WO2020076137A1 - 차량을 이용하는 노면 상태 측정 방법 및 장치 - Google Patents

차량을 이용하는 노면 상태 측정 방법 및 장치 Download PDF

Info

Publication number
WO2020076137A1
WO2020076137A1 PCT/KR2019/013419 KR2019013419W WO2020076137A1 WO 2020076137 A1 WO2020076137 A1 WO 2020076137A1 KR 2019013419 W KR2019013419 W KR 2019013419W WO 2020076137 A1 WO2020076137 A1 WO 2020076137A1
Authority
WO
WIPO (PCT)
Prior art keywords
road surface
vehicle
frozen
friction coefficient
slip rate
Prior art date
Application number
PCT/KR2019/013419
Other languages
English (en)
French (fr)
Inventor
윤상원
성지환
임장묵
전재진
장형규
오예균
이태희
변미정
한호범
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Publication of WO2020076137A1 publication Critical patent/WO2020076137A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/26Wheel slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/28Wheel speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/40Coefficient of friction

Definitions

  • the present invention relates to a method and apparatus for measuring a road surface condition using a vehicle, and more particularly, to a method and apparatus for measuring a road surface condition using an optical sensor installed in a vehicle and a slip rate of a vehicle tire.
  • the condition of the road surface changes irregularly due to weather conditions or road durability. Therefore, if you know the state of the road surface in real time and share the information with other drivers or other autonomous vehicles, safe driving can be achieved, and the autonomous vehicles are linked with a precision digital map, which is one of the essential conditions for autonomous vehicles. It can be applied to navigation devices.
  • a fixed sensor is installed on a road surface or a sensor attached to a vehicle is used to measure the road surface condition.
  • a method using a sensor attached to a vehicle is preferred because the road surface condition for an area where the sensor is not installed cannot be measured.
  • the present invention is to provide a method for measuring a road surface condition using a slip rate of a vehicle tire.
  • the present invention is to provide a method and apparatus for measuring the road surface condition capable of detecting black ice on the road surface.
  • the road surface state can be accurately measured.
  • black ice that causes a fatal safety accident can be detected, it is possible to reduce the accident rate due to the black ice and promote safe driving for the driver.
  • FIG. 1 is a view for explaining a road surface state measuring apparatus according to an embodiment of the present invention.
  • FIG. 2 is a view showing an embodiment of an optical sensor mounted on a vehicle.
  • FIG. 3 is a view for explaining a road surface condition measuring apparatus according to another embodiment of the present invention.
  • FIG. 4 is a view for explaining a road surface state measuring method according to an embodiment of the present invention.
  • FIG. 5 is a view for explaining a road surface state measuring method according to another embodiment of the present invention.
  • FIG. 6 is a graph showing a relationship between a slip rate and a friction coefficient of a vehicle according to a road surface condition.
  • FIG. 7 is a view for explaining a road surface state measuring method according to another embodiment of the present invention.
  • the road surface condition measuring device is a type device installed in a vehicle. Since it is installed in a vehicle, it is possible to detect the state of the road surface of all roads on which the vehicle travels as compared to a method using a fixed sensor.
  • the road surface condition measuring apparatus can measure the road surface condition more accurately by measuring the road surface condition using the slip rate of the vehicle tire as well as the sensing value of the optical sensor.
  • the road surface condition measuring apparatus by detecting the black ice (black ice) that can cause a serious safety accident, it is possible to induce the driver's safe driving and prevent the accident.
  • Information on the road surface condition and black ice detection result measured according to the present invention may be displayed on a vehicle display device and may be shared with other vehicles.
  • Figure 1 is a view for explaining a road surface condition measuring apparatus according to an embodiment of the present invention
  • Figure 2 is a view showing an embodiment of an optical sensor mounted on a vehicle.
  • an apparatus for measuring a road surface condition includes a sensor unit 110, a road surface condition determination unit 120, and a black ice detection unit 130.
  • the sensor unit 110 includes at least one optical sensor, and the optical sensor may be an infrared sensor or a visible light sensor.
  • the optical sensor irradiates light of a specific wavelength to the road surface, and receives light reflected from the road surface.
  • the sensor unit 110 may be installed at the front or rear of the vehicle 220, and the light 230 may be applied to the road surface 210 or the road surface 210 in the rear direction of the vehicle. To investigate.
  • the road surface state determination unit 120 determines the road surface state according to the reflectance of light reflected from the road surface.
  • the road surface state determination unit 120 may determine the road surface state as one of dry, wet, snow, and ice.
  • the black ice detector 130 detects black ice on the road surface.
  • Black ice is ice that is formed very thinly on the road surface and is formed by melting snow and ice on the road and freezing it again.
  • the color of black asphalt is reflected and looks black, it shows different optical properties from ice formed by freezing. Since the color of black ice looks black as it is, the reflectance of light to black ice is very low compared to the reflectance of light to ice formed by freezing.
  • the black ice detector 130 detects black ice by using the difference in optical characteristics, and as an embodiment, detects black ice by comparing a reflectance and a threshold value of infrared light.
  • FIG. 3 is a view for explaining a road surface condition measuring apparatus according to another embodiment of the present invention.
  • the apparatus for measuring road surface conditions includes a slip rate calculator 310 and a road surface condition determining unit 320.
  • the slip rate calculator 310 calculates a slip rate for each wheel of the vehicle using the vehicle's driving speed and wheel speed.
  • the driving speed of the vehicle may be measured using a GPS device mounted on the vehicle or an inertial sensor, and the wheel speed may be measured through the speed sensor of the wheel.
  • the slip rate can be calculated according to the size of the difference.
  • the road surface state determining unit 320 determines a state of the road surface by using a friction coefficient between the vehicle and the road surface according to the slip rate calculated by the slip rate calculation unit 310.
  • the friction coefficient is also calculated for each wheel of the vehicle, and may be calculated according to the vertical force and the lateral force for each wheel. Since the friction coefficient according to the slip rate is different according to the state of the road surface, the road surface state determination unit 320 does not determine the road surface state using only one information of the slip rate or the friction coefficient, and calculates both the slip rate and the friction coefficient. , It is possible to determine the state of the road surface using a friction coefficient according to the slip rate of the vehicle.
  • the components of the road surface condition measuring apparatus described in FIGS. 1 and 3 may be variously combined according to embodiments.
  • the black ice detector may be further included in the road surface condition measurement device of FIG. 3, or the road surface condition measurement device of FIG. 1 may determine the road surface condition by additionally calculating a slip rate of the vehicle.
  • FIGS. 5 and 6 are views showing the absorption rate of water and ice for light in the visible light band and the infrared band.
  • 7 is a view for explaining the difference in the reflectance of infrared light for general ice and black ice.
  • the road surface condition measuring method according to the present invention may be performed in the ECU of a vehicle equipped with the road surface condition measuring device or sensor described above, and the road surface condition measuring method performed in the road surface condition measuring device will be described below as an embodiment. .
  • the road surface condition measuring apparatus determines whether the road surface of the vehicle is frozen (S410), and when the road surface is frozen, detects black ice on the road surface using an infrared sensor installed in the vehicle (S420).
  • the road surface state measuring device may measure the road surface state according to the slip rate of each of the vehicle optical sensor or the vehicle wheel, and determine whether the road surface is frozen.
  • the road surface condition measurement device determines the road surface condition using the optical sensor of the vehicle, irradiates light of a wavelength of a preset visible light or infrared band to the road surface, and determines whether the road surface is frozen according to the reflectance of light reflected from the road surface. can do.
  • the road surface condition measuring apparatus may determine the road surface condition as one of dry, wet, snow, and icing according to the reflectance of light reflected from the road surface.
  • the reflectance of light reflected from the road surface may be similar to each other.
  • the absorption rate of water and ice is more than twice. It makes a difference.
  • the difference in absorption rate between water and ice tends to be large for light having a wavelength that is as long or short as a predetermined size based on a wavelength of 2.15 ⁇ m in the infrared band.
  • the road surface condition measuring device uses a visible light sensor, the road surface is wet by irradiating visible light in a wavelength range of 0.4 ⁇ m to 0.6 ⁇ m and measuring the reflectance of the irradiated light. It can be determined whether it is frozen or frozen.
  • the road surface condition measurement device may determine whether the road surface is wet or frozen by irradiating infrared light having a wavelength of 2.055 ⁇ m or 2.3 ⁇ m and measuring the reflectance of the irradiated light.
  • the road surface condition measuring device determines whether the road surface freezes according to the slip rate, since the slip rate is most likely to be maximum in the road surface ice state, the road surface condition measuring device is the maximum slip rate among the slip rates for each wheel. By using the friction coefficient according to it, it is possible to determine whether the road surface is frozen. A detailed method of determining the road surface state according to the slip rate of the vehicle wheel is described in detail in FIG. 5.
  • the road surface condition measuring apparatus may irradiate infrared light onto the road surface, and when the reflectance of light reflected from the road surface is less than or equal to a threshold, it may be determined that black ice is present on the road surface.
  • the infrared image for ice contains a lot of white
  • the infrared image for black ice contains a lot of black
  • the reflectance of infrared light for black ice is less than that for infrared ice on the road surface. Lower than the reflectance.
  • the road surface condition measurement device determines that black ice is present on the road surface.
  • the road surface condition measuring device may be designed to irradiate visible or infrared light in the forward direction of the vehicle. You can.
  • FIG. 5 is a view for explaining a method for measuring a road surface state according to another embodiment of the present invention
  • FIG. 6 is a graph showing a relationship between a slip coefficient and a friction coefficient of a vehicle according to a road surface state.
  • the road surface condition measuring apparatus calculates the slip rate for each wheel of the vehicle using the driving speed and the wheel speed of the vehicle (S510), and uses the friction coefficient between the vehicle and the road surface according to the slip ratio. , Determine the state of the road surface (S520).
  • the road surface condition measuring apparatus may calculate a slip rate for each wheel of the vehicle by using a difference between a vehicle driving speed and a wheel speed, and calculate the slip rate using [Equation 1] as an embodiment. You can. When slip occurs due to slippery road surface, the difference between the driving speed and the wheel speed increases, so that the slip rate can be calculated according to the difference between the driving speed and the wheel speed.
  • the road surface state measuring device may calculate a friction coefficient according to the maximum slip rate among slip rates for each wheel, and use the calculated friction coefficient to determine the state of the road surface.
  • the friction coefficient (u) for each wheel can be calculated as shown in [Equation 2].
  • F yij represents the lateral force on the wheel
  • F zij represents the normal force on the wheel.
  • the road surface condition measuring apparatus may calculate a friction coefficient between the vehicle and the road surface by using a vertical force and a lateral force for each wheel with respect to the wheel.
  • the lateral force can be calculated from the yaw rate value of the vehicle inertial sensor, the wheel speed value, and the steering angle, and the force in the vertical direction to the wheel is the roll rate value of the vehicle inertial sensor, the vehicle It can be calculated using the longitudinal and lateral accelerations of, and the displacement values of the suspension.
  • the road surface condition measuring apparatus may determine the state of the road surface as freezing.
  • the road surface condition measurement device may detect black ice on the road surface using an infrared sensor as described above.
  • black ice is detected through the infrared sensor, and the road surface condition measuring device is determined to be frozen by irradiating infrared light toward the rear of the vehicle. Black ice can be detected on the road surface.
  • FIG. 7 is a view for explaining a road surface state measuring method according to another embodiment of the present invention.
  • the road surface condition measuring apparatus irradiates visible light to the road surface and measures the reflectance of light reflected from the road surface (S710) to determine the road surface condition (S720). Then, the infrared light is irradiated onto the road surface, and the reflectance of light reflected from the road surface is measured (S730) to determine the road surface state (S740).
  • the road surface condition measuring device may calculate the slip rate for each wheel of the vehicle (S750) and use the slip rate and the friction coefficient together to determine the road surface condition.
  • the road surface state measuring device may determine the matched determination result of steps S720 and S740 as a road surface state, or selectively select one of the determination results of steps S720 and S740 as a road surface state according to a weather condition or a current time. For example, in the environment in which it is difficult to receive visible light reflected from the road surface, the road surface state measurement apparatus may determine the determination result of step S740 as the road surface state.
  • the road surface state measuring apparatus determines whether the road surface state is a frozen state (S760), and when the road surface is frozen, determines whether black ice is present on the road surface using the reflectance of infrared light (S770).
  • the road surface state measuring device databaseizes the information that the black ice is present at the location where the road surface condition is measured (S780), and this information is databased to be shared with other vehicles. You can.
  • the computer-readable medium may include program instructions, data files, data structures, or the like alone or in combination.
  • the program instructions recorded on the medium may be specially designed and configured for the embodiments, or may be known and available to those skilled in computer software.
  • Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks, and magnetic tapes, optical media such as CD-ROMs, DVDs, and magnetic media such as floptical disks.
  • -Hardware devices specially configured to store and execute program instructions such as magneto-optical media, and ROM, RAM, flash memory, and the like.
  • Examples of program instructions include high-level language code that can be executed by a computer using an interpreter, etc., as well as machine language codes produced by a compiler.
  • the hardware device can be configured to operate as one or more software modules to perform the operations of the embodiments, and vice versa.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

차량에 설치된 광학 센서와 차량 타이어의 슬립률을 이용하여 노면 상태를 측정하고, 노면의 블랙 아이스를 감지하는 방법 및 장치가 개시된다. 개시된 노면 상태 측정 방법은 차량이 주행하는 노면의 결빙 여부를 판단하는 단계; 및 상기 노면이 결빙된 경우, 상기 차량에 설치된 적외선 센서를 이용하여, 상기 노면의 블랙 아이스를 감지하는 단계를 포함한다.

Description

차량을 이용하는 노면 상태 측정 방법 및 장치
본 발명은 차량을 이용하는 노면 상태 측정 방법 및 장치에 관한 것으로서, 더욱 상세하게는 차량에 설치된 광학 센서와 차량 타이어의 슬립률을 이용하여 노면 상태를 측정하는 방법 및 장치에 관한 것이다.
완전한 자율주행 차량이 상용화되기 위해선, 차량 주변 다양한 환경이 정확하게 인식되는 것이 필수적이다. 특히 차량은 도로에 접지하고 있기 때문에, 노면의 상태 변화에 따라서 차량의 거동이 함께 변화되고 안전과 직접적으로 연관되어 있다.
이러한 노면의 상태는, 기후 상태 혹은 도로의 내구성으로 인하여 불규칙적으로 변화된다. 따라서 실시간으로 노면의 상태를 파악하고 해당 정보를 다른 운전자 또는 다른 자율 주행 차량과 공유한다면, 안전한 주행이 도모될 수 있으며, 자율주행 차량을 위한 필수조건 중 하나인 정밀 디지털 지도와 연계되어 자율주행 차량의 항법 장치에 적용될 수 있다.
일반적으로 노면 상태를 측정하기 위해서 고정식 센서를 노면에 설치하거나 차량에 부착된 센서를 이용한다. 고정식 센서를 이용할 경우, 센서가 설치되지 않은 지역에 대한 노면 상태가 측정될 수 없기 때문에, 차량에 부착된 센서를 이용하는 방식이 선호된다.
본 발명은 차량 타이어의 슬립률을 이용하여 노면 상태를 측정하는 방법을 제공하기 위한 것이다.
또한 본 발명은 노면의 블랙 아이스를 감지할 수 있는 노면 상태 측정 방법 및 장치를 제공하기 위한 것이다.
상기한 목적을 달성하기 위한 본 발명의 일 실시예에 따르면, 차량이 주행하는 노면의 결빙 여부를 판단하는 단계; 및 상기 노면이 결빙된 경우, 상기 차량에 설치된 적외선 센서를 이용하여, 상기 노면의 블랙 아이스를 감지하는 단계를 포함하는 노면 상태 측정 방법이 제공된다.
또한 상기한 목적을 달성하기 위한 본 발명의 다른 실시예에 따르면, 차량의 주행 속도와 휠 속도를 이용하여, 상기 차량의 휠 각각에 대한 슬립률을 계산하는 단계; 및 상기 슬립률에 따른, 상기 차량과 상기 노면 사이의 마찰 계수를 이용하여, 상기 노면의 상태를 판단하는 단계를 포함하는 노면 상태 측정 방법이 제공된다.
본 발명의 일실시예에 따르면, 차량과 노면 사이의 마찰 계수와, 차량 타이어의 슬립률의 관계를 이용함으로써, 노면 상태를 정확하게 측정할 수 있다.
또한 본 발명의 일실시예에 따르면, 치명적인 안전사고를 유발하는 블랙 아이스가 감지될 수 있으므로, 블랙 아이스에 따른 사고율을 줄이고 운전자의 안전 운전을 도모할 수 있다.
도 1은 본 발명의 일실시예에 따른 노면 상태 측정 장치를 설명하기 위한 도면이다.
도 2는 차량에 장착된 광학 센서의 일실시예를 나타내는 도면이다.
도 3은 본 발명의 다른 실시예에 따른 노면 상태 측정 장치를 설명하기 위한 도면이다.
도 4는 본 발명의 일실시에에 따른 노면 상태 측정 방법을 설명하기 위한 도면이다.
도 5는 본 발명의 다른 실시예에 따른 노면 상태 측정 방법을 설명하기 위한 도면이다.
도 6은 노면 상태에 따른 차량의 슬립률과 마찰 계수의 관계를 나타내는 그래프이다.
도 7은 본 발명의 또 다른 실시예에 따른 노면 상태 측정 방법을 설명하기 위한 도면이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.
본 발명에 따른 노면 상태 측정 장치는, 차량에 설치되는 타입의 장치이다. 차량에 설치되기 때문에, 고정식 센서를 이용하는 방식과 비교하여 차량이 주행하는 모든 도로의 노면의 상태를 감지할 수 있다.
특히 본 발명의 일실시예에 따른 노면 상태 측정 장치는, 광학 센서의 센싱값뿐만 아니라 차량 타이어의 슬립률을 이용하여 노면 상태를 측정함으로써, 보다 정확하게 노면 상태를 측정할 수 있다. 또한 본 발명에 따른 노면 상태 측정 장치는, 심각한 안전 사고를 유발할 수 있는 블랙 아이스(black ice)를 감지함으로써, 운전자의 안전 운전을 유도하고 사고를 예방할 수 있다.
본 발명에 따라서 측정된 노면 상태, 블랙 아이스 감지 결과에 대한 정보는 차량의 디스플레이 장치에 표시될 수 있으며, 다른 차량과 공유될 수 있다.
이하에서, 본 발명에 따른 실시예들을 첨부된 도면을 참조하여 상세하게 설명한다.
도 1은 본 발명의 일실시예에 따른 노면 상태 측정 장치를 설명하기 위한 도면이며, 도 2는 차량에 장착된 광학 센서의 일실시예를 나타내는 도면이다.
도 1을 참조하면, 본 발명의 일실시예에 따른 노면 상태 측정 장치는 센서부(110), 노면 상태 판단부(120) 및 블랙 아이스 감지부(130)를 포함한다.
센서부(110)는 적어도 하나의 광학 센서를 포함하며, 이러한 광학 센서는 적외선 센서 또는 가시광 센서일 수 있다. 이러한 광학 센서는 특정 파장의 빛을 노면으로 조사하며, 노면으로부터 반사된 빛을 수신한다. 도 2에 도시된 바와 같이, 센서부(110)는 차량(220)의 전방 또는 후방에 설치될 수 있으며, 차량의 전방 방향의 노면(210)이나 후방 방향의 노면(210)으로 빛(230)을 조사한다.
다시 도 1로 돌아가, 노면 상태 판단부(120)는 노면으로부터 반사된 빛의 반사율에 따라서, 노면 상태를 판단한다. 일실시예로서, 노면 상태 판단부(120)는 노면 상태를 건조(dry), 젖음(wet), 적설(snow) 및 결빙(ice) 중 하나로 판단할 수 있다.
노면 상태가 결빙된 것으로 판단된 경우, 블랙 아이스 감지부(130)는 노면의 블랙 아이스를 감지한다. 블랙 아이스란, 노면에 매우 얇게 형성된 얼음으로서, 도로에 내인 눈이나 얼음등이 녹았다가 다시 얼어붙으며 형성된다. 블랙 아이스의 경우 검은 아스팔트의 색이 그대로 비쳐 검게 보이기 때문에, 결빙에 의해 형성된 얼음과는 다른 광학적 특성을 나타낸다. 블랙 아이스는 아스팔트의 색이 그대로 비쳐 검게 보이기 때문에, 결빙에 의해 형성된 얼음에 대한 빛의 반사율에 비해, 블랙 아이스에 대한 빛의 반사율은 매우 낮다.
블랙 아이스 감지부(130)는 이러한 광학적 특성의 차이를 이용하여 블랙 아이스를 감지하며, 일실시예로서 적외선 빛의 반사율과 임계값을 비교하여 블랙 아이스를 감지할 수 있다.
도 3은 본 발명의 다른 실시예에 따른 노면 상태 측정 장치를 설명하기 위한 도면이다.
도 3을 참조하면, 본 발명에 따른 노면 상태 측정 장치는 슬립률 계산부(310) 및 노면 상태 판단부(320)를 포함한다.
슬립률 계산부(310)는 차량의 주행 속도와 휠 속도를 이용하여, 차량의 휠 각각에 대한 슬립률을 계산한다. 일예로서 차량의 주행 속도는 차량에 장착된 GPS 장치나 관성 센서를 이용하여 측정될 수 있으며, 휠 속도는 휠의 속도 센서를 통해 측정될 수 있다.
차량의 슬립이 발생할 경우, 주행 속도와 휠 속도에 차이가 발생하며 이러한 차이의 크기에 따라서 슬립률이 계산될 수 있다.
노면 상태 판단부(320)는 슬립률 계산부(310)에서 계산된 슬립률에 따른, 차량과 노면 사이의 마찰 계수를 이용하여, 노면의 상태를 판단한다. 마찰 계수 역시 차량의 휠 별로 계산되며, 휠 각각에 대한 수직 방향의 힘과 횡방향의 힘에 따라 계산될 수 있다. 노면의 상태에 따라서 슬립률에 따른 마찰 계수가 다르기 때문에, 노면 상태 판단부(320)는 슬립률 또는 마찰 계수 하나의 정보만을 이용하여 노면 상태를 판단하지 않고, 슬립률 및 마찰 계수를 모두 산출하고, 차량의 슬립률에 따른 마찰 계수를 이용하여 노면의 상태를 판단할 수 있다.
한편, 도 1 및 도 3에서 설명된 노면 상태 측정 장치의 구성 요소는 실시예에 따라서 다양하게 조합될 수 있다. 예컨대, 도 3의 노면 상태 측정 장치에 블랙 아이스 감지부가 더 포함될 수 있으며, 또는 도 1의 노면 상태 측정 장치는 차량의 슬립률을 추가로 계산하여 노면 상태를 판단할 수 있다.
도 4는 본 발명의 일실시에에 따른 노면 상태 측정 방법을 설명하기 위한 도면이며, 도 5 및 도 6 각각은 가시광 대역 및 적외선 대역의 빛에 대한 물과 얼음의 흡수율을 나타내는 도면이다. 도 7은 일반적인 얼음과 블랙 아이스에 대한 적외선 빛의 반사율의 차이를 설명하기 위한 도면이다.
본 발명에 따른 노면 상태 측정 방법은, 전술된 노면 상태 측정 장치 또는 센서가 장착된 차량의 ECU에서 수행될 수 있으며, 이하에서는 노면 상태 측정 장치에서 수행되는 노면 상태 측정 방법이 일실시예로서 설명된다.
본 발명에 따른 노면 상태 측정 장치는 차량이 주행하는 노면의 결빙 여부를 판단(S410)하고, 노면이 결빙된 경우, 차량에 설치된 적외선 센서를 이용하여, 노면의 블랙 아이스를 감지(S420)한다.
단계 S410에서 노면 상태 측정 장치는 차량의 광학 센서 또는 차량 휠 각각의 슬립률에 따라서 노면 상태를 측정하고, 노면의 결빙 여부를 판단할 수 있다. 노면 상태 측정 장치가 차량의 광학 센서를 이용하여 노면 상태를 판단하는 경우, 미리 설정된 가시광 또는 적외선 대역의 파장의 빛을 노면으로 조사하고, 노면으로부터 반사된 빛의 반사율에 따라서 노면의 결빙 여부를 판단할 수 있다.
노면에 눈이 쌓일 경우 노면으로부터 반사된 빛의 반사율이 가장 클 수 있으며, 노면이 건조한 상태인 경우 노면으로부터 반사된 빛의 반사율이 가장 작을 수 있다. 그리고 노면이 젖은 상태이거나 결빙된 상태인 경우, 노면으로부터 반사된 빛의 반사율은 적설 상태와 건조 상태의 반사율 사이에 위치할 수 있다. 따라서, 노면 상태 측정 장치는 노면으로부터 반사된 빛의 반사율에 따라서 노면 상태를 건조, 젖음, 적설 및 결빙 중 하나로 판단할 수 있다.
이 때, 노면이 젖은 상태이거나 결빙된 상태에서 노면으로부터 반사된 빛의 반사율은 서로 비슷할 수 있는데, 가시광 대역 중 특정 파장(0.4㎛ ~ 0.6㎛)의 빛에 대해서 물과 얼음의 흡수율은 2배 이상 차이가 난다. 또한 적외선 대역 중 2.15㎛ 파장을 기준으로 소정 크기만큼 길거나 짧은 파장의 빛에 대해서, 물과 얼음의 흡수율의 차이가 큰 편이다. 흡수율의 차이가 큰 만큼 반사율에서도 차이가 발생하므로, 노면 상태 측정 장치가 가시광 센서를 이용하는 경우, 0.4㎛ ~ 0.6㎛ 파장 대역의 가시광 빛을 조사하고 조사된 빛의 반사율을 측정함으로써, 노면이 젖은 상태인지 아니면 결빙된 상태인지를 판단할 수 있다. 또는 노면 상태 측정 장치는 적외선 센서를 이용하는 경우, 예컨대 2.055㎛ 또는 2.3㎛ 파장의 적외선 빛을 조사하고 조사된 빛의 반사율을 측정함으로써, 노면이 젖은 상태인지 아니면 결빙된 상태인지를 판단할 수 있다.
노면 상태 측정 장치가 슬립률에 따라서 노면의 결빙 여부를 판단하는 경우, 노면의 결빙 상태에서 슬립률이 최대가 될 가능성이 높으므로 노면 상태 측정 장치는 휠 각각에 대한 슬립률 중에서, 최대 슬립률에 따른 마찰 계수를 이용하여, 노면의 결빙 여부를 판단할 수 있다. 차량 휠의 슬립률에 따라서 노면 상태를 판단하는 자세한 방법은 도 5에서 자세히 설명된다.
단계 S420에서 노면 상태 측정 장치는 노면으로 적외선 빛을 조사하고, 노면으로부터 반사되는 빛의 반사율이 임계값 이하인 경우, 노면에 블랙 아이스가 존재한다고 판단할 수 있다.
일반적인 얼음에 대한 적외선 영상은 흰색을 상대적으로 많이 포함하고, 블랙 아이스에 대한 적외선 영상은 검은색을 상대적으로 많이 포함하므로, 블랙 아이스에 대한 적외선 빛의 반사율이 노면의 결빙된 얼음에 대한 적외선 빛의 반사율보다 낮다. 노면 상태 측정 장치는 노면에 대한 적외선 빛의 반사율이 임계값 이하로 낮을 경우, 노면에 블랙 아이스가 존재한다고 판단한다.
차량의 현재 위치가 아니라 차량의 다음 위치에 대한 노면의 상태를 판단하고 블랙 아이스를 감지하는 것이 안전 운전에 도움이 되므로, 노면 상태 측정 장치는 차량의 전방 방향으로 가시광 또는 적외선 빛을 조사하도록 설계될 수 있다.
결국, 본 발명의 일실시예에 따르면, 치명적인 안전사고를 유발하는 블랙 아이스가 감지될 수 있으므로, 블랙 아이스에 따른 사고율을 줄이고 운전자의 안전 운전을 도모할 수 있다.
도 5는 본 발명의 다른 실시예에 따른 노면 상태 측정 방법을 설명하기 위한 도면이며, 도 6은 노면 상태에 따른 차량의 슬립률과 마찰 계수의 관계를 나타내는 그래프이다.
본 발명에 따른 노면 상태 측정 장치는 차량의 주행 속도와 휠 속도를 이용하여, 차량의 휠 각각에 대한 슬립률을 계산(S510)하고, 슬립률에 따른, 차량과 노면 사이의 마찰 계수를 이용하여, 노면의 상태를 판단(S520)한다.
단계 S510에서 노면 상태 측정 장치는 차량의 주행 속도와 휠 속도의 차이를 이용하여, 차량의 휠 각각에 대한 슬립률을 계산할 수 있으며, 일실시예로서 [수학식 1]을 이용하여 슬립률을 계산할 수 있다. 노면이 미끄러워 슬립이 발생할 경우, 주행 속도와 휠 속도의 차이가 커지므로, 주행 속도와 휠 속도의 차이에 따라서 슬립률이 계산될 수 있다.
Figure PCTKR2019013419-appb-img-000001
단계 S520에서 노면 상태 측정 장치는 휠 각각에 대한 슬립률 중에서, 최대 슬립률에 따른 마찰 계수를 계산하고, 계산된 마찰 계수를 이용하여, 노면의 상태를 판단할 수 있다.
이 때, 휠 각각에 대한 마찰 계수(u)는 [수학식 2]와 같이 계산될 수 있다. 여기서, F yij는 휠에 대한 횡방향의 힘(lateral force)을 나타내며, F zij는 휠에 대한 수직 방향의 힘(normal force)을 나타낸다.
Figure PCTKR2019013419-appb-img-000002
즉, 노면 상태 측정 장치는 휠에 대한 휠 각각에 대한 수직 방향의 힘 및 횡방향의 힘을 이용하여, 상기 차량과 노면 사이의 마찰 계수를 계산할 수 있다. 횡방향의 힘은 차량 관성 센서의 요 레이트(yaw rate) 값, 휠 속도값, 조향각을 통해 계산될 수 있으며, 휠에 대한 수직 방향의 힘은 차량 관성 센서의 롤 레이트(roll rate) 값, 차량의 종방향 및 횡방향 가속도, 서스펜션의 변위값을 이용해 계산될 수 있다.
이러한 [수학식 2]를 이용한 휠의 마찰 계수 계산 방법은 "Tire/road friction coefficient estimation applied to road safety, Raymond Ghandour, Alessandro Victorino, Moustapha Doumiati and Ali Charara, 18th Mediterranean Conference on Control & Automation, Congress Palace Hotel, Marrakech, Morocco, June 23-25, 2010"에 개시되어 있으므로, 보다 자세한 설명은 생략하기로 한다.
도 6에 도시된 바와 같이, 차량의 노면 상태에 따라서, 슬립률이 동일하더라도 슬립률(Slip Ratio)에 따른 마찰 계수(Friction Coefficient)가 서로 다르기 때문에, 계산된 슬립률 및 마찰 계수와, 도 6과 같은 슬립률과 마찰 계수의 관계에 기반하여, 차량이 주행하는 노면의 상태가 판단될 수 있다. 예컨대, 최대 슬립률이 0.5인 휠에 대한 마찰 계수가 0.2로 계산되었다면, 노면 상태 측정 장치는 노면의 상태를 결빙으로 판단할 수 있다.
단계 S520에서 노면이 결빙된 것으로 판단된 경우, 노면 상태 측정 장치는 전술된 바와 같이 적외선 센서를 이용하여, 노면의 블랙 아이스를 감지할 수 있다.
이 때, 휠 센서를 통해 노면의 상태가 빙결되었는지 여부가 먼저 판단된 이후 적외선 센서를 통해 블랙 아이스가 감지되기 때문에, 노면 상태 측정 장치는 차량의 후방 방향으로 적외선 빛을 조사함으로서 결빙된 것으로 판단된 노면에 블랙 아이스가 존재하는지를 감지할 수 있다.
도 7은 본 발명의 또 다른 실시예에 따른 노면 상태 측정 방법을 설명하기 위한 도면이다.
본 발명에 따른 노면 상태 측정 장치는 가시광 빛을 노면으로 조사하고 노면으로부터 반사된 빛의 반사율을 측정(S710)하여 노면 상태를 판단(S720)한다. 그리고 적외선 빛을 노면으로 조사하고 노면으로부터 반사된 빛의 반사율을 측정(S730)하여 노면 상태를 판단(S740)한다.
이 때, 노면 상태 측정 장치는 차량의 휠 각각에 대한 슬립률을 계산(S750)하고 슬립률 및 마찰 계수를 노면 상태 판단에 함께 이용할 수 있다. 노면 상태 측정 장치는 단계 S720 및 S740의 일치된 판단 결과를 노면 상태로 판단하거나 또는, 기후 상태나 현재 시간에 따라서, 단계 S720 및 S740의 판단 결과 중 하나를 선택적으로 노면 상태로 결정할 수 있다. 예컨대 노면 상태 측정 장치는, 노면으로부터 반사되는 가시광을 수신하기 어려운 환경에서는 단계 S740의 판단 결과를 노면 상태로 결정할 수 있을 것이다.
노면 상태 측정 장치는 노면 상태가 빙결 상태인지 여부를 판단(S760)하고, 노면이 빙결된 경우, 적외선 빛의 반사율을 이용하여 노면에 블랙 아이스가 존재하는지 판단(S770)한다.
노면에 블랙 아이스가 존재하는 것으로 판단된 경우, 노면 상태 측정 장치는 노면 상태가 측정된 위치에 블랙 아이스가 존재한다는 정보를 데이터 베이스화(S780)하며, 이러한 정보가 데이터 베이스화됨으로써, 다른 차량과 공유될 수 있다.
프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예들을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 하드웨어 장치는 실시예들의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상과 같이 본 발명에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.

Claims (15)

  1. 차량이 주행하는 노면의 결빙 여부를 판단하는 단계; 및
    상기 노면이 결빙된 경우, 상기 차량에 설치된 적외선 센서를 이용하여, 상기 노면의 블랙 아이스를 감지하는 단계
    를 포함하는 노면 상태 측정 방법.
  2. 제 1항에 있어서,
    상기 노면의 블랙 아이스를 감지하는 단계는
    상기 노면으로 적외선 빛을 조사하는 단계; 및
    상기 노면으로부터 반사되는 빛의 반사율이 임계값 이하인 경우, 상기 노면에 블랙 아이스가 존재한다고 판단하는 단계
    를 포함하는 노면 상태 측정 방법.
  3. 제 2항에 있어서,
    상기 노면으로 적외선 빛을 조사하는 단계는
    상기 차량의 전방 방향으로 상기 적외선 빛을 조사하는
    노면 상태 측정 방법.
  4. 제 1항에 있어서,
    상기 노면의 결빙 여부를 판단하는 단계는
    차량과 노면 사이의 마찰 계수 또는 광학 센서를 이용하여, 상기 노면의 결빙 여부를 판단하는
    노면 상태 측정 방법.
  5. 제 4항에 있어서,
    상기 광학 센서를 이용하여 상기 노면의 결빙 여부를 판단하는 단계는
    미리 설정된 가시광 또는 적외선 대역의 파장의 빛을 상기 노면으로 조사하는 단계; 및
    상기 노면으로부터 반사되는 빛의 반사율에 따라서, 상기 노면의 결빙 여부를 판단하는 단계
    를 포함하는 노면 상태 측정 방법.
  6. 제 4항에 있어서,
    상기 마찰 계수를 이용하여, 상기 노면의 결빙 여부를 판단하는 단계는
    상기 차량의 주행 속도와 휠 속도를 이용하여, 상기 차량의 휠 각각에 대한 슬립률을 계산하는 단계; 및
    상기 슬립률에 따른 상기 마찰 계수를 이용하여, 상기 노면의 결빙 여부를 판단하는 단계
    를 포함하는 노면 상태 측정 방법.
  7. 제 6항에 있어서,
    상기 노면의 결빙 여부를 판단하는 단계는
    상기 휠 각각에 대한 슬립률 중에서, 최대 슬립률에 따른 마찰 계수를 이용하여, 상기 노면의 결빙 여부를 판단하는
    노면 상태 측정 방법.
  8. 제 6항에 있어서,
    상기 노면의 결빙 여부를 판단하는 단계는
    상기 휠 각각에 대한 수직 방향의 힘 및 횡방향의 힘을 이용하여, 상기 차량과 노면 사이의 마찰 계수를 계산하는 단계; 및
    상기 계산된 슬립률 및 마찰 계수와, 상기 노면의 상태에 따라서 달라지는 슬립률과 마찰 계수의 관계에 기반하여, 상기 노면의 결빙 여부를 판단하는 단계
    를 포함하는 노면 상태 측정 방법.
  9. 차량의 주행 속도와 휠 속도를 이용하여, 상기 차량의 휠 각각에 대한 슬립률을 계산하는 단계; 및
    상기 슬립률에 따른, 상기 차량과 상기 노면 사이의 마찰 계수를 이용하여, 상기 노면의 상태를 판단하는 단계
    를 포함하는 노면 상태 측정 방법.
  10. 제 9항에 있어서,
    상기 노면의 상태를 판단하는 단계는
    상기 휠 각각에 대한 슬립률 중에서, 최대 슬립률에 따른 마찰 계수를 이용하여, 상기 노면의 상태를 판단하는
    노면 상태 측정 방법.
  11. 제 9항에 있어서,
    상기 노면의 상태를 판단하는 단계는
    상기 휠 각각에 대한 수직 방향의 힘 및 횡방향의 힘을 이용하여, 상기 차량과 노면 사이의 마찰 계수를 계산하는 단계; 및
    상기 계산된 슬립률 및 마찰 계수와, 상기 노면의 상태에 따라서 달라지는 슬립률과 마찰 계수의 관계에 기반하여, 상기 노면의 상태를 판단하는 단계
    를 포함하는 노면 상태 측정 방법.
  12. 제 9항에 있어서,
    상기 노면이 결빙된 경우, 적외선 센서를 이용하여, 상기 노면의 블랙 아이스를 감지하는 단계
    를 더 포함하는 노면 상태 측정 방법.
  13. 제 12항에 있어서,
    상기 노면의 블랙 아이스를 감지하는 단계는
    상기 노면으로 적외선 빛을 조사하는 단계; 및
    상기 노면으로부터 반사되는 빛의 반사율이 임계값 이하인 경우, 상기 노면에 블랙 아이스가 존재한다고 판단하는 단계
    를 포함하는 노면 상태 측정 방법.
  14. 제 13항에 있어서,
    상기 노면으로 적외선 빛을 조사하는 단계는
    상기 차량의 후방 방향으로 상기 적외선 빛을 조사하는
    노면 상태 측정 방법.
  15. 제 9항에 있어서,
    상기 노면의 상태를 판단하는 단계는
    상기 노면의 상태를 건조, 젖음, 적설 및 결빙 중 하나로 판단하는
    노면 상태 측정 방법.
PCT/KR2019/013419 2018-10-12 2019-10-14 차량을 이용하는 노면 상태 측정 방법 및 장치 WO2020076137A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180121589A KR102081513B1 (ko) 2018-10-12 2018-10-12 차량을 이용하는 노면 상태 측정 방법 및 장치
KR10-2018-0121589 2018-10-12

Publications (1)

Publication Number Publication Date
WO2020076137A1 true WO2020076137A1 (ko) 2020-04-16

Family

ID=69647734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/013419 WO2020076137A1 (ko) 2018-10-12 2019-10-14 차량을 이용하는 노면 상태 측정 방법 및 장치

Country Status (2)

Country Link
KR (1) KR102081513B1 (ko)
WO (1) WO2020076137A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102156907B1 (ko) * 2020-03-31 2020-09-16 권기혁 블랙 아이스 경보 알림 시스템
KR102317633B1 (ko) * 2020-05-19 2021-10-27 재단법인대구경북과학기술원 복수의 도로 영상을 기반으로 하는 도로의 실시간 블랙아이스 검출 시스템 및 그 방법
KR102388804B1 (ko) 2020-10-20 2022-04-21 한국건설기술연구원 분광 데이터와 노면온도센서 데이터를 이용한 노면상태 분류 시스템 및 그 방법
KR102428059B1 (ko) 2020-12-29 2022-08-03 한국기계연구원 초점이탈을 이용한 노면상태 탐지장치 및 탐지방법
KR102479392B1 (ko) * 2021-03-15 2022-12-21 주식회사 이너트론 차량용 블랙아이스 감지시스템

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10299528A (ja) * 1997-04-25 1998-11-10 Mitsubishi Motors Corp 路面摩擦係数推定装置
JP2010164521A (ja) * 2009-01-19 2010-07-29 Sumitomo Electric Ind Ltd 路面状況判別装置
US20150367855A1 (en) * 2014-06-24 2015-12-24 Robert Bosch Gmbh Method for detecting a roadway and corresponding detection systems

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01223064A (ja) * 1988-03-02 1989-09-06 Hitachi Ltd 駆動輪空転防止装置
KR101308994B1 (ko) * 2010-12-23 2013-09-17 한국건설기술연구원 차륜 회전속도 및 차량 속도를 이용한 노면 미끄럼 판단 장치 및 그 방법
WO2015060910A1 (en) * 2013-10-24 2015-04-30 The Regents Of The University Of Michigan Ice and water detection system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10299528A (ja) * 1997-04-25 1998-11-10 Mitsubishi Motors Corp 路面摩擦係数推定装置
JP2010164521A (ja) * 2009-01-19 2010-07-29 Sumitomo Electric Ind Ltd 路面状況判別装置
US20150367855A1 (en) * 2014-06-24 2015-12-24 Robert Bosch Gmbh Method for detecting a roadway and corresponding detection systems

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GHANDOUR ET AL.: "Tire/road Friction Coefficient Estimation Applied to Road Safety", 18TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION, 23 June 2010 (2010-06-23), pages 1485 - 1490, XP031732070 *
JONSSON, PATRIK: "Remote Sensor for Winter Road Surface Status Detection", SENSORS, 28 October 2011 (2011-10-28), pages 1 - 4, XP032093291 *

Also Published As

Publication number Publication date
KR102081513B1 (ko) 2020-02-25

Similar Documents

Publication Publication Date Title
WO2020076137A1 (ko) 차량을 이용하는 노면 상태 측정 방법 및 장치
Dagan et al. Forward collision warning with a single camera
EP2995520B1 (en) Tire grounded state estimation method
KR101696821B1 (ko) 차량의 주행 특성을 이용한 노면의 미끄럼 상태 검출 장치 및 방법
CN110276988A (zh) 一种基于碰撞预警算法的辅助驾驶系统
WO2014058263A1 (ko) 충돌 경고 장치 및 충돌 경고 방법
CN110588623B (zh) 一种基于神经网络的大型汽车安全驾驶方法及系统
WO2020045978A1 (ko) 초음파 신호를 이용한 노면 종류 추정 방법 및 장치
US20090201140A1 (en) Method for determining the driving limits of a vehicle
CN101131321A (zh) 一种实时测量安全车距用于汽车防撞预警的方法及装置
KR101308994B1 (ko) 차륜 회전속도 및 차량 속도를 이용한 노면 미끄럼 판단 장치 및 그 방법
CN108760740A (zh) 一种基于机器视觉的路面抗滑性能快速检测方法
CN108091139A (zh) 一种基于大数据的交通安全自动评估系统
TW201420399A (zh) 利用車身訊號偵測車道曲率之方法及其系統
EP3508861B1 (en) Speed calculation device, control method, program, and storage medium
KR20240046903A (ko) 차도 비평탄부를 결정하고 특성화하는 방법 및 장치
CN106143148A (zh) 汽车安全速度控制系统及其控制方法
JP7464454B2 (ja) 車両制御装置及び車両制御方法
CN115805924B (zh) 一种矿用车辆制动控制系统
KR102297801B1 (ko) 사업용 차량을 이용하여 도로 위험정보를 탐지하는 방법 및 장치
WO2014073870A1 (ko) 자동차 운전자에 대한 위험 경고방법
JP2009248633A (ja) 路面状態判定装置及び方法、並びに路面状態の判定プログラム
KR20120051202A (ko) 휠속 센서를 이용한 조향각 산출 장치 및 그 방법과 이를 이용한 자동 주차 방법
JPH05307696A (ja) 駐車車両検出方法
WO2014073869A1 (ko) 커브속도 경고방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19870411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19870411

Country of ref document: EP

Kind code of ref document: A1