zinc-air secondary battery that uses a hydroxide ion-conducting inorganic solid electrolyte as a separator and tightly arranges the inorganic solid electrolyte body at One side of the air electrode uses a solid electrolyte to fundamentally solve the problem of liquid seepage, but it has a great impact on battery performance.
  • the patent document Japanese Patent No. 5207470 discloses an air electrode having a structure obtained by laminating an anion exchange membrane as a polymer membrane and a catalyst layer for an air electrode.
  • the structure obtained by mixing the anion exchange resin in the air electrode catalyst layer can maintain good conductivity of hydroxide ions, and belongs to a multilayer composite structure.
  • Chinese patent CN201680000396 provides a rechargeable three-electrode single-flow zinc-air battery with high cycle life.
  • the electrode structure is composed of an anode and two cathodes (one for charging and the other for discharging), one for charging and the other for discharging. Using two cathodes with different functions can solve the problem of cathode carbon corrosion and catalyst loss. Make the battery more long-term operating life.
  • zinc-air batteries use oxygen in the air from the atmosphere, which is not costly and inexhaustible, eliminating the need to store fuel sources within the battery.
  • the catalyst is used to reduce oxygen electrochemically during the charging process. During the discharge process, the OH- ions are oxidized to oxygen, so the oxygen is not consumed during the entire cycle. This makes it theoretically possible Period to play a role.
  • Zinc-air batteries have a high energy density and have been vigorously developed because of their low material cost and high performance, safety and environmental friendliness.
  • the main technical problem solved by the present invention is to provide a zinc air flow battery air electrode and a battery system composed of the air electrode.
  • the air electrode solves the problem of liquid leakage and catalyst loss through a multi-layer structure, and air drying and air The influence of medium dust, CO 2 etc. on the electrolyte. Solve the effect of potassium hydroxide crystallization on battery and liquid flow system. And through the design and design of the entire battery system, the battery system has multiple cycle charging, high capacity density, low cost, while the structure is more compact and optimized.
  • the flow structure of the battery designed by the invention and the reaction equation of the zinc-air flow battery become as follows:
  • the air electrode structure includes a four-layer structure and a conductive terminal; the four-layer structure is respectively from outside to inside: the first layer is an air-permeable and water-proof alkali-resistant semi-permeable membrane layer
  • the second layer is a catalyst layer
  • the third layer is a current collector layer
  • the fourth layer is an alkali-resistant isolation layer
  • the conductive terminal is connected to the third layer current collector layer.
  • the alkali-resistant semi-permeable membrane layer of the first layer may be one of expanded polytetrafluoroethylene (PTFE) membrane, PVDF hydrophobic membrane ultrafiltration membrane, and polyester breathable membrane.
  • PTFE polytetrafluoroethylene
  • the catalyst in the catalyst layer of the second layer is a redox bifunctional catalyst, and the catalyst is applied to the current collecting layer by coating.
  • the current collecting layer may be one of nickel foam, copper foam and stainless steel foam, and the pore size of the material of the current collecting layer is 1um-10um.
  • the alkali-resistant isolation layer may be one of polypropylene porous material, polyethylene porous material, and polyvinyl chloride porous material, and the pore diameter of the alkali-resistant isolation layer material is 0.1 nm-100 nm.
  • the invention also provides a battery system composed of air electrodes of a zinc air flow battery.
  • the battery system includes a battery system, an air system, a flow system and an electronic control system.
  • the battery system may be composed of a single battery or a plurality of batteries connected in series.
  • the single battery is composed of a battery casing, an air intake cavity, an air cathode, a metal anode, an electrolyte layer, and a conductive current collector; the air cathode is composed of two
  • the metal anode is located in the middle of the single battery.
  • the cavity between the metal anode and the air cathode is suitable for the flow of electrolyte.
  • the intake cavity is connected to the air cathode side.
  • the current collecting plates are respectively connected to the air cathode and the metal anode.
  • the air system is composed of an air pump, a humidifier, and an air line.
  • the humidifier can be filled with clean water or 0.1 mol / L-1 mol / L KOH solution.
  • the liquid flow system is composed of a corrosion-resistant pump, a filter, and a liquid storage tank.
  • the electrolyte is a strong alkaline electrolyte, including one of NaOH, KOH, and LiOH, or any mixture thereof.
  • the electrolyte dissolves in A zinc salt, which is one or more of ZnO, Zn (OH) 2 , K 2 Zn (OH) 4 , and Na 2 Zn (OH) 4 .
  • the alkali concentration of the electrolyte is 1 mol / L-15 mol / L, and the concentration of zinc ions in the zinc salt is 0.05 mol / L-1.5 mol / L.
  • the present invention has the following beneficial effects compared with the prior art:
  • a rechargeable zinc air flow single cell is provided.
  • a four-layer air electrode is used.
  • the first layer of alkali-resistant pores plays a role of preliminary liquid isolation, so that the pressure of the liquid entering the air electrode becomes smaller, and at the same time It has alkali resistance and support function.
  • the porous metal current collector greatly increases the contact area between the catalyst and the electrolyte and increases the reaction rate.
  • the outer layer of the air-permeable and impermeable membrane further prevents liquid leakage. And does not affect the air entering the electrode to participate in the reaction, thereby effectively preventing the leakage of the single cell;
  • the air system uses a humidifier, which can filter out dust and other impurities in the air.
  • the humidifier If the humidifier is filled with alkaline liquid, it can Filter and remove the CO 2 in the air, and place CO 2 to deteriorate the electrolyte; (3) Due to the high concentration of strong alkali, the liquid flow system is prone to crystallization problems, which enters the battery circulation system and the battery fails, so the circulation system Add a filter to prevent the crystals from entering the battery.
  • FIG. 1 is a schematic cross-sectional view of an air electrode of a zinc air flow battery of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a single battery composed of air electrodes of a zinc air flow battery of the present invention.
  • FIG. 3 is an overall schematic diagram of a zinc air flow battery system of the present invention.
  • A1 alkali-resistant semi-permeable membrane layer, A2, catalyst layer, A3, current collector layer, A4, alkali-resistant separation layer, A5, conductive terminal, 1, intake cavity, 2 air cathode, 3 electrolyte Layer, 4 metal anodes, 1-1, air inlet, 1-2 battery holder, 2-1 cathode conductive current collector, 2-2 alkali-resistant electrolyte membrane, 2-3 dual-function catalyst, 3-1 electrolyte Outlet, 3-2 battery holder, 3-3 electrolyte inlet, 4-1, anode conductivity and flow sheet, 4-2 metal anode sheet, E-1, liquid storage tank, E-2, liquid flow pipe, E- 3. Corrosion-resistant pump, E-4, filter, E-5, air pump, E-6, humidifier, E-7, air pipeline, E-8, liquid valve.
  • an air electrode for a zinc air flow battery the air electrode structure includes a four-layer structure and a conductive terminal; the four-layer structure is respectively from outside to inside: the first layer is a breathable, water-impermeable alkali-resistant half The permeable membrane layer A1, the second layer is a catalyst layer A2, the third layer is a current collector layer A3, and the fourth layer is an alkali-resistant barrier layer A4; the conductive terminal A5 is connected to the third layer current collector layer A3.
  • the first layer of alkali-resistant semi-permeable membrane layer A1 may be one of expanded polytetrafluoroethylene (PTFE) membrane, PVDF hydrophobic membrane ultrafiltration membrane, and polyester breathable membrane.
  • PTFE polytetrafluoroethylene
  • the pore diameter of the alkali-resistant semi-permeable membrane layer is 0.01 nm
  • the range of -0.1 nanometers is larger than air molecules, which can allow air to enter freely, but is larger than the size of water droplets, and because the surface tension of water is large, it cannot pass through small holes, effectively avoiding liquid leakage and ensuring the safety and durability of the battery Sex.
  • the catalyst in the second catalyst layer A2 is a redox bifunctional catalyst.
  • the catalyst is applied to the current collecting layer A3 by coating.
  • the bifunctional characteristics of the catalyst enable the reduction reaction of oxygen and the oxidation reaction of OH-.
  • the third current collecting layer A3 may be one of nickel foam, copper foam, and foam stainless steel.
  • the material pore size of the current collecting layer A3 is 1um-10um, which not only ensures a certain specific surface area, but also provides support and comparison for the catalyst.
  • the large contact area increases the active site, and also has a high conductivity current collection performance.
  • the fourth alkali-resistant barrier layer A4 may be one of polypropylene porous material, polyethylene porous material, and polyvinyl chloride porous material.
  • the material pore size of the alkali-resistant barrier layer A4 is 0.1 nm-100 nm, which has both Certain hydrophobic properties can prevent most of the liquid from seeping out, and at the same time allow the free entry and exit of the electrolyte and ions that need to be reacted to ensure the normal progress of the reaction.
  • the battery system is assembled on the basis of the above air electrode.
  • the battery system includes a battery system, an air system, a liquid flow system, and an electronic control system.
  • the battery system may be composed of a single battery or a plurality of batteries connected in series.
  • the single battery is composed of a battery casing, an air intake cavity 1, an air cathode 2, a metal anode 4, an electrolyte layer 3, and a conductive current collector;
  • the air cathode 2 is two pieces, located on the outside of a single battery;
  • the metal anode 4 is located in the middle of the single battery, the cavity portion between the metal anode 4 and the air cathode 2 is suitable for the flow of electrolyte, the intake cavity 1
  • the air cathode 2 is connected to one side, and the current collecting plates are respectively connected to the air cathode 2 and the metal anode 4.
  • the air system is composed of an air pump E-5, a humidifier E-6, and an air pipe E-7.
  • the humidifier E-6 can be filled with clean water or 0.1mol / L-1mol / L KOH solution, and air passes through The air pump E-5 flows through the humidifier E-6 to filter out dust and other impurities, and then the air humidity is increased.
  • the humidifier E-6 contains potassium hydroxide, the CO 2 in the air is removed, then It is sent to the intake cavity 1 through the air line E-7. In the intake cavity 1, the air is in contact with the air cathode 2, and the oxidation-reduction reaction proceeds under the action of the catalyst.
  • the liquid flow system is composed of a corrosion-resistant pump E-3, a filter E-4, and a liquid storage tank E-1.
  • the electrolyte is a strong alkaline electrolyte, including one of NaOH, KOH, LiOH, or any combination thereof.
  • Zinc salt is dissolved in the electrolyte, and the zinc salt is one or more of ZnO, Zn (OH) 2 , K 2 Zn (OH) 4 , Na 2 Zn (OH) 4 , and the alkali concentration of the electrolyte is 1mol / L-15mol / L, the concentration of zinc ion in the zinc salt is 0.05-1.5mol / L.
  • the electrolyte is stored in the storage tank 3-1, filtered by the corrosion-resistant pump E-3 through the filter E-4 to remove impurities, and then pumped into the battery pack, and enters from the electrolyte inlet 3-3 at the bottom of the electrolyte layer.
  • the upper electrolyte outlet 3-1 flows out and returns to the liquid storage tank E-1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Hybrid Cells (AREA)

Abstract

一种锌空液流电池的空气电极及其组成的电池系统,空气电极采用四层结构,既能够保证离子和空气的自由进出流动,保证电池反应的正常进行,又能够阻止电解液的渗出,延长电池寿命。基于此的电池系统,对电池组系统、空气系统和液流系统进行组合,制备了锌空液流电池系统。

Description

一种锌空液流电池空气电极及其组成的电池系统 技术领域
本发明涉及金属空气电池领域,一种锌空液流电池空气电极及其组成的电池系统。
背景技术
对于金属空气电池而言,空气极中进行氧的氧化还原反应、负极中进行负极所含金属的氧化还原反应,从而能够充放电。使用空气作为正极活性物质,因而具有密度高、小型化和轻量化等的优点。因此,作为金属空气电池,目前已有的有锂空气电池、镁空气电池、锌空气电池、铝空气电池等。
可再充电锌空气电池由于许多优势是高度有希望的技术。例如,锌空气电池采用源自大气的空气的氧气,其没有花费并且实际上是取之不尽的,消除了在电池内储存燃料源的需要。此外,在锌-空气电池中采用的催化剂电化学地减少氧气,而在实际上的电流发生反应中没有被使用,这使其理论上可能在无限期间发挥作用。另外,锌-空气电池采用氧气和锌作为活性材料,因此锌-空气电池是花费得起的、安全的和环境友好的。
针对可再充电锌-空气电池的商业化,目前仍存在三个主要的技术问题:
第一个问题是容纳在阴极内的碳的腐蚀,其发生在电池的充电阶段。在传统的可充电锌空气电池中,充电和放电循环采用相同的阴极,该阴极包括负载所需的催化剂的多孔碳材料。这些阴极对电池的析氧反应(OER)和氧还原反应(ORR)起重要作用。在该过程中会发生副反应,其中碳在OER期间被腐蚀。特别地,碳被氧化为CO 2。一旦碳载体氧化并消失,在碳上负载的催化剂失去和电极的接触,这使得催化剂无效,造成了电池性能的下降。近期,美国专利US9590253提供了一种用于空气蓄电池和燃料电池的双功能催化剂,该双功能催化剂对于氧还原反应和氧析出反应都具有催化活性的催化剂双功能核壳结构 的催化剂,具有很好的应用前景。
第二个问题,对于液流电池,使用强碱作为电解质,对设备、管道等具有较大的腐蚀性,因此,将液流电池整个循环过程不漏液作为十分重要的安全标准,而且,液流电池反应过程中需要空气的参与,电极必然接触空气,因此空气电极很容易会有电解液渗出,降低了电池的安全性。
第三个问题是在阳极处发生的形状变化和也在阳极侧的锌枝晶的形成。在传统的可再充电锌-空气电池中,在放电阶段,阳极上的锌粒子被氧化为锌离子并移动到电解液中。然后,由于锌离子在碱性电解液中的差的溶解性,几乎在同时,这些离子被沉积为氧化锌粒子。在充电阶段,氧化锌粒子转变成锌粒子。这些锌粒子可由于重力在长期循环中向下移动,而这会导致阳极形状的变化。锌粒子也可以在阳极上形成锌枝晶。阳极的形状的变化可导致能量衰减,而锌枝晶会导致电池的突然失效。
针对这些问题,专利文献1(国际公开号2013073292)中,提出了一种锌空气二次电池,其使用氢氧化物离子传导性的无机固体电解质作为隔板,将无机固体电解质体紧密的设置在空气极的一侧表面,采用固体电解质从根本上解决液体渗流的问题,但是对于电池性能有很大影响。专利文件(日本特许第5207470号公报)中,公开了一种空气极,该空气极具有将作为高分子膜的阴离子交换膜和空气极用催化剂层进行层叠而得到的结构,记载有:通过采用在空气极催化剂层中混入阴离子交换树脂而得到的结构,能够维持良好的氢氧化物离子的传导性,属于多层复合结构。中国专利CN201680000396提供一种高循环寿命的可再充电的三电极单液流锌空气电池。该电极结构由一个阳极和两个阴极(一个用于充电而另一个用于放电)组成,一种阴极用于充电的目的,另一种用于放电的目的。采用两种不同功能的阴极可以解决阴极碳腐蚀的问题和催化剂的损失问题。使电池更具有长期的运行寿命。
总体而言,锌空电池采用源自大气的空气中的氧气,其没有花费且取之不 尽,消除了电池内存储燃料源的需要。此外,在锌空电池中采用催化剂充电过程中电化学的减少氧气,在放电过程中OH-离子又被氧化为氧气,所以整个循环过程中氧气没有被消耗.这使其在理论上可能在无限期发挥作用。锌空电池能量密度高,因为它们的低材料成本和高性能,安全和环境友好的而被大力发展。
发明内容
本发明主要解决的技术问题是:提供一种锌空液流电池空气电极及其组成的电池系统,该空气电极通过多层结构,解决了漏液问题和催化剂流失的问题,和空气干燥和空气中灰尘、CO 2等对电解液的影响。解决了氢氧化钾结晶对电池和液流系统的影响。并且通过设计并且设计了整个电池系统,电池系统具有可多次循环充电、能力密度大、成本低,同时结构更紧凑优化。本发明并设计电池的液流结构和该锌空液流电池的反应方程式变为如下:
阴极:
Figure PCTCN2018111548-appb-000001
阳极:
Figure PCTCN2018111548-appb-000002
为达到上述目的,本发明解决其技术问题所采用的技术方案是:
一种锌空液流电池空气电极,所述空气电极结构包括四层结构和一个导电端子;所述四层结构由外至内分别为:第一层为透气不透水的耐碱半透膜层,第二层为催化剂层,第三层为集流层,第四层为耐碱隔离层;所述导电端子与第三层集流层相连。
所述第一层的耐碱半透膜层可以为膨体聚四氟乙烯(PTFE)膜、PVDF疏水膜超滤膜、聚酯透气膜中其一。
所述第二层的催化剂层中的催化剂为氧化还原双功能催化剂,所述催化剂通过涂布涂覆于集流层。
所述集流层可以为泡沫镍、泡沫铜、泡沫不锈钢中的一种,集流层材料的 孔径为1um-10um。
所述耐碱隔离层可以为聚丙烯多孔材料、聚乙烯多孔材料、聚氯乙烯多孔材料中的一种,耐碱隔离层材料的孔径为0.1nm-100nm。
本发明同时提供了一种锌空液流电池空气电极所组成的电池系统,电池系统包括电池组系统、空气系统、液流系统和电控系统。
所述电池组系统可以是单个或多个电池串联组成,所述单个电池由电池外壳、进气空腔、空气阴极、金属阳极、电解液层和导电集流片组成;所述空气阴极为两片,位于单个电池的外侧;所述金属阳极位于单个电池的中间,所述金属阳极和空气阴极之间空腔部分适用于电解液的流动,所述进气空腔与空气阴极一侧相连,所述集流片分别连接在空气阴极和金属阳极上。
所述空气系统由空气泵、加湿器和空气管路组成,所述加湿器内可以装清水或0.1mol/L-1mol/L的KOH溶液。
所述液流系统由耐腐蚀泵、过滤器和储液罐组成,所述电解液为强碱性电解液,包括NaOH、KOH、LiOH的一种或其任意混合,所述电解液中溶解有锌盐,所述锌盐为ZnO、Zn(OH) 2、K 2Zn(OH) 4、Na 2Zn(OH) 4中的一种或多种。
所述电解液的碱浓度为1mol/L-15mol/L,所述锌盐中锌离子的浓度为0.05mol/L-1.5mol/L。
由于上述技术方案的运用,本发明与现有技术相比具有下列有益效果:
提供了一种可充电锌空液流单电池,(1)采用四层结构的空气电极,第一层耐碱孔径起到初步隔离液体的作用,使进入空气极内部的液体压力变小,同时具有耐碱性能,而且具有支撑作用,采用多孔的金属集流体,大大增加了催化剂与电解液的接触面积,增加了反应速率,最后通过外层的透气不透水膜,进一步阻止液体的渗出,并且不影响空气进入电极内部参与反应,从而有效的 阻止了单电池的泄漏;(2)空气系统采用加湿器,能够将空气中的灰尘等杂质过滤出去,如果加湿器内填充碱性液体,能够将空气中的CO 2过滤除去,放置CO 2使电解质变质;(3)液流系统由于采用高浓度强碱,因此很容易出现结晶问题,从而进入电池循环系统而使电池失效,因此在循环系统中增加过滤器,阻止产生的结晶体进入电池内部。
附图说明
图1是本发明一种锌空液流电池空气电极的剖面示意图。
图2是本发明一种锌空液流电池空气电极组成的单个电池的剖面示意图。
图3是本发明一种锌空液流电池系统的整体示意图。
附图说明:A1、耐碱半透膜层,A2、催化剂层,A3、集流层,A4、耐碱隔离层,A5、导电端子,1、进气空腔,2空气阴极,3电解液层,4金属阳极,1-1、空气进气口,1-2电池支架,2-1阴极导电集流片,2-2耐碱电解质膜,2-3双功能催化剂,3-1电解液出口,3-2电池支架,3-3电解液进口,4-1、阳极导电及流片,4-2金属阳极片,E-1、储液罐,E-2、液流管道,E-3、耐腐蚀泵,E-4、过滤器,E-5、空气泵,E-6、加湿器,E-7、空气管路,E-8、液体阀门。
具体实施方式
下面结合实施例对本发明做进一步的说明,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。
参阅附图,一种锌空液流电池空气电极,该空气电极结构包括四层结构和一个导电端子;所述四层结构由外至内分别为:第一层为透气不透水的耐碱半透膜层A1,第二层为催化剂层A2,第三层为集流层A3,第四层为耐碱隔离层A4;所述导电端子A5与第三层集流层A3相连。
第一层耐碱半透膜层A1可以为膨体聚四氟乙烯(PTFE)膜、PVDF疏水膜超滤膜、聚酯透气膜中其一,该耐碱半透膜层的孔径在0.01纳米-0.1纳米的范围,比空气分子大,能够使空气自由进入,但是大于水滴的大小,并且由于水的表面张力较大,无法通过小孔,有效避免了液体的渗漏,保证电池的安全持久性。
第二层催化剂层A2中的催化剂为氧化还原双功能催化剂,所述催化剂通过涂布涂覆于集流层A3,催化剂的双功能特性,能够进行氧气的还原反应和OH-的氧化反应。
第三层集流层A3可以为泡沫镍、泡沫铜、泡沫不锈钢中的一种,所述集流层A3的材料孔径为1um-10um,既保证了一定的比表面积,为催化剂提供支撑和较大的接触面积,增加了活性位点,也有较高的导电集流性能。
第四层耐碱隔离层A4可以为聚丙烯多孔材料、聚乙烯多孔材料、聚氯乙烯多孔材料中的一种,所述耐碱隔离层A4的材料孔径为0.1nm-100nm,该层既具有一定的疏水性能,能够阻止大部分液体的渗出,同时又允许需要反应的电解液和离子的自由进出,保证反应的正常进行。
在上述空气极的基础上组装电池系统,电池系统包括电池组系统、空气系统、液流系统和电控系统。电池组系统可以是单个或多个电池串联组成,所述单个电池由电池外壳、进气空腔1、空气阴极2、金属阳极4、电解液层3和导电集流片组成;所述空气阴极2为两片,位于单个电池的外侧;所述金属阳极4位于单个电池的中间,所述金属阳极4和空气阴极2之间空腔部分适用于电解液的流动,所述进气空腔1与空气阴极2一侧相连,所述集流片分别连接在空气阴极2和金属阳极4上。
所述空气系统由空气泵E-5、加湿器E-6,空气管E-7组成,所述加湿器E-6内可以装清水或0.1mol/L-1mol/L的KOH溶液,空气通过空气泵E-5,流经加 湿器E-6后过滤出去灰尘等杂质,然后空气湿度被增加,同时,如果加湿器E-6中含有氢氧化钾,则空气中的CO 2被去除,然后经过空气管路E-7送至进气空腔内1。在进气空腔1内,空气与空气阴极2相接触,在催化剂的作用下进行氧化还原反应。
液流系统由耐腐蚀泵E-3、过滤器E-4、储液罐E-1组成,电解液为强碱性电解液,包括NaOH、KOH、LiOH的一种或其任意混合,所述电解液中溶解有锌盐,所述锌盐为ZnO、Zn(OH) 2、K 2Zn(OH) 4、Na 2Zn(OH) 4中的一种或多种,电解液的碱浓度为1mol/L-15mol/L,所述锌盐中锌离子的浓度为0.05-1.5mol/L。电解液储存在储液罐3-1内,由耐腐蚀泵E-3经过过滤器E-4过滤除去杂质,然后泵入电池组中,由电解液层的底部电解液进口3-3进入,上部电解液出口3-1流出后回流至储液罐E-1中。在电解液流经电解液层3中时,与金属阳极4接触,进而发生反应失去或者得到电子,而产生电流。
以上仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种锌空液流电池空气电极,其特征在于,所述空气电极结构包括四层结构和一个导电端子组成;所述四层结构由外至内分别为:第一层为透气不透水的耐碱半透膜层,第二层为催化剂层,第三层为集流层,第四层为耐碱隔离层;所述导电端子与第三层集流层相连。
  2. 根据权利要求1所述的一种锌空液流电池空气电极,其特征在于:所述第一层耐碱半透膜层为膨体聚四氟乙烯膜、PVDF疏水膜超滤膜、聚酯透气膜中其一。
  3. 根据权利要求1所述的一种锌空液流电池空气电极,其特征在于:所述第二层催化剂层的催化剂为氧化还原双功能催化剂,所述催化剂通过涂布涂覆于集流层。
  4. 根据权利要求1所述的一种锌空液流电池空气电极,其特征在于:所述集流层为泡沫镍、泡沫铜、泡沫不锈钢中的一种,所述集流层的材料的孔径为1um-10um。
  5. 根据权利要求1所述的一种锌空液流电池空气电极,其特征在于:所述耐碱隔离层为聚丙烯多孔材料、聚乙烯多孔材料、聚氯乙烯多孔材料中的一种,所述耐碱隔离层的材料的孔径为0.1nm-100nm。
  6. 根据权利要求1所述的一种锌空液流电池空气电极所组成的电池系统,其特征在于:电池系统包括电池组系统、空气系统、液流系统和电控系统。
  7. 根据权利要求6所述的一种锌空液流电池空气电极所组成的电池系统,其特征在于:所述电池组系统由单个或多个电池串联组成,所述单个电池由电池外壳、进气空腔、空气阴极、金属阳极、电解液层和导电集流片组成;所述空气阴极为两片,位于单个电池的外侧;所述金属阳极位于单个电池 的中间,所述金属阳极和空气阴极之间空腔部分适用于电解液的流动,所述进气空腔与空气阴极一侧相连,所述集流片分别连接在空气阴极和金属阳极上。
  8. 根据权利要求6所述的一种锌空液流电池空气电极所组成的电池系统,其特征在于,所述空气系统由空气泵、加湿器和空气管路组成,所述加湿器内装有清水或0.1mol/L-1mol/L的KOH溶液。
  9. 根据权利要求6所述的一种锌空液流电池空气电极所组成的电池系统,其特征在于:所述液流系统由耐腐蚀泵、过滤器和储液罐组成,所述电解液为强碱性电解液,包括NaOH、KOH、LiOH的一种或其任意混合,所述电解液中溶解有锌盐,所述锌盐为ZnO、Zn(OH) 2、K 2Zn(OH) 4、Na 2Zn(OH) 4中的一种或多种。
  10. 根据权利要求9所述的一种可充电锌空液流单电池,其特征在于:所述电解液的碱浓度为1mol/L-15mol/L,所述锌盐中锌离子的浓度为0.05mol/L-1.5mol/L。
PCT/CN2018/111548 2018-10-16 2018-10-24 一种锌空液流电池空气电极及其组成的电池系统 WO2020077653A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811202895.1 2018-10-16
CN201811202895.1A CN109346803A (zh) 2018-10-16 2018-10-16 一种锌空液流电池空气极及其组成的电池系统

Publications (1)

Publication Number Publication Date
WO2020077653A1 true WO2020077653A1 (zh) 2020-04-23

Family

ID=65309503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111548 WO2020077653A1 (zh) 2018-10-16 2018-10-24 一种锌空液流电池空气电极及其组成的电池系统

Country Status (2)

Country Link
CN (1) CN109346803A (zh)
WO (1) WO2020077653A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110197904B (zh) * 2019-06-13 2020-09-22 北京化工大学 一种锌镍空气液流电池正极的结构及制备方法
CN112054161A (zh) * 2020-09-21 2020-12-08 北京华业阳光新能源有限公司 一种多孔锌电极、其制备方法及包括其的锌空电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1253385A (zh) * 1998-11-07 2000-05-17 孙法炯 一种空气电极及用这种空气电极制成的金属空气电池
CN201936971U (zh) * 2011-03-18 2011-08-17 北京中航长力能源科技有限公司 一种新型机械插块式锌空金属燃料电池
CN102468499A (zh) * 2010-11-04 2012-05-23 新奥科技发展有限公司 全钒液流电池废液的再生方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201048156Y (zh) * 2007-06-25 2008-04-16 合肥市绿新电池有限责任公司 碱性锌空气电池模块及电池
CN102005578A (zh) * 2010-10-15 2011-04-06 南开大学 一种圆筒型薄膜空气电极及其在锌-空气电池中的应用
CN107768685A (zh) * 2017-09-06 2018-03-06 北京化工大学 一种锌镍/空气混合型液流电池系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1253385A (zh) * 1998-11-07 2000-05-17 孙法炯 一种空气电极及用这种空气电极制成的金属空气电池
CN102468499A (zh) * 2010-11-04 2012-05-23 新奥科技发展有限公司 全钒液流电池废液的再生方法
CN201936971U (zh) * 2011-03-18 2011-08-17 北京中航长力能源科技有限公司 一种新型机械插块式锌空金属燃料电池

Also Published As

Publication number Publication date
CN109346803A (zh) 2019-02-15

Similar Documents

Publication Publication Date Title
AU2012271273B2 (en) Metal-air cell with ion exchange material
US8323817B2 (en) Alkali metal seawater battery
US20100323249A1 (en) Air electrode
US20190051908A1 (en) Horizontal tri-electrode single flow zinc-air battery with a floating cathode
BG61743B1 (bg) Електрохимично устройство с въздушен електрод за получаванена енергия
EP2824745A1 (en) Rechargeable zinc-air flow battery
CN106030899A (zh) 具有流动电解液的三电极锌-空气电池
JP2014510361A (ja) アルカリ金属−空気フロー電池
CN103137941B (zh) 一种锌溴蓄电池用电极及其组装的锌溴蓄电池
WO2020077653A1 (zh) 一种锌空液流电池空气电极及其组成的电池系统
CN112786938A (zh) 具有双溶解沉积反应的酸碱混合高电压水系锌电池和锌液流电池
CN108987857A (zh) 一种基于弱酸性电解液的锌空气液流电池
CN114335643B (zh) 一种铁络合物-空气液流电池
US11411216B2 (en) Electrode slurry, slurry electrode, flow battery and stack
KR101015698B1 (ko) 분말형 연료 전지
JP2001313093A (ja) 空気電池
CN109841931B (zh) 一种氯镁燃料电池
CN108808176B (zh) 分舱循环、喷淋溶氧型金属空气电池
CN112993357A (zh) 一种碱性液流电池正极电解液
CN113948798A (zh) 一种碱性锡空气电池
WO2020077652A1 (zh) 一种可充电锌空液流单电池
JP6629911B2 (ja) レドックスフロー電池
JPH03245472A (ja) 2液性電池
CN109786799B (zh) 一种锌镍液流电池
US7906246B2 (en) Powdered fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18937361

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.01.2022)