WO2020075523A1 - 撮像装置 - Google Patents
撮像装置 Download PDFInfo
- Publication number
- WO2020075523A1 WO2020075523A1 PCT/JP2019/038019 JP2019038019W WO2020075523A1 WO 2020075523 A1 WO2020075523 A1 WO 2020075523A1 JP 2019038019 W JP2019038019 W JP 2019038019W WO 2020075523 A1 WO2020075523 A1 WO 2020075523A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pixel
- optical
- light
- polarization
- image
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 32
- 230000003287 optical effect Effects 0.000 claims abstract description 494
- 230000003595 spectral effect Effects 0.000 claims abstract description 260
- 230000010287 polarization Effects 0.000 claims abstract description 255
- 238000002834 transmittance Methods 0.000 claims abstract description 115
- 230000005540 biological transmission Effects 0.000 claims description 93
- 239000011159 matrix material Substances 0.000 claims description 59
- 210000001747 pupil Anatomy 0.000 claims description 34
- 238000003860 storage Methods 0.000 claims description 13
- 238000004364 calculation method Methods 0.000 claims description 4
- 230000000875 corresponding effect Effects 0.000 description 46
- 230000014509 gene expression Effects 0.000 description 21
- 238000010586 diagram Methods 0.000 description 16
- 230000006870 function Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/201—Filters in the form of arrays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/10—Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
- H04N25/11—Arrangement of colour filter arrays [CFA]; Filter mosaics
- H04N25/13—Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
- H04N25/134—Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/28—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
- G02B27/281—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for attenuating light intensity, e.g. comprising rotatable polarising elements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/10—Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
- H04N23/125—Colour sequential image capture, e.g. using a colour wheel
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
- H04N23/55—Optical parts specially adapted for electronic image sensors; Mounting thereof
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/10—Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
- H04N25/11—Arrangement of colour filter arrays [CFA]; Filter mosaics
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/10—Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
- H04N25/11—Arrangement of colour filter arrays [CFA]; Filter mosaics
- H04N25/13—Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
- H04N25/133—Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements including elements passing panchromatic light, e.g. filters passing white light
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/10—Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
- H04N25/11—Arrangement of colour filter arrays [CFA]; Filter mosaics
- H04N25/13—Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
- H04N25/135—Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on four or more different wavelength filter elements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/40—Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/71—Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
- H04N25/75—Circuitry for providing, modifying or processing image signals from the pixel array
Definitions
- the present invention relates to an imaging device, and more particularly to an imaging device that acquires images (multispectral images) in a plurality of wavelength bands.
- Patent Document 1 discloses that a pupil portion of an optical system is divided, and an optical filter having a different spectral transmittance is arranged in each of the divided pupil portions.
- an imaging device having a configuration in which a microlens array is arranged in front of the image sensor is described. This image pickup device obtains a multispectral image with one image sensor by guiding light from different optical regions of the pupil portion to different pixels by the light separation effect of the microlens array.
- Patent Document 1 has a problem that light leaks to adjacent pixels and interference (crosstalk) occurs.
- Patent Document 2 proposes that a signal (pixel signal) obtained from each pixel is subjected to predetermined signal processing to remove the influence of interference.
- the present invention has been made in view of such circumstances, and an object thereof is to provide an imaging device capable of acquiring a high-quality multispectral image with a single image sensor.
- the means to solve the above problems are as follows.
- an imaging apparatus provided with an arithmetic unit for calculating the Xk.
- a signal corresponding to each optical region of the optical system can be obtained by performing a predetermined calculation process in pixel block units on the signal obtained from each pixel of the image sensor. That is, a signal without interference (crosstalk) can be obtained. Thereby, a high quality multi-spectral image can be acquired.
- the matrix A is obtained by calculating an inverse matrix of a matrix whose element is the ratio of the light incident on each optical region of the optical system to each pixel of each pixel block of the image sensor.
- the inverse matrix B ⁇ 1 of the matrix B whose element is the ratio of the light incident on each optical region of the optical system to each pixel of each pixel block of the image sensor is calculated, and The matrix A of the arithmetic expression is obtained.
- the ratio of the light incident on each optical region of the optical system to each pixel of each pixel block of the image sensor is defined as the transmittance based on the polarization c and the transmittance based on the spectral transmittance d.
- the imaging device according to (2) above which is calculated by the product of c and d.
- each element of the matrix B is calculated by the product of the transmittance c based on the polarized light and the transmittance d based on the spectral transmittance.
- the transmittance c based on the polarized light is obtained by calculating the square of the cosine of the angle difference between the transmission polarization azimuth of the light transmitted through the optical region and the transmission polarization azimuth of the light received by the pixel, and is calculated as the spectral transmittance.
- the transmittance d based on the image pickup device according to the above (3) is obtained based on the wavelength band of light transmitted through the optical region and the spectral transmittance of the first optical filter element provided in the pixel.
- the transmittance c based on the polarization is obtained by the square of the cosine of the angular difference between the transmission polarization azimuth of the light transmitted through the optical region and the transmission polarization azimuth of the light received by the pixel. Further, the transmittance d based on the spectral transmittance is obtained based on the wavelength band of light that transmits the optical region and the spectral transmittance of the first optical filter element provided in the pixel.
- the optical system is the imaging device according to any one of (1) to (4) above, in which the number of polarization filter sections having the same transmission polarization direction is n or less.
- the number of polarization filter sections having the same transmission polarization direction in the optical system is set to be equal to or less than the number of types of the first optical filter element provided on the image sensor side.
- Each pixel block of the image sensor combines nine types of light by combining three types of first optical filter elements having different spectral transmittances and three types of second optical filter elements having different transmission polarization directions.
- the imaging device according to any one of (1) to (5) above, which has a configuration in which light is received by pixels.
- each pixel block of the image sensor is configured by combining three kinds of first optical filter elements having different spectral transmittances and three kinds of second optical filter elements having different transmission polarization azimuths to obtain nine kinds of elements. It has a configuration in which light is individually received by each pixel.
- the optical system is provided with nine optical regions in which the wavelength bands of transmitted light are different.
- the optical system is provided with three optical regions each including the polarization filter section having the same transmission polarization direction.
- the combination of the transmission polarization azimuth of the polarization filter unit included in the optical system and the combination of the transmission polarization azimuth of the second optical filter element included in the image sensor have the same configuration.
- the transmission polarization azimuth of the polarization filter unit included in the optical system is 0 °, 60 °, 90 °
- the transmission polarization azimuth of the second optical filter element included in the image sensor is also 0 °, 60 °, 90 °. To be done.
- the optical system is provided with a narrow band filter having different transmission wavelengths in each optical region.
- the optical system is provided with the narrow band filter at the pupil position.
- the image sensor has a configuration including the first optical filter element and the second optical filter element between the photodiode and the microlens that configure each pixel.
- a high quality multi-spectral image can be acquired with one image sensor.
- FIG. 9 is a cross-sectional view showing a schematic configuration of one pixel (broken line portion in FIG. 8)
- FIG. 9 shows an example of the arrangement pattern of the polarization filter element with which each pixel block is equipped.
- FIG. 1 Graph showing an example of setting of the spectral transmittance of each spectral filter element The figure which shows an example of the arrangement pattern of the spectral filter element with which each pixel block is equipped.
- Conceptual diagram of image generation A graph showing an example of the relationship between the spectral transmittance of the spectral filter element provided in each pixel and the wavelength band of light transmitted through each optical region of the optical system.
- Conceptual diagram of operation of the image pickup apparatus according to the present embodiment Graph of spectral transmittance of spectral filter element provided in each pixel of image sensor Figure showing an example of the subject image
- FIG. 1 is a diagram showing a schematic configuration of an embodiment of an image pickup apparatus according to the present invention.
- the imaging device 1 includes an optical system 10, an image sensor 100, and a signal processing unit 200.
- the optical system 10 includes a lens 12 and a pupil division filter 14.
- the lens 12 forms an optical image of a subject on the light receiving surface of the image sensor 100.
- the lens 12 is configured according to the application of the image pickup apparatus 1.
- the pupil division filter 14 is provided at or near the pupil position of the optical system 10 and divides the pupil portion of the optical system 10 into nine optical regions.
- the pupil division filter 14 is configured by overlapping the spectral filter 16 and the polarization filter 18.
- FIG. 2 is a front view of the pupil division filter.
- the optical region of reference numeral S1 is the first optical region S1
- the optical region of reference symbol S2 is the second optical region S2
- the optical region of reference symbol S3 is the third optical region S3
- the optical region of reference symbol S4 is the first optical region.
- the fourth optical region S4, the optical region S5 are the fifth optical regions S5, the optical region S6 is the sixth optical region S6, the optical region S7 is the seventh optical region S7, and the optical region S8 is the eighth optical region.
- the nine optical regions Sj are distinguished by defining the optical regions S8 and S9 as the ninth optical region S9.
- Each optical area Sj is set so that light of different wavelength bands is transmitted.
- the optical region group formed by the region S6 and the optical region group formed by the seventh optical region S7, the eighth optical region S8, and the ninth optical region S9 emit light having different polarization directions (transmission polarization azimuths). It is set to be transparent.
- Such a configuration is realized by a combination of the spectral filter 16 and the polarization filter 18 having the following configurations.
- FIG. 3 is a front view of the spectral filter.
- the spectral filter 16 has nine spectral filter units F1 to F9 that are equally divided into nine in the circumferential direction.
- the spectral filter unit with the code F1 is the first spectral filter unit F1
- the spectral filter unit with the code F2 is the second spectral filter unit F2
- the spectral filter unit with the code F3 is the third spectral filter unit F3, and the spectral filter unit is the same.
- the spectral filter unit F4 is the fourth spectral filter unit F4
- the spectral filter unit F5 is the fifth spectral filter unit F5
- the nine spectral filter sections F1 to F9 are distinguished by using the spectral filter section F7 and the spectral filter section F8 as the eighth spectral filter section F8 and the spectral filter section F9 as the ninth spectral filter section F9.
- the spectral filter units F1 to F9 correspond to the optical regions S1 to S9 of the pupil division filter 14, respectively.
- the first spectral filter unit F1 corresponds to the first optical region S1
- the second spectral filter unit F2 corresponds to the second optical region S2
- the third spectral filter unit F3 corresponds to the third optical region S3
- the fourth spectral filter unit F4 corresponds to the fourth optical region S4
- the fifth spectral filter unit F5 corresponds to the fifth optical region S5
- the sixth spectral filter unit F6 corresponds to the sixth optical region S6
- the spectral filter unit F7 corresponds to the seventh optical region S7
- the eighth spectral filter unit F8 corresponds to the eighth optical region S8
- the ninth spectral filter unit F9 corresponds to the ninth optical region S9.
- Each of the spectral filter units F1 to F9 has a configuration for transmitting light in a different wavelength band. That is, they have different spectral transmittance characteristics.
- FIG. 4 is a graph showing an example of the transmission wavelength set in each spectral filter unit.
- the wavelength band of light transmitted by the first spectral filter unit F1 is the first wavelength band ⁇ f1
- the wavelength band of light transmitted by the second spectral filter unit F2 is the second wavelength band ⁇ f2
- the third spectral filter unit F3 is transparent.
- the wavelength band of light to be transmitted is the third wavelength band ⁇ f3
- the wavelength band of light to be transmitted by the fourth spectral filter unit F4 is the fourth wavelength band ⁇ f4
- the wavelength band of light to be transmitted by the fifth spectral filter unit F5 is the fifth wavelength band.
- Wavelength band ⁇ f5 the wavelength band of light transmitted by the sixth spectral filter unit F6 is the sixth wavelength band ⁇ f6, and the wavelength band of light transmitted by the seventh spectral filter unit F7 is the seventh wavelength band ⁇ f7, the eighth spectral The wavelength band of light transmitted by the filter unit F8 is defined as an eighth wavelength band ⁇ f8, and the wavelength band of light transmitted by the ninth spectral filter unit F9 is defined as a ninth wavelength band ⁇ f9.
- each of the spectral filter sections F1 to F9 is set to transmit narrow band light, particularly nine bands within a specific wavelength band.
- FIG. 5 is a front view of the polarization filter.
- the polarization filter 18 has three polarization filter sections G1 to G3 that are equally divided in the circumferential direction.
- the polarization filter section G1 is referred to as a first polarization filter section G1
- the polarization filter section G2 is referred to as a second polarization filter section G2
- the polarization filter section G3 is referred to as a third polarization filter section G3.
- the three polarization filter sections G1 to G3 are distinguished.
- the first polarization filter section G1 corresponds to the first to third optical areas S1 to S3 of the pupil division filter 14
- the second polarization filter section G2 corresponds to the fourth to sixth optical areas S4 to S6 of the pupil division filter 14.
- the third polarization filter portion G3 corresponds to the seventh optical region S7 to the ninth optical region S9 of the pupil division filter 14.
- FIG. 6 is a diagram showing an example of polarization directions set in each polarization filter section of the polarization filter.
- the polarization direction (transmission polarization azimuth) is represented by the angle (azimuth) formed by the polarization transmission axis and the X axis on the XY plane orthogonal to the optical axis L.
- reference sign Aa indicates the polarization transmission axis of the first polarization filter unit G1
- reference sign Ab indicates the polarization transmission axis of the second polarization filter unit G2
- reference sign Ac indicates the polarization of the third polarization filter unit G3.
- the transmission axis is shown.
- each of the polarization filter sections G1 to G3 has a configuration of transmitting light of different polarization directions (transmission polarization directions).
- the polarization direction (transmission polarization azimuth) of the light transmitted by the first polarization filter section G1 is ⁇ 1
- the polarization direction (transmission polarization azimuth) of the light transmitted by the second polarization filter section G2 is ⁇ 2
- the third polarization filter section G3 transmits it.
- the polarization direction (transmission polarization azimuth) of the emitted light is ⁇ 3.
- the pupil division filter 14 is configured by coaxially overlapping the spectral filter 16 and the polarization filter 18 having the above configurations.
- the pupil division filter 14 operates as follows. That is, the light passing through the first optical region S1 of the pupil division filter 14 passes through the first spectral filter unit F1 of the spectral filter 16 and the first polarizing filter unit G1 of the polarizing filter 18. Therefore, the light in the first wavelength band ⁇ f1 is polarized (linearly polarized) in the polarization direction ⁇ 1 and emitted from the first optical region S1.
- the light passing through the second optical region S2 of the pupil division filter 14 passes through the second spectral filter unit F2 of the spectral filter 16 and the first polarizing filter unit G1 of the polarizing filter 18. Therefore, the light in the second wavelength band ⁇ f2 is emitted from the second optical region S2 after being polarized (linearly polarized) in the polarization direction ⁇ 1. Further, the light passing through the third optical region S3 of the pupil division filter 14 passes through the third spectral filter unit F3 of the spectral filter 16 and the first polarizing filter unit G1 of the polarizing filter 18.
- the light in the third wavelength band ⁇ f3 is emitted (linearly polarized) in the polarization direction ⁇ 1 from the third optical region S3.
- the light passing through the fourth optical region S4 of the pupil division filter 14 passes through the fourth spectral filter unit F4 of the spectral filter 16 and the second polarizing filter unit G2 of the polarizing filter 18. Therefore, the light in the fourth wavelength band ⁇ f4 is polarized (linearly polarized) in the polarization direction ⁇ 2 and emitted from the fourth optical region S4.
- the light passing through the fifth optical region S5 of the pupil division filter 14 passes through the fifth spectral filter unit F5 of the spectral filter 16 and the second polarizing filter unit G2 of the polarizing filter 18.
- the light of the fifth wavelength band ⁇ f5 is polarized (linearly polarized) in the polarization direction ⁇ 2 and emitted from the fifth optical region S5.
- the light passing through the sixth optical region S6 of the pupil division filter 14 passes through the sixth spectral filter unit F6 of the spectral filter 16 and the second polarizing filter unit G2 of the polarizing filter 18. Therefore, the light in the sixth wavelength band ⁇ f6 is emitted (linearly polarized) in the polarization direction ⁇ 2 from the sixth optical region S6.
- the light passing through the seventh optical region S7 of the pupil division filter 14 passes through the seventh spectral filter unit F7 of the spectral filter 16 and the third polarizing filter unit G3 of the polarizing filter 18. Therefore, the light in the seventh wavelength band ⁇ f7 is polarized (linearly polarized) in the polarization direction ⁇ 3 and emitted from the seventh optical region S7. Further, the light passing through the eighth optical region S8 of the pupil division filter 14 passes through the eighth spectral filter unit F8 of the spectral filter 16 and the third polarizing filter unit G3 of the polarizing filter 18.
- the light in the eighth wavelength band ⁇ f8 is emitted from the eighth optical region S8 after being polarized (linearly polarized) in the polarization direction ⁇ 3.
- the light passing through the ninth optical region S9 of the pupil division filter 14 passes through the ninth spectral filter unit F9 of the spectral filter 16 and the third polarizing filter unit G3 of the polarizing filter 18. Therefore, the light of the ninth wavelength band ⁇ f9 is emitted (linearly polarized) in the polarization direction ⁇ 3 from the ninth optical region S9.
- the optical system 10 is provided so as to be entirely movable back and forth along the optical axis L. Thereby, focus adjustment is performed.
- FIG. 7 is a diagram showing a schematic configuration of the pixel array of the image sensor.
- the pixels Pi are regularly arranged at a constant pitch along the horizontal direction (x direction) and the vertical direction (y direction).
- the image sensor 100 of the present embodiment nine (3 ⁇ 3) adjacent pixels Pi form one pixel block PB (x, y), and this pixel block PB (x, y) is It is regularly arranged along the horizontal direction (x direction) and the vertical direction (y direction).
- the pixel with the code P1 is the first pixel P1
- the pixel with the code P2 is the second pixel P2
- the pixel with the code P3 is the third pixel P3
- the pixel with the code P4 is the fourth pixel P4, and the code P5.
- the pixel is a fifth pixel P5
- the code P6 is a sixth pixel P6
- the code P7 is a seventh pixel P7
- the code P8 is an eighth pixel P8,
- the code P9 is a ninth pixel P9.
- the nine pixels included in the pixel block PB (x, y) are distinguished.
- Each pixel Pi receives light of different characteristics.
- FIG. 8 is a diagram showing a schematic configuration of the image sensor.
- FIG. 9 is a cross-sectional view showing a schematic configuration of one pixel (broken line portion in FIG. 8).
- the image sensor 100 includes a pixel array layer 110, a polarization filter element array layer 120, a spectral filter element array layer 130, and a microlens array layer 140. Each layer is arranged in the order of the pixel array layer 110, the polarization filter element array layer 120, the spectral filter element array layer 130, and the microlens array layer 140 from the image plane side to the object side.
- the pixel array layer 110 is configured by arranging a large number of photodiodes 112 two-dimensionally.
- One photodiode 112 forms one pixel.
- the photodiodes 112 are regularly arranged along the horizontal direction (x direction) and the vertical direction (y direction).
- the polarization filter element array layer 120 is configured by two-dimensionally arranging three types of polarization filter elements 122A, 122B, 122C having mutually different polarization directions (transmission polarization directions).
- the polarization filter element 122A is the first polarization filter element 122A
- the polarization filter element 122B is the second polarization filter element 122B
- the polarization filter element 122C is the third polarization filter element 122C
- the three types of polarization filter elements 122A, 122B, 122C are distinguished.
- the polarization filter elements 122A, 122B, 122C are arranged at the same intervals as the photodiode 112 and provided for each pixel.
- the polarization direction (transmission polarization azimuth) of the light transmitted by the first polarization filter element 122A is ⁇ 1
- the polarization direction (transmission polarization azimuth) of the light transmitted by the second polarization filter element 122B is ⁇ 2
- the third polarization filter element 122C is transmitted.
- ⁇ 3 be the polarization direction (transmission polarization direction) of the light to be caused.
- the second polarization filter element 122B has an azimuth angle of 60 ° ( ⁇ 2).
- the polarization filter elements 122A, 122B, 122C are an example of a second optical filter.
- each pixel block PB (x, y) the polarization filter elements 122A, 122B, 122C are regularly arranged.
- FIG. 10 is a diagram showing an example of an array pattern of polarization filter elements provided in each pixel block.
- the first polarization filter element 122A is provided in the first pixel P1, the fourth pixel P4, and the seventh pixel P7, which are the pixels in the first column in the pixel block.
- the second polarization filter element 122B is provided in the second pixel P2, the fifth pixel P5, and the eighth pixel P8, which are the pixels in the second column in the pixel block, and the third column in the pixel block is provided.
- the third polarization filter element 122C is provided in the third pixel P3, the sixth pixel P6, and the ninth pixel P9, which are pixels.
- the spectral filter element array layer 130 is configured by two-dimensionally arranging three types of spectral filter elements 132A, 132B, 132C having different spectral transmittances.
- the spectral filter element 132A is a first spectral filter element 132A
- the spectral filter element 132B is a second spectral filter element 132B
- the spectral filter element 132C is a third spectral filter element 132C.
- the three types of spectral filter elements 132A, 132B, and 132C are distinguished.
- the spectral filter elements 132A, 132B, 132C are arranged at the same intervals as the photodiode 112 and provided for each pixel.
- the spectral filter elements 132A, 132B, 132C are an example of a first optical filter.
- FIG. 11 is a graph showing an example of setting the spectral transmittance of each spectral filter element.
- a graph T1 shown by a solid line is a graph of the spectral transmittance of the first spectral filter element 132A.
- a graph T2 indicated by a broken line is a graph of the spectral transmittance of the second spectral filter element 132B.
- a graph T3 indicated by a dashed line is a graph of the spectral transmittance of the third spectral filter element 132C.
- each of the spectral filter elements 132A, 132B, 132C has a configuration in which light transmitted through each of the spectral filter sections F1 to F9 of the spectral filter 16 included in the optical system 10 is transmitted at different transmittances.
- the first spectral filter element 132A has a characteristic of transmitting more light in the short wavelength band
- the second spectral filter element 132B transmits light in the intermediate wavelength band.
- the third spectral filter element 132C has a characteristic of transmitting more light
- the third spectral filter element 132C has a characteristic of transmitting more light in a long wavelength band.
- FIG. 12 is a diagram showing an example of an array pattern of spectral filter elements provided in each pixel block.
- the spectral filter elements 132A, 132B, 132C are regularly arranged.
- the first spectral filter element 132A is provided in the first pixel P1, the second pixel P2, and the third pixel P3 that are the pixels in the first row in the pixel block
- the fourth spectral filter element 132B is provided in the fourth pixel P4, the fifth pixel P5, and the sixth pixel P6, which are the pixels in the second row, and the seventh pixel P7, which is the pixel in the third row in the pixel block.
- the third spectral filter element 132C is provided in the eighth pixel P8 and the ninth pixel P9.
- the microlens array layer 140 is configured by arranging a large number of microlenses 142 two-dimensionally.
- the microlenses 142 are arranged at the same intervals as the photodiodes 112 and provided for each pixel.
- the microlens 142 is provided for the purpose of efficiently focusing the light from the optical system 10 on the photodiode 112.
- each pixel Pi receives light from the optical system 10 as follows. That is, the first pixel P1 receives the light from the optical system 10 via the first spectral filter element 132A and the first polarization filter element 122A. Further, the second pixel P2 receives light from the optical system 10 via the first spectral filter element 132A and the second polarization filter element 122B. Further, the third pixel P3 receives the light from the optical system 10 via the first spectral filter element 132A and the third polarization filter element 122C.
- the fourth pixel P4 receives light from the optical system 10 via the second spectral filter element 132B and the first polarization filter element 122A. Further, the fifth pixel P5 receives light from the optical system 10 via the second spectral filter element 132B and the second polarization filter element 122B. Further, the sixth pixel P6 receives the light from the optical system 10 via the second spectral filter element 132B and the third polarization filter element 122C. Further, the seventh pixel P7 receives light from the optical system 10 via the third spectral filter element 132C and the first polarization filter element 122A.
- each pixel Pi of the pixel block PB (x, y) has the different combination of the spectral filter elements 132A, 132B, 132C and the polarization filter elements 122A, 122B, 122C, and thus receives light having different characteristics. To do.
- the signal processing unit 200 processes the signal output from the image sensor 100 to generate image data acquired in each optical region Sj of the optical system 10.
- FIG. 13 is a block diagram showing a schematic configuration of the signal processing unit.
- the signal processing unit 200 includes an analog signal processing unit 200A, an image generation unit 200B, and a coefficient storage unit 200C.
- the analog signal processing unit 200A takes in analog pixel signals output from each pixel of the image sensor 100, performs predetermined signal processing (for example, correlated double sampling processing, amplification processing, etc.), and then converts them into digital signals. And output.
- predetermined signal processing for example, correlated double sampling processing, amplification processing, etc.
- the image generation unit 200B performs predetermined signal processing on the pixel signal that has been converted into a digital signal to generate image data corresponding to each optical region Sj. That is, the image data image of the image acquired in each optical region Sj is generated.
- FIG. 14 is a conceptual diagram of image generation.
- Each pixel block PB (x, y) includes a first pixel P1, a second pixel P2, a third pixel P3, a fourth pixel P4, a fifth pixel P5, a sixth pixel P6, a seventh pixel P7 and an eighth pixel.
- P8 and the ninth pixel P9 are included. Therefore, from each pixel block PB (x, y), the first pixel P1, the second pixel P2, the third pixel P3, the fourth pixel P4, the fifth pixel P5, the sixth pixel P6, the seventh pixel P7, the eighth pixel
- the nine image data D1 to D9 are generated by separating and extracting the pixel signals of P8 and the ninth pixel P9.
- the first image data D1 is generated by separating and extracting the pixel signal of the first pixel P1 from each pixel block PB (x, y).
- the second image data D2 is generated by separating and extracting the pixel signal of the second pixel P2 from each pixel block PB (x, y).
- the third image data D3 is generated by separating and extracting the pixel signal of the third pixel P3 from each pixel block PB (x, y).
- the fourth image data D4 is generated by separating and extracting the pixel signal of the fourth pixel P4 from each pixel block PB (x, y).
- the fifth image data D5 is generated by separating and extracting the pixel signal of the fifth pixel P5 from each pixel block PB (x, y).
- the sixth image data D6 is generated by separating and extracting the pixel signal of the sixth pixel P6 from each pixel block PB (x, y).
- the seventh image data D7 is generated by separating and extracting the pixel signal of the seventh pixel P7 from each pixel block PB (x, y).
- the eighth image data D8 is generated by separating and extracting the pixel signal of the eighth pixel P8 from each pixel block PB (x, y).
- the ninth image data D9 is generated by separating and extracting the pixel signal of the ninth pixel P9 from each pixel block PB (x, y).
- interference has occurred in these nine image data D1 to D9. That is, since light from each optical region Sj of the optical system 10 is incident on each pixel Pi, the generated image is an image in which the images of each optical region Sj are mixed at a predetermined ratio. Therefore, the image generation unit 200B removes interference (crosstalk) by performing the following arithmetic processing.
- the pixel signal (signal value) obtained by the first pixel P1 of each pixel block PB (x, y) is x1
- the pixel signal obtained by the second pixel P2 is x2
- the pixel signal obtained by the third pixel P3 is x3
- the pixel signal obtained by the fourth pixel P4 is x4
- the pixel signal obtained by the fifth pixel P5 is x5
- the pixel signal obtained by the sixth pixel P6 is x6
- the pixel signal obtained by the seventh pixel P7 is x7
- the pixel signal X1 corresponds to the pixel signal corresponding to the first optical area S1
- the pixel signal X2 corresponds to the pixel signal corresponding to the second optical area S2
- the pixel signal X3 corresponds to the pixel signal corresponding to the third optical area S3, and the pixel signal X4.
- a pixel signal corresponding to the fourth optical region S4 a pixel signal X5 is a pixel signal corresponding to the fifth optical region S5
- a pixel signal X6 is a pixel signal corresponding to the sixth optical region S6, and a pixel signal X7 is a seventh optical region.
- the pixel signal corresponding to S7, the pixel signal X8 is a pixel signal corresponding to the eighth optical region S8, and the pixel signal X9 is a pixel signal corresponding to the ninth optical region S9. Therefore, an image acquired in the first optical region S1 is generated from the pixel signal X1, an image acquired in the second optical region S2 is generated from the pixel signal X2, and a third optical region S3 is generated from the pixel signal X3.
- the image acquired in the fourth optical region S4 is generated from the pixel signal X4, the image acquired in the fifth optical region S5 is generated from the pixel signal X5, and the pixel signal X6 is generated.
- Image obtained in the sixth optical region S6 is generated from the pixel signal X7, an image obtained in the seventh optical region S7 is generated from the pixel signal X7, and an image obtained in the eighth optical region S8 is generated from the pixel signal X8. Is generated, and the image acquired in the ninth optical region S9 is generated from the pixel signal X9.
- Interference occurs when light from each optical region Sj mixes into each pixel Pi.
- the pixel signals of the original image that is, the pixel signals X1 to X9 corresponding to the respective optical regions S1 to S9 can be obtained by solving the simultaneous equations of Formulas 2 to 10 for X1 to X9.
- X1 to X9 which are solutions of the simultaneous equations of Expressions 2 to 10, are calculated by multiplying both sides of Expression 11 by the inverse matrix B ⁇ 1 of the matrix B.
- the light incident on the optical regions S1 to S9 of the optical system 10 is the pixels P1 to S9 of the pixel block PB (x, y). It can be calculated from the signal values (pixel signals) x1 to x9 of the respective pixels P1 to P2 based on the proportion of light received by
- each element aij of the matrix A in Expression 12 can be obtained by obtaining the inverse matrix B ⁇ 1 of the matrix B.
- This ratio is calculated as the product of the transmittance c and the transmittance d, where c is the transmittance based on the polarized light and d is the transmittance based on the spectral transmittance.
- the transmittance c based on polarization is calculated by the square of the cosine of the angular difference between the transmission polarization azimuth of the light transmitted through the optical region and the transmission polarization azimuth of the light received by the pixel.
- the transmittance d based on the spectral transmittance is obtained based on the wavelength band of the light transmitted through the optical region and the spectral transmittance of the spectral filter element included in the pixel.
- the transmittance c based on the polarized light has a transmission polarization azimuth of the light passing through the j-th optical region Sj as ⁇ j, Letting ⁇ i be the transmission polarization azimuth of the light received by the i pixel Pi, it is calculated by the square of the cosine (cos) of the angular difference (
- the transmittance d based on the spectral transmittance is based on the wavelength band of light transmitted through the j-th optical region Sj and the spectral transmittance of the spectral filter elements 132A, 132B, and 132C included in the i-th pixel Pi. Required. That is, it can be obtained from the wavelength band of the light passing through the j-th optical region Sj based on the spectral transmittances of the spectral filter elements 132A, 132B, 132C provided in the i-th pixel Pi.
- the transmission polarization azimuths of the light transmitted through the first optical region S1, the second optical region S2, and the third optical region S3 are ⁇ 1, the fourth optical region S4, the fifth optical region S5, and
- the transmission polarization azimuth of the light transmitted through the sixth optical region S6 is ⁇ 2
- the transmission polarization azimuth of the light transmitted through the seventh optical region S7, the eighth optical region S8 and the ninth optical region S9 is ⁇ 3.
- the transmission polarization azimuths of the light received by the first pixel P1, the fourth pixel P4, and the seventh pixel P7 of each pixel block PB (x, y) are ⁇ 1, the second pixel P2, the fifth pixel P5, and the eighth pixel P5.
- the transmission polarization azimuth of the light received by the pixel P8 is ⁇ 2
- the transmission polarization azimuth of the light received by the third pixel P3, the sixth pixel P6, and the ninth pixel P9 is ⁇ 3.
- )), c (cos 2 (
- )) for the second pixel P2, c (cos 2 (
- )), the fourth pixel for the third pixel P3 For P4, c (cos 2 (
- )), for the fifth pixel P5, c (cos 2 (
- )), and for the sixth pixel P6, c (cos 2 (
- )), c (cos 2 (
- ) for the seventh pixel P7, c (cos 2 (
- )), the ninth pixel for the eighth pixel P8 For P9, it is calculated by c (cos
- )), c (cos 2 (
- )) for the second pixel P2, c (cos 2 (
- For P4, c (cos 2 (
- )), for the fifth pixel P5, c (cos 2 (
- )), and for the sixth pixel P6, c (cos 2 (
- )), c (cos 2 (
- )) for the seventh pixel P7, c (cos 2 (
- )), the ninth pixel for the eighth pixel P8 For P9, c (cos 2 (
- )), for the second pixel P2, c (cos 2 (
- )), for the third pixel P3, c (cos 2 (
- )), the fourth pixel For P4, c (cos 2 (
- )), for the fifth pixel P5, c (cos 2 (
- )), and for the sixth pixel P6, c (cos 2 (
- )), for the seventh pixel P7, c (cos 2 (
- )), for the eighth pixel P8, c (cos 2 (
- the matrix C is as follows. become.
- dij is the transmittance between the j-th optical region Sj and the i-th pixel Pi. This transmittance is based on the spectral transmittances of the spectral filter elements 132A, 132B, and 132C provided in the i-th pixel Pi, from the wavelength band (center wavelength or peak wavelength) of the light that passes through the j-th optical region Sj. Desired.
- FIG. 15 is a graph showing an example of the relationship between the spectral transmittance of the spectral filter element provided in each pixel and the wavelength band of light transmitted through each optical region of the optical system.
- the first spectral filter element 132A is provided in the first pixel P1, the second pixel P2, and the third pixel P3. Therefore, the first pixel P1, the second pixel P2, and the third pixel P3 have the same spectral transmittance (the solid line graph T1 in FIG. 15).
- the second spectral filter element 132B is provided in the fourth pixel P4, the fifth pixel P5 and the sixth pixel P6.
- the fourth pixel P4, the fifth pixel P5, and the sixth pixel P6 have the same spectral transmittance (graph T2 indicated by a broken line in FIG. 15).
- the third spectral filter element 132C is provided in the seventh pixel P7, the eighth pixel P8 and the ninth pixel P9. Therefore, the seventh pixel P7, the eighth pixel P8, and the ninth pixel P9 have the same spectral transmittance (graph T3 indicated by a dashed line in FIG. 15).
- d54 0.8 for the fifth pixel P5,
- d64 0.8 for the sixth pixel P6, seventh
- pixel P7, d74 0.5
- for the eighth pixel P8, d84 0.5
- d94 0.5.
- d77 0.67
- for the eighth pixel P8, d87 0.67
- d97 0.67.
- d79 0.6
- for the eighth pixel P8, d89 0.6
- the ninth pixel P9, d99 0.6.
- the matrix D is as follows.
- the ratio bij of the light incident on the j-th optical region Sj of the optical system 10 being received by the i-th pixel Pi of each pixel block PB (x, y) is determined by the transmittance cij based on the polarization and the spectral distribution.
- each element bij of the matrix B is calculated as follows.
- the matrix B has an inverse matrix B ⁇ 1 . That is, since the matrix B has no rows and columns in which the same elements are arranged, an inverse matrix exists (the matrix C has columns in which the same elements are arranged (for example, the first column and the fourth column). The same elements are arranged in the sixth and sixth columns, and the same elements are arranged in the second, fifth, and seventh columns, and the third and sixth columns are arranged. And the ninth column has the same array of elements.) Also, the matrix D has rows in which the same array of elements exists (for example, the first to third rows have the same array of elements).
- the same elements are arranged in the 4th to 6th rows, and the same elements are arranged in the 7th to 9th rows.) However, with matrix C
- the matrix B obtained by the Hadamard product of the matrix D does not have rows and columns in which the same elements are arranged, so that the matrix B has an inverse matrix B ⁇ 1. Exists.).
- the inverse matrix B ⁇ 1 of the matrix B is as follows.
- the arithmetic expression for calculating the pixel signals X1 to X9 corresponding to the respective optical regions S1 to S9 from the pixel signals x1 to x9 of the respective pixels P1 to P9 is the following Expression 13.
- the coefficient storage unit 200C stores each element aij of the matrix A of 9 rows and 9 columns as a coefficient group.
- the coefficient storage unit 200C is an example of a storage unit.
- the image generation unit 200B acquires the coefficient group from the coefficient storage unit 200C, and from the pixel signals x1 to x9 obtained from the pixels P1 to P9 of each pixel block PB (x, y), the optical system 10 is calculated according to the above equation 1.
- the pixel signals X1 to X9 corresponding to the optical regions S1 to S9 are calculated, and the image data of the optical regions S1 to S9 are generated.
- Image generation unit 200B is an example of a calculation unit.
- the image data of each of the optical regions S1 to S9 generated by the image generation unit 200B is output to the outside and stored in the storage device as needed. Further, it is displayed on a display (not shown) as needed.
- FIG. 16 is a conceptual diagram of the operation of the image pickup apparatus according to the present embodiment.
- the light from the subject Obj passes through the optical regions S1 to S9 of the optical system 10 and is received by the pixels P1 to P2 of the image sensor 100.
- the first optical image OI1 is an optical image of light in the first wavelength band ⁇ f1 that is linearly polarized in the predetermined polarization direction (azimuth ⁇ 1).
- the second optical image OI2 is an optical image of light in the second wavelength band ⁇ f2 that is linearly polarized in the predetermined polarization direction (azimuth ⁇ 1).
- the light that has passed through the third optical region S3 of the optical system 10 forms a third optical image OI3 of the subject Obj on the light receiving surface of the image sensor 100.
- the third optical image OI3 is an optical image of light in the third wavelength band ⁇ f3 that is linearly polarized in the predetermined polarization direction (azimuth ⁇ 1).
- the light that has passed through the fourth optical region S4 of the optical system 10 forms a fourth optical image OI4 of the subject Obj on the light receiving surface of the image sensor 100.
- the fourth optical image OI4 is an optical image of light in the fourth wavelength band ⁇ f4 that is linearly polarized in the predetermined polarization direction (azimuth ⁇ 2).
- the light that has passed through the fifth optical region S5 of the optical system 10 forms a fifth optical image OI5 of the object Obj on the light receiving surface of the image sensor 100.
- the fifth optical image OI5 is an optical image of light in the fifth wavelength band ⁇ f5 that is linearly polarized in the predetermined polarization direction (azimuth ⁇ 2).
- the light that has passed through the sixth optical region S6 of the optical system 10 forms a sixth optical image OI6 of the subject Obj on the light receiving surface of the image sensor 100.
- This sixth optical image OI6 is an optical image of light in the sixth wavelength band ⁇ f6 that is linearly polarized in the predetermined polarization direction (azimuth ⁇ 2).
- the light that has passed through the seventh optical region S7 of the optical system 10 forms a seventh optical image OI7 of the subject Obj on the light receiving surface of the image sensor 100.
- the seventh optical image OI7 is an optical image of light in the seventh wavelength band ⁇ f7 that is linearly polarized in the predetermined polarization direction (azimuth ⁇ 3).
- the light that has passed through the eighth optical region S8 of the optical system 10 forms an eighth optical image OI8 of the subject Obj on the light receiving surface of the image sensor 100.
- the eighth optical image OI8 is an optical image of light in the eighth wavelength band ⁇ f8 that is linearly polarized in the predetermined polarization direction (azimuth ⁇ 3).
- the ninth optical image OI9 is an optical image of light in the ninth wavelength band ⁇ f9 that is linearly polarized in the predetermined polarization direction (azimuth ⁇ 3).
- the image sensor 100 receives light from each of the optical regions S1 to S9 of the optical system 10 at each of the pixels P1 to P9, and outputs signals (pixel signals) x1 to x9 corresponding to the amount of received light to the signal processing unit 200. .
- the first pixel P1 receives light from each of the optical regions S1 to S9 at a predetermined transmittance via the first spectral filter element 132A having a predetermined spectral transmittance (see the graph T1 in FIG. 15), In addition, the light of a predetermined polarization direction (azimuth angle ⁇ 1) is received via the first polarization filter element 122A. Then, the pixel signal x1 corresponding to the received light amount is output to the signal processing unit 200.
- the second pixel P2 receives light from each of the optical regions S1 to S9 with a predetermined transmittance via the first spectral filter element 132A, and also receives a predetermined polarization direction via the second polarization filter element 122B. Light of (azimuth angle ⁇ 2) is received. Then, the pixel signal x2 corresponding to the received light amount is output to the signal processing unit 200.
- the third pixel P3 receives light from each of the optical regions S1 to S9 with a predetermined transmittance via the first spectral filter element 132A and a predetermined polarization direction via the third polarizing filter element 122C. The light of (azimuth angle ⁇ 3) is received. Then, the pixel signal x3 corresponding to the received light amount is output to the signal processing unit 200.
- the fourth pixel P4 receives light from each of the optical regions S1 to S9 at a predetermined transmittance via the second spectral filter element 132B having a predetermined spectral transmittance (see graph T2 in FIG. 15), and , Light of a predetermined polarization direction (azimuth angle ⁇ 1) is received via the first polarization filter element 122A. Then, the pixel signal x4 corresponding to the received light amount is output to the signal processing unit 200.
- the fifth pixel P5 receives light from each of the optical regions S1 to S9 with a predetermined transmittance via the second spectral filter element 132B, and also transmits a predetermined polarization direction via the second polarization filter element 122B. Light of (azimuth angle ⁇ 2) is received. Then, the pixel signal x5 corresponding to the received light amount is output to the signal processing unit 200.
- the sixth pixel P6 receives light from each of the optical regions S1 to S9 with a predetermined transmittance via the second spectral filter element 132B, and also receives a predetermined polarization direction via the third polarization filter element 122C. The light of (azimuth angle ⁇ 3) is received. Then, the pixel signal x6 corresponding to the received light amount is output to the signal processing unit 200.
- the seventh pixel P7 receives light from each of the optical regions S1 to S9 at a predetermined transmittance via the third spectral filter element 132C having a predetermined spectral transmittance (see graph T3 in FIG. 15), and , Light of a predetermined polarization direction (azimuth angle ⁇ 1) is received via the first polarization filter element 122A. Then, the pixel signal x7 corresponding to the received light amount is output to the signal processing unit 200.
- the eighth pixel P8 receives the light from each of the optical regions S1 to S9 with a predetermined transmittance via the third spectral filter element 132C, and also receives the predetermined polarization direction via the second polarization filter element 122B. Light of (azimuth angle ⁇ 2) is received. Then, the pixel signal x8 corresponding to the received light amount is output to the signal processing unit 200.
- the ninth pixel P9 receives light from each of the optical regions S1 to S9 with a predetermined transmittance via the third spectral filter element 132C, and also receives a predetermined polarization direction via the third polarizing filter element 122C. The light of (azimuth angle ⁇ 3) is received. Then, the pixel signal x9 corresponding to the received light amount is output to the signal processing unit 200.
- the signal processing unit 200 uses the pixel signals x1 to x9 obtained from the pixels P1 to P9 of each pixel block PB (x, y) of the image sensor 100 to the pixel signal X1 corresponding to each of the optical regions S1 to S9 of the optical system 10. To X9 are calculated, and image data of images D1 to ID9 of the images obtained in the respective optical regions S1 to S9 are generated. That is, the calculation process according to Formula 1 using the matrix A is performed to calculate the pixel signals X1 to X9 corresponding to the optical regions S1 to S9 from the pixel signals x1 to x9 of the pixels P1 to P1 obtained from the image sensor 100. Then, image data of images ID1 to ID9 of the images obtained in the respective optical regions S1 to S9 are generated.
- one optical system 10 and one image sensor 100 can acquire images (multispectral images) in nine wavelength bands. Further, in each pixel block PB (x, y) of the image sensor 100, light from the optical system 10 can be incident under uniform conditions, so that a high quality image can be easily generated.
- the spectral filter 16 and the polarization filter 18 included in the optical system 10 and the polarization filter element 122A included in each of the pixels P1 to P9 of the image sensor 100, 122B, 122C and the spectral filter elements 132A, 132B, 132C are set as follows.
- the transmission polarization azimuth ⁇ 1 of the first polarization filter unit G1 of the polarization filter 18 included in the optical system 10 is 0 °
- the transmission polarization azimuth ⁇ 2 of the second polarization filter unit G2 is 60 °
- ⁇ 3 is set to 120 °.
- the polarization direction of the light transmitted through the first optical region S1, the second optical region S2, and the third optical region S3 is 0 °
- the light is transmitted through the fourth optical region S4, the fifth optical region S5, and the sixth optical region S6.
- the polarization direction of the light to be transmitted is 60 °
- the polarization direction of the light transmitted through the seventh optical region S7, the eighth optical region S8 and the ninth optical region S9 is 120 °.
- the transmission wavelength band of the first spectral filter unit F1 of the spectral filter 16 included in the optical system 10 is ⁇ f1, its central wavelength is ⁇ 1, the transmission wavelength band of the second spectral filter unit F2 is ⁇ f2, its central wavelength is ⁇ 2, and the third wavelength is The transmission wavelength band of the spectral filter unit F3 is ⁇ f3, its central wavelength is ⁇ 3, the transmission wavelength band of the fourth spectral filter unit F4 is ⁇ f4, its central wavelength is ⁇ 4, the transmission wavelength band of the fifth spectral filter unit F5 is ⁇ f5, and The central wavelength is ⁇ 5, the transmission wavelength band of the sixth spectral filter unit F6 is ⁇ f6, the central wavelength is ⁇ 6, the transmission wavelength band of the seventh spectral filter unit F7 is ⁇ f7, the central wavelength is ⁇ 7, and the eighth spectral filter unit F8 is The transmission wavelength band is ⁇ f8, the center wavelength thereof is ⁇ 8, the transmission wavelength band of the ninth spectral filter unit F9 is ⁇ f9, and the center wavelength
- the wavelength band of light passing through the first optical region S1 is ⁇ f1 (center wavelength ⁇ 1)
- the wavelength band of light passing through the second optical region S2 is ⁇ f2 (center wavelength ⁇ 2)
- the wavelength band of light that is transmitted is ⁇ f3 (center wavelength ⁇ 3)
- the wavelength band of light that is transmitted through the fourth optical region S4 is ⁇ f4 (center wavelength ⁇ 4)
- the wavelength band of light that is transmitted through the fifth optical region S5 is ⁇ f5 (center wavelength).
- the wavelength band of light passing through the sixth optical region S6 is ⁇ f6 (center wavelength ⁇ 6)
- the wavelength band of light passing through the seventh optical region S7 is ⁇ f7 (center wavelength ⁇ 1)
- passing through the eighth optical region S8 is ⁇ f8 (center wavelength ⁇ 8)
- the wavelength band of the light transmitted through the ninth optical region S9 is ⁇ f9 (center wavelength ⁇ 9).
- the transmission polarization direction ⁇ 1 of the first polarization filter element 122A provided in each pixel of the image sensor 100 is 0 °
- the transmission polarization direction ⁇ 2 of the second polarization filter element 122B is 60 °
- the transmission polarization direction ⁇ 3 of the third polarization filter element 122C Is 120 °.
- the polarization direction of the light received by the first pixel P1 is 0 °
- the polarization direction of the light received by the second pixel P2 is 60 °
- the polarization direction of the light received by the third pixel P3 is 120 °.
- the polarization direction of the light received by the fourth pixel P4 is 0 °
- the polarization direction of the light received by the fifth pixel P5 is 60 °
- the polarization direction of the light received by the sixth pixel P6 is 120 °
- the polarization direction of the light received by the seventh pixel P7 is 0 °
- the polarization direction of the light received by the eighth pixel P8 is 60 °
- the polarization direction of the light received by the ninth pixel P9 is 120 °.
- FIG. 17 is a graph of the spectral transmittance of the spectral filter element provided in each pixel of the image sensor.
- a graph T1 indicated by a solid line is a graph of the spectral transmittance of the first spectral filter element 132A.
- a graph T2 indicated by a broken line is a graph of the spectral transmittance of the second spectral filter element 132B.
- a graph T3 indicated by a dashed line is a graph of the spectral transmittance of the third spectral filter element 132C.
- Matrix B representing the amount of light interference from each optical region Sj is obtained by the Hadamard product of matrix C and matrix D above.
- the matrix A of the arithmetic expression (Equation 1) for removing interference is obtained by obtaining the inverse matrix B ⁇ 1 of the matrix B.
- the arithmetic expression for calculating the pixel signals X1 to X9 corresponding to the optical regions S1 to S9 from the pixel signals x1 to x9 of the pixels P1 to P9 is as shown in the following Expression 14. Obviously, in the image pickup apparatus of the present embodiment, the arithmetic expression for calculating the pixel signals X1 to X9 corresponding to the optical regions S1 to S9 from the pixel signals x1 to x9 of the pixels P1 to P9 is as shown in the following Expression 14. Become.
- FIG. 18 is a diagram showing an example of a subject image.
- FIG. 19 is a diagram showing an example of an image generated by the pixel signals x1 to x9 output from the image sensor.
- the image of the code CI1 indicates the image generated by the pixel signal x1 from the first pixel P1 of each pixel block PB (x, y).
- the image of the code CI2 indicates an image generated by the pixel signal x2 from the second pixel P2 of each pixel block PB (x, y).
- the image of the code CI3 indicates the image generated by the pixel signal x3 from the third pixel P3 of each pixel block PB (x, y).
- the image of the code CI4 indicates the image generated by the pixel signal x4 from the fourth pixel P4 of each pixel block PB (x, y).
- the image of the code CI5 indicates the image generated by the pixel signal x5 from the fifth pixel P5 of each pixel block PB (x, y).
- the image of the code CI6 indicates the image generated by the pixel signal x6 from the sixth pixel P6 of each pixel block PB (x, y).
- the image of the code CI7 indicates the image generated by the pixel signal x7 from the seventh pixel P7 of each pixel block PB (x, y).
- the image of the code CI8 indicates the image generated by the pixel signal x8 from the eighth pixel P8 of each pixel block PB (x, y).
- the image of the code CI9 indicates an image generated by the pixel signal x9 from the ninth pixel P9 of each pixel block PB (x, y).
- FIG. 20 is a diagram showing an example of an image generated by performing the interference removal processing on the pixel signals x1 to x9 output from the image sensor.
- the image with the code ID1 indicates the image obtained in the first optical region S1.
- the image with the code ID2 indicates the image obtained in the second optical region S2.
- the image with the code ID3 indicates the image obtained in the third optical region S3.
- the image of code ID4. The image obtained in the fourth optical region S4 is shown.
- the image with the code ID5 indicates the image obtained in the fifth optical region S5.
- the image with the code ID6 indicates the image obtained in the sixth optical region S6.
- the image with the code ID7 indicates the image obtained in the seventh optical region S7.
- the image with the code ID8 indicates the image obtained in the eighth optical region S8.
- the image with the code ID9 indicates the image obtained in the ninth optical region S9. Clear images with interference removed are obtained for any of the images ID1 to ID9.
- the types of spectral filter elements (first optical filter elements) provided in each pixel of the image sensor are n types, and the types of polarization filter elements (second optical filter elements) (types of transmission polarization directions) are m types.
- n is an integer of 2 or more (n ⁇ 2)
- m is an integer of 2 or more and 3 or less (2 ⁇ m ⁇ 3).
- each pixel is composed of a combination of different spectral filter elements and polarization filter elements. Therefore, in this case, one pixel block is composed of (n ⁇ m) pixels.
- the number k of images that can be acquired is equal to or less than the number q of pixels that configure one pixel block (k ⁇ q). However, k is an integer of 3 or more.
- the number k of images to be acquired does not necessarily have to be the same as the number q of pixels forming one pixel block. You may comprise one pixel block by the number of pixels more than the number of the images to acquire.
- Optical system is equipped with as many optical areas as the number of images to be acquired.
- a polarization filter unit is provided in each optical region, but the polarization filter unit on the optical system side is set so as to satisfy the following conditions. That is, regarding the transmission polarization azimuth of the polarization filter section provided in each optical region, the number of optical regions having the same transmission polarization azimuth is u. This number u is set to be equal to or less than the number of types of spectral filter elements (first optical filter elements) on the image sensor side.
- the number u of optical regions having the same transmission polarization azimuth is the spectral filter element on the image sensor side (first optical filter element).
- the number of types is n or less (u ⁇ n).
- one pixel block is configured by q pixels by combining n types of spectral filter elements and m types of polarization filter elements
- q pixel signals x1, x2 from each pixel block of the image sensor, ..., xq is acquired.
- the optical system calculates k pixel signals X1, X2, ..., Xk corresponding to each optical region from the q pixel signals x1, x2, ..., Xq.
- An arithmetic expression for is defined using the matrix A as follows.
- the matrix A is the inverse matrix B ⁇ 1 of the matrix B whose elements are the ratio of the light incident on each optical region of the optical system to each pixel of each pixel block of the image sensor. Obtained. Further, the ratio is calculated by the product of the transmittance c based on the polarized light and the transmittance d based on the spectral transmittance.
- the combination of the transmission polarization directions of the polarization filter sections provided in each optical region of the optical system and the combination of the transmission polarization directions of the polarization filter element (second optical filter element) provided in the image sensor are made the same.
- this combination does not necessarily have to be the same.
- a combination of 45 °, 90 ° and 135 ° may be used on the optical system side, and a combination of 0 °, 60 ° and 120 ° may be used on the image sensor side.
- the transmission wavelength band set in each optical region of the optical system can be set arbitrarily. For example, a specific wavelength band may be subdivided and an image for each subdivided band may be acquired. In this case, a multi-spectral image of a specific band can be acquired.
- the pupil portion of the optical system is equally divided in the circumferential direction to include a plurality of optical regions, but the mode of pupil division is not limited to this.
- a concentric division, a lattice division, a slit division, and the like can be adopted.
- the array of pixels forming one pixel block is not limited to that in the above-described embodiment.
- the arrangement of pixels can be appropriately changed according to the number of pixels forming one pixel block and the like.
- the polarization filter element and the spectral filter element are arranged between the photodiode and the microlens, but either one or both of them is arranged in front of the microlens (subject side). It can also be configured to.
- the function of the image generation unit 200B (arithmetic unit) in the signal processing unit 200 can be realized by using various processors.
- the various processors include, for example, a CPU (Central Processing Unit) which is a general-purpose processor that executes software (program) to realize various functions.
- the above-mentioned various processors include a programmable logic device (Programmable) which is a processor capable of changing a circuit configuration after manufacturing, such as a GPU (Graphics Processing Unit) or an FPGA (Field Programmable Gate Array) which is a processor specialized in image processing.
- Logic Device PLD
- the above-mentioned various processors include a dedicated electric circuit which is a processor having a circuit configuration designed specifically for executing a specific process such as an ASIC (Application Specific Integrated Circuit).
- each unit may be realized by one processor, or may be realized by a plurality of same or different processors (for example, a plurality of FPGAs, a combination of a CPU and an FPGA, or a combination of a CPU and a GPU). Further, a plurality of functions may be realized by one processor. As an example in which a plurality of functions are configured by one processor, first, as represented by a computer such as a server, one processor is configured by a combination of one or more CPUs and software, and the processor is configured by a plurality of processors. There is a form realized as a function of.
- a processor that realizes the functions of the entire system by one IC (Integrated Circuit) chip is used, as represented by a system-on-chip (SoC).
- SoC system-on-chip
- various functions are configured by using one or more of the above various processors as a hardware structure.
- the hardware structure of these various processors is, more specifically, an electrical circuit in which circuit elements such as semiconductor elements are combined.
- These electric circuits may be electric circuits that realize the above-described functions using a logical sum, a logical product, a logical negation, an exclusive logical sum, and a logical operation in which these are combined.
- the processor (computer) readable code of the software to be executed is stored in a non-transitory recording medium such as a ROM (Read Only Memory), Refers to the software.
- the software stored in the non-transitory recording medium includes a program for executing input, analysis, display control, and the like of an image.
- the code may be recorded on a non-temporary recording medium such as a magneto-optical recording device or a semiconductor memory instead of the ROM.
- a RAM Random Access Memory
- data stored in an EEPROM (Electronically Erasable and Programmable Read Only Memory) not shown can be referred to. it can.
- the coefficient storage unit 200C of the signal processing unit 200 can be implemented by a memory such as a ROM (Read-only Memory) or an EEPROM (Electrically Erasable Programmable Read-only Memory).
- a memory such as a ROM (Read-only Memory) or an EEPROM (Electrically Erasable Programmable Read-only Memory).
- the image pickup device may be configured as a lens-interchangeable image pickup device in which the optical system can be exchanged.
- the matrix A is uniquely determined for each lens (optical system)
- the matrix A is prepared for each lens, and the coefficient group is stored in the coefficient storage unit.
- the coefficient group of the matrix A corresponding to the exchanged lens is read from the coefficient storage unit, the arithmetic processing is executed, and an image of each optical region is generated.
- Imaging Device 10
- Optical System 12 Lens 14
- Pupil Division Filter 16
- Polarization Filter 100
- Image Sensor 110
- Pixel Array Layer 112 Photodiode 120
- Third Polarization Filter element 130
- Microlens array layer 142 Microlens 200
- Signal processing unit 200A Analog signal processing unit 200B Image generation unit 200C Coefficient storage Part CI1 Image CI2 generated by the pixel signal x1 from the first pixel P1 Image CI2 Image generated by the pixel signal x2 from the second pixel P2 CI3 Pixel signal x from the third pixel P3 Image CI4 Image generated by pixel signal x4 from fourth pixel P4 Image CI5 Image generated by pixel signal x5 from
- Pixel signals of the fourth pixel P4 are extracted from the third image data D4 pixel block generated by extracting pixel signals A sixth image data D6 generated by extracting the pixel signal of the fifth pixel P5 from the fourth image data D5 pixel block, and a sixth signal generated by extracting the pixel signal of the sixth pixel P6 from the fifth image data D6 pixel block.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Studio Devices (AREA)
- Color Television Image Signal Generators (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
1つのイメージセンサで高品質なマルチスペクトル画像を取得できる撮像装置を提供する。分光透過率の異なるn種(n≧2)の分光フィルタ素子と、透過偏光方位の異なるm種(2≦m≦3)の偏光フィルタ素子とを組み合わせて、q種(q=n×m)の光を各画素で受光する画素ブロックを複数備えたイメージセンサ(100)と、透過する光の波長帯域が異なるk個(k≦q)の光学領域を備え、かつ、各光学領域に偏光フィルタ部を備えた光学系(10)と、イメージセンサ(100)から得られる各画素の信号(画素信号)を処理して、光学系(10)の各光学領域の画像を生成する信号処理部(200)と、を備える。信号処理部(200)は、イメージセンサ(100)の各画素ブロックから得られるq個の画素信号(x1、x2、…、xq)に対して所定の演算処理を行って、光学系(100)の各光学領域に対応したk個の画素信号(X1、X2、…、Xk)を算出し、各光学領域の画像を生成する。
Description
本発明は、撮像装置に係り、特に、複数の波長帯域の画像(マルチスペクトル画像)を取得する撮像装置に関する。
複数の波長帯域の画像(マルチスペクトル画像)を取得する撮像装置として、特許文献1には、光学系の瞳部分を分割し、分割された瞳部分のそれぞれに分光透過率の異なる光学フィルタを配置し、かつ、イメージセンサの前方にマイクロレンズアレイを配置した構成の撮像装置が記載されている。この撮像装置は、マイクロレンズアレイによる光線分離効果によって、瞳部分の異なる光学領域からの光をそれぞれ別の画素へと導くことにより、1つのイメージセンサでマルチスペクトル画像を取得する。
しかし、マイクロレンズアレイによる光線の分離は必ずしも完全ではない。このため、特許文献1の撮像装置では、隣接する画素に光が漏れ、混信(クロストーク)が発生するという問題がある。
特許文献2には、この問題を解決するために、各画素から得られる信号(画素信号)に所定の信号処理を施して、混信の影響を除去することが提案されている。
しかしながら、マイクロレンズアレイを用いて光線を分離した場合に各画素で生じる混信の量は、画素の位置によって異なる。したがって、特許文献2の撮像装置で、より高品質な画像を得るには、画素ごとに混信の発生量を求める必要がある。しかし、これには多大な労力を要する。
本発明は、このような事情に鑑みてなされたもので、1つのイメージセンサで高品質なマルチスペクトル画像を取得できる撮像装置を提供することを目的とする。
上記課題を解決するための手段は、次のとおりである。
(1)nをn≧2を満たす整数、mを2≦m≦3を満たす整数、qをnとmの積とした場合に、分光透過率の異なるn種の第1光学フィルタ素子と、透過偏光方位の異なるm種の第2光学フィルタ素子とを組み合わせて、q種の光を各画素で受光する画素ブロックを複数備えたイメージセンサと、kをk≦qを満たす整数とした場合に、透過する光の波長帯域が異なるk個の光学領域を備え、かつ、各光学領域に偏光フィルタ部を備えた光学系と、iを1≦i≦kを満たす整数、jを1≦j≦qを満たす整数とした場合に、各要素がaijで表されるk行q列の行列Aで構成される係数群を記憶する記憶部と、記憶部から係数群を取得し、イメージセンサの各画素ブロックから得られるq個の画素信号x1、x2、…、xqから、下記式によって、光学系の各光学領域に対応したk個の画素信号X1、X2、…、Xkを算出する演算部と、を備える撮像装置。
本態様によれば、イメージセンサの各画素から得られる信号に対して、画素ブロック単位で所定の演算処理を施すことにより、光学系の各光学領域に対応した信号が得られる。すなわち、混信(クロストーク)のない信号が得られる。これにより、高品質なマルチスペクトル画像を取得できる。
(2)行列Aは、光学系の各光学領域に入射した光が、イメージセンサの各画素ブロックの各画素で受光される割合を要素とする行列の逆行列を算出して取得される、上記(1)の撮像装置。
本態様によれば、光学系の各光学領域に入射した光が、イメージセンサの各画素ブロックの各画素で受光される割合を要素とする行列Bの逆行列B-1を算出して、上記演算式の行列Aが求められる。
(3)光学系の各光学領域に入射した光が、イメージセンサの各画素ブロックの各画素で受光される割合は、偏光に基づく透過率をc、分光透過率に基づく透過率をdとした場合に、cとdとの積で算出される、上記(2)の撮像装置。
本態様によれば、上記行列Bの各要素が、偏光に基づく透過率cと分光透過率に基づく透過率dとの積で算出される。
(4)偏光に基づく透過率cは、光学領域を透過する光の透過偏光方位と画素が受光する光の透過偏光方位との角度差の余弦の二乗を算出して求められ、分光透過率に基づく透過率dは、光学領域を透過する光の波長帯域と画素に備えられた第1光学フィルタ素子の分光透過率とに基づいて求められる、上記(3)の撮像装置。
本態様によれば、偏光に基づく透過率cが、光学領域を透過する光の透過偏光方位と画素が受光する光の透過偏光方位との角度差の余弦の二乗で求められる。また、分光透過率に基づく透過率dが、光学領域を透過する光の波長帯域と画素に備えられた第1光学フィルタ素子の分光透過率とに基づいて求められる。
(5)光学系は、同じ透過偏光方位を有する偏光フィルタ部の数がn以下である、上記(1)から(4)のいずれか一の撮像装置。
本態様によれば、光学系において、同じ透過偏光方位を有する偏光フィルタ部の数が、イメージセンサ側に備えられる第1光学フィルタ素子の種類の数以下とされる。
(6)イメージセンサの各画素ブロックは、分光透過率の異なる3種の第1光学フィルタ素子と、透過偏光方位の異なる3種の第2光学フィルタ素子とを組み合わせて、9種の光を各画素で受光する構成を有する、上記(1)から(5)のいずれか一の撮像装置。
本態様によれば、イメージセンサの各画素ブロックが、分光透過率の異なる3種の第1光学フィルタ素子と、透過偏光方位の異なる3種の第2光学フィルタ素子とを組み合わせて、9種の光を各画素で個別に受光する構成を有する。
(7)光学系は、透過する光の波長帯域が異なる9個の光学領域を備える、上記(6)の撮像装置。
本態様によれば、光学系には、透過する光の波長帯域が異なる9個の光学領域が備えられる。
(8)光学系は、同じ透過偏光方位の偏光フィルタ部を備えた光学領域を3個ずつ備える、上記(7)の撮像装置。
本態様によれば、光学系には、同じ透過偏光方位の偏光フィルタ部を備えた光学領域が3個ずつ備えられる。
(9)光学系に備えられる偏光フィルタ部の透過偏光方位の組み合わせと、イメージセンサに備えられる第2光学フィルタ素子の透過偏光方位の組み合わせが同じである、上記(8)の撮像装置。
本態様によれば、光学系に備えられる偏光フィルタ部の透過偏光方位の組み合わせと、イメージセンサに備えられる第2光学フィルタ素子の透過偏光方位の組み合わせが、同じ構成とされる。たとえば、光学系に備えられる偏光フィルタ部の透過偏光方位が0°、60°、90°の場合、イメージセンサに備えられる第2光学フィルタ素子の透過偏光方位も0°、60°、90°とされる。
(10)光学系は、異なる透過波長の狭帯域フィルタを各光学領域に備える、上記(1)から(9)のいずれか一の撮像装置。
本態様によれば、光学系には、異なる透過波長の狭帯域フィルタが、各光学領域に備えられる。
(11)光学系は、瞳位置に狭帯域フィルタを備える、上記(10)の撮像装置。
本態様によれば、光学系は、瞳位置に狭帯域フィルタが備えられる。
(12)イメージセンサは、各画素を構成するフォトダイオードとマイクロレンズとの間に第1光学フィルタ素子及び第2光学フィルタ素子を有する、上記(1)から(11)のいずれか一の撮像装置。
本態様によれば、イメージセンサは、各画素を構成するフォトダイオードとマイクロレンズとの間に第1光学フィルタ素子及び第2光学フィルタ素子を備えた構成を有する。
本発明によれば、1つのイメージセンサで高品質なマルチスペクトル画像を取得できる。
以下、添付図面に従って本発明の好ましい実施の形態について詳説する。
[装置構成]
ここでは、9つの波長帯域の画像(マルチスペクトル画像)を取得する場合を例に説明する。
ここでは、9つの波長帯域の画像(マルチスペクトル画像)を取得する場合を例に説明する。
図1は、本発明に係る撮像装置の一実施の形態の概略構成を示す図である。
同図に示すように、撮像装置1は、光学系10、イメージセンサ100及び信号処理部200を備える。
〔光学系〕
光学系10は、レンズ12及び瞳分割フィルタ14を備える。
光学系10は、レンズ12及び瞳分割フィルタ14を備える。
レンズ12は、被写体の光学像をイメージセンサ100の受光面上に結像させる。レンズ12は、撮像装置1の用途に応じた構成とされる。
瞳分割フィルタ14は、光学系10の瞳位置又はその近傍に備えられ、光学系10の瞳部分を9つの光学領域に分割する。瞳分割フィルタ14は、分光フィルタ16と偏光フィルタ18とを重ね合わせて構成される。
図2は、瞳分割フィルタの正面図である。
同図に示すように、瞳分割フィルタ14は、周方向に9等分割された9つの光学領域Sj(j=1、2、3、4、5、6、7、8、9)を有する。以下、必要に応じて、符号S1の光学領域を第1光学領域S1、符号S2の光学領域を第2光学領域S2、符号S3の光学領域を第3光学領域S3、符号S4の光学領域を第4光学領域S4、符号S5の光学領域を第5光学領域S5、符号S6の光学領域を第6光学領域S6、符号S7の光学領域を第7光学領域S7、符号S8の光学領域を第8光学領域S8、符号S9の光学領域を第9光学領域S9として、9つの光学領域Sjを区別する。
各光学領域Sjは、それぞれ異なる波長帯域の光が透過する設定とされる。また、9つの光学領域Sjのうち第1光学領域S1、第2光学領域S2及び第3光学領域S3で構成される光学領域群と、第4光学領域S4、第5光学領域S5及び第6光学領域S6で構成される光学領域群と、第7光学領域S7、第8光学領域S8及び第9光学領域S9で構成される光学領域群とは、互いに異なる偏光方向(透過偏光方位)の光を透過する設定とされる。このような構成は、次の構成の分光フィルタ16及び偏光フィルタ18の組み合わせによって実現される。
図3は、分光フィルタの正面図である。
分光フィルタ16は、周方向に9等分割された9つの分光フィルタ部F1~F9を有する。以下、必要に応じて、符号F1の分光フィルタ部を第1分光フィルタ部F1、符号F2の分光フィルタ部を第2分光フィルタ部F2、符号F3の分光フィルタ部を第3分光フィルタ部F3、符号F4の分光フィルタ部を第4分光フィルタ部F4、符号F5の分光フィルタ部を第5分光フィルタ部F5、符号F6の分光フィルタ部を第6分光フィルタ部F6、符号F7の分光フィルタ部を第7分光フィルタ部F7、符号F8の分光フィルタ部を第8分光フィルタ部F8、符号F9の分光フィルタ部を第9分光フィルタ部F9として、9つの分光フィルタ部F1~F9を区別する。各分光フィルタ部F1~F9は、それぞれ瞳分割フィルタ14の各光学領域S1~S9に対応する。すなわち、第1分光フィルタ部F1は第1光学領域S1に対応し、第2分光フィルタ部F2は第2光学領域S2に対応し、第3分光フィルタ部F3は第3光学領域S3に対応し、第4分光フィルタ部F4は第4光学領域S4に対応し、第5分光フィルタ部F5は第5光学領域S5に対応し、第6分光フィルタ部F6は第6光学領域S6に対応し、第7分光フィルタ部F7は第7光学領域S7に対応し、第8分光フィルタ部F8は第8光学領域S8に対応し、第9分光フィルタ部F9は第9光学領域S9に対応する。
各分光フィルタ部F1~F9は、それぞれ異なる波長帯域の光を透過させる構成を有する。すなわち、それぞれ異なる分光透過率特性を有する。
図4は、各分光フィルタ部に設定される透過波長の一例を示すグラフである。
第1分光フィルタ部F1が透過させる光の波長帯域を第1の波長帯域Δf1、第2分光フィルタ部F2が透過させる光の波長帯域を第2の波長帯域Δf2、第3分光フィルタ部F3が透過させる光の波長帯域を第3の波長帯域Δf3、第4分光フィルタ部F4が透過させる光の波長帯域を第4の波長帯域Δf4、第5分光フィルタ部F5が透過させる光の波長帯域を第5の波長帯域Δf5、第6分光フィルタ部F6が透過させる光の波長帯域を第6の波長帯域Δf6、第7分光フィルタ部F7が透過させる光の波長帯域を第7の波長帯域Δf7、第8分光フィルタ部F8が透過させる光の波長帯域を第8の波長帯域Δf8、第9分光フィルタ部F9が透過させる光の波長帯域を第9の波長帯域Δf9とする。本実施の形態の撮像装置1では、各分光フィルタ部F1~F9が、狭帯域の光、特に、特定の波長帯域内の9つの帯域を透過する設定とされる。
図5は、偏光フィルタの正面図である。
偏光フィルタ18は、周方向に3等分割された3つの偏光フィルタ部G1~G3を有する。以下、必要に応じて、符号G1の偏光フィルタ部を第1偏光フィルタ部G1、符号G2の偏光フィルタ部を第2偏光フィルタ部G2、符号G3の偏光フィルタ部を第3偏光フィルタ部G3として、3つの偏光フィルタ部G1~G3を区別する。第1偏光フィルタ部G1は、瞳分割フィルタ14の第1光学領域S1~第3光学領域S3に対応し、第2偏光フィルタ部G2は、瞳分割フィルタ14の第4光学領域S4~第6光学領域S6に対応し、第3偏光フィルタ部G3は、瞳分割フィルタ14の第7光学領域S7~第9光学領域S9に対応する。
図6は、偏光フィルタの各偏光フィルタ部に設定される偏光方向の一例を示す図である。
偏光方向(透過偏光方位)は、光軸Lと直交するXY平面において、偏光透過軸がX軸と成す角度(方位角)によって表わされる。図6において、符号Aaは、第1偏光フィルタ部G1の偏光透過軸を示し、符号Abは、第2偏光フィルタ部G2の偏光透過軸を示し、符号Acは、第3偏光フィルタ部G3の偏光透過軸を示している。図6に示すように、各偏光フィルタ部G1~G3は、それぞれ異なる偏光方向(透過偏光方位)の光を透過させる構成を有する。第1偏光フィルタ部G1が透過させる光の偏光方向(透過偏光方位)をα1、第2偏光フィルタ部G2が透過させる光の偏光方向(透過偏光方位)をα2、第3偏光フィルタ部G3が透過させる光の偏光方向(透過偏光方位)をα3とする。本実施の形態の撮像装置1では、第1偏光フィルタ部G1が、方位角0°(α1=0°)の光を透過する設定とされ、第2偏光フィルタ部G2が方位角60°(α2=60°)の光を透過する設定とされ、第3偏光フィルタ部G3が方位角120°(α3=120°)の光を透過する設定とされる。
以上の構成の分光フィルタ16及び偏光フィルタ18を同軸上に重ね合わせることで、瞳分割フィルタ14が構成される。この瞳分割フィルタ14は、次のように作用する。すなわち、瞳分割フィルタ14の第1光学領域S1を通過する光は、分光フィルタ16の第1分光フィルタ部F1及び偏光フィルタ18の第1偏光フィルタ部G1を通過する。よって、第1光学領域S1からは、第1の波長帯域Δf1の光が、偏光方向α1に偏光(直線偏光)されて出射される。また、瞳分割フィルタ14の第2光学領域S2を通過する光は、分光フィルタ16の第2分光フィルタ部F2及び偏光フィルタ18の第1偏光フィルタ部G1を通過する。よって、第2光学領域S2からは、第2の波長帯域Δf2の光が、偏光方向α1に偏光(直線偏光)されて出射される。また、瞳分割フィルタ14の第3光学領域S3を通過する光は、分光フィルタ16の第3分光フィルタ部F3及び偏光フィルタ18の第1偏光フィルタ部G1を通過する。よって、第3光学領域S3からは、第3の波長帯域Δf3の光が、偏光方向α1に偏光(直線偏光)されて出射される。また、瞳分割フィルタ14の第4光学領域S4を通過する光は、分光フィルタ16の第4分光フィルタ部F4及び偏光フィルタ18の第2偏光フィルタ部G2を通過する。よって、第4光学領域S4からは、第4の波長帯域Δf4の光が、偏光方向α2に偏光(直線偏光)されて出射される。また、瞳分割フィルタ14の第5光学領域S5を通過する光は、分光フィルタ16の第5分光フィルタ部F5及び偏光フィルタ18の第2偏光フィルタ部G2を通過する。よって、第5光学領域S5からは、第5の波長帯域Δf5の光が、偏光方向α2に偏光(直線偏光)されて出射される。また、瞳分割フィルタ14の第6光学領域S6を通過する光は、分光フィルタ16の第6分光フィルタ部F6及び偏光フィルタ18の第2偏光フィルタ部G2を通過する。よって、第6光学領域S6からは、第6の波長帯域Δf6の光が、偏光方向α2に偏光(直線偏光)されて出射される。また、瞳分割フィルタ14の第7光学領域S7を通過する光は、分光フィルタ16の第7分光フィルタ部F7及び偏光フィルタ18の第3偏光フィルタ部G3を通過する。よって、第7光学領域S7からは、第7の波長帯域Δf7の光が、偏光方向α3に偏光(直線偏光)されて出射される。また、瞳分割フィルタ14の第8光学領域S8を通過する光は、分光フィルタ16の第8分光フィルタ部F8及び偏光フィルタ18の第3偏光フィルタ部G3を通過する。よって、第8光学領域S8からは、第8の波長帯域Δf8の光が、偏光方向α3に偏光(直線偏光)されて出射される。また、瞳分割フィルタ14の第9光学領域S9を通過する光は、分光フィルタ16の第9分光フィルタ部F9及び偏光フィルタ18の第3偏光フィルタ部G3を通過する。よって、第9光学領域S9からは、第9の波長帯域Δf9の光が、偏光方向α3に偏光(直線偏光)されて出射される。
光学系10は、全体が光軸Lに沿って前後移動可能に設けられる。これにより、焦点調節が行われる。
〔イメージセンサ〕
図7は、イメージセンサの画素の配列の概略構成を示す図である。
図7は、イメージセンサの画素の配列の概略構成を示す図である。
同図に示すように、イメージセンサ100は、その受光面に複数の画素Pi(i=1、2、3、4、5、6、7、8、9)を有する。画素Piは、水平方向(x方向)及び垂直方向(y方向)に沿って、一定ピッチで規則的に配列される。
本実施の形態のイメージセンサ100は、隣接する9個(3個×3個)の画素Piで1つの画素ブロックPB(x、y)を構成し、この画素ブロックPB(x、y)が、水平方向(x方向)及び垂直方向(y方向)に沿って規則的に配列される。以下、必要に応じて、符号P1の画素を第1画素P1、符号P2の画素を第2画素P2、符号P3の画素を第3画素P3、符号P4の画素を第4画素P4、符号P5の画素を第5画素P5、符号P6の画素を第6画素P6、符号P7の画素を第7画素P7、符号P8の画素を第8画素P8、符号P9の画素を第9画素P9として、1つの画素ブロックPB(x、y)に備えられる9個の画素を区別する。各画素Piは、それぞれ異なる特性の光を受光する。
図8は、イメージセンサの概略構成を示す図である。図9は、1つの画素(図8の破線部)の概略構成を示す断面図である。
イメージセンサ100は、ピクセルアレイ層110、偏光フィルタ素子アレイ層120、分光フィルタ素子アレイ層130及びマイクロレンズアレイ層140を有する。各層は、像面側から物体側に向かって、ピクセルアレイ層110、偏光フィルタ素子アレイ層120、分光フィルタ素子アレイ層130、マイクロレンズアレイ層140の順に配置される。
ピクセルアレイ層110は、多数のフォトダイオード112を二次元的に配列して構成される。1つのフォトダイオード112は、1つの画素を構成する。各フォトダイオード112は、水平方向(x方向)及び垂直方向(y方向)に沿って規則的に配置される。
偏光フィルタ素子アレイ層120は、互いに偏光方向(透過偏光方位)の異なる3種類の偏光フィルタ素子122A、122B、122Cを二次元的に配列して構成される。以下、必要に応じて、符号122Aの偏光フィルタ素子を第1偏光フィルタ素子122A、符号122Bの偏光フィルタ素子を第2偏光フィルタ素子122B、符号122Cの偏光フィルタ素子を第3偏光フィルタ素子122Cとして、3種類の偏光フィルタ素子122A、122B、122Cを区別する。各偏光フィルタ素子122A、122B、122Cは、フォトダイオード112と同じ間隔で配置され、画素ごとに備えられる。第1偏光フィルタ素子122Aが透過させる光の偏光方向(透過偏光方位)をβ1、第2偏光フィルタ素子122Bが透過させる光の偏光方向(透過偏光方位)をβ2、第3偏光フィルタ素子122Cが透過させる光の偏光方向(透過偏光方位)をβ3とする。本実施の形態の撮像装置1では、第1偏光フィルタ素子122Aが、方位角0°(β=0°)の光を透過する設定とされ、第2偏光フィルタ素子122Bが方位角60°(β2=60°)の光を透過する設定とされ、第3偏光フィルタ素子122Cが方位角120°(β3=120°)の光を透過する設定とされる。偏光フィルタ素子122A、122B、122Cは、第2光学フィルタの一例である。
各画素ブロックPB(x、y)において、偏光フィルタ素子122A、122B、122Cは、規則的に配列される。
図10は、各画素ブロックに備えられる偏光フィルタ素子の配列パターンの一例を示す図である。
同図に示すように、本実施の形態の撮像装置1では、画素ブロック内の第1列目の画素である第1画素P1、第4画素P4及び第7画素P7に第1偏光フィルタ素子122Aが備えられ、画素ブロック内の第2列目の画素である第2画素P2、第5画素P5及び第8画素P8に第2偏光フィルタ素子122Bが備えられ、画素ブロック内の第3列目の画素である第3画素P3、第6画素P6及び第9画素P9に第3偏光フィルタ素子122Cが備えられる。
分光フィルタ素子アレイ層130は、互いに分光透過率の異なる3種類の分光フィルタ素子132A、132B、132Cを二次元的に配列して構成される。以下、必要に応じて、符号132Aの分光フィルタ素子を第1分光フィルタ素子132A、符号132Bの分光フィルタ素子を第2分光フィルタ素子132B、符号132Cの分光フィルタ素子を第3分光フィルタ素子132Cとして、3種類の分光フィルタ素子132A、132B、132Cを区別する。各分光フィルタ素子132A、132B、132Cは、フォトダイオード112と同じ間隔で配置され、画素ごとに備えられる。分光フィルタ素子132A、132B、132Cは、第1光学フィルタの一例である。
図11は、各分光フィルタ素子の分光透過率の設定の一例を示すグラフである。
同図において、実線で示すグラフT1は、第1分光フィルタ素子132Aの分光透過率のグラフである。また、破線で示すグラフT2は、第2分光フィルタ素子132Bの分光透過率のグラフである。また、一点破線で示すグラフT3は、第3分光フィルタ素子132Cの分光透過率のグラフである。
図11に示すように、各分光フィルタ素子132A、132B、132Cは、光学系10に備えられた分光フィルタ16の各分光フィルタ部F1~F9を透過する光が異なる透過率で透過する構成を有する。特に、本実施の形態の撮像装置1では、第1分光フィルタ素子132Aは、短い波長帯域の光をより多く透過させる特性を有し、第2分光フィルタ素子132Bは、中間の波長帯域の光をより多く透過させる特性を有し、第3分光フィルタ素子132Cは、長い波長帯域の光をより多く透過させる特性を有する。
図12は、各画素ブロックに備えられる分光フィルタ素子の配列パターンの一例を示す図である。
同図に示すように、各画素ブロックPB(x、y)において、分光フィルタ素子132A、132B、132Cは、規則的に配列される。本実施の形態の撮像装置1では、画素ブロック内の第1行目の画素である第1画素P1、第2画素P2及び第3画素P3に第1分光フィルタ素子132Aが備えられ、画素ブロック内の第2行目の画素である第4画素P4、第5画素P5及び第6画素P6に第2分光フィルタ素子132Bが備えられ、画素ブロック内の第3行目の画素である第7画素P7、第8画素P8及び第9画素P9に第3分光フィルタ素子132Cが備えられる。
マイクロレンズアレイ層140は、多数のマイクロレンズ142を二次元的に配列して構成される。各マイクロレンズ142は、フォトダイオード112と同じ間隔で配置され、1画素ごとに備えられる。マイクロレンズ142は、光学系10からの光をフォトダイオード112に効率よく集光させる目的で備えられる。
以上のように構成されるイメージセンサ100は、各画素ブロックPB(x、y)において、各画素Piが、次のように光学系10からの光を受光する。すなわち、第1画素P1は、第1分光フィルタ素子132A及び第1偏光フィルタ素子122Aを介して、光学系10からの光を受光する。また、第2画素P2は、第1分光フィルタ素子132A及び第2偏光フィルタ素子122Bを介して、光学系10からの光を受光する。また、第3画素P3は、第1分光フィルタ素子132A及び第3偏光フィルタ素子122Cを介して、光学系10からの光を受光する。また、第4画素P4は、第2分光フィルタ素子132B及び第1偏光フィルタ素子122Aを介して、光学系10からの光を受光する。また、第5画素P5は、第2分光フィルタ素子132B及び第2偏光フィルタ素子122Bを介して、光学系10からの光を受光する。また、第6画素P6は、第2分光フィルタ素子132B及び第3偏光フィルタ素子122Cを介して、光学系10からの光を受光する。また、第7画素P7は、第3分光フィルタ素子132C及び第1偏光フィルタ素子122Aを介して、光学系10からの光を受光する。また、第8画素P8は、第3分光フィルタ素子132C及び第2偏光フィルタ素子122Bを介して、光学系10からの光を受光する。また、第9画素P9は、第3分光フィルタ素子132C及び第3偏光フィルタ素子122Cを介して、光学系10からの光を受光する。このように、画素ブロックPB(x、y)の各画素Piは、異なる組み合わせの分光フィルタ素子132A、132B、132Cと偏光フィルタ素子122A、122B、122Cを有することにより、それぞれ異なる特性の光を受光する。
〔信号処理部〕
信号処理部200は、イメージセンサ100から出力される信号を処理して、光学系10の各光学領域Sjで取得される画像データを生成する。
信号処理部200は、イメージセンサ100から出力される信号を処理して、光学系10の各光学領域Sjで取得される画像データを生成する。
図13は、信号処理部の概略構成を示すブロック図である。
同図に示すように、信号処理部200は、アナログ信号処理部200A、画像生成部200B及び係数記憶部200Cを含む。
アナログ信号処理部200Aは、イメージセンサ100の各画素から出力されるアナログの画素信号を取り込み、所定の信号処理(たとえば、相関二重サンプリング処理、増幅処理等)を施した後、デジタル信号に変換して出力する。
画像生成部200Bは、デジタル信号に変換された後の画素信号に所定の信号処理を施して、各光学領域Sjに対応した画像データを生成する。すなわち、各光学領域Sjで取得される画像の画像データ画像を生成する。
図14は、画像生成の概念図である。
各画素ブロックPB(x,y)には、第1画素P1、第2画素P2、第3画素P3、第4画素P4、第5画素P5、第6画素P6、第7画素P7、第8画素P8及び第9画素P9が含まれる。したがって、各画素ブロックPB(x,y)から第1画素P1、第2画素P2、第3画素P3、第4画素P4、第5画素P5、第6画素P6、第7画素P7、第8画素P8及び第9画素P9の画素信号を分離して抽出することにより、9つの画像データD1~D9が生成される。
すなわち、各画素ブロックPB(x,y)から第1画素P1の画素信号を分離して抽出することにより、第1の画像データD1が生成される。また、各画素ブロックPB(x,y)から第2画素P2の画素信号を分離して抽出することにより、第2の画像データD2が生成される。また、各画素ブロックPB(x,y)から第3画素P3の画素信号を分離して抽出することにより、第3の画像データD3が生成される。また、各画素ブロックPB(x,y)から第4画素P4の画素信号を分離して抽出することにより、第4の画像データD4が生成される。また、各画素ブロックPB(x,y)から第5画素P5の画素信号を分離して抽出することにより、第5の画像データD5が生成される。また、各画素ブロックPB(x,y)から第6画素P6の画素信号を分離して抽出することにより、第6の画像データD6が生成される。また、各画素ブロックPB(x,y)から第7画素P7の画素信号を分離して抽出することにより、第7の画像データD7が生成される。また、各画素ブロックPB(x,y)から第8画素P8の画素信号を分離して抽出することにより、第8の画像データD8が生成される。また、各画素ブロックPB(x,y)から第9画素P9の画素信号を分離して抽出することにより、第9の画像データD9が生成される。
しかし、この9つの画像データD1~D9には、混信(クロストーク)が生じている。すなわち、各画素Piには、光学系10の各光学領域Sjからの光が入射するため、生成される画像は、各光学領域Sjの画像が所定の割合で混合した画像となる。このため、画像生成部200Bは、次の演算処理を行って、混信(クロストーク)を除去する。
いま、各画素ブロックPB(x、y)の第1画素P1で得られる画素信号(信号値)をx1、第2画素P2で得られる画素信号をx2、第3画素P3で得られる画素信号をx3、第4画素P4で得られる画素信号をx4、第5画素P5で得られる画素信号をx5、第6画素P6で得られる画素信号をx6、第7画素P7で得られる画素信号をx7、第8画素P8で得られる画素信号をx8、第9画素P9で得られる画素信号をx9、とする。各画素ブロックPB(x,y)からは、9個の画素信号x1~x9が得られる。画像生成部200Bは、この9個の画素信号x1~x9から、行列Aを用いた下記の式1によって、各光学領域S1~S9に対応した9個の画素信号X1~X9を算出し、混信を除去する。
なお、画素信号X1は第1光学領域S1に対応した画素信号、画素信号X2は第2光学領域S2に対応した画素信号、画素信号X3は第3光学領域S3に対応した画素信号、画素信号X4は第4光学領域S4に対応した画素信号、画素信号X5は第5光学領域S5に対応した画素信号、画素信号X6は第6光学領域S6に対応した画素信号、画素信号X7は第7光学領域S7に対応した画素信号、画素信号X8は第8光学領域S8に対応した画素信号、画素信号X9は第9光学領域S9に対応した画素信号である。したがって、画素信号X1からは第1光学領域S1で取得される画像が生成され、画素信号X2からは第2光学領域S2で取得される画像が生成され、画素信号X3からは第3光学領域S3で取得される画像が生成され、画素信号X4からは第4光学領域S4で取得される画像が生成され、画素信号X5からは第5光学領域S5で取得される画像が生成され、画素信号X6からは第6光学領域S6で取得される画像が生成され、画素信号X7からは第7光学領域S7で取得される画像が生成され、画素信号X8からは第8光学領域S8で取得される画像が生成され、画素信号X9からは第9光学領域S9で取得される画像が生成される。
以下、上記式1によって混信を除去できる理由について説明する。
混信は、各画素Piに各光学領域Sjからの光が混入することで発生する。いま、光学系10の第j光学領域Sj(j=1~9)に入射した光が、各画素ブロックPB(x、y)の第i画素Pi(i=1~9)で受光される割合(混信量(混信比率ともいう))をbij(i=1~9、j=1~9)とすると、各画素ブロックPB(x、y)の各画素Piで得られる画素信号xiと、光学系10の各光学領域Sjに対応する画素信号Xjとの間には、次の関係が成り立つ。
すなわち、第1画素P1で得られる画素信号x1に関して、次式2が成り立つ(「*」は、積算の記号)。
b11*X1+b12*X2+b13*X3+b14*X4+b15*X5+b16*X6+b17*X7+b18*X8+b19*X9=x1…式2
また、第2画素P2で得られる画素信号x2に関して、次式3が成り立つ。
また、第2画素P2で得られる画素信号x2に関して、次式3が成り立つ。
b21*X1+b22*X2+b23*X3+b24*X4+b25*X5+b26*X6+b27*X7+b28*X8+b29*X9=x2…式3
また、第3画素P3で得られる画素信号x3に関して、次式4が成り立つ。
また、第3画素P3で得られる画素信号x3に関して、次式4が成り立つ。
b31*X1+b32*X2+b33*X3+b34*X4+b35*X5+b36*X6+b37*X7+b38*X8+b39*X9=x3…式4
また、第4画素P4で得られる画素信号x4に関して、次式5が成り立つ。
また、第4画素P4で得られる画素信号x4に関して、次式5が成り立つ。
b41*X1+b42*X2+b43*X3+b44*X4+b45*X5+b46*X6+b47*X7+b48*X8+b49*X9=x4…式5
また、第5画素P5で得られる画素信号x5に関して、次式6が成り立つ。
また、第5画素P5で得られる画素信号x5に関して、次式6が成り立つ。
b51*X1+b52*X2+b53*X3+b54*X4+b55*X5+b56*X6+b57*X7+b58*X8+b59*X9=x5…式6
また、第6画素P6で得られる画素信号x6に関して、次式7が成り立つ。
また、第6画素P6で得られる画素信号x6に関して、次式7が成り立つ。
b61*X1+b62*X2+b63*X3+b64*X4+b65*X5+b66*X6+b67*X7+b68*X8+b69*X9=x6…式7
また、第7画素P7で得られる画素信号x7に関して、次式8が成り立つ。
また、第7画素P7で得られる画素信号x7に関して、次式8が成り立つ。
b71*X1+b72*X2+b73*X3+b74*X4+b75*X5+b76*X6+b77*X7+b78*X8+b79*X9=x7…式8
また、第8画素P8で得られる画素信号x8に関して、次式9が成り立つ。
また、第8画素P8で得られる画素信号x8に関して、次式9が成り立つ。
b81*X1+b82*X2+b83*X3+b84*X4+b85*X5+b86*X6+b87*X7+b88*X8+b89*X9=x8…式9
また、第9画素P9で得られる画素信号x9に関して、次式10が成り立つ。
また、第9画素P9で得られる画素信号x9に関して、次式10が成り立つ。
b91*X1+b92*X2+b93*X3+b94*X4+b95*X5+b96*X6+b97*X7+b98*X8+b99*X9=x9…式10
X1~X9について、式2~10の連立方程式を解くことで、元の画像の画素信号、すなわち、各光学領域S1~S9に対応した画素信号X1~X9を取得できる。
X1~X9について、式2~10の連立方程式を解くことで、元の画像の画素信号、すなわち、各光学領域S1~S9に対応した画素信号X1~X9を取得できる。
ここで、上記の連立方程式は、行列Bを用いた下記の式11で表わすことができる。
式2~10の連立方程式の解であるX1~X9は、上記式11の両辺に行列Bの逆行列B-1をかけることで算出される。
このように、各光学領域S1~S9に対応した画素信号X1~X9は、光学系10の各光学領域S1~S9に入射した光が、画素ブロックPB(x、y)の各画素P1~S9で受光される割合に基づいて、各画素P1~P2の信号値(画素信号)x1~x9から算出できる。
上記式1は、上記式12の逆行列B-1をAとしたものである(B-1=A)。したがって、式12における行列Aの各要素aijは、行列Bの逆行列B-1を求めることで取得できる。行列Bの各要素bij(i=1~9、j=1~9)は、光学系10の第j光学領域Sj(j=1~9)に入射した光が、各画素ブロックPB(x、y)の第i画素Pi(i=1~9)で受光される割合(混信量)である。この割合は、偏光に基づく透過率をc、分光透過率に基づく透過率をdとした場合に、透過率cと透過率dとの積で算出される。
ここで、偏光に基づく透過率cは、光学領域を透過する光の透過偏光方位と画素が受光する光の透過偏光方位との角度差の余弦の二乗で算出される。
また、分光透過率に基づく透過率dは、光学領域を透過する光の波長帯域と画素に備えられた分光フィルタ素子の分光透過率とに基づいて求められる。
たとえば、光学系10の第j光学領域Sjとイメージセンサ100の第i画素Piとの関係において、偏光に基づく透過率cは、第j光学領域Sjを透過する光の透過偏光方位をθj、第i画素Piが受光する光の透過偏光方位をΦiとすると、その角度差(|θj-Φi|)の余弦(cos)の二乗(cos2(|θj-Φi|))で算出される。
また、分光透過率に基づく透過率dは、第j光学領域Sjを透過する光の波長帯域と、第i画素Piに備えられた分光フィルタ素子132A、132B、132Cの分光透過率と、に基づいて求められる。すなわち、第i画素Piに備えられた分光フィルタ素子132A、132B、132Cの分光透過率に基づいて、第j光学領域Sjを透過する光の波長帯域から求められる。
本実施の形態の撮像装置1において、第1光学領域S1、第2光学領域S2及び第3光学領域S3を透過する光の透過偏光方位はα1、第4光学領域S4、第5光学領域S5及び第6光学領域S6を透過する光の透過偏光方位はα2、第7光学領域S7、第8光学領域S8及び第9光学領域S9を透過する透過偏光方位はα3である。また、各画素ブロックPB(x、y)の第1画素P1、第4画素P4及び第7画素P7で受光される光の透過偏光方位はβ1、第2画素P2、第5画素P5及び第8画素P8で受光される光の透過偏光方位はβ2、第3画素P3、第6画素P6及び第9画素P9で受光される光の透過偏光方位はβ3である。
よって、第1光学領域S1、第2光学領域S2及び第3光学領域S3と各画素P1~P9との間の偏光に基づく透過率cは、第1画素P1に関して、c=(cos2(|α1-β1|))、第2画素P2に関して、c=(cos2(|α1-β2|))、第3画素P3に関して、c=(cos2(|α1-β3|))、第4画素P4に関して、c=(cos2(|α1-β1|))、第5画素P5に関して、c=(cos2(|α1-β2|))、第6画素P6に関して、c=(cos2(|α1-β3|))、第7画素P7に関して、c=(cos2(|α1-β1|))、第8画素P8に関して、c=(cos2(|α1-β2|))、第9画素P9に関して、c=(cos2(|α1-β3|))で算出される。
また、第4光学領域S4、第5光学領域S5及び第6光学領域S6と各画素P1~P9との間の偏光に基づく透過率cは、第1画素P1に関して、c=(cos2(|α2-β1|))、第2画素P2に関して、c=(cos2(|α2-β2|))、第3画素P3に関して、c=(cos2(|α2-β3|))、第4画素P4に関して、c=(cos2(|α2-β1|))、第5画素P5に関して、c=(cos2(|α2-β2|))、第6画素P6に関して、c=(cos2(|α2-β3|))、第7画素P7に関して、c=(cos2(|α2-β1|))、第8画素P8に関して、c=(cos2(|α2-β2|))、第9画素P9に関して、c=(cos2(|α2-β3|))で算出される。
また、第7光学領域S7、第8光学領域S8及び第9光学領域S9と各画素P1~P9との間の偏光に基づく透過率cは、第1画素P1に関して、c=(cos2(|α3-β1|))、第2画素P2に関して、c=(cos2(|α3-β2|))、第3画素P3に関して、c=(cos2(|α3-β3|))、第4画素P4に関して、c=(cos2(|α3-β1|))、第5画素P5に関して、c=(cos2(|α3-β2|))、第6画素P6に関して、c=(cos2(|α3-β3|))、第7画素P7に関して、c=(cos2(|α3-β1|))、第8画素P8に関して、c=(cos2(|α3-β2|))、第9画素P9に関して、c=(cos2(|α3-β3|))で算出される。
本実施の形態では、α1=0°、α2=60°、α3=120°、β1=0°、β2=60°、β3=120°であるので、第1光学領域S1、第2光学領域S2及び第3光学領域S3と各画素P1~P9との間の偏光に基づく透過率cは、第1画素P1に関して、c=1、第2画素P2に関して、c=0.25、第3画素P3に関して、c=0.25、第4画素P4に関して、c=1、第5画素P5に関して、c=0.25、第6画素P6に関して、c=0.25、第7画素P7に関して、c=1、第8画素P8に関して、c=0.25、第9画素P9に関して、c=0.25となる。また、第4光学領域S4、第5光学領域S5及び第6光学領域S6と各画素P1~P9との間の偏光に基づく透過率cは、第1画素P1に関して、c=0.25、第2画素P2に関して、c=1、第3画素P3に関して、c=0.25、第4画素P4に関して、c=0.25、第5画素P5に関して、c=1、第6画素P6に関して、c=0.25、第7画素P7に関して、c=0.25、第8画素P8に関して、c=1、第9画素P9に関して、c=0.25となる。また、第7光学領域S7、第8光学領域S8及び第9光学領域S9と各画素P1~P9との間の偏光に基づく透過率cは、第1画素P1に関して、c=0.25、第2画素P2に関して、c=0.25、第3画素P3に関して、c=1、第4画素P4に関して、c=0.25、第5画素P5に関して、c=0.25、第6画素P6に関して、c=1、第7画素P7に関して、c=0.25、第8画素P8に関して、c=0.25、第9画素P9に関して、c=1となる。
第j光学領域Sjと第i画素Piとの間の偏光に基づく透過率cについては、cij(i=1~9、j=1~9)を要素とする下記の9行9列の行列Cで表わされる。
本実施の形態の撮像装置1は、α1=0°、α2=60°、α3=120°、β1=0°、β2=60°、β3=120°であるので、行列Cは、次のようになる。
一方、分光透過率に基づく透過率dについては、dij(i=1~9、j=1~9)を要素とする下記の9行9列の行列Dで表わされる。
ここで、dijは、第j光学領域Sjと第i画素Piとの間の透過率である。この透過率は、第i画素Piに備えられた分光フィルタ素子132A、132B、132Cの分光透過率に基づいて、第j光学領域Sjを透過する光の波長帯域(中心波長又はピークの波長)から求められる。
図15は、各画素に備えられた分光フィルタ素子の分光透過率と光学系の各光学領域を透過する光の波長帯域との関係の一例を示すグラフである。
上記のように、本実施の形態の撮像装置1では、第1画素P1、第2画素P2及び第3画素P3に第1分光フィルタ素子132Aが備えられる。したがって、第1画素P1、第2画素P2及び第3画素P3は、同じ分光透過率を有する(図15において実線のグラフT1)。また、本実施の形態の撮像装置1では、第4画素P4、第5画素P5及び第6画素P6に第2分光フィルタ素子132Bが備えられる。第4画素P4、第5画素P5及び第6画素P6は、同じ分光透過率を有する(図15において破線のグラフT2)。また、本実施の形態の撮像装置1では、第7画素P7、第8画素P8及び第9画素P9に第3分光フィルタ素子132Cが備えられる。したがって、第7画素P7、第8画素P8及び第9画素P9は、同じ分光透過率を有する(図15において一点破線のグラフT3)。
図15に示すグラフから、第1光学領域S1と各画素P1~P9との間における分光透過率に基づく透過率は、第1画素P1に関して、d11=0.7、第2画素P2に関して、d21=0.7、第3画素P3に関して、d31=0.7、第4画素P4に関して、d41=0.4、第5画素P5に関して、d51=0.4、第6画素P6に関して、d61=0.4、第7画素P7に関して、d71=0.3、第8画素P8に関して、d81=0.3、第9画素P9に関して、d91=0.3となる。
また、第2光学領域S2と各画素P1~P9との間における分光透過率に基づく透過率は、第1画素P1に関して、d12=0.75、第2画素P2に関して、d22=0.75、第3画素P3に関して、d32=0.75、第4画素P4に関して、d42=0.6、第5画素P5に関して、d52=0.6、第6画素P6に関して、d62=0.6、第7画素P7に関して、d72=0.4、第8画素P8に関して、d82=0.4、第9画素P9に関して、d92=0.4となる。
また、第3光学領域S3と各画素P1~P9との間における分光透過率に基づく透過率は、第1画素P1に関して、d13=0.72、第2画素P2に関して、d23=0.72、第3画素P3に関して、d33=0.72、第4画素P4に関して、d43=0.73、第5画素P5に関して、d53=0.73、第6画素P6に関して、d63=0.73、第7画素P7に関して、d73=0.45、第8画素P8に関して、d83=0.45、第9画素P9に関して、d93=0.45となる。
また、第4光学領域S4と各画素P1~P9との間における分光透過率に基づく透過率は、第1画素P1に関して、d14=0.64、第2画素P2に関して、d24=0.64、第3画素P3に関して、d34=0.64、第4画素P4に関して、d44=0.8、第5画素P5に関して、d54=0.8、第6画素P6に関して、d64=0.8、第7画素P7に関して、d74=0.5、第8画素P8に関して、d84=0.5、第9画素P9に関して、d94=0.5となる。
また、第5光学領域S5と各画素P1~P9との間における分光透過率に基づく透過率は、第1画素P1に関して、d15=0.55、第2画素P2に関して、d25=0.55、第3画素P3に関して、d35=0.55、第4画素P4に関して、d45=0.85、第5画素P5に関して、d55=0.85、第6画素P6に関して、d65=0.85、第7画素P7に関して、d75=0.55、第8画素P8に関して、d85=0.55、第9画素P9に関して、d95=0.55となる。
また、第6光学領域S6と各画素P1~P9との間における分光透過率に基づく透過率は、第1画素P1に関して、d16=0.47、第2画素P2に関して、d26=0.47、第3画素P3に関して、d36=0.47、第4画素P4に関して、d46=0.81、第5画素P5に関して、d56=0.81、第6画素P6に関して、d66=0.81、第7画素P7に関して、d76=0.6、第8画素P8に関して、d86=0.6、第9画素P9に関して、d96=0.6となる。
また、第7光学領域S7と各画素P1~P9との間における分光透過率に基づく透過率は、第1画素P1に関して、d17=0.4、第2画素P2に関して、d27=0.4、第3画素P3に関して、d37=0.4、第4画素P4に関して、d47=0.7、第5画素P5に関して、d57=0.7、第6画素P6に関して、d67=0.7、第7画素P7に関して、d77=0.67、第8画素P8に関して、d87=0.67、第9画素P9に関して、d97=0.67となる。
また、第8光学領域S8と各画素P1~P9との間における分光透過率に基づく透過率は、第1画素P1に関して、d18=0.35、第2画素P2に関して、d28=0.35、第3画素P3に関して、d38=0.35、第4画素P4に関して、d48=0.56、第5画素P5に関して、d58=0.56、第6画素P6に関して、d68=0.56、第7画素P7に関して、d78=0.7、第8画素P8に関して、d88=0.7、第9画素P9に関して、d98=0.7となる。
また、第9光学領域S9と各画素P1~P9との間における分光透過率に基づく透過率は、第1画素P1に関して、d19=0.25、第2画素P2に関して、d29=0.25、第3画素P3に関して、d39=0.25、第4画素P4に関して、d49=0.4、第5画素P5に関して、d59=0.4、第6画素P6に関して、d69=0.4、第7画素P7に関して、d79=0.6、第8画素P8に関して、d89=0.6、第9画素P9に関して、d99=0.6となる。
よって、本実施の形態の撮像装置1では、行列Dは次のようになる。
上記のように、光学系10の第j光学領域Sjに入射した光が、各画素ブロックPB(x、y)の第i画素Piで受光される割合bijは、偏光に基づく透過率cijと分光透過率に基づく透過率をdijとの積(bij=cij*dij)で算出される。したがって、bijを要素とする行列Bは、行列Cと行列Dとのアダマール積で表わされる。
本実施の形態の撮像装置1では、行列Bの各要素bijが次のように算出される。
この行列Bには、逆行列B-1が存在する。すなわち、行列Bは、同じ要素の並びとなる行及び列が存在しないので、逆行列が存在する(行列Cは、同じ要素の並びとなる列が存在する(たとえば、第1列目、第4列目及び第6列目が同じ要素の並びとなっており、第2列目、第5列目及び第7列目が同じ要素の並びとなっており、第3列目、第6列目及び第9列目が同じ要素の並びとなっている。)。また、行列Dは、同じ要素の並びとなる行が存在する(たとえば、第1行目~第3行目が同じ要素の並びとなっており、第4行目~第6行目が同じ要素の並びとなっており、第7行目~第9行目が同じ要素の並びとなっている。)。しかしながら、行列Cと行列Dのアダマール積で求められる行列Bは、同じ要素の並びとなる行及び列が存在しない。よって、行列Bには逆行列B-1が存在する。)。
行列Bの逆行列B-1は、次のとおりである。
よって、本実施の形態の撮像装置1において、各画素P1~P9の画素信号x1~x9から各光学領域S1~S9に対応した画素信号X1~X9を算出する演算式は、次の式13のようになる。
係数記憶部200Cは、この9行9列の行列Aの各要素aijを係数群として記憶する。係数記憶部200Cは、記憶部の一例である。
画像生成部200Bは、係数記憶部200Cから係数群を取得し、各画素ブロックPB(x,y)の各画素P1~P9から得られる画素信号x1~x9から、上記式1によって、光学系10の各光学領域S1~S9に対応した画素信号X1~X9を算出し、各光学領域S1~S9の画像データを生成する。画像生成部200Bは、演算部の一例である。
画像生成部200Bで生成された各光学領域S1~S9の画像データは、外部に出力され、必要に応じて、記憶装置に記憶される。また、必要に応じてディスプレイ(不図示)に表示される。
[動作]
図16は、本実施の形態の撮像装置の動作の概念図である。
図16は、本実施の形態の撮像装置の動作の概念図である。
被写体Objからの光は、光学系10の各光学領域S1~S9を通過して、イメージセンサ100の各画素P1~P2で受光される。
この際、光学系10の第1光学領域S1を通過した光は、被写体Objの第1の光学像OI1をイメージセンサ100の受光面上に結像させる。この第1の光学像OI1は、所定の偏光方向(方位角α1)に直線偏光された第1の波長帯域Δf1の光による光学像となる。
また、光学系10の第2光学領域S2を通過した光は、被写体Objの第2の光学像OI2をイメージセンサ100の受光面上に結像させる。この第2の光学像OI2は、所定の偏光方向(方位角α1)に直線偏光された第2の波長帯域Δf2の光による光学像となる。
また、光学系10の第3光学領域S3を通過した光は、被写体Objの第3の光学像OI3をイメージセンサ100の受光面上に結像させる。この第3の光学像OI3は、所定の偏光方向(方位角α1)に直線偏光された第3の波長帯域Δf3の光による光学像となる。
また、光学系10の第4光学領域S4を通過した光は、被写体Objの第4の光学像OI4をイメージセンサ100の受光面上に結像させる。この第4の光学像OI4は、所定の偏光方向(方位角α2)に直線偏光された第4の波長帯域Δf4の光による光学像となる。
また、光学系10の第5光学領域S5を通過した光は、被写体Objの第5の光学像OI5をイメージセンサ100の受光面上に結像させる。この第5の光学像OI5は、所定の偏光方向(方位角α2)に直線偏光された第5の波長帯域Δf5の光による光学像となる。
また、光学系10の第6光学領域S6を通過した光は、被写体Objの第6の光学像OI6をイメージセンサ100の受光面上に結像させる。この第6の光学像OI6は、所定の偏光方向(方位角α2)に直線偏光された第6の波長帯域Δf6の光による光学像となる。
また、光学系10の第7光学領域S7を通過した光は、被写体Objの第7の光学像OI7をイメージセンサ100の受光面上に結像させる。この第7の光学像OI7は、所定の偏光方向(方位角α3)に直線偏光された第7の波長帯域Δf7の光による光学像となる。
また、光学系10の第8光学領域S8を通過した光は、被写体Objの第8の光学像OI8をイメージセンサ100の受光面上に結像させる。この第8の光学像OI8は、所定の偏光方向(方位角α3)に直線偏光された第8の波長帯域Δf8の光による光学像となる。
また、光学系10の第9光学領域S9を通過した光は、被写体Objの第9の光学像OI9をイメージセンサ100の受光面上に結像させる。この第9の光学像OI9は、所定の偏光方向(方位角α3)に直線偏光された第9の波長帯域Δf9の光による光学像となる。
イメージセンサ100は、光学系10の各光学領域S1~S9からの光を各画素P1~P9で受光し、その受光量に応じた信号(画素信号)x1~x9を信号処理部200に出力する。
この際、第1画素P1は、所定の分光透過率の第1分光フィルタ素子132A(図15のグラフT1参照)を介して各光学領域S1~S9からの光を所定の透過率で受光し、かつ、第1偏光フィルタ素子122Aを介して所定の偏光方向(方位角β1)の光を受光する。そして、その受光量に応じた画素信号x1を信号処理部200に出力する。
また、第2画素P2は、第1分光フィルタ素子132Aを介して各光学領域S1~S9からの光を所定の透過率で受光し、かつ、第2偏光フィルタ素子122Bを介して所定の偏光方向(方位角β2)の光を受光する。そして、その受光量に応じた画素信号x2を信号処理部200に出力する。
また、第3画素P3は、第1分光フィルタ素子132Aを介して各光学領域S1~S9からの光を所定の透過率で受光し、かつ、第3偏光フィルタ素子122Cを介して所定の偏光方向(方位角β3)の光を受光する。そして、その受光量に応じた画素信号x3を信号処理部200に出力する。
また、第4画素P4は、所定の分光透過率の第2分光フィルタ素子132B(図15のグラフT2参照)を介して各光学領域S1~S9からの光を所定の透過率で受光し、かつ、第1偏光フィルタ素子122Aを介して所定の偏光方向(方位角β1)の光を受光する。そして、その受光量に応じた画素信号x4を信号処理部200に出力する。
また、第5画素P5は、第2分光フィルタ素子132Bを介して各光学領域S1~S9からの光を所定の透過率で受光し、かつ、第2偏光フィルタ素子122Bを介して所定の偏光方向(方位角β2)の光を受光する。そして、その受光量に応じた画素信号x5を信号処理部200に出力する。
また、第6画素P6は、第2分光フィルタ素子132Bを介して各光学領域S1~S9からの光を所定の透過率で受光し、かつ、第3偏光フィルタ素子122Cを介して所定の偏光方向(方位角β3)の光を受光する。そして、その受光量に応じた画素信号x6を信号処理部200に出力する。
また、第7画素P7は、所定の分光透過率の第3分光フィルタ素子132C(図15のグラフT3参照)を介して各光学領域S1~S9からの光を所定の透過率で受光し、かつ、第1偏光フィルタ素子122Aを介して所定の偏光方向(方位角β1)の光を受光する。そして、その受光量に応じた画素信号x7を信号処理部200に出力する。
また、第8画素P8は、第3分光フィルタ素子132Cを介して各光学領域S1~S9からの光を所定の透過率で受光し、かつ、第2偏光フィルタ素子122Bを介して所定の偏光方向(方位角β2)の光を受光する。そして、その受光量に応じた画素信号x8を信号処理部200に出力する。
また、第9画素P9は、第3分光フィルタ素子132Cを介して各光学領域S1~S9からの光を所定の透過率で受光し、かつ、第3偏光フィルタ素子122Cを介して所定の偏光方向(方位角β3)の光を受光する。そして、その受光量に応じた画素信号x9を信号処理部200に出力する。
信号処理部200は、イメージセンサ100の各画素ブロックPB(x、y)の各画素P1~P9から得られる画素信号x1~x9から光学系10の各光学領域S1~S9に対応した画素信号X1~X9を算出し、各光学領域S1~S9で得られる画像の画像D1~ID9の画像データを生成する。すなわち、行列Aを用いた式1による演算処理を行って、イメージセンサ100から得られる各画素P1~P1の画素信号x1~x9から各光学領域S1~S9に対応した画素信号X1~X9を算出し、各光学領域S1~S9で得られる画像の画像ID1~ID9の画像データを生成する。
このように、本実施の形態の撮像装置1によれば、1つの光学系10と1つのイメージセンサ100で9つの波長帯域の画像(マルチスペクトル画像)を取得できる。また、イメージセンサ100の各画素ブロックPB(x、y)において、均一な条件で光学系10からの光を入射できるので、高品質な画像を簡単に生成できる。
[実施例]
瞳部分が9分割された上記実施の形態の撮像装置1において、光学系10に備えられる分光フィルタ16及び偏光フィルタ18、並びに、イメージセンサ100の各画素P1~P9に備えられる偏光フィルタ素子122A、122B、122C及び分光フィルタ素子132A、132B、132Cを次のように設定する。
瞳部分が9分割された上記実施の形態の撮像装置1において、光学系10に備えられる分光フィルタ16及び偏光フィルタ18、並びに、イメージセンサ100の各画素P1~P9に備えられる偏光フィルタ素子122A、122B、122C及び分光フィルタ素子132A、132B、132Cを次のように設定する。
光学系10に備えられる偏光フィルタ18の第1偏光フィルタ部G1の透過偏光方位α1を0°、第2偏光フィルタ部G2の透過偏光方位α2を60°、第3偏光フィルタ部G3の透過偏光方位α3を120°とする。この場合、第1光学領域S1、第2光学領域S2及び第3光学領域S3を透過する光の偏光方向は0°、第4光学領域S4、第5光学領域S5及び第6光学領域S6を透過する光の偏光方向は60°、第7光学領域S7、第8光学領域S8及び第9光学領域S9を透過する光の偏光方向は120°となる。
光学系10に備えられる分光フィルタ16の第1分光フィルタ部F1の透過波長帯域をΔf1、その中心波長をλ1、第2分光フィルタ部F2の透過波長帯域をΔf2、その中心波長をλ2、第3分光フィルタ部F3の透過波長帯域をΔf3、その中心波長をλ3、第4分光フィルタ部F4の透過波長帯域をΔf4、その中心波長をλ4、第5分光フィルタ部F5の透過波長帯域をΔf5、その中心波長をλ5、第6分光フィルタ部F6の透過波長帯域をΔf6、その中心波長をλ6、第7分光フィルタ部F7の透過波長帯域をΔf7、その中心波長をλ7、第8分光フィルタ部F8の透過波長帯域をΔf8、その中心波長をλ8、第9分光フィルタ部F9の透過波長帯域をΔf9、その中心波長をλ9、とする。この場合、第1光学領域S1を透過する光の波長帯域はΔf1(中心波長λ1)、第2光学領域S2を透過する光の波長帯域はΔf2(中心波長λ2)、第3光学領域S3を透過する光の波長帯域はΔf3(中心波長λ3)、第4光学領域S4を透過する光の波長帯域はΔf4(中心波長λ4)、第5光学領域S5を透過する光の波長帯域はΔf5(中心波長λ5)、第6光学領域S6を透過する光の波長帯域はΔf6(中心波長λ6)、第7光学領域S7を透過する光の波長帯域はΔf7(中心波長λ1)、第8光学領域S8を透過する光の波長帯域はΔf8(中心波長λ8)、第9光学領域S9を透過する光の波長帯域はΔf9(中心波長λ9)、となる。
イメージセンサ100の各画素に備えられる第1偏光フィルタ素子122Aの透過偏光方位β1を0°、第2偏光フィルタ素子122Bの透過偏光方位β2を60°、第3偏光フィルタ素子122Cの透過偏光方位β3を120°とする。この場合、第1画素P1で受光される光の偏光方向は0°、第2画素P2で受光される光の偏光方向は60°、第3画素P3で受光される光の偏光方向は120°、第4画素P4で受光される光の偏光方向は0°、第5画素P5で受光される光の偏光方向は60°、第6画素P6で受光される光の偏光方向は120°、第7画素P7で受光される光の偏光方向は0°、第8画素P8で受光される光の偏光方向は60°、第9画素P9で受光される光の偏光方向は120°、となる。
図17は、イメージセンサの各画素に備えられる分光フィルタ素子の分光透過率のグラフである。同図において、実線で示すグラフT1は、第1分光フィルタ素子132Aの分光透過率のグラフである。また、破線で示すグラフT2は、第2分光フィルタ素子132Bの分光透過率のグラフである。また、一点破線で示すグラフT3は、第3分光フィルタ素子132Cの分光透過率のグラフである。
以上の構成の光学系10及びイメージセンサ100において、第j光学領域Sjと第i画素Piとの間の偏光に基づく透過率cについては、cij(i=1~9、j=1~9)を要素とする下記の9行9列の行列Cで表わされる。
また、分光透過率に基づく透過率dについては、dij(i=1~9、j=1~9)を要素とする下記の9行9列の行列Dで表わされる。
各光学領域Sjからの光の混信量を表わす行列Bは、上記行列C及び行列Dのアダマール積で求められる。
混信を除去する演算式(式1)の行列Aは、行列Bの逆行列B-1を求めることで取得される。
よって、本実施例の撮像装置において、各画素P1~P9の画素信号x1~x9から各光学領域S1~S9に対応した画素信号X1~X9を算出する演算式は、次の式14のようになる。
図18は、被写体画像の一例を示す図である。
いま、図18に示す画像を上記構成の撮像装置で撮像する場合を考える。
図19は、イメージセンサから出力される画素信号x1~x9で生成される画像の例を示す図である。
同図において、符号CI1の画像は、各画素ブロックPB(x、y)の第1画素P1からの画素信号x1によって生成される画像を示している。また、符号CI2の画像は、各画素ブロックPB(x、y)の第2画素P2からの画素信号x2によって生成される画像を示している。また、符号CI3の画像は、各画素ブロックPB(x、y)の第3画素P3からの画素信号x3によって生成される画像を示している。また、符号CI4の画像は、各画素ブロックPB(x、y)の第4画素P4からの画素信号x4によって生成される画像を示している。また、符号CI5の画像は、各画素ブロックPB(x、y)の第5画素P5からの画素信号x5によって生成される画像を示している。また、符号CI6の画像は、各画素ブロックPB(x、y)の第6画素P6からの画素信号x6によって生成される画像を示している。また、符号CI7の画像は、各画素ブロックPB(x、y)の第7画素P7からの画素信号x7によって生成される画像を示している。また、符号CI8の画像は、各画素ブロックPB(x、y)の第8画素P8からの画素信号x8によって生成される画像を示している。また、符号CI9の画像は、各画素ブロックPB(x、y)の第9画素P9からの画素信号x9によって生成される画像を示している。これらの画像CI1~CI9は、混信が発生した画像となる。
図20は、イメージセンサから出力される画素信号x1~x9を混信除去処理して生成される画像の例を示す図である。
イメージセンサの各画素ブロックから得られる9個の画素信号x1~x9から光学系10の各光学領域S1~S9に対応した9個の画素信号X1~X9を算出し、各光学領域S1~S9で得られる画像ID1~ID9の画像データを生成する。すなわち、上記式14によって、各画素P1~P9の画素信号x1~x9から各光学領域S1~S9に対応した画素信号X1~X9を算出し、各光学領域S1~S9で得られる画像ID1~ID9の画像データを生成する。
なお、図20において、符号ID1の画像は、第1光学領域S1で得られる画像を示している。また、符号ID2の画像は、第2光学領域S2で得られる画像を示している。また、符号ID3の画像は、第3光学領域S3で得られる画像を示している。また、符号ID4の画像は。第4光学領域S4で得られる画像を示している。また、符号ID5の画像は、第5光学領域S5で得られる画像を示している。また、符号ID6の画像は、第6光学領域S6で得られる画像を示している。また、符号ID7の画像は、第7光学領域S7で得られる画像を示している。また、符号ID8の画像は、第8光学領域S8で得られる画像を示している。また、符号ID9の画像は、第9光学領域S9で得られる画像を示している。いずれの画像ID1~ID9の画像も混信が除去されたクリアな画像が得られる。
[変形例]
〔取得する画像の数〕
上記実施の形態では、異なる波長帯域の9つの画像を取得する場合を例に説明したが、取得する画像の数は、これに限定されるものではない。本発明の撮像装置において、取得できる画像の数kは、次のように定められる。
〔取得する画像の数〕
上記実施の形態では、異なる波長帯域の9つの画像を取得する場合を例に説明したが、取得する画像の数は、これに限定されるものではない。本発明の撮像装置において、取得できる画像の数kは、次のように定められる。
いま、イメージセンサの各画素に備える分光フィルタ素子(第1光学フィルタ素子)の種類をn種、偏光フィルタ素子(第2光学フィルタ素子)の種類(透過偏光方位の種類)をm種とする。nは、2以上の整数(n≧2)、mは、2以上、3以下の整数(2≦m≦3)である。1つの画素ブロックにおいて、各画素は、異なる分光フィルタ素子と偏光フィルタ素子との組み合わせによって構成される。したがって、この場合、1つの画素ブロックは、(n×m)個の画素で構成される。nとmの積(n×m)をqとする(q=n×m)。本発明の撮像装置において、取得できる画像の数kは、1つの画素ブロックを構成する画素の数q以下となる(k≦q)。ただし、kは3以上の整数とする。
このように、取得する画像の数kは、必ずしも1つの画素ブロックを構成する画素の数qと同じである必要はない。取得する画像の数以上の数の画素で1つの画素ブロックを構成してもよい。
光学系には、取得する画像の数kだけ光学領域が備えられる。なお、各光学領域には偏光フィルタ部が備えられるが、光学系側の偏光フィルタ部は次の条件を満たすように設定される。すなわち、各光学領域に備えられる偏光フィルタ部の透過偏光方位に関して、同じ透過偏光方位となる光学領域の数をuとする。この数uが、イメージセンサ側の分光フィルタ素子(第1光学フィルタ素子)の種類の数以下とされる。したがって、イメージセンサ側の分光フィルタ素子(第1光学フィルタ素子)の種類がn種類の場合、同じ透過偏光方位となる光学領域の数uは、イメージセンサ側の分光フィルタ素子(第1光学フィルタ素子)の種類の数n以下とされる(u≦n)。
n種類の分光フィルタ素子及びm種類の偏光フィルタ素子を組み合わせることで、1つの画素ブロックがq個の画素で構成される場合、イメージセンサの各画素ブロックからはq個の画素信号x1、x2、…、xqが取得される。光学系がk個の光学領域を有する場合、このq個の画素信号x1、x2、…、xqから光学系が各光学領域に対応したk個の画素信号X1、X2、…、Xkを算出するための演算式は、行列Aを用いて、次のように定義される。
上記のように、行列Aは、光学系の各光学領域に入射した光が、イメージセンサの各画素ブロックの各画素で受光される割合を要素とする行列Bの逆行列B-1を算出して取得される。また、その割合は、偏光に基づく透過率cと、分光透過率に基づく透過率dとの積で算出される。
〔偏光フィルタ部と偏光フィルタ素子の透過偏光方位の設定〕
上記実施の形態では、光学系の各光学領域に備えられる偏光フィルタ部の透過偏光方位の組み合わせと、イメージセンサに備えられる偏光フィルタ素子(第2光学フィルタ素子)の透過偏光方位の組み合わせを同じにしている(いずれも方位角0°、60°、120°の組み合わせ)。しかし、この組み合わせは、必ずしも同じである必要はない。たとえば、光学系側において、45°、90°、135°の組み合わせで使用し、イメージセンサ側において、0°、60°、120°の組み合わせで使用してもよい。なお、同じ組み合わせとすることにより、偏光に基づく透過率cの算出を容易にできる。
上記実施の形態では、光学系の各光学領域に備えられる偏光フィルタ部の透過偏光方位の組み合わせと、イメージセンサに備えられる偏光フィルタ素子(第2光学フィルタ素子)の透過偏光方位の組み合わせを同じにしている(いずれも方位角0°、60°、120°の組み合わせ)。しかし、この組み合わせは、必ずしも同じである必要はない。たとえば、光学系側において、45°、90°、135°の組み合わせで使用し、イメージセンサ側において、0°、60°、120°の組み合わせで使用してもよい。なお、同じ組み合わせとすることにより、偏光に基づく透過率cの算出を容易にできる。
〔各光学領域に設定する透過波長帯域〕
光学系の各光学領域に設定する透過波長帯域は、任意に設定できる。たとえば、特定の波長帯域を細分割し、細分割された帯域ごとの画像を取得する構成とすることもできる。この場合、特定の帯域のマルチスペクトル画像を取得できる。
光学系の各光学領域に設定する透過波長帯域は、任意に設定できる。たとえば、特定の波長帯域を細分割し、細分割された帯域ごとの画像を取得する構成とすることもできる。この場合、特定の帯域のマルチスペクトル画像を取得できる。
細分化された狭帯域の画像を取得する場合は、各光学領域に所望の波長帯域の光を透過させる狭帯域フィルタを配置する。
〔瞳分割の態様〕
上記実施の形態では、光学系の瞳部分を周方向に等分割して、複数の光学領域を備える構成としているが、瞳分割の態様は、これに限定されるものではない。この他、同心円状に分割する態様、格子状に分割する態様、スリット状に分割する態様等を採用できる。
上記実施の形態では、光学系の瞳部分を周方向に等分割して、複数の光学領域を備える構成としているが、瞳分割の態様は、これに限定されるものではない。この他、同心円状に分割する態様、格子状に分割する態様、スリット状に分割する態様等を採用できる。
〔イメージセンサの構成〕
1つの画素ブロックを構成する画素の配列は、上記実施の形態のものに限定されるものではない。1つの画素ブロックを構成する画素の数等に応じて、画素の配列を適宜変更できる。
1つの画素ブロックを構成する画素の配列は、上記実施の形態のものに限定されるものではない。1つの画素ブロックを構成する画素の数等に応じて、画素の配列を適宜変更できる。
また、上記実施の形態では、偏光フィルタ素子及び分光フィルタ素子が、フォトダイオードとマイクロレンズとの間に配置される構成としているが、いずれか一方又は両方をマイクロレンズの前(被写体側)に配置する構成とすることもできる。なお、偏光フィルタ素子及び分光フィルタ素子をマイクロレンズとフォトダイオードとの間に配置することにより、隣接する画素に光が混入するのを効果的に防止できる。これにより、より混信を防止できる。
〔信号処理部の構成〕
信号処理部200における画像生成部200B(演算部)の機能は、各種のプロセッサ(processor)を用いて実現できる。各種のプロセッサには、例えばソフトウェア(プログラム)を実行して各種の機能を実現する汎用的なプロセッサであるCPU(Central Processing Unit)が含まれる。また、上記各種のプロセッサには、画像処理に特化したプロセッサであるGPU(Graphics Processing Unit)、FPGA(Field Programmable Gate Array)などの製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)も含まれる。更に、ASIC(Application Specific Integrated Circuit)などの特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路なども上記各種のプロセッサに含まれる。
信号処理部200における画像生成部200B(演算部)の機能は、各種のプロセッサ(processor)を用いて実現できる。各種のプロセッサには、例えばソフトウェア(プログラム)を実行して各種の機能を実現する汎用的なプロセッサであるCPU(Central Processing Unit)が含まれる。また、上記各種のプロセッサには、画像処理に特化したプロセッサであるGPU(Graphics Processing Unit)、FPGA(Field Programmable Gate Array)などの製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)も含まれる。更に、ASIC(Application Specific Integrated Circuit)などの特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路なども上記各種のプロセッサに含まれる。
各部の機能は1つのプロセッサにより実現されてもよいし、同種又は異種の複数のプロセッサ(例えば、複数のFPGA、あるいはCPUとFPGAの組み合わせ、又はCPUとGPUの組み合わせ)で実現されてもよい。また、複数の機能を1つのプロセッサで実現してもよい。複数の機能を1つのプロセッサで構成する例としては、第1に、サーバなどのコンピュータに代表されるように、1つ以上のCPUとソフトウェアの組合せで1つのプロセッサを構成し、このプロセッサが複数の機能として実現する形態がある。第2に、システムオンチップ(System On Chip:SoC)などに代表されるように、システム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の機能は、ハードウェア的な構造として、上記各種のプロセッサを1つ以上用いて構成される。更に、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子などの回路素子を組み合わせた電気回路(circuitry)である。これらの電気回路は、論理和、論理積、論理否定、排他的論理和、及びこれらを組み合わせた論理演算を用いて上記の機能を実現する電気回路であってもよい。
上記のプロセッサあるいは電気回路がソフトウェア(プログラム)を実行する際は、実行するソフトウェアのプロセッサ(コンピュータ)読み取り可能なコードをROM(Read Only Memory)等の非一時的記録媒体に記憶しておき、プロセッサがそのソフトウェアを参照する。非一時的記録媒体に記憶しておくソフトウェアは、画像の入力、解析、表示制御等を実行するためのプログラムを含む。ROMではなく各種光磁気記録装置、半導体メモリ等の非一時的記録媒体にコードを記録してもよい。ソフトウェアを用いた処理の際には例えばRAM(Random Access Memory)が一時的記憶領域として用いられ、また例えば不図示のEEPROM(Electronically Erasable and Programmable Read Only Memory)に記憶されたデータを参照することもできる。
信号処理部200の係数記憶部200Cは、たとえば、ROM(Read-only Memory)、EEPROM(Electrically Erasable Programmable Read-only Memory)等のメモリで実現できる。
〔撮像装置の構成〕
撮像装置は、光学系の交換が可能なレンズ交換式の撮像装置として構成することもできる。この場合、行列Aは、レンズ(光学系)ごとに一意に定まるので、レンズごとに行列Aを用意し、その係数群を係数記憶部に記憶させる。レンズが交換された場合は、交換されたレンズに対応する行列Aの係数群を係数記憶部から読み出して、演算処理を実行し、各光学領域の画像を生成する。
撮像装置は、光学系の交換が可能なレンズ交換式の撮像装置として構成することもできる。この場合、行列Aは、レンズ(光学系)ごとに一意に定まるので、レンズごとに行列Aを用意し、その係数群を係数記憶部に記憶させる。レンズが交換された場合は、交換されたレンズに対応する行列Aの係数群を係数記憶部から読み出して、演算処理を実行し、各光学領域の画像を生成する。
1 撮像装置
10 光学系
12 レンズ
14 瞳分割フィルタ
16 分光フィルタ
18 偏光フィルタ
100 イメージセンサ
110 ピクセルアレイ層
112 フォトダイオード
120 偏光フィルタ素子アレイ層
122A 第1偏光フィルタ素子
122B 第2偏光フィルタ素子
122C 第3偏光フィルタ素子
130 分光フィルタ素子アレイ層
132A 第1分光フィルタ素子
132B 第2分光フィルタ素子
132C 第3分光フィルタ素子
140 マイクロレンズアレイ層
142 マイクロレンズ
200 信号処理部
200A アナログ信号処理部
200B 画像生成部
200C 係数記憶部
CI1 第1画素P1からの画素信号x1によって生成される画像
CI2 第2画素P2からの画素信号x2によって生成される画像
CI3 第3画素P3からの画素信号x3によって生成される画像
CI4 第4画素P4からの画素信号x4によって生成される画像
CI5 第5画素P5からの画素信号x5によって生成される画像
CI6 第6画素P6からの画素信号x6によって生成される画像
CI7 第7画素P7からの画素信号x7によって生成される画像
CI8 第8画素P8からの画素信号x8によって生成される画像
CI9 第9画素P9からの画素信号x9によって生成される画像
D1 画素ブロックから第1画素P1の画素信号を抽出して生成される第1の画像データ
D2 画素ブロックから第2画素P2の画素信号を抽出して生成される第2の画像データ
D3 画素ブロックから第3画素P3の画素信号を抽出して生成される第3の画像データ
D4 画素ブロックから第4画素P4の画素信号を抽出して生成される第4の画像データ
D5 画素ブロックから第5画素P5の画素信号を抽出して生成される第5の画像データ
D6 画素ブロックから第6画素P6の画素信号を抽出して生成される第6の画像データ
D7 画素ブロックから第7画素P7の画素信号を抽出して生成される第7の画像データ
D8 画素ブロックから第8画素P8の画素信号を抽出して生成される第8の画像データ
D9 画素ブロックから第9画素P9の画素信号を抽出して生成される第9の画像データ
F1 分光フィルタの第1分光フィルタ部
F2 分光フィルタの第2分光フィルタ部
F3 分光フィルタの第3分光フィルタ部
F4 分光フィルタの第4分光フィルタ部
F5 分光フィルタの第5分光フィルタ部
F6 分光フィルタの第6分光フィルタ部
F7 分光フィルタの第7分光フィルタ部
F8 分光フィルタの第8分光フィルタ部
F9 分光フィルタの第9分光フィルタ部
G1 分光フィルタの第1偏光フィルタ部
G2 分光フィルタの第2偏光フィルタ部
G3 分光フィルタの第3偏光フィルタ部
ID1 光学系の第1光学領域の画像
ID2 光学系の第2光学領域の画像
ID3 光学系の第3光学領域の画像
ID4 光学系の第4光学領域の画像
ID5 光学系の第5光学領域の画像
ID6 光学系の第6光学領域の画像
ID7 光学系の第7光学領域の画像
ID8 光学系の第8光学領域の画像
ID9 光学系の第9光学領域の画像
L 光軸
OI1 光学系の第1光学領域で得られる被写体の第1の光学像
OI2 光学系の第2光学領域で得られる被写体の第2の光学像
OI3 光学系の第3光学領域で得られる被写体の第3の光学像
OI4 光学系の第4光学領域で得られる被写体の第4の光学像
OI5 光学系の第5光学領域で得られる被写体の第5の光学像
OI6 光学系の第6光学領域で得られる被写体の第6の光学像
OI7 光学系の第7光学領域で得られる被写体の第7の光学像
OI8 光学系の第8光学領域で得られる被写体の第8の光学像
OI9 光学系の第9光学領域で得られる被写体の第9の光学像
Obj 被写体
P1 第1画素
P2 第2画素
P3 第3画素
P4 第4画素
P5 第5画素
P6 第6画素
P7 第7画素
P8 第8画素
P9 第9画素
Pi 第i画素
PB(x,y) 画素ブロック
S1 光学系の第1光学領域
S2 光学系の第2光学領域
S3 光学系の第3光学領域
S4 光学系の第4光学領域
S5 光学系の第5光学領域
S6 光学系の第6光学領域
S7 光学系の第7光学領域
S8 光学系の第8光学領域
S9 光学系の第9光学領域
Sj 光学系の第j光学領域
T1 第1分光フィルタ素子の分光透過率のグラフ
T2 第2分光フィルタ素子の分光透過率のグラフ
T3 第3分光フィルタ素子の分光透過率のグラフ
X1 光学系の第1光学領域に対応した画素信号
X2 光学系の第2光学領域に対応した画素信号
X3 光学系の第3光学領域に対応した画素信号
X4 光学系の第4光学領域に対応した画素信号
X5 光学系の第5光学領域に対応した画素信号
X6 光学系の第6光学領域に対応した画素信号
X7 光学系の第7光学領域に対応した画素信号
X8 光学系の第8光学領域に対応した画素信号
X9 光学系の第9光学領域に対応した画素信号
Xj 光学系の第j光学領域に対応した画素信号
x1 第1画素の画素信号
x2 第2画素の画素信号
x3 第3画素の画素信号
x4 第4画素の画素信号
x5 第5画素の画素信号
x6 第6画素の画素信号
x7 第7画素の画素信号
x8 第8画素の画素信号
x9 第9画素の画素信号
xi 第i画素の画素信号
Δf1 第1分光フィルタ部が透過させる光の波長帯域(第1の波長帯域)
Δf2 第2分光フィルタ部が透過させる光の波長帯域(第2の波長帯域)
Δf3 第3分光フィルタ部が透過させる光の波長帯域(第3の波長帯域)
Δf4 第4分光フィルタ部が透過させる光の波長帯域(第4の波長帯域)
Δf5 第5分光フィルタ部が透過させる光の波長帯域(第5の波長帯域)
Δf6 第6分光フィルタ部が透過させる光の波長帯域(第6の波長帯域)
Δf7 第7分光フィルタ部が透過させる光の波長帯域(第7の波長帯域)
Δf8 第8分光フィルタ部が透過させる光の波長帯域(第8の波長帯域)
Δf9 第9分光フィルタ部が透過させる光の波長帯域(第9の波長帯域)
α1 第1偏光フィルタ部が透過させる光の偏光方向(透過偏光方位、方位角)
α2 第2偏光フィルタ部が透過させる光の偏光方向(透過偏光方位、方位角)
α3 第3偏光フィルタ部が透過させる光の偏光方向(透過偏光方位、方位角)
β1 第1偏光フィルタ素子が透過させる光の偏光方向(透過偏光方位、方位角)
β2 第2偏光フィルタ素子が透過させる光の偏光方向(透過偏光方位、方位角)
β3 第3偏光フィルタ素子が透過させる光の偏光方向(透過偏光方位、方位角)
λ1 第1分光フィルタ部の透過波長帯域の中心波長
λ2 第2分光フィルタ部の透過波長帯域の中心波長
λ3 第3分光フィルタ部の透過波長帯域の中心波長
λ4 第4分光フィルタ部の透過波長帯域の中心波長
λ5 第5分光フィルタ部の透過波長帯域の中心波長
λ6 第6分光フィルタ部の透過波長帯域の中心波長
λ7 第7分光フィルタ部の透過波長帯域の中心波長
λ8 第8分光フィルタ部の透過波長帯域の中心波長
λ9 第9分光フィルタ部の透過波長帯域の中心波長
10 光学系
12 レンズ
14 瞳分割フィルタ
16 分光フィルタ
18 偏光フィルタ
100 イメージセンサ
110 ピクセルアレイ層
112 フォトダイオード
120 偏光フィルタ素子アレイ層
122A 第1偏光フィルタ素子
122B 第2偏光フィルタ素子
122C 第3偏光フィルタ素子
130 分光フィルタ素子アレイ層
132A 第1分光フィルタ素子
132B 第2分光フィルタ素子
132C 第3分光フィルタ素子
140 マイクロレンズアレイ層
142 マイクロレンズ
200 信号処理部
200A アナログ信号処理部
200B 画像生成部
200C 係数記憶部
CI1 第1画素P1からの画素信号x1によって生成される画像
CI2 第2画素P2からの画素信号x2によって生成される画像
CI3 第3画素P3からの画素信号x3によって生成される画像
CI4 第4画素P4からの画素信号x4によって生成される画像
CI5 第5画素P5からの画素信号x5によって生成される画像
CI6 第6画素P6からの画素信号x6によって生成される画像
CI7 第7画素P7からの画素信号x7によって生成される画像
CI8 第8画素P8からの画素信号x8によって生成される画像
CI9 第9画素P9からの画素信号x9によって生成される画像
D1 画素ブロックから第1画素P1の画素信号を抽出して生成される第1の画像データ
D2 画素ブロックから第2画素P2の画素信号を抽出して生成される第2の画像データ
D3 画素ブロックから第3画素P3の画素信号を抽出して生成される第3の画像データ
D4 画素ブロックから第4画素P4の画素信号を抽出して生成される第4の画像データ
D5 画素ブロックから第5画素P5の画素信号を抽出して生成される第5の画像データ
D6 画素ブロックから第6画素P6の画素信号を抽出して生成される第6の画像データ
D7 画素ブロックから第7画素P7の画素信号を抽出して生成される第7の画像データ
D8 画素ブロックから第8画素P8の画素信号を抽出して生成される第8の画像データ
D9 画素ブロックから第9画素P9の画素信号を抽出して生成される第9の画像データ
F1 分光フィルタの第1分光フィルタ部
F2 分光フィルタの第2分光フィルタ部
F3 分光フィルタの第3分光フィルタ部
F4 分光フィルタの第4分光フィルタ部
F5 分光フィルタの第5分光フィルタ部
F6 分光フィルタの第6分光フィルタ部
F7 分光フィルタの第7分光フィルタ部
F8 分光フィルタの第8分光フィルタ部
F9 分光フィルタの第9分光フィルタ部
G1 分光フィルタの第1偏光フィルタ部
G2 分光フィルタの第2偏光フィルタ部
G3 分光フィルタの第3偏光フィルタ部
ID1 光学系の第1光学領域の画像
ID2 光学系の第2光学領域の画像
ID3 光学系の第3光学領域の画像
ID4 光学系の第4光学領域の画像
ID5 光学系の第5光学領域の画像
ID6 光学系の第6光学領域の画像
ID7 光学系の第7光学領域の画像
ID8 光学系の第8光学領域の画像
ID9 光学系の第9光学領域の画像
L 光軸
OI1 光学系の第1光学領域で得られる被写体の第1の光学像
OI2 光学系の第2光学領域で得られる被写体の第2の光学像
OI3 光学系の第3光学領域で得られる被写体の第3の光学像
OI4 光学系の第4光学領域で得られる被写体の第4の光学像
OI5 光学系の第5光学領域で得られる被写体の第5の光学像
OI6 光学系の第6光学領域で得られる被写体の第6の光学像
OI7 光学系の第7光学領域で得られる被写体の第7の光学像
OI8 光学系の第8光学領域で得られる被写体の第8の光学像
OI9 光学系の第9光学領域で得られる被写体の第9の光学像
Obj 被写体
P1 第1画素
P2 第2画素
P3 第3画素
P4 第4画素
P5 第5画素
P6 第6画素
P7 第7画素
P8 第8画素
P9 第9画素
Pi 第i画素
PB(x,y) 画素ブロック
S1 光学系の第1光学領域
S2 光学系の第2光学領域
S3 光学系の第3光学領域
S4 光学系の第4光学領域
S5 光学系の第5光学領域
S6 光学系の第6光学領域
S7 光学系の第7光学領域
S8 光学系の第8光学領域
S9 光学系の第9光学領域
Sj 光学系の第j光学領域
T1 第1分光フィルタ素子の分光透過率のグラフ
T2 第2分光フィルタ素子の分光透過率のグラフ
T3 第3分光フィルタ素子の分光透過率のグラフ
X1 光学系の第1光学領域に対応した画素信号
X2 光学系の第2光学領域に対応した画素信号
X3 光学系の第3光学領域に対応した画素信号
X4 光学系の第4光学領域に対応した画素信号
X5 光学系の第5光学領域に対応した画素信号
X6 光学系の第6光学領域に対応した画素信号
X7 光学系の第7光学領域に対応した画素信号
X8 光学系の第8光学領域に対応した画素信号
X9 光学系の第9光学領域に対応した画素信号
Xj 光学系の第j光学領域に対応した画素信号
x1 第1画素の画素信号
x2 第2画素の画素信号
x3 第3画素の画素信号
x4 第4画素の画素信号
x5 第5画素の画素信号
x6 第6画素の画素信号
x7 第7画素の画素信号
x8 第8画素の画素信号
x9 第9画素の画素信号
xi 第i画素の画素信号
Δf1 第1分光フィルタ部が透過させる光の波長帯域(第1の波長帯域)
Δf2 第2分光フィルタ部が透過させる光の波長帯域(第2の波長帯域)
Δf3 第3分光フィルタ部が透過させる光の波長帯域(第3の波長帯域)
Δf4 第4分光フィルタ部が透過させる光の波長帯域(第4の波長帯域)
Δf5 第5分光フィルタ部が透過させる光の波長帯域(第5の波長帯域)
Δf6 第6分光フィルタ部が透過させる光の波長帯域(第6の波長帯域)
Δf7 第7分光フィルタ部が透過させる光の波長帯域(第7の波長帯域)
Δf8 第8分光フィルタ部が透過させる光の波長帯域(第8の波長帯域)
Δf9 第9分光フィルタ部が透過させる光の波長帯域(第9の波長帯域)
α1 第1偏光フィルタ部が透過させる光の偏光方向(透過偏光方位、方位角)
α2 第2偏光フィルタ部が透過させる光の偏光方向(透過偏光方位、方位角)
α3 第3偏光フィルタ部が透過させる光の偏光方向(透過偏光方位、方位角)
β1 第1偏光フィルタ素子が透過させる光の偏光方向(透過偏光方位、方位角)
β2 第2偏光フィルタ素子が透過させる光の偏光方向(透過偏光方位、方位角)
β3 第3偏光フィルタ素子が透過させる光の偏光方向(透過偏光方位、方位角)
λ1 第1分光フィルタ部の透過波長帯域の中心波長
λ2 第2分光フィルタ部の透過波長帯域の中心波長
λ3 第3分光フィルタ部の透過波長帯域の中心波長
λ4 第4分光フィルタ部の透過波長帯域の中心波長
λ5 第5分光フィルタ部の透過波長帯域の中心波長
λ6 第6分光フィルタ部の透過波長帯域の中心波長
λ7 第7分光フィルタ部の透過波長帯域の中心波長
λ8 第8分光フィルタ部の透過波長帯域の中心波長
λ9 第9分光フィルタ部の透過波長帯域の中心波長
Claims (12)
- nをn≧2を満たす整数、mを2≦m≦3を満たす整数、qをnとmの積とした場合に、分光透過率の異なるn種の第1光学フィルタ素子と、透過偏光方位の異なるm種の第2光学フィルタ素子とを組み合わせて、q種の光を各画素で受光する画素ブロックを複数備えたイメージセンサと、
kをk≦qを満たす整数とした場合に、透過する光の波長帯域が異なるk個の光学領域を備え、かつ、各前記光学領域に偏光フィルタ部を備えた光学系と、
iを1≦i≦kを満たす整数、jを1≦j≦qを満たす整数とした場合に、各要素がaijで表されるk行q列の行列Aで構成される係数群を記憶する記憶部と、
前記記憶部から前記係数群を取得し、前記イメージセンサの各前記画素ブロックから得られるq個の画素信号x1、x2、…、xqから、下記式によって、前記光学系の各前記光学領域に対応したk個の画素信号X1、X2、…、Xkを算出する演算部と、
- 前記行列Aは、前記光学系の各前記光学領域に入射した光が、前記イメージセンサの各前記画素ブロックの各前記画素で受光される割合を要素とする行列の逆行列を算出して取得される、
請求項1に記載の撮像装置。 - 前記光学系の各前記光学領域に入射した光が、前記イメージセンサの各前記画素ブロックの各前記画素で受光される割合は、偏光に基づく透過率をc、分光透過率に基づく透過率をdとした場合に、cとdとの積で算出される、
請求項2に記載の撮像装置。 - 偏光に基づく前記透過率cは、前記光学領域を透過する光の透過偏光方位と前記画素が受光する光の透過偏光方位との角度差の余弦の二乗を算出して求められ、
分光透過率に基づく前記透過率dは、前記光学領域を透過する光の波長帯域と前記画素に備えられた前記第1光学フィルタ素子の分光透過率とに基づいて求められる、
請求項3に記載の撮像装置。 - 前記光学系は、同じ透過偏光方位を有する前記偏光フィルタ部の数がn以下である、
請求項1から4のいずれか1項に記載の撮像装置。 - 前記イメージセンサの各前記画素ブロックは、分光透過率の異なる3種の前記第1光学フィルタ素子と、透過偏光方位の異なる3種の前記第2光学フィルタ素子とを組み合わせて、9種の光を各前記画素で受光する構成を有する、
請求項1から5のいずれか1項に記載の撮像装置。 - 前記光学系は、透過する光の波長帯域が異なる9個の前記光学領域を備える、
請求項6に記載の撮像装置。 - 前記光学系は、同じ透過偏光方位の前記偏光フィルタ部を備えた前記光学領域を3個ずつ備える、
請求項7に記載の撮像装置。 - 前記光学系に備えられる前記偏光フィルタ部の透過偏光方位の組み合わせと、前記イメージセンサに備えられる前記第2光学フィルタ素子の透過偏光方位の組み合わせが同じである、
請求項8に記載の撮像装置。 - 前記光学系は、異なる透過波長の狭帯域フィルタを各前記光学領域に備える、
請求項1から9のいずれか1項に記載の撮像装置。 - 前記光学系は、瞳位置に前記狭帯域フィルタを備える、
請求項10に記載の撮像装置。 - 前記イメージセンサは、各前記画素を構成するフォトダイオードとマイクロレンズとの間に前記第1光学フィルタ素子及び前記第2光学フィルタ素子を有する、
請求項1から11のいずれか1項に記載の撮像装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19870753.1A EP3866462B1 (en) | 2018-10-09 | 2019-09-26 | Imaging device |
JP2020550373A JP6908793B2 (ja) | 2018-10-09 | 2019-09-26 | 撮像装置 |
CN201980066394.1A CN112840643B (zh) | 2018-10-09 | 2019-09-26 | 摄像装置 |
US17/207,715 US11122242B2 (en) | 2018-10-09 | 2021-03-21 | Imaging device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018190963 | 2018-10-09 | ||
JP2018-190963 | 2018-10-09 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/207,715 Continuation US11122242B2 (en) | 2018-10-09 | 2021-03-21 | Imaging device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020075523A1 true WO2020075523A1 (ja) | 2020-04-16 |
Family
ID=70163973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/038019 WO2020075523A1 (ja) | 2018-10-09 | 2019-09-26 | 撮像装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11122242B2 (ja) |
EP (1) | EP3866462B1 (ja) |
JP (1) | JP6908793B2 (ja) |
CN (1) | CN112840643B (ja) |
WO (1) | WO2020075523A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021010103A1 (ja) * | 2019-07-17 | 2021-01-21 | 富士フイルム株式会社 | フィルターおよび撮像装置 |
WO2023188513A1 (ja) * | 2022-03-28 | 2023-10-05 | 富士フイルム株式会社 | 情報処理装置、情報処理方法、及びプログラム |
EP4296638A4 (en) * | 2021-01-29 | 2024-07-24 | Fujifilm Corp | DATA PROCESSING DEVICE, METHOD AND PROGRAM, OPTICAL ELEMENT, OPTICAL IMAGING SYSTEM AND IMAGING DEVICE |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7309640B2 (ja) * | 2020-03-18 | 2023-07-18 | 株式会社東芝 | 光学検査装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009169096A (ja) * | 2008-01-16 | 2009-07-30 | Fujifilm Corp | 撮像デバイス |
JP2012027393A (ja) * | 2010-07-27 | 2012-02-09 | Olympus Corp | 撮像装置 |
WO2012143983A1 (ja) | 2011-04-22 | 2012-10-26 | パナソニック株式会社 | 撮像装置、撮像システム、及び撮像方法 |
JP2013077935A (ja) * | 2011-09-30 | 2013-04-25 | Sony Corp | 撮像装置及び撮像方法 |
WO2015004886A1 (ja) | 2013-07-12 | 2015-01-15 | パナソニックIpマネジメント株式会社 | 撮像装置 |
JP2015211430A (ja) * | 2014-04-30 | 2015-11-24 | パナソニックIpマネジメント株式会社 | 撮像装置および演算回路 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5310483B2 (ja) * | 2009-10-28 | 2013-10-09 | 株式会社リコー | 撮像装置 |
JP2013031054A (ja) * | 2011-07-29 | 2013-02-07 | Ricoh Co Ltd | 撮像装置及びこれを備えた物体検出装置、並びに、光学フィルタ及びその製造方法 |
JP6124079B2 (ja) * | 2012-08-02 | 2017-05-10 | パナソニックIpマネジメント株式会社 | 偏光カラー撮像装置 |
US9194800B2 (en) * | 2012-10-29 | 2015-11-24 | Tokitae Llc | Systems, devices, and methods employing angular-resolved scattering and spectrally resolved measurements for classification of objects |
EP2957099B1 (en) * | 2013-02-13 | 2018-08-29 | Universität des Saarlandes | Plenoptic imaging device |
US9769365B1 (en) * | 2013-02-15 | 2017-09-19 | Red.Com, Inc. | Dense field imaging |
EP3940371B1 (en) * | 2014-06-05 | 2023-08-30 | Universität Heidelberg | Method and imaging apparatus for acquisition of fluorescence and reflectance images |
JP2016127333A (ja) * | 2014-12-26 | 2016-07-11 | 株式会社リコー | 撮像素子および撮像装置および撮像情報認識システム |
US10708557B1 (en) * | 2018-12-14 | 2020-07-07 | Lyft Inc. | Multispectrum, multi-polarization (MSMP) filtering for improved perception of difficult to perceive colors |
-
2019
- 2019-09-26 WO PCT/JP2019/038019 patent/WO2020075523A1/ja unknown
- 2019-09-26 JP JP2020550373A patent/JP6908793B2/ja active Active
- 2019-09-26 EP EP19870753.1A patent/EP3866462B1/en active Active
- 2019-09-26 CN CN201980066394.1A patent/CN112840643B/zh active Active
-
2021
- 2021-03-21 US US17/207,715 patent/US11122242B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009169096A (ja) * | 2008-01-16 | 2009-07-30 | Fujifilm Corp | 撮像デバイス |
JP2012027393A (ja) * | 2010-07-27 | 2012-02-09 | Olympus Corp | 撮像装置 |
WO2012143983A1 (ja) | 2011-04-22 | 2012-10-26 | パナソニック株式会社 | 撮像装置、撮像システム、及び撮像方法 |
JP2013077935A (ja) * | 2011-09-30 | 2013-04-25 | Sony Corp | 撮像装置及び撮像方法 |
WO2015004886A1 (ja) | 2013-07-12 | 2015-01-15 | パナソニックIpマネジメント株式会社 | 撮像装置 |
JP2015211430A (ja) * | 2014-04-30 | 2015-11-24 | パナソニックIpマネジメント株式会社 | 撮像装置および演算回路 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3866462A4 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021010103A1 (ja) * | 2019-07-17 | 2021-01-21 | 富士フイルム株式会社 | フィルターおよび撮像装置 |
JPWO2021010103A1 (ja) * | 2019-07-17 | 2021-01-21 | ||
JP7416798B2 (ja) | 2019-07-17 | 2024-01-17 | 富士フイルム株式会社 | フィルターおよび撮像装置 |
US12092846B2 (en) | 2019-07-17 | 2024-09-17 | Fujifilm Corporation | Filter and imaging apparatus |
EP4296638A4 (en) * | 2021-01-29 | 2024-07-24 | Fujifilm Corp | DATA PROCESSING DEVICE, METHOD AND PROGRAM, OPTICAL ELEMENT, OPTICAL IMAGING SYSTEM AND IMAGING DEVICE |
WO2023188513A1 (ja) * | 2022-03-28 | 2023-10-05 | 富士フイルム株式会社 | 情報処理装置、情報処理方法、及びプログラム |
Also Published As
Publication number | Publication date |
---|---|
EP3866462A1 (en) | 2021-08-18 |
EP3866462B1 (en) | 2022-11-02 |
CN112840643B (zh) | 2022-01-14 |
US11122242B2 (en) | 2021-09-14 |
EP3866462A4 (en) | 2021-11-10 |
JPWO2020075523A1 (ja) | 2021-09-02 |
JP6908793B2 (ja) | 2021-07-28 |
CN112840643A (zh) | 2021-05-25 |
US20210211617A1 (en) | 2021-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020075523A1 (ja) | 撮像装置 | |
JP2014239416A5 (ja) | ||
JP7238121B2 (ja) | 撮像装置 | |
JP2012249125A5 (ja) | ||
JP2017063414A5 (ja) | ||
Hirsch et al. | A switchable light field camera architecture with angle sensitive pixels and dictionary-based sparse coding | |
JP2012191376A5 (ja) | ||
JP2015177429A5 (ja) | ||
RU2018113727A (ru) | Способ и устройство для генерирования данных, характеризующих пиксельный пучок | |
WO2016191142A3 (en) | Nanophotonic filter and deflector for superpixel image sensor | |
JP7326581B2 (ja) | 撮像装置及び方法 | |
JP2012235472A5 (ja) | ||
JP2018536211A5 (ja) | ||
JP2018538709A5 (ja) | ||
JP2013090059A5 (ja) | ||
JP2015097380A5 (ja) | ||
US11457202B2 (en) | Imaging device | |
JP2019502277A5 (ja) | ||
JP7285322B2 (ja) | 撮像装置 | |
JP2018033126A5 (ja) | ||
JP6026854B2 (ja) | 画像処理システムおよび画像処理方法 | |
Koppelhuber et al. | Thin-film camera using luminescent concentrators and an optical Söller collimator | |
CN104459859A (zh) | 滤色器阵列和固态图像传感器 | |
RU2012149706A (ru) | Оптико-электронный фотоприемник (варианты) | |
TWI456527B (zh) | 影像縮小方法及影像處理裝置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19870753 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020550373 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019870753 Country of ref document: EP Effective date: 20210510 |