WO2020075651A1 - 発泡ポリウレタンエラストマー原料、発泡ポリウレタンエラストマー、ミッドソールおよび発泡ポリウレタンエラストマーの製造方法 - Google Patents
発泡ポリウレタンエラストマー原料、発泡ポリウレタンエラストマー、ミッドソールおよび発泡ポリウレタンエラストマーの製造方法 Download PDFInfo
- Publication number
- WO2020075651A1 WO2020075651A1 PCT/JP2019/039367 JP2019039367W WO2020075651A1 WO 2020075651 A1 WO2020075651 A1 WO 2020075651A1 JP 2019039367 W JP2019039367 W JP 2019039367W WO 2020075651 A1 WO2020075651 A1 WO 2020075651A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyurethane elastomer
- foamed polyurethane
- mass
- raw material
- catalyst
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B13/00—Soles; Sole-and-heel integral units
- A43B13/02—Soles; Sole-and-heel integral units characterised by the material
- A43B13/04—Plastics, rubber or vulcanised fibre
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/10—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/65—Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
- C08G18/66—Compounds of groups C08G18/42, C08G18/48, or C08G18/52
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/75—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
Definitions
- the present invention relates to a foamed polyurethane elastomer raw material, a foamed polyurethane elastomer that is a foam of the foamed polyurethane elastomer raw material, a midsole obtained by using the foamed polyurethane elastomer, and a foamed polyurethane elastomer for producing the foamed polyurethane elastomer. It relates to a manufacturing method.
- foamed polyurethane material an isocyanate group-terminated prepolymer obtained by reacting 1,4-bis (isocyanatomethyl) cyclohexane and polytetramethylene ether glycol, 1,4-bis (isocyanatomethyl) cyclohexane,
- a foamed polyurethane material obtained by reacting and foaming a polyoxy-1,2-alkylene polyol in the presence of an amine-based catalyst and an organometallic catalyst is known (see, for example, Patent Document 1 (Example 16)). .).
- foamed polyurethane materials may require higher flex resistance (flex crack resistance) depending on the application, and may require suppression of compression set.
- the present invention uses a foamed polyurethane elastomer raw material capable of obtaining a foamed polyurethane elastomer having excellent flex resistance and suppressed compression set, a foamed polyurethane elastomer that is a foam of the foamed polyurethane elastomer raw material, and the foamed polyurethane elastomer. It is intended to provide a midsole obtained as described above and a method for producing a foamed polyurethane elastomer for producing the foamed polyurethane elastomer.
- the present invention is a foamed polyurethane elastomer raw material containing a polyisocyanate component (A), a polyol component (B) and a urethanization catalyst (C), wherein the polyisocyanate component (A) is 1,4- It contains a prepolymer of bis (isocyanatomethyl) cyclohexane (A1) and polyether diol (A2) containing polytrimethylene ether glycol, and the polyol component (B) is a low molecular weight polyol having 2 to 6 carbon atoms. Contains, including foamed polyurethane elastomer raw material.
- the urethanization catalyst (C) does not contain a nitrogen-containing aromatic catalyst but contains a metal catalyst, and the ratio of the metal catalyst is 100 parts by mass of the total amount of the foamed polyurethane elastomer raw material. , 0.30 parts by mass or more, and the foamed polyurethane elastomer raw material according to the above [1] is included.
- the present invention [3] is the above-mentioned [1] or [2], wherein the proportion of the polytrimethylene ether glycol is 50 parts by mass or more based on 100 parts by mass of the total amount of the polyether diol (A2). Includes foamed polyurethane elastomer material.
- the present invention [4] includes a foamed polyurethane elastomer, which is a foamed product of the foamed polyurethane elastomer raw material according to any one of the above [1] to [3].
- the present invention [5] includes the foamed polyurethane elastomer according to the above [4], which is a material for a midsole of shoes.
- the present invention [6] includes a midsole including the foamed polyurethane elastomer according to the above [4] or [5].
- the present invention [7] is a method for producing a foamed polyurethane elastomer for producing the foamed polyurethane elastomer according to the above [4] or [5], which is any one of the above [1] to [3]. It includes a method for producing a foamed polyurethane elastomer, which includes a preparation step of preparing the foamed polyurethane elastomer raw material described above and a foaming step of foaming the foamed polyurethane elastomer raw material.
- the foamed polyurethane elastomer raw material of the present invention it is possible to obtain a foamed polyurethane elastomer having excellent flex resistance and suppressed compression set.
- the foamed polyurethane elastomer which is a foamed material of the foamed polyurethane elastomer, and the midsole obtained by using the foamed polyurethane elastomer have excellent bending resistance and suppress compression set.
- FIG. 1 is an explanatory diagram for explaining the structure of a foamed polyurethane elastomer.
- the foamed polyurethane elastomer raw material of the present invention is a composition for a foamed polyurethane elastomer for producing a foamed polyurethane elastomer, and comprises a polyisocyanate component (A), a polyol component (B) and a urethanization catalyst (C).
- the foamed polyurethane elastomer raw material is, in addition to the polyisocyanate component (A), the polyol component (B) and the urethanization catalyst (C), for example, a foaming agent (described later), a foam stabilizer (described later), an additive (described later). ) Etc. are contained in the foamed polyurethane elastomer composition.
- the foamed polyurethane elastomer raw material can be prepared, for example, as a one-pack type foamed polyurethane elastomer raw material containing both a polyisocyanate component (A), a polyol component (B), and a urethanization catalyst (C).
- a polyisocyanate component A
- a polyol component B
- a urethanization catalyst C
- it can be prepared as a two-pack type foamed polyurethane elastomer raw material separately containing the first liquid containing the polyisocyanate component (A) and the second liquid containing the polyol component (B).
- the urethanization catalyst (C) may be contained in the first liquid and / or the second liquid, and is prepared separately from them, and the first liquid and It may be added at the time of blending the second liquid.
- a third liquid containing a urethane-forming catalyst (C) is prepared separately from the first liquid and the second liquid, and the foamed polyurethane elastomer raw material is a three-liquid type containing the first liquid, the second liquid and the third liquid. It may be prepared as the foamed polyurethane elastomer raw material.
- the polyisocyanate component (A) contains a prepolymer which is a reaction product of 1,4-bis (isocyanatomethyl) cyclohexane (A1) and polyether diol (A2).
- 1,4-Bis (isocyanatomethyl) cyclohexane (A1) is prepared in accordance with the descriptions in International Publication No. 2009/051114 and Japanese Patent Laid-Open No. 2011-140618.
- 1,4-bis (isocyanatomethyl) cyclohexane includes cis-1,4-bis (isocyanatomethyl) cyclohexane (hereinafter referred to as cis form) and trans-1,4-bis ( There are geometric isomers of isocyanatomethyl) cyclohexane (hereinafter referred to as trans isomer).
- 1,4-bis (isocyanatomethyl) cyclohexane preferably contains a large amount of trans isomer rather than cis isomer (hereinafter referred to as high trans isomer).
- the high trans form of 1,4-bis (isocyanatomethyl) cyclohexane is, for example, 50 mol% or more, preferably 75 mol% or more, more preferably 80 mol% or more, further preferably 85 mol% or more. It is contained in an amount of not less than mol% and, for example, not more than 96 mol%, preferably not more than 93 mol%.
- the cis form is the rest of the trans form.
- the 1,4-bis (isocyanatomethyl) cyclohexane (A1) is preferably a high trans form of 1,4-bis (isocyanatomethyl) cyclohexane.
- the polyether diol (A2) contains polytrimethylene ether glycol as an essential component.
- Polytrimethylene ether glycol is a polyether diol having an oxy linear alkylene group having 3 carbon atoms as a main chain. Polytrimethylene ether glycol is sometimes referred to as poly (1,3-propanediol) or poly (oxy-1,3-propylene) diol.
- polytrimethylene ether glycol examples include glycol obtained by polycondensation reaction of 1,3-propanediol derived from plant components.
- polytrimethylene ether glycol for example, an addition polymerization product of trimethylene oxide using a dihydric alcohol as an initiator can be mentioned.
- dihydric alcohol examples include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butylene glycol, 1,3-butylene glycol, 1,2-butylene glycol, 1,5-pentanediol, 1 , 6-hexanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, 2,2,2-trimethylpentanediol, 3,3-dimethylolheptane, alkane (C7-20) diol, 1,3 -Or 1,4-cyclohexanedimethanol and mixtures thereof, 1,3- or 1,4-cyclohexanediol and mixtures thereof, hydrogenated bisphenol A, 1,4-dihydroxy-2-butene, 2,6-dimethyl -1-octene-3,8-diol, bisphenol A, di Ji glycol, triethylene glycol, and dipropylene glycol.
- the method of addition-polymerizing trimethylene oxide to the dihydric alcohol is not particularly limited, and a known method is adopted.
- the polytrimethylene ether glycol can be used alone or in combination of two or more kinds.
- polyether diols examples include polyoxyalkylene glycols having 2 to 3 carbon atoms (excluding polytrimethylene ether glycol) and polytetramethylene ether glycol.
- polyoxyalkylene glycol having 2 to 3 carbon atoms examples include, for example, addition polymers of ethylene oxide and / or propylene oxide using the above dihydric alcohol as an initiator. Is mentioned.
- the addition form of the addition polymer is not particularly limited and may be either block or random.
- polyoxyalkylene glycol having 2 to 3 carbon atoms excluding polytrimethylene ether glycol
- polyoxyethylene glycol PEG
- polyoxypropylene glycol PPG
- addition of ethylene oxide and propylene oxide examples thereof include copolymers (random and / or block copolymers).
- Polytetramethylene ether glycol is a polyether diol having an oxy linear alkylene group having 4 carbon atoms as a main chain, and for example, a ring-opening polymer (crystalline polytetramethylene) obtained by cationic polymerization of tetrahydrofuran.
- Ether glycol amorphous polytetramethylene ether glycol obtained by copolymerizing the above dihydric alcohol with polymer units such as tetrahydrofuran, and the like.
- crystalline means that it is solid at room temperature (25 ° C.)
- amorphous means that it is liquid at room temperature (25 ° C.).
- plant-derived polytetramethylene ether glycol whose starting material is tetrahydrofuran, which is produced from a plant-derived material such as furfural.
- polyether diols can be used alone or in combination of two or more kinds.
- polyether diols preferably include polyoxyethylene glycol (PEG), polyoxypropylene glycol (PPG), and polytetramethylene ether glycol (PTMEG).
- PEG polyoxyethylene glycol
- PPG polyoxypropylene glycol
- PTMEG polytetramethylene ether glycol
- polytetramethylene ether glycol is more preferable, and amorphous polytetramethylene ether glycol is more preferable.
- polyether diols from the viewpoint of flex resistance, more preferable examples include polyoxyethylene glycol (PEG) and polyoxypropylene glycol (PPG), and further preferable examples are polyoxypropylene glycol (PPG). Is mentioned.
- the proportion of polytrimethylene ether glycol is, for example, 33 parts by mass or more, preferably 100 parts by mass with respect to the total amount of the polyether diol (A), from the viewpoint of flex resistance. Is 40 parts by mass or more, more preferably 50 parts by mass or more, still more preferably 80 parts by mass or more, and usually 100 parts by mass or less.
- the proportion of the other polyether diol is usually 0 parts by mass or more, for example, 67 parts by mass or less, preferably from 100 parts by mass of the total amount of the polyether diol (A), from the viewpoint of flex resistance. Is 60 parts by mass or less, more preferably 50 parts by mass or less, and further preferably 20 parts by mass or less.
- the polyether diol (A2) is polytrimethylene ether glycol. Contains alone and no other polyether diols. That is, the polyether diol (A2) preferably consists of polytrimethylene ether glycol.
- the number average molecular weight of the polyether diol (A2) is, for example, 400 or more, preferably 800 or more, and for example, 10000 or less, preferably 5000 or less.
- the number average molecular weight can be measured by gel permeation chromatography (GPC) analysis (polyethylene glycol equivalent) (the same applies below).
- the average hydroxyl value of the polyether diol (A2) is, for example, 12 mgKOH / g or more, preferably 25 mgKOH / g or more, and for example, 270 mgKOH / g or less, preferably 135 mgKOH / g or less.
- the average hydroxyl value can be measured according to JIS K1557-1: 2007 (the same applies below).
- the crystallinity of the soft segment of the foamed polyurethane elastomer is improved by being derived from the main chain (straight chain) of the polyether diol (A2). It is possible to satisfy various mechanical properties of the foamed polyurethane elastomer required as an industrial product.
- polyisocyanate (1,4-bis (isocyanatomethyl) cyclohexane (A1) and, if necessary, other polyisocyanate described later (for example, 1,3-bis (isocyanatomethyl)) Cyclohexane) and polyether diol (A2) the value obtained by multiplying the ratio of the isocyanate group concentration (NCO concentration) of the polyisocyanate to the hydroxyl group concentration of the isocyanate index (polyether diol (A2)) by 100, NCO concentration / hydroxyl group (Concentration ⁇ 100) is, for example, a ratio of greater than 100, preferably 105 or more, for example, 600 or less, preferably 450 or less, and mixed them until a predetermined isocyanate group content is reached. React.
- the reaction temperature is, for example, 50 ° C. or higher, for example, 120 ° C. or lower, preferably 100 ° C. or lower.
- the reaction time is, for example, 0.5 hours or more, preferably 1 hour or more, for example, 15 hours or less, preferably 10 hours or less.
- a catalyst for example, a urethanization catalyst (C) described later
- C urethanization catalyst
- the mixing ratio of the catalyst is, for example, 1 ppm or more, for example, 500 ppm or less, preferably 100 ppm or less, and more preferably 20 ppm or less on a mass basis with respect to the total amount of the polyisocyanate and the polyether diol (A2). is there.
- the residual monomer (specifically, unreacted polyisocyanate) is removed by using a known distillation method or the like.
- the isocyanate group content rate (isocyanate group content rate) in the prepolymer is determined by a titration method using di-n-butylamine according to the isocyanate group content rate test described in JIS K7301 (1995). It is at least mass%, preferably at least 5 mass%, for example, at most 12 mass%, preferably at most 8 mass%.
- the proportion of the prepolymer in the polyisocyanate component (A) is, for example, 70% by mass or more, preferably 80% by mass or more, and for example, 100% by mass or less, preferably 95% by mass or less.
- the polyisocyanate component (A) preferably contains 1,4-bis (isocyanatomethyl) cyclohexane (residual monomer remaining after synthesizing the above prepolymer).
- 1,4-bis (isocyanatomethyl) cyclohexane is a derivative thereof (eg, isocyanurate modified product, iminooxadiazinedione modified product, allophanate modified product, polyol modified product, biuret modified product, urea modified product, oxalated product). Diazine trione modified product, carbodiimide modified product, uretdione modified product, uretonimine modified product and the like).
- the proportion of 1,4-bis (isocyanatomethyl) cyclohexane (monomer) in the polyisocyanate component (A) is, for example, 0% by mass or more, preferably 5% by mass or more, for example, 30% by mass or less, It is preferably 20% by mass or less.
- the proportion of 1,4-bis (isocyanatomethyl) cyclohexane in the polyisocyanate component (A) is in the above range, the proportion of hard segment (hard segment concentration) in the foamed polyurethane elastomer can be adjusted, and the foamed polyurethane can be obtained.
- the hardness and compression set of the elastomer can be adjusted.
- polyisocyanate component (A) may contain other polyisocyanate, if necessary.
- polyisocyanates examples include aliphatic polyisocyanates including alicyclic polyisocyanates, aromatic polyisocyanates, araliphatic polyisocyanates, their derivatives described above, and other polyisocyanates and polyether diols (A prepolymer with A2) (for example, a prepolymer of 1,3-bis (isocyanatomethyl) cyclohexane and polyether diol (A2)) and the like can be mentioned.
- a prepolymer with A2 for example, a prepolymer of 1,3-bis (isocyanatomethyl) cyclohexane and polyether diol (A2)
- aliphatic polyisocyanate examples include aliphatic diisocyanates such as pentamethylene diisocyanate (PDI) and hexamethylene diisocyanate (HDI).
- PDI pentamethylene diisocyanate
- HDI hexamethylene diisocyanate
- alicyclic polyisocyanate examples include 1,3-bis (isocyanatomethyl) cyclohexane, isophorone diisocyanate (IPDI), 4,4′-, 2,4′- or 2,2′-dicyclohexylmethane diisocyanate or These include alicyclic diisocyanates such as mixtures (H 12 MDI), 2,5- or 2,6-diisocyanatomethylbicyclo [2,2,1] -heptane (NBDI).
- aromatic polyisocyanates examples include 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate, and isomer mixtures (TDI) of these tolylene diisocyanates, 4,4′-diphenylmethane diisocyanate, 2,4 Aromatic aromatic compounds such as'-diphenylmethane diisocyanate and 2,2'-diphenylmethane diisocyanate, and any isomer mixture of these diphenylmethane diisocyanates (MDI), toluidine diisocyanate (TODI), paraphenylene diisocyanate (PPDI), naphthalene diisocyanate (NDI) Diisocyanate may be mentioned.
- TDI isomer mixtures
- MDI diphenylmethane diisocyanates
- TODI toluidine diisocyanate
- PPDI paraphenylene diisocyanate
- NDI naphthalene diiso
- araliphatic polyisocyanate examples include 1,3- or 1,4-xylylene diisocyanate or a mixture thereof (XDI), 1,3- or 1,4-tetramethylxylylene diisocyanate or a mixture thereof (TMXDI), etc.
- XDI 1,3- or 1,4-xylylene diisocyanate or a mixture thereof
- TXDI 1,3- or 1,4-tetramethylxylylene diisocyanate or a mixture thereof
- the proportion of the other polyisocyanate in the polyisocyanate component (A) is, for example, 0% by mass or more, for example, 50% by mass or less, and preferably 25% by mass or less.
- the prepolymer in the polyisocyanate component (A) preferably contains only the prepolymer of 1,4-bis (isocyanatomethyl) cyclohexane (A1) and polyether diol (A2).
- the polyisocyanate component (A) more preferably contains no other polyisocyanate and does not react with the prepolymer of 1,4-bis (isocyanatomethyl) cyclohexane (A1) and polyether diol (A2).
- 1,4-bis (isocyanatomethyl) cyclohexane and more preferably, the polyisocyanate component (A) comprises 1,4-bis (isocyanatomethyl) cyclohexane (A1) and polyether diol (A2). It consists of a prepolymer and unreacted 1,4-bis (isocyanatomethyl) cyclohexane.
- the polyol component (B) contains a low molecular weight polyol (B1) having 2 to 6 carbon atoms as an essential component.
- the polyol (B) contains a low molecular weight polyol (B1) having 2 to 6 carbon atoms
- the cohesiveness of the hard segment of the foamed polyurethane elastomer is controlled, the flex resistance of the foamed polyurethane elastomer is improved, and the compression resistance is increased. Permanent distortion can be suppressed.
- the low molecular weight polyol (B1) having 2 to 6 carbon atoms is a compound having two or more hydroxyl groups and having a molecular weight of 60 or more and less than 400, preferably 300 or less, and examples thereof include alkane polyols having 2 to 6 carbon atoms.
- An alkane polyol having 2 to 6 carbon atoms is a compound having an alkylene group having 2 to 6 carbon atoms (straight chain alkylene group or branched chain alkylene group) and two or more hydroxyl groups.
- alkane polyol having 2 to 6 carbon atoms examples include ethylene glycol (other name: ethanediol), 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, etc.
- Linear alkane diols such as propylene glycol (alias: 1,2-propanediol), 1,3-butanediol, 1,2-butanediol, neopentyl glycol (alias: 2,2-dimethyl-1) , 3-propanediol), 3-methyl-1,5-pentanediol, and other branched alkanediols, such as glycerin (alias: 1,2,3-propanetriol), trimethylolpropane (alias: 1,1, Alkanetriols such as 1-tris (hydroxymethyl) propane, eg pentaeryth Alkanetetraols such as toll (also known as tetramethylolmethane), for example, alkanepentanols such as xylitol (also known as 1,2,3,4,5-pentahydroxypentane), such as sorbitol, mannitol, allitol, i
- alkane polyols having 2 to 6 carbon atoms can be used alone or in combination of two or more kinds.
- examples of the low molecular weight polyol (B1) having 2 to 6 carbon atoms include, in addition to the above alkane polyols, ether diols such as diethylene glycol, triethylene glycol and dipropylene glycol. These can be used alone or in combination of two or more kinds.
- the low molecular weight polyol (B1) having 2 to 6 carbon atoms is preferably an alkane polyol having 2 to 6 carbon atoms, more preferably a linear alkane diol, and further preferably 1,3. -Propanediol and 1,4-butanediol are mentioned, and 1,4-butanediol is particularly preferable.
- the polyol component (B) may contain the low molecular weight polyol (B1) alone, or may contain the macropolyol (B2) in addition to the low molecular weight polyol (B1).
- the polyol component (B) preferably contains a low molecular weight polyol (B1) and a macropolyol (B2), and more preferably a low molecular weight. It comprises a polyol (B1) and a macropolyol (B2).
- the macropolyol (B2) is a compound having two or more hydroxyl groups and having a number average molecular weight of 400 or more, preferably 500 or more and 10000 or less.
- the macropolyol (B2) is not particularly limited and may be a known macropolyol. More specifically, for example, polyether polyol, polyester polyol, polycarbonate polyol, polyurethane polyol, epoxy polyol, vegetable oil polyol, polyolefin polyol. , Acrylic polyol, silicone polyol, fluorine polyol, vinyl monomer modified polyol and the like.
- These macropolyols (B2) can be used alone or in combination of two or more kinds.
- polyether polyol is preferable.
- polyether polyol examples include the polyether diols described above as the polyether diol (A2), and specifically, for example, polyoxyethylene glycol (PEG), polyoxypropylene glycol (PPG), ethylene oxide. And propylene oxide addition copolymers (random and / or block copolymers), polytrimethylene ether glycol, polytetramethylene ether glycol and the like. These can be used alone or in combination of two or more kinds.
- the polyether polyol is preferably polytetramethylene ether glycol.
- the number average molecular weight of the macropolyol (B2) is 400 or more, preferably 500 or more, more preferably 800 or more, and 10000 or less, preferably 5000 or less, more preferably 2000. It is the following.
- the average hydroxyl value of the macropolyol (B2) is, for example, 12 mgKOH / g or more, preferably 25 mgKOH / g or more, for example, 270 mgKOH / g or less, preferably 120 mgKOH / g or less, more preferably 60 mgKOH / g. It is the following.
- the polyol (B) contains the low molecular weight polyol (B1) and the macropolyol (B2), their ratio is appropriately set according to the purpose and application.
- the proportion of the low molecular weight polyol (B1) is, for example, 20% by mass or more, preferably 30% by mass or more, and for example, 100% by mass or less, preferably, It is 50 mass% or less.
- the proportion of the macropolyol (B2) in the polyol component (B) is, for example, 0 mass% or more, preferably 50 mass% or more, and for example, 80 mass% or less, preferably 70 mass% or less. is there.
- the compounding number of the low molecular weight polyol (B1) is, for example, 1.0 part by mass or more, preferably 2.0 parts by mass or more, for example, 10 parts by mass with respect to 100 parts by mass of the polyisocyanate component (A).
- the amount is 0.0 parts by mass or less, preferably 5.0 parts by mass or less, and more preferably 4.0 parts by mass or less.
- the polyol component (B) may be, in addition to the low molecular weight polyol (B1) and the macropolyol (B2) having 2 to 6 carbon atoms as described above, other low molecular weight actives such as other low molecular weight polyols and low molecular weight amines.
- a hydrogen group-containing compound may be included.
- the other low molecular weight polyol is a compound having two or more hydroxyl groups and a number average molecular weight of less than 400, and is a polyol other than the low molecular weight polyol (B1) and the macropolyol (B2) having 2 to 6 carbon atoms. Examples thereof include low molecular weight polyols having 7 or more carbon atoms such as heptanediol and octanediol.
- Other low molecular weight amines are compounds having a number average molecular weight of less than 400, and examples thereof include primary amines such as monoethanolamine, secondary amines such as diethanolamine, triethanolamine, triisopropanolamine, and methyldiethanolamine. And tertiary amines such as methyldiisopropanolamine.
- the proportion of the other low molecular weight polyol and the low molecular weight amine is, for example, 0% by mass or more, for example, 40% by mass or less, preferably 20% by mass or less, and particularly preferably, It is 0 mass%.
- Examples of the urethanization catalyst (C) include metal catalysts and nitrogen-containing organic catalysts.
- the metal catalyst examples include metal catalysts containing bismuth such as bismuth neodecanoate (III) and bismuth (III) octylate, for example, zinc octylate, zinc diacetylacetonate, Zn-K-KAT XK-633 (KING Metal catalysts containing zinc such as Zn-K-KATXK-614 (manufactured by KING), for example, inorganic tin compounds (eg tin acetate, tin octylate), organotin compounds (eg dibutyltin dilaurate).
- bismuth such as bismuth neodecanoate (III) and bismuth (III) octylate
- zinc octylate zinc diacetylacetonate
- Zn-K-KAT XK-633 KING
- Metal catalysts containing zinc such as Zn-K-KATXK-614 (manufactured by
- Nickel such as nickel and nickel acetylacetonate Having a metal catalyst, for example, a metal catalyst containing zirconium such as zirconium tetraacetylacetonate, for example, a metal catalyst containing an alkali metal such as potassium octylate, sodium octylate, potassium carbonate, sodium carbonate, for example, cobalt octylate.
- a cobalt-containing metal catalyst such as cobalt acetylacetonate, a manganese-containing metal catalyst such as manganese octylate and manganese acetylacetonate, and an aluminum-containing metal catalyst such as aluminum acetylacetonate.
- cobalt acetylacetonate a manganese-containing metal catalyst such as manganese octylate and manganese acetylacetonate
- an aluminum-containing metal catalyst such as aluminum acetylacetonate.
- a metal catalyst containing bismuth and a metal catalyst containing zinc are preferably used in combination.
- nitrogen-containing organic catalyst examples include, for example, a nitrogen-containing organic catalyst containing an aromatic ring (hereinafter referred to as a nitrogen-containing aromatic catalyst), a nitrogen-containing organic catalyst containing no aromatic ring (hereinafter referred to as a nitrogen-containing aliphatic catalyst). It is mentioned).
- nitrogen-containing aromatic catalysts include imidazole catalysts, and specific examples include, for example, imidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1-isobutyl-2-methylimidazole. Imidazole compounds and the like. These can be used alone or in combination of two or more kinds.
- nitrogen-containing aliphatic catalyst examples include aliphatic amine catalysts, and specific examples thereof include tertiary amine compounds such as triethylamine, triethylenediamine, bis (dimethylaminoethyl) ether, N-methylmorpholine, and the like. , Tetraethylhydroxylammonium, 2-hydroxypropyltrimethylammonium, tetrabutylammonium, quaternary ammonium salt compounds such as 1,8-diazabicyclo (5,4,0) -7-undecene, and the like. These can be used alone or in combination of two or more kinds.
- the proportion of the urethanization catalyst (C) (the total amount of the metal catalyst and the nitrogen-containing organic catalyst) is, for example, 1 part by mass or more, preferably 3 parts by mass or more, based on 100 parts by mass of the polyisocyanate component (A). For example, it is 10 parts by mass or less, preferably 8 parts by mass or less.
- the ratio of the metal catalyst is, for example, 80 parts by mass or more, preferably 85 parts by mass or more, and for example, 100 parts by mass or less, preferably 100 parts by mass with respect to the total amount of 100 parts by mass of the urethanization catalyst (C). It is 97 parts by mass or less.
- the proportion of the nitrogen-containing organic catalyst is, for example, 0 part by mass or more, preferably 3 parts by mass or more, and for example, 20 parts by mass or less, preferably 15 parts by mass or less. That is, the urethanization catalyst (C) may or may not include a nitrogen-containing organic catalyst.
- the urethanization catalyst (C) is a nitrogen-containing aromatic catalyst (preferably an imidazole catalyst). Can be included.
- the urethane-forming catalyst (C) contains a nitrogen-containing aroma.
- the foamed polyurethane elastomer is excellent in flex resistance, but inferior in discoloration resistance such as discoloration in a heat environment.
- the urethanization catalyst (C) Excluding the nitrogen-containing aromatic catalyst can improve the resistance to discoloration.
- the flex resistance of the expanded polyurethane elastomer is lowered.
- the foamed polyurethane elastomer raw material of the present invention since the polyether diol (A2) contains polytrimethylene ether glycol, the urethane-forming catalyst (C) contains a nitrogen-containing aromatic catalyst. Moreover, the foamed polyurethane elastomer has excellent bending resistance and discoloration resistance.
- the urethane-forming catalyst (C) preferably does not contain a nitrogen-containing aromatic catalyst (preferably an imidazole catalyst) from the viewpoint of improving discoloration resistance.
- the urethanization catalyst (C) does not contain a nitrogen-containing aromatic catalyst, it is possible to particularly favorably achieve both flex resistance and discoloration resistance.
- the urethane-forming catalyst (C) does not contain a nitrogen-containing aromatic catalyst
- the urethane-forming catalyst (C) preferably contains a metal catalyst from the viewpoint of foaming moldability.
- the ratio of the metal catalyst is, for example, 0.10 parts by mass or more, preferably 0.30 parts by mass or more, and more preferably 100 parts by mass of the total amount of the foamed polyurethane elastomer raw material from the viewpoint of reaction rate and discoloration resistance. Is 0.50 parts by mass or more, for example, 10.0 parts by mass or less, preferably 5.00 parts by mass or less.
- the proportion of the metal catalyst is, for example, 0.5 parts by mass or more, preferably 1 part by mass or more, and for example, 10 parts by mass or less, preferably 100 parts by mass with respect to 100 parts by mass of the polyisocyanate component (A). It is 5 parts by mass or less.
- the metal catalyst containing bismuth is, for example, 33 parts by mass or more based on 100 parts by mass of the total amount thereof. , Preferably 43 parts by mass or more, for example, 75 parts by mass or less, and preferably 70 parts by mass or less. Further, the metal catalyst containing zinc is, for example, 25 parts by mass or more, preferably 30 parts by mass or more, and for example, 67 parts by mass or less, preferably 57 parts by mass or less.
- the urethanization catalyst (C) may or may not contain a nitrogen-containing aliphatic catalyst.
- the urethanization catalyst (C) preferably contains a nitrogen-containing aliphatic catalyst (preferably an aliphatic amine catalyst).
- the proportion of the nitrogen-containing aliphatic catalyst is, for example, 0 parts by mass or more, preferably 0.01 parts by mass or more, and more preferably 0.05 parts by mass or more based on 100 parts by mass of the total amount of the foamed polyurethane elastomer raw material. And is, for example, 10 parts by mass or less, preferably 5 parts by mass or less.
- the proportion of the nitrogen-containing aliphatic catalyst is, for example, 0 parts by mass or more, preferably 0.05 parts by mass or more, and for example, 10 parts by mass or less, relative to 100 parts by mass of the polyisocyanate component (A). , And preferably 5 parts by mass or less.
- the foamed polyurethane elastomer is a foamed product of the above-mentioned foamed polyurethane elastomer raw material, and has an apparent density (JIS K7222: 2005) of, for example, 0.1 kg / cm 3 or more, for example, 0.5 g / cm 3 or less, Preferred is a foam having a content of 0.3 g / cm 3 or less, which is distinguished from flexible polyurethane foam, semi-rigid polyurethane foam, and rigid polyurethane foam.
- the method for foaming the foamed polyurethane elastomer raw material is not particularly limited, but the method for producing a foamed polyurethane elastomer described below is preferably used.
- the foamed polyurethane elastomer has a structure in which bubbles are dispersed in a polyurethane resin which is a reaction product of a polyisocyanate component (A) and a polyol component (B).
- the cell structure of the foamed polyurethane elastomer is a closed cell structure in which cells are closed (not continuous), or a semi-closed cell structure in which cells are partially continuous.
- the polyurethane resin has a soft segment S and a hard segment H in one molecule.
- the soft segment S is a region (domain) composed of polyether diol (A2) (and, if necessary, macropolyol (B2)).
- the hard segment H is a polyisocyanate containing 1,4-bis (isocyanatomethyl) cyclohexane, a low molecular weight polyol (B1) having 2 to 6 carbon atoms (and, if necessary, other low molecular weight active hydrogen group-containing compound). And a polyisocyanate component (A) and urea which is a reaction product of water.
- the various mechanical properties of the polyurethane resin are realized by the cohesiveness of the hard segment H and the crystallinity of the soft segment S.
- the soft segment S includes a region derived from the polyether diol (A2), that is, a region derived from polytrimethylene ether glycol. Therefore, in the expanded polyurethane elastomer of the present invention, the crystallinity of the soft segment S is appropriately improved due to the main chain (straight chain) of the polyether diol (A2). As a result, the expanded polyurethane elastomer has various mechanical properties that can satisfy the requirements as an industrial product.
- the uniform crystallinity of the soft segment S can be secured.
- the hard segment H has a linear or branched alkylene group having 2 to 6 carbon atoms, which is derived from the low molecular weight polyol (B1) having 2 to 6 carbon atoms. Therefore, in the expanded polyurethane elastomer of the present invention, the cohesiveness of the hard segment H is controlled.
- the reduction of compression set and the improvement of bending resistance are usually in a trade-off relationship (when the compression set is reduced, the bending resistance is lowered, and when the bending resistance is improved, the compression set is reduced. Is increasing).
- the expanded polyurethane elastomer of the present invention is intended to achieve both a reduction in compression set and an improvement in bending resistance.
- the compression set JIS K6262
- the bending resistance JIS K6260: 2010
- 70 ⁇ 10 3 times or more preferably compression set 15% or less and flex resistance 110 ⁇ 10 3 times or more, more preferably compression set 10% or less and flex resistance It is possible to achieve 150 ⁇ 10 3 times or more.
- the compression set of the foamed polyurethane elastomer is, for example, 1% or more.
- the flex resistance of the foamed polyurethane elastomer is, for example, 5000 ⁇ 10 3 times or less.
- the Asker C hardness (JIS K7312-7: 1996) of such a foamed polyurethane elastomer is, for example, 30 or more, preferably 35 or more, more preferably 40 or more, and for example, 60 or less, preferably 50 or less. Is.
- the foamed polyurethane elastomer is, for example, a shoe sole member such as an inner sole, an outer sole, or a midsole (a portion between the inner sole and the outer sole) of a shoe, for example, a shock absorber of a shoe, a shock absorber of an automobile, or a helmet.
- Shock absorbers, shock absorbers such as grip tape shock absorbers, for example, automobile interior materials, for example, shoes, helmets, grip tape, bats (striking ball repulsion material), soccer ball cushioning and other sports equipment, for example, headphones
- packing materials for civil engineering construction materials for example, packing materials, pillows, mattresses, seat cushions, sealing materials, cushioning materials such as soundproofing flooring materials, for example, brassieres and brassieres.
- Clothing products such as pads, cups for bras, shoulder pads, etc., for example, motorcycles, mobility members, for example, cushioning materials for robots, for example, materials for industrial products selected from the group consisting of care products, cushioning materials for electrical and electronic products.
- the foamed polyurethane elastomer is preferably used as a material for industrial products selected from the group consisting of shoe midsoles, shock absorbers, automobile interior materials, and sports equipment.
- the above foamed polyurethane elastomer is preferably used as a material for the midsole.
- the present invention also includes a midsole containing the foamed polyurethane elastomer described above. That is, the midsole of the present invention is a molded product obtained by using the foamed polyurethane elastomer.
- the method for producing a foamed polyurethane elastomer is a method for producing a foamed polyurethane elastomer for producing the above-mentioned foamed polyurethane elastomer, and includes a preparation step and a foaming step.
- each component of the above foamed polyurethane elastomer raw material is prepared in the above ratio.
- the foamed polyurethane elastomer raw material is foamed.
- the foaming step first, the polyol component (B), the urethane-forming catalyst (C) and the foaming agent are blended and mixed to prepare a resin premix.
- the urethanization catalyst (C) used for preparing the resin premix may be a part or all. Preferably, a part of the urethanization catalyst (C) is used for preparing the resin premix.
- the urethanization catalyst (C) used for preparing the resin premix is preferably a nitrogen-containing aliphatic catalyst, and more preferably an aliphatic amine catalyst.
- the foaming agent a known foaming agent usually used in the production of polyurethane foam materials can be used.
- the foaming agent include water, and halogen-substituted aliphatic hydrocarbons such as trichlorofluoromethane, dichlorodifluoromethane, trichloroethane, trichloroethylene, tetrachloroethylene, methylene chloride, trichlorotrifluoroethane, dibromotetrafluoroethane, and carbon tetrachloride. Can be mentioned.
- foaming agents can be used alone or in combination of two or more kinds.
- the foaming agent it is preferable to use water alone.
- a foam stabilizer can be added to the resin premix.
- foam stabilizer a known foam stabilizer usually used in the production of foamed polyurethane materials can be used.
- foam stabilizer examples include Surflon AF-5000 and Surflon S-651 manufactured by AGC Seimi Chemical Co., Ltd., such as L-568, L-580, L-590, L-598 and L-600 manufactured by Momentive.
- antioxidants eg, hindered phenol compounds, organic phosphorus compounds, thioether compounds, hydroxylamine compounds, etc.
- ultraviolet absorbers eg, benzotriazole compounds, formamidine compounds, etc.
- light resistance stabilizers eg, hindered amine compounds
- the resin premix is mixed with the polyisocyanate component (A) and mixed to prepare a foamed mixture.
- the foamed polyurethane elastomer raw material is all mixed in the foamed mixture.
- the urethane mixture (C) is preferably added to the foamed mixture.
- Examples of the urethanization catalyst (C) include the rest of the urethanization catalyst (C) used in the preparation of the resin premix, and specifically, a metal catalyst.
- the foaming mixture is poured into a predetermined mold to foam the foaming mixture (foamed polyurethane elastomer raw material).
- the foamed polyurethane elastomer raw material is foamed in the presence of the urethanization catalyst (C). More preferably, in the foaming step, the foamed polyurethane elastomer raw material is foamed in the presence of a nitrogen-containing aliphatic catalyst, a bismuth-containing metal catalyst, and a zinc-containing metal catalyst.
- the foamed polyurethane elastomer raw material is foamed in the presence of a metal catalyst containing bismuth and a metal catalyst containing zinc to foam the foamed polyurethane elastomer raw material in a predetermined mold, and then the obtained foamed polyurethane is obtained.
- the elastomer can be smoothly demolded in a short time.
- foamed polyurethane elastomer raw material it is possible to obtain a foamed polyurethane elastomer which has excellent bending resistance, suppressed compression set, and excellent discoloration resistance.
- the foamed polyurethane elastomer which is the foamed material of the foamed polyurethane elastomer, has excellent flex resistance, suppression of compression set, and also excellent discoloration resistance.
- Polyisocyanate component (isocyanate group-terminated prepolymer) A-1.
- Polyether diol (1) PT (C4) MEG 164 parts by mass of PTG-1000 (polytetramethylene ether glycol, trade name: PTG-1000, number average molecular weight: 1000, average hydroxyl value: 111.9 mgKOH / g, Hodogaya Chemical Co., Ltd.) and PTG-3000 (polytetramethylene) 836 parts by mass of methylene ether glycol, trade name: PTG-3000SN, number average molecular weight: 3000, average hydroxyl value: 37.4 mgKOH / g, Hodogaya Chemical Co., Ltd.) were mixed. The obtained mixture was designated as polyether diol (1).
- PEG Polyoxyethylene glycol (trade name: PEG # 4000, number average molecular weight 3000, average hydroxyl value 37.4 mg KOH / g, manufactured by NOF Corporation) was prepared. This was designated as polyether diol (3).
- PPG Polyoxypropylene glycol (trade name: PPG DL-4000, number average molecular weight 4000, average hydroxyl value 28.1, manufactured by Mitsui Chemicals SKC Polyurethane) was prepared. This was designated as polyether diol (4).
- PTG-L Amorphous polytetramethylene ether glycol (trade name: PTG-L-3500, number average molecular weight 3500, average hydroxyl value 32.1, Hodogaya Chemical Co., Ltd.) was prepared. This was designated as polyether diol (5).
- B Polyol component B-1. Low molecular weight polyols having 2 to 6 carbon atoms (1) 1,4-BD 1,4-butanediol, manufactured by Mitsubishi Chemical Corporation (2) 1,3-PD 1,3-propanediol, trade name: SUSTERRA propanediol, manufactured by DuPont B-2. Macropolyol (1) PTG-1000 Polytetramethylene ether glycol, trade name: PTG-1000, number average molecular weight: 1000, average hydroxyl value: 111.9 mgKOH / g, Hodogaya Chemical Co., Ltd.
- Nitrogen-containing aliphatic catalyst (1) DABCO TMR Aliphatic amine catalyst, 2-hydroxypropyltrimethylammonium octylate, manufactured by Evonik (2) DABCO33LV Aliphatic amine catalyst, triethylenediamine, manufactured by Evonik (3) NIAX CATALLYST A-1 Aliphatic amine catalyst, 70% bis (dimethylaminoethyl) ether solution in dipropylene glycol, manufactured by TANAC C-2. Nitrogen-containing aromatic catalyst (1) TOYOCAT DM-70 Imidazole catalyst, 65-75% ethylene glycol solution of 1,2-dimethylimidazole, Tosoh C-3.
- Metal catalyst Zn-K-KAT XK-633 Zinc-based metal catalyst, manufactured by KING (2) BiCAT8108 Bismuth-based metal catalyst, bismuth neodecanoate (bismuth (III) neodecanoate), manufactured by Shepherd Chemical (3) Pcat 25 Bismuth-based metal catalyst, bismuth octoate (bismuth (III) octylate), manufactured by Nippon Kagaku Sangyo Co., Ltd. (4) DBTDL Tin-based metal catalyst, dibutyltin (IV) dilaurate (dibutyltin dilaurate), manufactured by Nitto Kasei Co., Ltd. Foaming agent (1) Ion-exchanged water E.
- Foam stabilizer (1) Surflon AF-5000 (manufactured by AGC Seimi Chemical Co.) F. Additive (1) Irganox 245 Antioxidant, hindered phenol compound, trade name: Irganox 245, manufactured by BASF Japan Ltd. (2) LA-72 Light resistance stabilizer, hindered amine compound, trade name: ADEKA STAB LA-72, manufactured by ADEKA ⁇ Examples and Comparative Examples> 1.
- Polyisocyanate Component (A) Polyisocyanate and polyether diol were put in a four-necked flask equipped with a stirrer, a thermometer, a reflux pipe and a nitrogen introduction pipe in a mass part shown in each table, and under a nitrogen atmosphere, The mixture was stirred at 80 ° C for 1 hour.
- tin octylate (trade name: Stanoct, manufactured by AP Corporation) previously diluted to 4% by mass with diisononyl adipate (manufactured by J-Plus) was added to the total amount of polyisocyanate and polyether diol at 10 ppm ( 0.10 parts by mass was added to the total amount of polyisocyanate and polyether diol of 10,000 parts by mass), and the mixture was stirred and mixed under a nitrogen stream under the temperature control of 80 ° C.
- the isocyanate group concentration of the obtained polyisocyanate component (A) was measured by controlling the temperature at 80 ° C.
- the isocyanate group content was determined by a titration method using di-n-butylamine according to the isocyanate group content test described in JIS K7301. The results are shown in each table.
- the obtained foamed mixture was immediately transferred to a mold (SUS, 210 ⁇ 300 ⁇ 10 mm) whose temperature was previously adjusted to 80 ° C. in an oven, the mold lid was closed, and a vise was used.
- the mold was allowed to stand in an oven at 80 ° C. for the time described in the demolding column of each table to foam the foaming mixture in the mold.
- a measurement sample of 40 mm ⁇ 40 mm ⁇ 10 mm was cut out from the foamed polyurethane elastomer of each Example and Comparative Example, and ⁇ b was measured using a color difference meter (fully automatic color difference meter Color Ace MODEL TC-1, manufactured by Tokyo Denshoku Co., Ltd.) It was measured.
- each measurement sample was wrapped in aluminum foil to prevent the components in the measurement sample from volatilizing. Then, a heating test was performed in an oven at 80 ° C. for 5 days. After the test, the aluminum foil was removed, and ⁇ b was measured again with a color difference meter. The difference between ⁇ b after the heating test and ⁇ b before the heating test was taken as ⁇ b for the discoloration resistance test. The results are shown in each table.
- the foamed polyurethane elastomer raw material, the foamed polyurethane elastomer, and the method for producing the foamed polyurethane elastomer of the present invention are preferably used as a material for various industrial products such as a sole member of shoes such as a midsole.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Polyurethanes Or Polyureas (AREA)
- Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
Abstract
発泡ポリウレタンエラストマー原料が、ポリイソシアネート成分(A)とポリオール成分(B)とウレタン化触媒(C)とを含み、ポリイソシアネート成分(A)は、1,4-ビス(イソシアナトメチル)シクロヘキサン(A1)と、ポリトリメチレンエーテルグリコールを含むポリエーテルジオール(A2)とのプレポリマーを含み、ポリオール成分(B)は、炭素数2~6の低分子量ポリオールを含む。
Description
本発明は、発泡ポリウレタンエラストマー原料、その発泡ポリウレタンエラストマー原料の発泡体である発泡ポリウレタンエラストマー、その発泡ポリウレタンエラストマーを用いて得られるミッドソール、および、その発泡ポリウレタンエラストマーを製造するための発泡ポリウレタンエラストマーの製造方法に関する。
従来、発泡ポリウレタン材料として、1,4-ビス(イソシアナトメチル)シクロヘキサンおよびポリテトラメチレンエーテルグリコールを反応させて得られるイソシアネート基末端プレポリマーと、1,4-ビス(イソシアナトメチル)シクロヘキサンと、ポリオキシ-1,2-アルキレンポリオールとを、アミン系触媒および有機金属触媒の存在下で反応および発泡させて得られる発泡ポリウレタン材料が、知られている(例えば、特許文献1(実施例16)参照。)。
一方、発泡ポリウレタン材料においては、用途に応じて、より高い耐屈曲性(耐屈曲き裂性)が要求される場合があり、また、圧縮永久歪みの抑制が要求される場合がある。
本発明は、耐屈曲性に優れ、圧縮永久歪みが抑制された発泡ポリウレタンエラストマーを得ることができる発泡ポリウレタンエラストマー原料、その発泡ポリウレタンエラストマー原料の発泡体である発泡ポリウレタンエラストマー、その発泡ポリウレタンエラストマーを用いて得られるミッドソール、および、その発泡ポリウレタンエラストマーを製造するための発泡ポリウレタンエラストマーの製造方法を提供することにある。
本発明[1]は、ポリイソシアネート成分(A)とポリオール成分(B)とウレタン化触媒(C)とを含む発泡ポリウレタンエラストマー原料であって、前記ポリイソシアネート成分(A)は、1,4-ビス(イソシアナトメチル)シクロヘキサン(A1)と、ポリトリメチレンエーテルグリコールを含むポリエーテルジオール(A2)とのプレポリマーを含み、前記ポリオール成分(B)は、炭素数2~6の低分子量ポリオールを含む、発泡ポリウレタンエラストマー原料を含んでいる。
本発明[2]は、前記ウレタン化触媒(C)が、含窒素芳香族系触媒を含まず、金属触媒を含み、前記金属触媒の割合が、発泡ポリウレタンエラストマー原料の総量100質量部に対して、0.30質量部以上である、上記[1]に記載の発泡ポリウレタンエラストマー原料を含んでいる。
本発明[3]は、前記ポリトリメチレンエーテルグリコールの割合が、前記ポリエーテルジオール(A2)の総量100質量部に対して、50質量部以上である、上記[1]または[2]に記載の発泡ポリウレタンエラストマー原料を含んでいる。
本発明[4]は、上記[1]~[3]のいずれか一項に記載の発泡ポリウレタンエラストマー原料の発泡体である、発泡ポリウレタンエラストマーを含んでいる。
本発明[5]は、シューズのミッドソールの材料である、上記[4]に記載の発泡ポリウレタンエラストマーを含んでいる。
本発明[6]は、上記[4]または[5]に記載の発泡ポリウレタンエラストマーを含む、ミッドソールを含んでいる。
本発明[7]は、上記[4]または[5]に記載の発泡ポリウレタンエラストマーを製造するための発泡ポリウレタンエラストマーの製造方法であって、上記[1]~[3]のいずれか一項に記載の発泡ポリウレタンエラストマー原料を準備する準備工程と、前記発泡ポリウレタンエラストマー原料を発泡させる発泡工程とを含む、発泡ポリウレタンエラストマーの製造方法を含んでいる。
本発明の発泡ポリウレタンエラストマー原料によれば、耐屈曲性に優れ、圧縮永久歪みが抑制された発泡ポリウレタンエラストマーを得ることができる。
そのため、上記発泡ポリウレタンエラストマー原料の発泡体である発泡ポリウレタンエラストマー、および、その発泡ポリウレタンエラストマーを用いて得られるミッドソールは、耐屈曲性に優れ、圧縮永久歪みが抑制される。
また、本発明の発泡ポリウレタンエラストマーの製造方法によれば、耐屈曲性に優れ、圧縮永久歪みが抑制された発泡ポリウレタンエラストマーを効率よく得ることができる。
本発明の発泡ポリウレタンエラストマー原料は、発泡ポリウレタンエラストマーを製造するための発泡ポリウレタンエラストマー用組成物であって、ポリイソシアネート成分(A)とポリオール成分(B)とウレタン化触媒(C)とを含む。
好ましくは、発泡ポリウレタンエラストマー原料は、ポリイソシアネート成分(A)、ポリオール成分(B)およびウレタン化触媒(C)の他、例えば、発泡剤(後述)、整泡剤(後述)、添加剤(後述)などを含有する発泡ポリウレタンエラストマー用組成物である。
なお、発泡ポリウレタンエラストマー原料は、例えば、ポリイソシアネート成分(A)とポリオール成分(B)とウレタン化触媒(C)とをともに含む一液型の発泡ポリウレタンエラストマー原料として調製することもでき、また、例えば、ポリイソシアネート成分(A)を含む第1液と、ポリオール成分(B)を含む第2液とを別々に含む二液型の発泡ポリウレタンエラストマー原料として調製することもできる。なお、二液型の発泡ポリウレタンエラストマー原料において、ウレタン化触媒(C)は、第1液および/または第2液に含有されていてもよく、また、それらとは別途用意され、第1液および第2液の配合時に添加されてもよい。また、第1液および第2液とは別途、ウレタン化触媒(C)を含む第3液が用意され、発泡ポリウレタンエラストマー原料が、第1液、第2液および第3液を含む三液型の発泡ポリウレタンエラストマー原料として調製されていてもよい。
ポリイソシアネート成分(A)は、1,4-ビス(イソシアナトメチル)シクロヘキサン(A1)と、ポリエーテルジオール(A2)との反応生成物であるプレポリマーを含む。
1,4-ビス(イソシアナトメチル)シクロヘキサン(A1)は、例えば、国際公開第2009/051114号、特開2011-140618号公報などの記載に準拠して調製される。
また、1,4-ビス(イソシアナトメチル)シクロヘキサンには、シス-1,4-ビス(イソシアナトメチル)シクロヘキサン(以下、シス体と記載する。)、および、トランス-1,4-ビス(イソシアナトメチル)シクロヘキサン(以下、トランス体と記載する。)の幾何異性体が存在する。1,4-ビス(イソシアナトメチル)シクロヘキサンは、好ましくは、シス体よりもトランス体を多量に含有する(以下、高トランス体と記載する。)。
1,4-ビス(イソシアナトメチル)シクロヘキサンの高トランス体は、トランス体を、例えば、50モル%以上、好ましくは、75モル%以上、より好ましくは、80モル%以上、さらに好ましくは、85モル%以上含有し、また、例えば、96モル%以下、好ましくは、93モル%以下含有する。なお、1,4-ビス(イソシアナトメチル)シクロヘキサンの高トランス体において、シス体は、トランス体の残部である。
1,4-ビス(イソシアナトメチル)シクロヘキサン(A1)は、好ましくは、1,4-ビス(イソシアナトメチル)シクロヘキサンの高トランス体である。
ポリエーテルジオール(A2)は、必須成分として、ポリトリメチレンエーテルグリコールを含有する。
ポリトリメチレンエーテルグリコールは、炭素数3のオキシ直鎖状アルキレン基を主鎖として有するポリエーテルジオールである。ポリトリメチレンエーテルグリコールは、ポリ(1,3-プロパンジオール)、または、ポリ(オキシ-1,3-プロピレン)ジオールと称される場合がある。
ポリトリメチレンエーテルグリコールとしては、例えば、植物成分由来の1,3-プロパンジオールの重縮合反応により得られるグリコールなどが挙げられる。
また、ポリトリメチレンエーテルグリコールとしては、例えば、2価アルコールを開始剤とする、トリメチレンオキサイドの付加重合物が挙げられる。
2価アルコールとしては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブチレングリコール、1,3-ブチレングリコール、1,2-ブチレングリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、2,2,2-トリメチルペンタンジオール、3,3-ジメチロールヘプタン、アルカン(C7~20)ジオール、1,3-または1,4-シクロヘキサンジメタノールおよびそれらの混合物、1,3-または1,4-シクロヘキサンジオールおよびそれらの混合物、水素化ビスフェノールA、1,4-ジヒドロキシ-2-ブテン、2,6-ジメチル-1-オクテン-3,8-ジオール、ビスフェノールA、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコールなどが挙げられる。これら2価アルコールは、単独使用または2種類以上併用することができる。
なお、2価アルコールにトリメチレンオキサイドを付加重合させる方法としては、特に制限されず、公知の方法が採用される。
ポリトリメチレンエーテルグリコールは、単独使用または2種類以上併用することができる。
また、ポリエーテルジオール(A2)は、任意成分として、その他のポリエーテルジオール(ポリトリメチレンエーテルグリコールを除くポリエーテルジオール)を含有することができる。
その他のポリエーテルジオールとしては、例えば、炭素数2~3のポリオキシアルキレングリコール(ポリトリメチレンエーテルグリコールを除く。)、ポリテトラメチレンエーテルグリコールなどが挙げられる。
炭素数2~3のポリオキシアルキレングリコール(ポリトリメチレンエーテルグリコールを除く。)としては、例えば、上記した2価アルコールを開始剤とする、エチレンオキサイド、および/または、プロピレンオキサイドの付加重合物などが挙げられる。なお、付加重合物の付加形式は、特に制限されず、ブロックまたはランダムのいずれであってもよい。
炭素数2~3のポリオキシアルキレングリコール(ポリトリメチレンエーテルグリコールを除く。)として、具体的には、ポリオキシエチレングリコール(PEG)、ポリオキシプロピレングリコール(PPG)、エチレンオキサイドおよびプロピレンオキサイドの付加共重合体(ランダムおよび/またはブロック共重合体)などが挙げられる。
ポリテトラメチレンエーテルグリコール(PTMEG)は、炭素数4のオキシ直鎖状アルキレン基を主鎖として有するポリエーテルジオールであり、例えば、テトラヒドロフランのカチオン重合により得られる開環重合物(結晶性ポリテトラメチレンエーテルグリコール)や、テトラヒドロフランなどの重合単位に上記2価アルコールを共重合した非晶性ポリテトラメチレンエーテルグリコールなどが挙げられる。なお、結晶性とは、常温(25℃)において固体であることを示し、非晶性とは、常温(25℃)において液状であることを示す。
また、フルフラールなどの植物由原料をもとに製造されたテトラヒドロフランを出発原料とした植物由来のポリテトラメチレンエーテルグリコールも使用することができる。
これらその他のポリエーテルジオールは、単独使用または2種類以上併用することができる。
その他のポリエーテルジオールとして、好ましくは、ポリオキシエチレングリコール(PEG)、ポリオキシプロピレングリコール(PPG)、ポリテトラメチレンエーテルグリコール(PTMEG)が挙げられる。
また、その他のポリエーテルジオールとして、耐変色性の観点から、より好ましくは、ポリテトラメチレンエーテルグリコールが挙げられ、さらに好ましくは、非晶性のポリテトラメチレンエーテルグリコールが挙げられる。
また、その他のポリエーテルジオールとして、耐屈曲性の観点から、より好ましくは、ポリオキシエチレングリコール(PEG)、ポリオキシプロピレングリコール(PPG)が挙げられ、さらに好ましくは、ポリオキシプロピレングリコール(PPG)が挙げられる。
このようなポリエーテルジオール(A)において、ポリトリメチレンエーテルグリコールの割合は、耐屈曲性の観点から、ポリエーテルジオール(A)の総量100質量部に対して、例えば、33質量部以上、好ましくは、40質量部以上、より好ましくは、50質量部以上、さらに好ましくは、80質量部以上であり、通常、100質量部以下である。
また、その他のポリエーテルジオールの割合は、耐屈曲性の観点から、ポリエーテルジオール(A)の総量100質量部に対して、通常、0質量部以上であり、例えば、67質量部以下、好ましくは、60質量部以下、より好ましくは、50質量部以下、さらに好ましくは、20質量部以下である。
また、耐屈曲性の向上を図るとともに、耐変色性の向上を図り、さらに、適切な硬度(後述)を得る観点から、とりわけ好ましくは、ポリエーテルジオール(A2)は、ポリトリメチレンエーテルグリコールを単独で含有し、その他のポリエーテルジオールを含有しない。すなわち、ポリエーテルジオール(A2)は、好ましくは、ポリトリメチレンエーテルグリコールからなる。
ポリエーテルジオール(A2)の数平均分子量は、例えば、400以上、好ましくは、800以上であり、例えば、10000以下、好ましくは、5000以下である。
数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)分析(ポリエチレングリコール換算)により測定できる(以下同様)。
ポリエーテルジオール(A2)の平均水酸基価は、例えば、12mgKOH/g以上、好ましくは、25mgKOH/g以上であり、例えば、270mgKOH/g以下、好ましくは、135mgKOH/g以下である。
平均水酸基価は、JIS K1557-1:2007に従って測定できる(以下同様)。
プレポリマーがポリエーテルジオール(A2)に由来する領域を含むことにより、ポリエーテルジオール(A2)の主鎖(直鎖)に由来して、発泡ポリウレタンエラストマーのソフトセグメントの結晶性の向上を図ることができ、工業製品として要求される発泡ポリウレタンエラストマーの各種機械物性を満足させることができる。
プレポリマーを調製するには、ポリイソシアネート(1,4-ビス(イソシアナトメチル)シクロヘキサン(A1)、および、必要により、後述する他のポリイソシアネート(例えば、1,3-ビス(イソシアナトメチル)シクロヘキサン)と、ポリエーテルジオール(A2)とを、イソシアネートインデックス(ポリエーテルジオール(A2)の水酸基濃度に対する、ポリイソシアネートのイソシアネート基濃度(NCO濃度)の比に100を乗じた値、NCO濃度/水酸基濃度×100)が、例えば、100より大きくなる割合、好ましくは、105以上、例えば、600以下、好ましくは、450以下となるように混合して、それらを、所定のイソシアネート基含有率になるまで反応させる。
反応温度は、例えば、50℃以上であり、例えば、120℃以下、好ましくは、100℃以下である。
また、反応時間は、例えば、0.5時間以上、好ましくは、1時間以上であり、例えば、15時間以下、好ましくは、10時間以下である。
また、この反応において、必要に応じて、触媒(例えば、後述するウレタン化触媒(C)など)を添加することもできる。
触媒の配合割合は、ポリイソシアネートおよびポリエーテルジオール(A2)の総量に対して、質量基準で、例えば、1ppm以上であり、例えば、500ppm以下、好ましくは、100ppm以下、さらに好ましくは、20ppm以下である。
なお、上記反応の後、必要により、公知の蒸留方法などを用いて残存モノマー(具体的には、未反応のポリイソシアネート)を取り除く。
これにより、分子末端にイソシアネート基を有する上記したプレポリマーを得ることができる。
プレポリマー中のイソシアネート基の含有割合(イソシアネート基含有率)は、JIS K7301(1995)に記載のイソシアネート基含有率試験に準拠して、ジ-n-ブチルアミンによる滴定法により求められ、例えば、3質量%以上、好ましくは、5質量%以上であり、例えば、12質量%以下、好ましくは、8質量%以下である。
ポリイソシアネート成分(A)中のプレポリマーの割合は、例えば、70質量%以上、好ましくは、80質量%以上であり、例えば、100質量%以下、好ましくは、95質量%以下である。
また、ポリイソシアネート成分(A)は、好ましくは、1,4-ビス(イソシアナトメチル)シクロヘキサン(上記したプレポリマーを合成した後に残存する残存モノマー)を含む。
なお、1,4-ビス(イソシアナトメチル)シクロヘキサンは、その誘導体(例えば、イソシアヌレート変性体、イミノオキサジアジンジオン変性体、アロファネート変性体、ポリオール変性体、ビウレット変性体、ウレア変性体、オキサジアジントリオン変性体、カルボジイミド変性体、ウレトジオン変性体、ウレトンイミン変性体など)として含まれてもよい。
ポリイソシアネート成分(A)中の1,4-ビス(イソシアナトメチル)シクロヘキサン(モノマー)の割合は、例えば、0質量%以上、好ましくは、5質量%以上であり、例えば、30質量%以下、好ましくは、20質量%以下である。
ポリイソシアネート成分(A)中の1,4-ビス(イソシアナトメチル)シクロヘキサン割合が上記範囲であると、発泡ポリウレタンエラストマー中のハードセグメントの割合(ハードセグメント濃度)を調整することができ、発泡ポリウレタンエラストマーの硬度および圧縮永久歪みを調整することができる。
また、ポリイソシアネート成分(A)は、必要により、他のポリイソシアネートを含んでもよい。
他のポリイソシアネートとしては、例えば、脂環族ポリイソシアネートを含む脂肪族ポリイソシアネート、芳香族ポリイソシアネート、芳香脂肪族ポリイソシアネート、それらの上記した誘導体、および、それら他のポリイソシアネートとポリエーテルジオール(A2)とのプレポリマー(例えば、1,3-ビス(イソシアナトメチル)シクロヘキサンとポリエーテルジオール(A2)とのプレポリマー)などが挙げられる。
脂肪族ポリイソシアネートとしては、例えば、ペンタメチレンジイソシアネート(PDI)、ヘキサメチレンジイソシアネート(HDI)などの脂肪族ジイソシアネートが挙げられる。
脂環族ポリイソシアネートとしては、例えば、1,3-ビス(イソシアナトメチル)シクロヘキサン、イソフォロンジイソシアネート(IPDI)、4,4’-、2,4’-または2,2’-ジシクロヘキシルメタンジイソシアネートもしくはこれらの混合物(H12MDI)、2,5-または2,6-ジイソシアナトメチルビシクロ〔2,2,1〕-ヘプタン(NBDI)などの脂環族ジイソシアネートが挙げられる。
芳香族ポリイソシアネートとしては、例えば、2,4-トリレンジイソシアネートおよび2,6-トリレンジイソシアネート、ならびに、これらトリレンジイソシアネートの異性体混合物(TDI)、4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネートおよび2,2’-ジフェニルメタンジイソシアネート、ならびに、これらジフェニルメタンジイソシアネートの任意の異性体混合物(MDI)、トルイジンジイソシアネート(TODI)、パラフェニレンジイソシアネート(PPDI)、ナフタレンジイソシアネート(NDI)などの芳香族ジイソシアネートが挙げられる。
芳香脂肪族ポリイソシアネートとしては、例えば、1,3-または1,4-キシリレンジイソシアネートもしくはその混合物(XDI)、1,3-または1,4-テトラメチルキシリレンジイソシアネートもしくはその混合物(TMXDI)などの芳香脂肪族ジイソシアネートが挙げられる。
ポリイソシアネート成分(A)中の他のポリイソシアネートの割合は、例えば、0質量%以上であり、例えば、50質量%以下、好ましくは、25質量%以下である。
ポリイソシアネート成分(A)中のプレポリマーは、好ましくは、1,4-ビス(イソシアナトメチル)シクロヘキサン(A1)とポリエーテルジオール(A2)とのプレポリマーのみを含む。
また、ポリイソシアネート成分(A)は、より好ましくは、他のポリイソシアネートを含まず、1,4-ビス(イソシアナトメチル)シクロヘキサン(A1)およびポリエーテルジオール(A2)のプレポリマーと、未反応の1,4-ビス(イソシアナトメチル)シクロヘキサンとを含み、さらに好ましくは、ポリイソシアネート成分(A)は、1,4-ビス(イソシアナトメチル)シクロヘキサン(A1)およびポリエーテルジオール(A2)のプレポリマーと、未反応の1,4-ビス(イソシアナトメチル)シクロヘキサンとからなる。
ポリオール成分(B)は、必須成分として、炭素数2~6の低分子量ポリオール(B1)を含んでいる。
ポリオール(B)が、炭素数2~6の低分子量ポリオール(B1)を含むことにより、発泡ポリウレタンエラストマーのハードセグメントの凝集性を制御して、発泡ポリウレタンエラストマーの耐屈曲性を向上させるとともに、圧縮永久歪みを抑制することができる。
炭素数2~6の低分子量ポリオール(B1)は、水酸基を2つ以上有する分子量60以上、400未満、好ましくは、300以下の化合物であって、例えば、炭素数2~6のアルカンポリオールが挙げられる。
炭素数2~6のアルカンポリオールは、炭素数2以上6以下のアルキレン基(直鎖状アルキレン基または分岐鎖状アルキレン基)と、2つ以上の水酸基とを有する化合物である。
炭素数2~6のアルカンポリオールとしては、例えば、エチレングリコール(別名:エタンジオール)、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオールなどの直鎖状のアルカンジオール、例えば、プロピレングリコール(別名:1,2-プロパンジオール)、1,3-ブタンジオール、1,2-ブタンジオール、ネオペンチルグリコール(別名:2,2-ジメチル-1,3-プロパンジオール)、3-メチル-1,5-ペンタンジオールなどの分岐のアルカンジオール、例えば、グリセリン(別名:1,2,3-プロパントリオール)、トリメチロールプロパン(別名:1,1,1-トリス(ヒドロキシメチル)プロパン)などのアルカントリオール、例えば、ペンタエリスリトール(別名:テトラメチロールメタン)などのアルカンテトラオール、例えば、キシリトール(別名:1,2,3,4,5-ペンタヒドロキシペンタン)などのアルカンペンタオール、例えば、ソルビトール、マンニトール、アリトール、イジトール、ダルシトール、アルトリトールなどのアルカンヘキサオールなどが挙げられる。
これら炭素数2~6のアルカンポリオールは、単独使用または2種類以上併用することができる。
また、炭素数2~6の低分子量ポリオール(B1)としては、上記アルカンポリオールの他、さらに、例えば、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコールなどのエーテルジオールなどが挙げられる。これらは、単独使用または2種類以上併用することができる。
炭素数2~6の低分子量ポリオール(B1)として、好ましくは、炭素数2~6のアルカンポリオールが挙げられ、より好ましくは、直鎖状のアルカンジオールが挙げられ、さらに好ましくは、1,3-プロパンジオール、1,4-ブタンジオールが挙げられ、とりわけ好ましくは、1,4-ブタンジオールが挙げられる。
また、ポリオール成分(B)は、低分子量ポリオール(B1)を単独で含有していてもよく、また、低分子量ポリオール(B1)の他に、マクロポリオール(B2)を含有していてもよい。
耐屈曲性の向上を図り、圧縮永久歪みの低減を図る観点から、好ましくは、ポリオール成分(B)は、低分子量ポリオール(B1)とマクロポリオール(B2)とを含み、より好ましくは、低分子量ポリオール(B1)とマクロポリオール(B2)とからなる。
マクロポリオール(B2)は、水酸基を2つ以上有し、数平均分子量が400以上、好ましくは、500以上であり、10000以下の化合物である。
マクロポリオール(B2)としては、特に制限されず、公知のマクロポリオールが挙げられ、より具体的には、例えば、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、ポリウレタンポリオール、エポキシポリオール、植物油ポリオール、ポリオレフィンポリオール、アクリルポリオール、シリコーンポリオール、フッ素ポリオール、ビニルモノマー変性ポリオールなどが挙げられる。
これらマクロポリオール(B2)は、単独使用または2種類以上併用することができる。
マクロポリオール(B2)として、好ましくは、ポリエーテルポリオールが挙げられる。
ポリエーテルポリオールとしては、例えば、ポリエーテルジオール(A2)として上記したポリエーテルジオールなどが挙げられ、具体的には、例えば、ポリオキシエチレングリコール(PEG)、ポリオキシプロピレングリコール(PPG)、エチレンオキサイドおよびプロピレンオキサイドの付加共重合体(ランダムおよび/またはブロック共重合体)、ポリトリメチレンエーテルグリコール、ポリテトラメチレンエーテルグリコールなどが挙げられる。これらは、単独使用または2種類以上併用することができる。
ポリエーテルポリオールとして、好ましくは、ポリテトラメチレンエーテルグリコールが挙げられる。
マクロポリオール(B2)の数平均分子量は、上記したように、400以上、好ましくは、500以上、より好ましくは、800以上であり、また、10000以下、好ましくは、5000以下、より好ましくは、2000以下である。
マクロポリオール(B2)の平均水酸基価は、例えば、12mgKOH/g以上、好ましくは、25mgKOH/g以上であり、例えば、270mgKOH/g以下、好ましくは、120mgKOH/g以下、より好ましくは、60mgKOH/g以下である。
また、ポリオール(B)が低分子量ポリオール(B1)とマクロポリオール(B2)とを含有する場合、それらの割合は、目的および用途に応じて、適宜設定される。
具体的には、ポリオール成分(B)中において、低分子量ポリオール(B1)の割合は、例えば、20質量%以上、好ましくは、30質量%以上であり、例えば、100質量%以下、好ましくは、50質量%以下である。
また、ポリオール成分(B)中のマクロポリオール(B2)の割合は、例えば、0質量%以上、好ましくは、50質量%以上であり、例えば、80質量%以下、好ましくは、70質量%以下である。
また、低分子量ポリオール(B1)の配合部数は、ポリイソシアネート成分(A)100質量部に対して、例えば、1.0質量部以上、好ましくは、2.0質量部以上であり、例えば、10.0質量部以下、好ましくは、5.0質量部以下、さらに好ましくは、4.0質量部以下である。
ポリオール成分(B)は、必要により、上記した炭素数2~6の低分子量ポリオール(B1)およびマクロポリオール(B2)に加えて、他の低分子量ポリオールや低分子量アミンなどの他の低分子量活性水素基含有化合物を含んでもよい。
他の低分子量ポリオールは、水酸基を2つ以上有し、数平均分子量が400未満の化合物であって、上記した炭素数2~6の低分子量ポリオール(B1)およびマクロポリオール(B2)以外のポリオールが挙げられ、例えば、ヘプタンジオール、オクタンジオールなどの炭素数7以上の低分子量ポリオールなどが挙げられる。他の低分子量アミンとしては、数平均分子量が400未満の化合物であって、例えば、モノエタノールアミンなどの第一級アミン、ジエタノールアミンなどの第二級アミン、トリエタノールアミン、トリイソプロパノールアミン、メチルジエタノールアミン、メチルジイソプロパノールアミンなどの第三級アミンなどが挙げられる。
ポリオール成分(B)において、他の低分子量ポリオールおよび低分子量アミンの割合は、例えば、0質量%以上であり、例えば、40質量%以下、好ましくは、20質量%以下であり、とりわけ好ましくは、0質量%である。
ウレタン化触媒(C)としては、例えば、金属触媒、含窒素有機触媒などが挙げられる。
金属触媒としては、例えば、ネオデカン酸ビスマス(III)、オクチル酸ビスマス(III)などのビスマスを含有する金属触媒、例えば、オクチル酸亜鉛、亜鉛ジアセチルアセトネート、Zn-K-KAT XK-633(KING社製)、Zn-K-KATXK-614(KING社製)などの亜鉛を含有する金属触媒、例えば、無機スズ化合物(例えば、酢酸スズ、オクチル酸スズなど)、有機スズ化合物(例えば、ジブチルスズジラウレート、ジブチルスズクロライド、ジメチルスズジネオデカノエート、ジメチルスズジチオグリコレートなど)などのスズを含有する金属触媒、例えば、オクチル酸鉛、ナフテン酸鉛などの鉛を含有する金属触媒、例えば、ナフテン酸ニッケル、ニッケルアセチルアセトネートなどのニッケルを含有する金属触媒、例えば、ジルコニウムテトラアセチルアセトネートなどのジルコニウムを含有する金属触媒、例えば、オクチル酸カリウム、オクチル酸ナトリウム、炭酸カリウム、炭酸ナトリウムなどのアルカリ金属を含有する金属触媒、例えば、オクチル酸コバルト、コバルトアセチルアセトネートなどのコバルトを含有する金属触媒、オクチル酸マンガン、マンガンアセチルアセトネートなどのマンガンを含有する金属触媒、アルミニウムアセチルアセトネートなどのアルミニウムを含有する金属触媒などが挙げられる。これらは、単独使用または2種類以上併用することができる。
金属触媒としては、好ましくは、ビスマスを含有する金属触媒と、亜鉛を含有する金属触媒とを併用する。
含窒素有機触媒としては、例えば、芳香環を含有する含窒素有機触媒(以下、含窒素芳香族系触媒と称する。)、芳香環を含有しない含窒素有機触媒(以下、含窒素脂肪族系触媒と称する。)などが挙げられる。
含窒素芳香族系触媒としては、例えば、イミダゾール触媒が挙げられ、具体的には、例えば、イミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、1-イソブチル-2-メチルイミダゾールなどのイミダゾール化合物などが挙げられる。これらは、単独使用または2種類以上併用することができる。
含窒素脂肪族触媒としては、例えば、脂肪族アミン触媒が挙げられ、具体的には、例えば、トリエチルアミン、トリエチレンジアミン、ビス(ジメチルアミノエチル)エーテル、N-メチルモルホリンなどの3級アミン化合物、例えば、テトラエチルヒドロキシルアンモニウム、2-ヒドロキシプロピルトリメチルアンモニウム、テトラブチルアンモニウム、1,8―ジアザビシクロ(5,4,0)―7-ウンデセンなどの4級アンモニウム塩化合物などが挙げられる。これらは、単独使用または2種類以上併用することができる。
ウレタン化触媒(C)の割合(金属触媒および含窒素有機触媒の総量)は、ポリイソシアネート成分(A)100質量部に対して、例えば、1質量部以上、好ましくは、3質量部以上であり、例えば、10質量部以下、好ましくは、8質量部以下である。
また、ウレタン化触媒(C)の総量100質量部に対して、金属触媒の割合が、例えば、80質量部以上、好ましくは、85質量部以上であり、例えば、100質量部以下、好ましくは、97質量部以下である。また、含窒素有機触媒の割合が、例えば、0質量部以上、好ましくは、3質量部以上であり、例えば、20質量部以下、好ましくは、15質量部以下である。すなわち、ウレタン化触媒(C)は、含窒素有機触媒を含んでいてもよく、また、含窒素有機触媒を含んでいなくともよい。
そして、発泡ポリウレタンエラストマー原料においては、ポリエーテルジオール(A2)にポリトリメチレンエーテルグリコールが含有されているため、ウレタン化触媒(C)は、含窒素芳香族系触媒(好ましくは、イミダゾール触媒)を含むことができる。
より具体的には、ポリエーテルジオール(A2)にポリトリメチレンエーテルグリコールが含有されておらず、例えば、ポリテトラメチレンエーテルグリコールのみが含有されている場合、ウレタン化触媒(C)が含窒素芳香族系触媒を含有すると、発泡ポリウレタンエラストマーは、耐屈曲性に優れる一方、熱環境下において変色するなど、耐変色性に劣る。
一方、このような場合(ポリエーテルジオール(A2)にポリトリメチレンエーテルグリコールが含有されておらず、例えば、ポリテトラメチレンエーテルグリコールのみが含有されている場合)において、ウレタン化触媒(C)から含窒素芳香族系触媒を除外すると、耐変色性の向上を図ることができる。しかし、このような場合には、発泡ポリウレタンエラストマーの耐屈曲性が低下するという不具合がある。
すなわち、ポリエーテルジオール(A2)にポリトリメチレンエーテルグリコールが含有されていない場合には、耐変色性と耐屈曲性とがトレードオフの関係(耐変色性を向上させると耐屈曲性が低下し、耐屈曲性を向上させると耐変色性が低下するという関係)にある。
これらに対して、本発明の発泡ポリウレタンエラストマー原料では、ポリエーテルジオール(A2)にポリトリメチレンエーテルグリコールが含有されているため、ウレタン化触媒(C)が含窒素芳香族系触媒を含有する場合にも、発泡ポリウレタンエラストマーは、耐屈曲性に優れ、かつ、耐変色性に優れる。
さらに、この発泡ポリウレタンエラストマー原料では、耐変色性の向上の観点から、好ましくは、ウレタン化触媒(C)は、含窒素芳香族系触媒(好ましくは、イミダゾール触媒)を含有しない。
すなわち、この発泡ポリウレタンエラストマー原料では、ポリエーテルジオール(A2)にポリトリメチレンエーテルグリコールが含有されているため、ウレタン化触媒(C)が含窒素芳香族系触媒を含有しなくとも、十分な耐屈曲性を得ることができ、さらに、含窒素芳香族系触媒による変色を抑制できる。
このように、ウレタン化触媒(C)が含窒素芳香族系触媒を含有しない場合、とりわけ良好に、耐屈曲性および耐変色性の両立を図ることができる。
ウレタン化触媒(C)が含窒素芳香族系触媒を含有しない場合、発泡成型性の観点から、好ましくは、ウレタン化触媒(C)は、金属触媒を含有する。
金属触媒の割合は、反応速度および耐変色性の観点から、発泡ポリウレタンエラストマー原料の総量100質量部に対して、例えば、0.10質量部以上、好ましくは、0.30質量部以上、より好ましくは、0.50質量部以上であり、例えば、10.0質量部以下、好ましくは、5.00質量部以下である。
また、金属触媒の割合は、ポリイソシアネート成分(A)100質量部に対して、例えば、0.5質量部以上、好ましくは、1質量部以上であり、例えば、10質量部以下、好ましくは、5質量部以下である。
金属触媒として、ビスマスを含有する金属触媒と、亜鉛を含有する金属触媒とを併用する場合、それらの総量100質量部に対して、ビスマスを含有する金属触媒が、例えば、例えば、33質量部以上、好ましくは、43質量部以上であり、例えば、75質量部以下、好ましくは、70質量部以下である。また、亜鉛を含有する金属触媒が、例えば、例えば、25質量部以上、好ましくは、30質量部以上であり、例えば、67質量部以下、好ましくは、57質量部以下である。
このような場合、ウレタン化触媒(C)は、含窒素脂肪族系触媒を含んでいてもよく、また、含窒素脂肪族系触媒を含んでいなくともよい。
発泡安定性の向上を図る観点から、好ましくは、ウレタン化触媒(C)は、含窒素脂肪族系触媒(好ましくは、脂肪族アミン触媒)を含有する。
含窒素脂肪族系触媒の割合は、発泡ポリウレタンエラストマー原料の総量100質量部に対して、例えば、0質量部以上、好ましくは、0.01質量部以上、より好ましくは、0.05質量部以上であり、例えば、10質量部以下、好ましくは、5質量部以下である。
また、含窒素脂肪族系触媒の割合は、ポリイソシアネート成分(A)100質量部に対して、例えば、0質量部以上、好ましくは、0.05質量部以上であり、例えば、10質量部以下、好ましくは、5質量部以下である。
次いで、本発明の発泡ポリウレタンエラストマーについて説明する。
発泡ポリウレタンエラストマーは、上記した発泡ポリウレタンエラストマー原料の発泡体であって、見かけ密度(JIS K7222:2005)が、例えば、0.1kg/cm3以上であり、例えば、0.5g/cm3以下、好ましくは、0.3g/cm3以下である発泡体であり、軟質ポリウレタンフォーム、半硬質ポリウレタンフォーム、硬質ポリウレタンフォームとは区別される。なお、発泡ポリウレタンエラストマー原料を発泡させるための方法は、特に限定されないが、好ましくは、後述する発泡ポリウレタンエラストマーの製造方法が用いられる。
発泡ポリウレタンエラストマーは、ポリイソシアネート成分(A)とポリオール成分(B)との反応物であるポリウレタン樹脂中に気泡が分散した構造を有する。発泡ポリウレタンエラストマーの気泡構造は、気泡が独立した(連続していない)独立気泡構造、または、気泡が部分的に連続した半独立気泡構造である。
ポリウレタン樹脂は、図1に示すように、一分子中に、ソフトセグメントSと、ハードセグメントHとを有する。
ソフトセグメントSは、ポリエーテルジオール(A2)(および、必要により、マクロポリオール(B2))から構成される領域(ドメイン)である。
ハードセグメントHは、1,4-ビス(イソシアナトメチル)シクロヘキサンを含むポリイソシアネートと、炭素数2~6の低分子量ポリオール(B1)(および、必要により、他の低分子量活性水素基含有化合物)と、ポリイソシアネート成分(A)および水の反応生成物であるウレアとから構成される領域(ドメイン)である。
ポリウレタン樹脂の各種の機械物性は、ハードセグメントHの凝集性と、ソフトセグメントSの結晶性とによって実現される。
本発明の発泡ポリウレタンエラストマーにおいて、ソフトセグメントSは、ポリエーテルジオール(A2)に由来する領域、すなわち、ポリトリメチレンエーテルグリコールに由来する領域を含む。そのため、本発明の発泡ポリウレタンエラストマーでは、ポリエーテルジオール(A2)の主鎖(直鎖)に由来して、ソフトセグメントSの結晶性の向上が適度に図られている。これにより、発泡ポリウレタンエラストマーは、工業製品としての要求を満足させることができる各種機械物性を有する。
また、1,4-ビス(イソシアナトメチル)シクロヘキサン(A1)とポリエーテルジオール(A2)とをプレポリマーとしているため、ソフトセグメントSの均一な結晶性を確保することができる。
また、ハードセグメントHは、炭素数2~6の低分子量ポリオール(B1)に由来して、炭素数が2以上6以下の直鎖状または分岐鎖状のアルキレン基を有する。そのため、本発明の発泡ポリウレタンエラストマーでは、ハードセグメントHの凝集性が制御されている。
これにより、発泡ポリウレタンエラストマーは、圧縮永久歪みの抑制と、耐屈曲性の向上との両立が図られている。
ここで、圧縮永久歪みの低減と、耐屈曲性の向上とは、通常、トレードオフの関係(圧縮永久歪みを低減すると、耐屈曲性が低下し、耐屈曲性を向上させると、圧縮永久歪みが増大するという関係)にある。
この点、本発明の発泡ポリウレタンエラストマーでは、圧縮永久歪みの低減と耐屈曲性の向上との両立が図られており、例えば、圧縮永久歪み(JIS K6262)20%以下、かつ、耐屈曲性(JIS K6260:2010)70×103回以上、好ましくは、圧縮永久歪み15%以下、かつ、耐屈曲性110×103回以上、より好ましくは、圧縮永久歪み10%以下、かつ、耐屈曲性150×103回以上を実現できる。
なお、発泡ポリウレタンエラストマーの圧縮永久歪みは、例えば、1%以上である。また、発泡ポリウレタンエラストマーの耐屈曲性は、例えば、5000×103回以下である。
このような発泡ポリウレタンエラストマーのアスカーC硬度(JIS K7312-7:1996)は、例えば、30以上、好ましくは、35以上、より好ましくは、40以上であり、例えば、60以下、好ましくは、50以下である。
発泡ポリウレタンエラストマーは、例えば、シューズのインナーソール、アウターソール、ミッドソール(インナーソールとアウターソールとの間の部分)などのシューズのソール部材、例えば、シューズのショックアブソーバー、自動車のショックアブソーバー、ヘルメットのショックアブソーバー、グリップテープのショックアブソーバーなどのショックアブソーバー、例えば、自動車の内装材、例えば、シューズ、ヘルメット、グリップテープ、バット(打球反発材)、サッカーボールのクッション材などのスポーツ用品、例えば、ヘッドフォンの部材、例えば、土木建材のパッキン部材、例えば、梱包材、枕、マットレス、シートクッション、シーリング材、防音フローリング材などの緩衝材料、例えば、ブラジャー、ブラジャー用パッド、ブラジャー用カップ、肩パッドなどの衣料用品、例えば、二輪車、モビリティ部材、例えば、ロボット用緩衝材料、例えば、介護用品、電気・電子製品の緩衝材からなる群から選択される工業製品の材料として用いられる。発泡ポリウレタンエラストマーは、好ましくは、シューズのミッドソール、ショックアブソーバー、自動車の内装材、および、スポーツ用品からなる群から選択される工業製品の材料として用いられる。
とりわけ、上記の発泡ポリウレタンエラストマーは、ミッドソールの材料として、好適に用いられる。
また、本発明は、上記の発泡ポリウレタンエラストマーを含むミッドソールを含んでいる。すなわち、本発明のミッドソールは、上記の発泡ポリウレタンエラストマーを用いて得られる成形品である。
このようなミッドソールは、上記の発泡ポリウレタンエラストマーを用いて得られるため、耐屈曲性に優れ、圧縮永久歪みが抑制される。
次いで、本発明の一実施形態としての発泡ポリウレタンエラストマーの製造方法について説明する。
発泡ポリウレタンエラストマーの製造方法は、上記した発泡ポリウレタンエラストマーを製造するための発泡ポリウレタンエラストマーの製造方法であって、準備工程と、発泡工程とを含む。
準備工程では、上記した発泡ポリウレタンエラストマー原料の各成分を、上記の割合で準備する。
次いで、発泡工程では、上記した発泡ポリウレタンエラストマー原料を発泡させる。
詳しくは、発泡工程では、まず、ポリオール成分(B)とウレタン化触媒(C)と発泡剤とを配合して、混合し、レジンプレミックスを調製する。
レジンプレミックスの調製に用いられるウレタン化触媒(C)は、一部であってもよく、また、全部であってもよい。好ましくは、ウレタン化触媒(C)の一部が、レジンプレミックスの調製に用いられる。
レジンプレミックスの調製に用いられるウレタン化触媒(C)として、好ましくは、含窒素脂肪族系触媒が挙げられ、より好ましくは、脂肪族アミン触媒が挙げられる。
発泡剤としては、発泡ポリウレタン材料の製造に通常使用される公知の発泡剤を用いることができる。発泡剤としては、例えば、水、例えば、トリクロロフルオロメタン、ジクロロジフルオロメタン、トリクロロエタン、トリクロロエチレン、テトラクロロエチレン、塩化メチレン、トリクロロトリフルオロエタン、ジブロモテトラフルオロエタン、四塩化炭素などのハロゲン置換脂肪族炭化水素が挙げられる。
これらの発泡剤は、単独使用または2種以上を併用することができる。
発泡剤として、好ましくは、水の単独使用が挙げられる。
また、レジンプレミックスには、必要により、整泡剤、添加剤などを添加することができる。
整泡剤としては、発泡ポリウレタン材料の製造に通常使用される公知の整泡剤を用いることができる。整泡剤としては、例えば、AGCセイミケミカル社製のサーフロンAF-5000、サーフロンS-651、例えば、モメンティブ社製のL-568、L-580、L-590、L-598、L-600、L-620、L-635、L-638、L-650、L-680、L-682、SC-155、Y-10366、L-5309、L-5614、L-5617、L-5627、L-5639、L-5624、L-5690、L-5693、L-5698、例えば、信越シリコーン社製のF-607、F-606、F-242T、F-114、F-348、例えば、エアプロダクツアンドケミカルズ社製のDC5598、DC5933、DC5609、DC5986、DC5950、DC2525、DC2585、DC6070、DC3043、例えば、東レダウコーニングシリコーン社製のSZ-1919、SH-192、SH190、SZ-580、SRX280A、SZ-584、SF2904、SZ-5740M、SZ-1142、SZ-1959などが挙げられる。
添加剤としては、例えば、酸化防止剤(例えば、ヒンダードフェノール化合物、有機リン化合物、チオエーテル系化合物、ヒドロキシルアミン系化合物など)、紫外線吸収剤(例えば、ベンゾトリアゾール化合物、フォルムアミジン系化合物など)、耐光安定剤(例えば、ヒンダードアミン化合物など)などが挙げられる。
次いで、発泡工程では、レジンプレミックスにポリイソシアネート成分(A)を配合し、混合して、発泡混合物を調製する。このとき、発泡混合物には、発泡ポリウレタンエラストマー原料がすべて配合される。
発泡混合物には、好ましくは、ウレタン化触媒(C)を配合する。
ウレタン化触媒(C)としては、上記レジンプレミックスの調製に用いられたウレタン化触媒(C)の残部が挙げられ、具体的には、金属触媒が挙げられる。
次いで、発泡工程では、発泡混合物を所定の型内に注ぎ、発泡混合物(発泡ポリウレタンエラストマー原料)を発泡させる。好ましくは、発泡工程では、上記したウレタン化触媒(C)の存在下で、発泡ポリウレタンエラストマー原料を発泡させる。より好ましくは、発泡工程では、含窒素脂肪族系触媒、ビスマスを含有する金属触媒、および、亜鉛を含有する金属触媒の存在下で、発泡ポリウレタンエラストマー原料を発泡させる。ビスマスを含有する金属触媒、および、亜鉛を含有する金属触媒の存在下で、発泡ポリウレタンエラストマー原料を発泡させることにより、発泡ポリウレタンエラストマー原料を所定の型内で発泡させた後、得られた発泡ポリウレタンエラストマーを短時間で円滑に脱型することができる。
このような発泡ポリウレタンエラストマーの製造方法によれば、耐屈曲性に優れ、圧縮永久歪みが抑制され、さらに、耐変色性にも優れる上記の発泡ポリウレタンエラストマーを効率よく得ることができる。
また、上記の発泡ポリウレタンエラストマー原料によれば、耐屈曲性に優れ、圧縮永久歪みが抑制され、さらに、耐変色性にも優れる発泡ポリウレタンエラストマーを得ることができる。
そして、上記発泡ポリウレタンエラストマー原料の発泡体である発泡ポリウレタンエラストマーは、耐屈曲性に優れ、圧縮永久歪みが抑制され、さらに、耐変色性にも優れる。
次に、本発明を、実施例および比較例に基づいて説明するが、本発明は、下記の実施例によって限定されるものではない。なお、「部」および「%」は、特に言及がない限り、質量基準である。また、以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。
<原料>
A.ポリイソシアネート成分(イソシアネート基末端プレポリマー)
A-1.ポリイソシアネート
(1)1,4-H6XDI
1,4-ビス(イソシアナトメチル)シクロヘキサン、国際公開第2009/51114号の製造例3に従って合成した。純度(ガスクロマトグラフィー測定による。)99.9%、トランス/シス比(モル基準)=86/14
(2)1,3-H6XDI
1,3-ビス(イソシアナトメチル)シクロヘキサン、商品名:タケネート600、三井化学社製
A-2.ポリエーテルジオール
(1)PT(C4)MEG
PTG-1000(ポリテトラメチレンエーテルグリコール、商品名:PTG-1000、数平均分子量:1000、平均水酸基価:111.9mgKOH/g、保土ヶ谷化学工業社製)164質量部と、PTG-3000(ポリテトラメチレンエーテルグリコール、商品名:PTG-3000SN、数平均分子量:3000、平均水酸基価:37.4mgKOH/g、保土ヶ谷化学工業社製)836質量部とを混合した。得られた混合物を、ポリエーテルジオール(1)とした。
<原料>
A.ポリイソシアネート成分(イソシアネート基末端プレポリマー)
A-1.ポリイソシアネート
(1)1,4-H6XDI
1,4-ビス(イソシアナトメチル)シクロヘキサン、国際公開第2009/51114号の製造例3に従って合成した。純度(ガスクロマトグラフィー測定による。)99.9%、トランス/シス比(モル基準)=86/14
(2)1,3-H6XDI
1,3-ビス(イソシアナトメチル)シクロヘキサン、商品名:タケネート600、三井化学社製
A-2.ポリエーテルジオール
(1)PT(C4)MEG
PTG-1000(ポリテトラメチレンエーテルグリコール、商品名:PTG-1000、数平均分子量:1000、平均水酸基価:111.9mgKOH/g、保土ヶ谷化学工業社製)164質量部と、PTG-3000(ポリテトラメチレンエーテルグリコール、商品名:PTG-3000SN、数平均分子量:3000、平均水酸基価:37.4mgKOH/g、保土ヶ谷化学工業社製)836質量部とを混合した。得られた混合物を、ポリエーテルジオール(1)とした。
(2)PT(C3)MEG
ポリトリメチレンエーテルグリコール(商品名:Velvetol H2700、数平均分子量2700、平均水酸基価41.6mgKOH/g、Whylchem社製)を用意した。これを、ポリエーテルジオール(2)とした。
ポリトリメチレンエーテルグリコール(商品名:Velvetol H2700、数平均分子量2700、平均水酸基価41.6mgKOH/g、Whylchem社製)を用意した。これを、ポリエーテルジオール(2)とした。
(3)PEG
ポリオキシエチレングリコール(商品名:PEG#4000、数平均分子量3000、平均水酸基価37.4mgKOH/g、日油化学社製)を用意した。これを、ポリエーテルジオール(3)とした。
ポリオキシエチレングリコール(商品名:PEG#4000、数平均分子量3000、平均水酸基価37.4mgKOH/g、日油化学社製)を用意した。これを、ポリエーテルジオール(3)とした。
(4)PPG
ポリオキシプロピレングリコール(商品名:PPG DL-4000、数平均分子量4000、平均水酸基価28.1、三井化学SKCポリウレタン社製)を用意した。これを、ポリエーテルジオール(4)とした。
ポリオキシプロピレングリコール(商品名:PPG DL-4000、数平均分子量4000、平均水酸基価28.1、三井化学SKCポリウレタン社製)を用意した。これを、ポリエーテルジオール(4)とした。
(5)PTG-L
非晶性ポリテトラメチレンエーテルグリコール(商品名:PTG-L-3500、数平均分子量3500、平均水酸基価32.1、保土ヶ谷化学工業社製)を用意した。これを、ポリエーテルジオール(5)とした。
非晶性ポリテトラメチレンエーテルグリコール(商品名:PTG-L-3500、数平均分子量3500、平均水酸基価32.1、保土ヶ谷化学工業社製)を用意した。これを、ポリエーテルジオール(5)とした。
B.ポリオール成分
B-1.炭素数2~6の低分子量ポリオール
(1)1,4-BD
1,4-ブタンジオール、三菱化学社製
(2)1,3-PD
1,3-プロパンジオール、商品名:SUSTERRAプロパンジオール、デュポン社製
B-2.マクロポリオール
(1)PTG-1000
ポリテトラメチレンエーテルグリコール、商品名:PTG-1000、数平均分子量:1000、平均水酸基価:111.9mgKOH/g、保土ヶ谷化学工業社製
(2)PTG-3000
ポリテトラメチレンエーテルグリコール、商品名:PTG-3000SN、数平均分子量:3000、平均水酸基価:38.0mgKOH/g、保土ヶ谷化学工業社製
C.ウレタン化触媒
C-1.含窒素脂肪族系触媒
(1)DABCO TMR
脂肪族アミン触媒、2-ヒドロキシプロピルトリメチルアンモニウム・オクチル酸塩、Evonik社製
(2)DABCO33LV
脂肪族アミン触媒、トリエチレンジアミン、Evonik社製
(3)NIAX CATALYST A-1
脂肪族アミン触媒、ビス(ジメチルアミノエチル)エーテルの70%ジプロピレングリコール溶液、タナック社製
C-2.含窒素芳香族系触媒
(1)TOYOCAT DM-70
イミダゾール触媒、1,2-ジメチルイミダゾールの65~75%エチレングリコール溶液、東ソー社製
C-3.金属触媒
(1)Zn-K-KAT XK-633
亜鉛系金属触媒、KING社製
(2)BiCAT8108
ビスマス系金属触媒、ビスマスネオデカネート(ネオデカン酸ビスマス(III))、シェファードケミカル製
(3)プキャット25
ビスマス系金属触媒、ビスマスオクトエート(オクチル酸ビスマス(III))、日本化学産業社製
(4)DBTDL
スズ系金属触媒、ジラウリン酸ジブチルスズ(IV)(ジブチルスズジラウレート)、日東化成社製
D.発泡剤
(1)イオン交換水
E.整泡剤
(1)サーフロンAF-5000(AGCセイミケミカル社製)
F.添加剤
(1)Irganox245
酸化防止剤、ヒンダードフェノール化合物、商品名:イルガノックス245、BASFジャパン社製
(2)LA-72
耐光安定剤、ヒンダードアミン化合物、商品名:アデカスタブLA-72、ADEKA社製
<各実施例および比較例>
1.ポリイソシアネート成分(A)の調製
各表に示す質量部数で、ポリイソシアネートおよびポリエーテルジオールを、撹拌機、温度計、還流管および窒素導入管を備えた4つ口フラスコに仕込み、窒素雰囲気下、80℃にて1時間撹拌した。
B-1.炭素数2~6の低分子量ポリオール
(1)1,4-BD
1,4-ブタンジオール、三菱化学社製
(2)1,3-PD
1,3-プロパンジオール、商品名:SUSTERRAプロパンジオール、デュポン社製
B-2.マクロポリオール
(1)PTG-1000
ポリテトラメチレンエーテルグリコール、商品名:PTG-1000、数平均分子量:1000、平均水酸基価:111.9mgKOH/g、保土ヶ谷化学工業社製
(2)PTG-3000
ポリテトラメチレンエーテルグリコール、商品名:PTG-3000SN、数平均分子量:3000、平均水酸基価:38.0mgKOH/g、保土ヶ谷化学工業社製
C.ウレタン化触媒
C-1.含窒素脂肪族系触媒
(1)DABCO TMR
脂肪族アミン触媒、2-ヒドロキシプロピルトリメチルアンモニウム・オクチル酸塩、Evonik社製
(2)DABCO33LV
脂肪族アミン触媒、トリエチレンジアミン、Evonik社製
(3)NIAX CATALYST A-1
脂肪族アミン触媒、ビス(ジメチルアミノエチル)エーテルの70%ジプロピレングリコール溶液、タナック社製
C-2.含窒素芳香族系触媒
(1)TOYOCAT DM-70
イミダゾール触媒、1,2-ジメチルイミダゾールの65~75%エチレングリコール溶液、東ソー社製
C-3.金属触媒
(1)Zn-K-KAT XK-633
亜鉛系金属触媒、KING社製
(2)BiCAT8108
ビスマス系金属触媒、ビスマスネオデカネート(ネオデカン酸ビスマス(III))、シェファードケミカル製
(3)プキャット25
ビスマス系金属触媒、ビスマスオクトエート(オクチル酸ビスマス(III))、日本化学産業社製
(4)DBTDL
スズ系金属触媒、ジラウリン酸ジブチルスズ(IV)(ジブチルスズジラウレート)、日東化成社製
D.発泡剤
(1)イオン交換水
E.整泡剤
(1)サーフロンAF-5000(AGCセイミケミカル社製)
F.添加剤
(1)Irganox245
酸化防止剤、ヒンダードフェノール化合物、商品名:イルガノックス245、BASFジャパン社製
(2)LA-72
耐光安定剤、ヒンダードアミン化合物、商品名:アデカスタブLA-72、ADEKA社製
<各実施例および比較例>
1.ポリイソシアネート成分(A)の調製
各表に示す質量部数で、ポリイソシアネートおよびポリエーテルジオールを、撹拌機、温度計、還流管および窒素導入管を備えた4つ口フラスコに仕込み、窒素雰囲気下、80℃にて1時間撹拌した。
その後、予めジイソノニルアジペート(ジェイ・プラス社製)により4質量%に希釈したオクチル酸スズ(商品名:スタノクト、エーピーアイコーポレーション社製)を、ポリイソシアネートおよびポリエーテルジオールの総量に対して、10ppm(ポリイソシアネートおよびポリエーテルジオールの総量10000質量部に対して、0.10質量部)添加し、80℃の温調下、窒素気流下で撹拌混合した。
これにより、イソシアネート基末端のプレポリマーを含むポリイソシアネート成分(A)を調製した。
得られたポリイソシアネート成分(A)のイソシアネート基濃度を、80℃に温調して測定した。なお、イソシアネート基含有量は、JIS K7301に記載のイソシアネート基含有率試験に準拠して、ジ-n-ブチルアミンによる滴定法により求めた。結果を各表に示す。
2.発泡ポリウレタンエラストマーの製造
各表に示した質量部数のポリオール成分(B)と、発泡剤(イオン交換水)と、整泡剤と、含窒素脂肪族系触媒(脂肪族アミン触媒)と、必要により含窒素芳香族系触媒(イミダゾール触媒)と、耐光安定剤と、酸化防止剤とを、均一に撹拌混合して、50℃のオーブン中に1時間静置し、レジンプレミックスを調製した。
各表に示した質量部数のポリオール成分(B)と、発泡剤(イオン交換水)と、整泡剤と、含窒素脂肪族系触媒(脂肪族アミン触媒)と、必要により含窒素芳香族系触媒(イミダゾール触媒)と、耐光安定剤と、酸化防止剤とを、均一に撹拌混合して、50℃のオーブン中に1時間静置し、レジンプレミックスを調製した。
その後、得られたレジンプレミックス全量と、80℃に温調したポリイソシアネート成分(A)100質量部と、各表に示した質量部数の金属触媒(23℃)とを配合し、それらをハンドミキサー(回転数5000rpm)によって10秒間撹拌して、発泡混合物を調製した。
次いで、得られた発泡混合物を、調製直後に手早く、あらかじめオーブンで80℃に温調した金型(SUS製、210×300×10mm)に移液し、金型の蓋を閉め、万力で固定した。
その後、金型を、80℃のオーブン中において、各表の脱型性の欄に記載した時間、静置し、発泡混合物を金型内で発泡させた。
その後、発泡ポリウレタンエラストマーを金型から取り出し(脱型し)、60℃のオーブン中で1晩硬化させた。これにより、各実施例および比較例の発泡ポリウレタンエラストマーを得た。得られた発泡ポリウレタンエラストマーを後述の評価方法で評価した。
<評価方法>
(1)密度
各実施例および比較例の発泡ポリウレタンエラストマーから測定試料を切り出し、JIS K7222:2005に従って、測定試料の見かけ密度を測定した。結果を各表に示す。
<評価方法>
(1)密度
各実施例および比較例の発泡ポリウレタンエラストマーから測定試料を切り出し、JIS K7222:2005に従って、測定試料の見かけ密度を測定した。結果を各表に示す。
(2)アスカーC硬度
JIS K7312-7:1996に従って、各実施例および比較例の発泡ポリウレタンエラストマーのアスカーC硬度を測定した。結果を各表に示す。
JIS K7312-7:1996に従って、各実施例および比較例の発泡ポリウレタンエラストマーのアスカーC硬度を測定した。結果を各表に示す。
(3)圧縮永久歪み
各実施例および比較例の発泡ポリウレタンエラストマーから直径29mmで厚み10mmの円板状の測定試料を切り出し、JIS K6262に従って、50℃×6時間、50%圧縮の条件で、測定試料の圧縮永久歪みを測定した。結果を各表に示す。
(4)耐屈曲性(耐屈曲き裂性)
各実施例および比較例の発泡ポリウレタンエラストマーから、140mm×25mm×10mmの測定試料を切り出し、JIS K6260:2010に準拠して、測定試料の耐屈曲性を測定した。結果を各表に示す。
各実施例および比較例の発泡ポリウレタンエラストマーから直径29mmで厚み10mmの円板状の測定試料を切り出し、JIS K6262に従って、50℃×6時間、50%圧縮の条件で、測定試料の圧縮永久歪みを測定した。結果を各表に示す。
(4)耐屈曲性(耐屈曲き裂性)
各実施例および比較例の発泡ポリウレタンエラストマーから、140mm×25mm×10mmの測定試料を切り出し、JIS K6260:2010に準拠して、測定試料の耐屈曲性を測定した。結果を各表に示す。
(5)耐変色性
各実施例および比較例の発泡ポリウレタンエラストマーの耐変色性を、以下の方法で評価した。
各実施例および比較例の発泡ポリウレタンエラストマーの耐変色性を、以下の方法で評価した。
すなわち、各実施例および比較例の発泡ポリウレタンエラストマーから、40mm×40mm×10mmの測定試料を切り出し、色差計(全自動色差計カラーエースMODEL TC-1、東京電色社製)を用いてΔbを測定した。
この後、各測定試料をアルミホイルで包み、測定試料中の成分が揮発しないようにした。そしてオーブンにて80℃、5日間加熱試験を行った。試験後アルミホイルを取り除き、再度色差計でΔbを測定した。加熱試験後のΔbと加熱試験前のΔbの差をとり、耐変色試験のΔbとした。結果を各表に示す。
なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記特許請求の範囲に含まれる。
本発明の発泡ポリウレタンエラストマー原料、発泡ポリウレタンエラストマーおよび発泡ポリウレタンエラストマーの製造方法は、例えば、ミッドソールなどのシューズのソール部材など、各種工業製品の材料として、好適に用いられる。
Claims (7)
- ポリイソシアネート成分(A)とポリオール成分(B)とウレタン化触媒(C)とを含む発泡ポリウレタンエラストマー原料であって、
前記ポリイソシアネート成分(A)は、1,4-ビス(イソシアナトメチル)シクロヘキサン(A1)と、ポリトリメチレンエーテルグリコールを含むポリエーテルジオール(A2)とのプレポリマーを含み、
前記ポリオール成分(B)は、炭素数2~6の低分子量ポリオールを含むことを特徴とする、発泡ポリウレタンエラストマー原料。 - 前記ウレタン化触媒(C)が、含窒素芳香族系触媒を含まず、金属触媒を含み、
前記金属触媒の割合が、発泡ポリウレタンエラストマー原料の総量100質量部に対して、0.30質量部以上である
ことを特徴とする、請求項1に記載の発泡ポリウレタンエラストマー原料。 - 前記ポリトリメチレンエーテルグリコールの割合が、前記ポリエーテルジオール(A2)の総量100質量部に対して、50質量部以上である
ことを特徴とする、請求項1に記載の発泡ポリウレタンエラストマー原料。 - 請求項1に記載の発泡ポリウレタンエラストマー原料の発泡体であることを特徴とする、発泡ポリウレタンエラストマー。
- シューズのミッドソールの材料であることを特徴とする、請求項4に記載の発泡ポリウレタンエラストマー。
- 請求項4に記載の発泡ポリウレタンエラストマーを含むことを特徴とする、ミッドソール。
- 請求項4に記載の発泡ポリウレタンエラストマーを製造するための発泡ポリウレタンエラストマーの製造方法であって、
請求項1に記載の発泡ポリウレタンエラストマー原料を準備する準備工程と、
前記発泡ポリウレタンエラストマー原料を発泡させる発泡工程とを含むことを特徴とする、発泡ポリウレタンエラストマーの製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020551122A JP6961837B2 (ja) | 2018-10-11 | 2019-10-04 | 発泡ポリウレタンエラストマー原料、発泡ポリウレタンエラストマー、ミッドソールおよび発泡ポリウレタンエラストマーの製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018192228 | 2018-10-11 | ||
JP2018-192228 | 2018-10-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020075651A1 true WO2020075651A1 (ja) | 2020-04-16 |
Family
ID=70163949
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/039367 WO2020075651A1 (ja) | 2018-10-11 | 2019-10-04 | 発泡ポリウレタンエラストマー原料、発泡ポリウレタンエラストマー、ミッドソールおよび発泡ポリウレタンエラストマーの製造方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6961837B2 (ja) |
TW (1) | TW202028281A (ja) |
WO (1) | WO2020075651A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021177175A1 (ja) * | 2020-03-05 | 2021-09-10 | 三井化学株式会社 | 発泡ポリウレタン樹脂組成物および発泡ポリウレタンエラストマー |
WO2021179069A1 (en) * | 2020-03-10 | 2021-09-16 | National Research Council Of Canada | Polyurethane compositions and elastomers therefrom |
WO2023204126A1 (ja) * | 2022-04-19 | 2023-10-26 | 三井化学株式会社 | ポリウレタン樹脂、弾性成形品、および、ポリウレタン樹脂の製造方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015046369A1 (ja) * | 2013-09-26 | 2015-04-02 | 三井化学株式会社 | 1,4-ビス(イソシアナトメチル)シクロヘキサン、ポリイソシアネート組成物、ポリウレタン樹脂、成形品、アイウェア材料、アイウェアフレームおよびレンズ |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101412798B (zh) * | 2008-11-21 | 2011-08-10 | 优洁(亚洲)有限公司 | 软质聚氨酯低回弹泡沫及其制备方法 |
CN101580575A (zh) * | 2009-06-15 | 2009-11-18 | 优洁(亚洲)有限公司 | 软质聚氨酯泡沫及其制备方法 |
JP5832401B2 (ja) * | 2011-09-16 | 2015-12-16 | 三井化学株式会社 | 低反発性ポリウレタンフォームおよびその製造方法 |
CN104072716B (zh) * | 2014-07-18 | 2016-05-11 | 浙江奥康鞋业股份有限公司 | 聚氨酯弹性体以及由其制成的鞋底 |
JP6838133B2 (ja) * | 2017-02-22 | 2021-03-03 | 三井化学株式会社 | 発泡ポリウレタンエラストマー原料、発泡ポリウレタンエラストマーおよび発泡ポリウレタンエラストマーの製造方法 |
TW201927843A (zh) * | 2017-12-14 | 2019-07-16 | 德商巴斯夫歐洲公司 | 用於製備具有低玻璃轉變溫度的熱塑性聚胺甲酸酯的方法 |
-
2019
- 2019-10-04 JP JP2020551122A patent/JP6961837B2/ja active Active
- 2019-10-04 WO PCT/JP2019/039367 patent/WO2020075651A1/ja active Application Filing
- 2019-10-09 TW TW108136689A patent/TW202028281A/zh unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015046369A1 (ja) * | 2013-09-26 | 2015-04-02 | 三井化学株式会社 | 1,4-ビス(イソシアナトメチル)シクロヘキサン、ポリイソシアネート組成物、ポリウレタン樹脂、成形品、アイウェア材料、アイウェアフレームおよびレンズ |
WO2015046370A1 (ja) * | 2013-09-26 | 2015-04-02 | 三井化学株式会社 | アイウェア材料、アイウェアフレームおよびアイウェア |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021177175A1 (ja) * | 2020-03-05 | 2021-09-10 | 三井化学株式会社 | 発泡ポリウレタン樹脂組成物および発泡ポリウレタンエラストマー |
WO2021179069A1 (en) * | 2020-03-10 | 2021-09-16 | National Research Council Of Canada | Polyurethane compositions and elastomers therefrom |
WO2023204126A1 (ja) * | 2022-04-19 | 2023-10-26 | 三井化学株式会社 | ポリウレタン樹脂、弾性成形品、および、ポリウレタン樹脂の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
TW202028281A (zh) | 2020-08-01 |
JPWO2020075651A1 (ja) | 2021-05-13 |
JP6961837B2 (ja) | 2021-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6838133B2 (ja) | 発泡ポリウレタンエラストマー原料、発泡ポリウレタンエラストマーおよび発泡ポリウレタンエラストマーの製造方法 | |
JP7364780B2 (ja) | 発泡ポリウレタン樹脂組成物および発泡ポリウレタンエラストマー | |
US8557005B2 (en) | Polyurethane foam and polishing pad | |
JP6961837B2 (ja) | 発泡ポリウレタンエラストマー原料、発泡ポリウレタンエラストマー、ミッドソールおよび発泡ポリウレタンエラストマーの製造方法 | |
EP3339342B1 (en) | Foam polyurethane material, molded article, and method for producing foam polyurethane material | |
JP2011038005A (ja) | 発泡ポリウレタンエラストマーの製造方法 | |
CN111269376A (zh) | 一种亲水性聚氨酯发泡材料及其制备方法 | |
JP7458250B2 (ja) | 微発泡ポリウレタンエラストマー組成物および微発泡ポリウレタンエラストマー | |
JP2008138053A (ja) | 発泡ポリウレタンの製造方法 | |
WO2009098966A1 (ja) | 低反発軟質ポリウレタンフォーム | |
JP2023029435A (ja) | 発泡ポリウレタン樹脂組成物、発泡ポリウレタンエラストマーおよびミッドソール | |
JP6253942B2 (ja) | 発泡ウレタンゴム及び発泡ウレタンゴム形成用組成物 | |
JP2012167221A (ja) | 軟質ポリウレタンフォーム | |
JP6445640B2 (ja) | 発泡ウレタンゴム及び発泡ウレタンゴム形成用組成物 | |
EP4321333A1 (en) | Cushioning material | |
JP2016132724A (ja) | 無発泡ウレタンエラストマー及び無発泡ウレタンエラストマー形成用組成物 | |
JPH11310624A (ja) | ポリウレタンフォームの製造法 | |
CN114222792A (zh) | 含热塑性多异氰酸酯加成聚合产物的制剂、其制备方法和用途 | |
JP2014077033A (ja) | 硬質ポリウレタンフォームおよび真空断熱材 | |
JP2006028283A (ja) | 軟質発泡ポリウレタンフォーム及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19870765 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020551122 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19870765 Country of ref document: EP Kind code of ref document: A1 |