WO2020073798A1 - 飞控模块安装结构、飞控组件及无人机 - Google Patents

飞控模块安装结构、飞控组件及无人机 Download PDF

Info

Publication number
WO2020073798A1
WO2020073798A1 PCT/CN2019/107500 CN2019107500W WO2020073798A1 WO 2020073798 A1 WO2020073798 A1 WO 2020073798A1 CN 2019107500 W CN2019107500 W CN 2019107500W WO 2020073798 A1 WO2020073798 A1 WO 2020073798A1
Authority
WO
WIPO (PCT)
Prior art keywords
flight control
control module
positioning
mounting
structure according
Prior art date
Application number
PCT/CN2019/107500
Other languages
English (en)
French (fr)
Inventor
陈刚
钟自鸣
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2020073798A1 publication Critical patent/WO2020073798A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D43/00Arrangements or adaptations of instruments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use

Definitions

  • the invention relates to the technical field of unmanned aerial vehicles, in particular to a mounting structure of a flight control module, a flight control assembly and an unmanned aerial vehicle.
  • Drones are complex systems covering multi-disciplinary fields such as flight control, visual algorithms, and gimbal control.
  • the modularization and standardization of functional subsystems are conducive to accelerating the development and manufacturing process of drones, and facilitating later use maintain.
  • the flight control module (hereinafter collectively referred to as the flight control module) is an important subsystem in the UAV system. Its main function is to measure status information such as the flight attitude of the drone, and control the flight of the drone in real time. In order to ensure the accuracy of the measurement, after installing the flight control module, the drone must first calibrate and calibrate the flight control module.
  • the embodiments of the present invention provide a flight control module installation structure, a flight control module, and an unmanned aerial vehicle that realize accurate, fast, and convenient installation of the flight control module.
  • the embodiments of the present invention provide the following technical solutions:
  • a flight control module installation structure is used for connection between a flight control module and a drone.
  • the flight control module installation structure includes a base plate connected to the flight control module and a mounting plate provided on the drone ,
  • the base plate is connected to the mounting plate through a positioning structure, the positioning structure includes a first positioning portion provided on the base plate and a second positioning portion provided on the mounting plate and cooperating with the first positioning portion Positioning department.
  • the first positioning part and the second positioning part are restricted by surface or line contact to rotate the flight control module about a straight line perpendicular to the mounting plate.
  • the first positioning part and the second positioning part restrict surface rotation of the flight control module about a straight line perpendicular to the mounting plate through surface contact
  • the first positioning part has a An abutting surface
  • the second positioning portion has a second abutting surface
  • the first abutting surface and the second abutting surface abut to limit the flight control module from being perpendicular to the mounting plate Straight rotation.
  • the first positioning portion is a first key slot
  • the second positioning portion includes a flat key
  • the first key slot and the flat key clearance fit In an embodiment of the present invention, the first key slot and the flat key clearance fit.
  • the first key slot is U-shaped.
  • the second positioning portion further includes a second key slot, and the flat key is disposed in the second key slot.
  • the flat key and the second keyway are in transitional fit.
  • the first positioning portion and the second positioning portion restrict the rotation of the flight control module about a straight line perpendicular to the mounting plate through line contact, and the first positioning portion For positioning holes, the second positioning portion is a positioning pin.
  • the positioning hole is in clearance fit with the positioning pin.
  • the mounting plate has a long side and a short side connected to the long side, and the second positioning portion is located on a straight line parallel to the long side through the center of the mounting plate The first positioning portion is located on a straight line parallel to the long side and passing through the center of the substrate.
  • the positioning structure further includes a first positioning hole provided on the substrate, a second positioning hole provided on the mounting plate and corresponding to the position of the first positioning hole, and A positioning pin passing through the first positioning hole and the second positioning hole.
  • the positioning pin and the first positioning hole, and the positioning pin and the second positioning hole are all interference fit.
  • a line connecting the first positioning hole and the first positioning portion passes through the center of the substrate and is parallel to the long side of the mounting plate, and the second positioning hole and the The line of the second positioning portion passes through the center of the mounting plate and is parallel to the long side of the mounting plate.
  • the positioning pin is a conical pin.
  • the taper of the conical pin is 1:50.
  • the positioning structure further includes a first mounting hole provided at four corners of the substrate, and a first mounting hole provided on the mounting plate and corresponding to the position of the first mounting hole Two mounting holes and fastening bolts passing through the first mounting hole and the second mounting hole;
  • the four corners of the base plate are connected to the mounting plate through the fastening bolts so that the base plate faces the surface of the mounting plate, and the mounting plate faces the base plate and the The connected surfaces of the substrate are tightly attached.
  • the fastening bolt and the first mounting hole, and the fastening bolt and the second mounting hole are clearance fits.
  • the substrate includes a substrate body and mounting positions protruding from the four corner positions of the substrate body, respectively, and the first mounting hole penetrates the mounting position.
  • the mounting position is circular.
  • the surface of the mounting position facing the mounting plate is a surface that is mechanically processed to have a certain flatness.
  • the mounting plate includes a mounting plate body and two bosses arranged in parallel on the mounting plate body, the extending direction of the boss is parallel to the short side of the mounting plate, The second positioning portion is located on the boss.
  • the boss is an elongated boss.
  • the surface of the boss facing the substrate is a surface that is mechanically processed to have a certain flatness.
  • the present invention also provides a flight control assembly.
  • the flight control assembly includes a flight control module and the above-mentioned flight control module installation structure.
  • the present invention also provides a drone, including a fuselage, an arm connected to the fuselage, and a power device provided on the arm, as well as the flight control described above Components.
  • the installation structure of the flight control module proposed by the invention solves the problems of fast and accurate positioning and installation of the flight control module, simplifies the process of mass assembly production of the UAV, and improves the efficiency of mass production.
  • the flight control assembly proposed by the present invention can realize "one calibration and multiple loading, unloading and maintenance". That is, even after repeated disassembly and installation, the flight control assembly of the present invention can ensure that the positioning accuracy remains unchanged, so the calibration and calibration steps after each disassembly can be omitted, simplifying the post-installation maintenance process.
  • the present invention realizes the precise installation and positioning of the flight control module through plane constraint, coaxial constraint and point constraint, and realizes complete constraint on the flight control module with full freedom and high-precision positioning. It has the advantages of simple and convenient operation and low machining cost.
  • FIG. 1 is a schematic structural view of one embodiment of a flight control assembly of the present invention
  • FIG. 2 is a schematic structural view of one embodiment of a substrate in the flight control assembly shown in FIG. 1;
  • FIG. 3 is a schematic structural view of one embodiment of the mounting plate in the flight control assembly shown in FIG. 1;
  • FIG. 4 is a schematic structural view of a flat key in the flight control assembly shown in FIG. 1;
  • FIG. 5 is a schematic structural view of a conical pin in the flight control assembly shown in FIG. 1.
  • FIG. 1 is a schematic structural diagram of a flight control assembly 10 of the present invention.
  • the flight control assembly 10 includes a flight control module 20 and a flight control module mounting structure for mounting the flight control module 20 to an unmanned aerial vehicle.
  • the UAV includes a fuselage, an arm connected to the fuselage, and a power device provided on the arm.
  • the arm and the fuselage may be fixedly connected, or may be detachable or foldably connected with respect to the fuselage.
  • the power plant usually includes a motor and a propeller connected to the motor shaft of the motor.
  • the motor drives the propeller to rotate to provide lift for the drone to fly.
  • the UAV may also be a fixed-wing UAV.
  • the flight control module mounting structure includes a base plate 30 connected to the flight control module 20 and a mounting plate 40 provided in the fuselage of the drone. It is worth noting that the invention does not limit the position of the mounting plate 40 on the fuselage.
  • the substrate 30 is connected to the mounting board 40 through a positioning structure. In the mass production process, the location of the mounting plate 40 is reserved in the fuselage of each UAV, and the location of the mounting plate 40 on any two UAVs is the same. With the positioning structure, the position of the flight control module 20 to which the substrate 30 is connected on the mounting board 40 can be determined. Therefore, the position of the flight control module 20 is the same for any two drones in the mass production process. Therefore, a large amount of time for calibrating and calibrating the flight control module can be omitted, which improves the efficiency of mass production. It is worth noting that the mounting plate 40 may be a separate component or a part processed in the body of the drone.
  • the substrate 30 includes a substrate body 31 and mounting positions 34 provided at four corner positions of the substrate body 31.
  • the mounting position 34 protrudes from the substrate body 31 and is circular. In other possible embodiments, the mounting position 34 may also have other shapes.
  • the positioning structure includes a first positioning portion provided on the surface of the substrate body 31 facing the mounting plate 40.
  • the flight control module 20 and the first positioning portion are respectively located on two opposite surfaces of the substrate body 31.
  • the first positioning portion is a first key slot 32, the first key slot 32 is U-shaped, and the first key slot 32 penetrates one side of the substrate body 31.
  • the positioning structure may further include a first positioning hole 33 and a first mounting hole 35 penetrating through the four mounting positions 34 respectively.
  • the mounting positions 34 may be omitted, and the first mounting holes 35 are directly opened at the four corner positions of the substrate body 31.
  • the mounting plate 40 includes a mounting plate body 41 and a boss provided on the mounting plate body 41.
  • the boss includes a first boss 421 and a second boss 422 spaced parallel to the first boss 421.
  • the mounting plate body 41 has a long side 411 and a short side 412 connected to the long side 411, that is, in this embodiment, the mounting plate body 41 is generally rectangular. In other possible embodiments, the mounting plate body 41 may also have other shapes.
  • the first boss 421 and the second boss 422 have the same shape and are both strip-shaped, and the first boss 421 and the second boss 422 extend The directions are all parallel to the short side 412. In other embodiments, the first boss 421 and the second boss 422 may also be omitted.
  • the positioning structure further includes a second positioning portion provided on the first boss 421.
  • the second positioning portion includes a second key groove 43 provided on the first boss 421 and a flat key 50 provided in the second key groove 43 (as shown in FIG. 4) Show).
  • the second key slot 43 and the flat key 50 are in transitional fit.
  • the second positioning portion may include only the flat key 50, that is, the flat key 50 is directly formed on the first boss 421.
  • the positioning structure may further include a second positioning hole 44 provided in the second boss 422 and a second positioning hole 44 provided in the first boss 421 and the second boss 422 respectively Second mounting hole 45.
  • the first boss 421 is provided with two second mounting holes 45.
  • the two second mounting holes 45 pass through the first boss 421 and the mounting plate body 41.
  • the second boss 422 is also provided with two second mounting holes 45.
  • the two second mounting holes 45 pass through the second boss 422 and the mounting plate body 41.
  • the positions of the four second mounting holes 45 respectively correspond to the positions of the four first mounting holes 35.
  • the second positioning portion is located on a straight line passing through the center of the mounting plate body 41 and parallel to the long side 411, and the second positioning portion and the second positioning The line L of the hole 44 passes through the center of the mounting plate body 41 and is parallel to the long side 411.
  • the first positioning portion is also located on a straight line passing through the center of the substrate 30 and parallel to the long side 411, and the line connecting the first positioning portion and the first positioning hole 33 passes through the substrate The center of 30 is parallel to the long side 411.
  • the positioning structure may further include positioning pins passing through the first positioning hole 33 and the second positioning hole 44 and passing through the first mounting hole 35 and the second mounting hole 45 ⁇ tightening bolt 70.
  • the positioning pin and the first positioning hole 33 and the positioning pin and the second positioning hole 44 are all interference fit.
  • the use of interference fit can improve the assembly accuracy and is suitable for occasions where the flight control module does not need to be frequently installed and removed.
  • a transition fit or a clearance fit may also be used between the positioning pin and the first positioning hole 33, and between the positioning pin and the second positioning hole 44.
  • the transition fit or the clearance fit is relatively low in accuracy, it is more applicable For occasions where the flight control module needs to be frequently installed and removed.
  • the positioning pin is a conical pin 60, and the conical pin 60 has a taper of 1:50.
  • the taper of the conical pin 60 makes the conical pin 60 itself have good mechanical self-locking performance, and the positioning is more accurate, which is more convenient than the cylindrical pin in assembly and disassembly.
  • the positioning of the substrate 30 and the mounting board 40 can be achieved. Installation is very simple and convenient. It is also possible to align the opening of the first key slot 32 with the flat key 50 along the direction of line L in FIG. 3 and slide the base plate 30 until the flat key 50 is completely inserted into the first key slot 32. When mounting from top to bottom, fine adjustment can be performed along the Y-axis direction in FIG. 1, and the positioning of the substrate 30 and the mounting plate 40 can be basically completed.
  • the first key slot 32 and the flat key 50 are in clearance fit.
  • the first key slot 32 and the flat key 50 cooperate with each other to restrict the flight control module 20 from rotating around the Z axis.
  • the first key slot 32 and the flat key 50 are in clearance fit, only a single side of the flat key 50 abuts the single slot wall of the first key slot 32, thereby effectively preventing the occurrence of over-constraint.
  • the first abutment surface 321 of the first key slot 32 that is, the groove wall of the first key slot 32
  • the second abutment surface 501 of the flat key 50 that is, one side surface of the flat key 50.
  • the flat key 50 has three functions. First, it can provide a similar function as the guide of the slide rail, so that during the assembly process, the base plate 30 can be quickly aligned with the mounting plate 40 to complete the positioning. The second is that the flat key 50 and the conical pin 60 form an asymmetric arrangement, which can effectively prevent reverse installation. Finally, through a reasonable tolerance fit design (the clearance fit between the flat key 50 and the first key slot 32), the phenomenon of over-constraint is effectively prevented.
  • the cooperation of the conical pin 60 and the first positioning hole 33 and the second positioning hole 44 can realize the coaxial constraint of the first positioning hole 33 and the second positioning hole 44, thereby restricting the flight control module 20 relative to the drone
  • the position of the body can restrict the movement of the flight control module 20 in the X direction and the Y direction in FIG. 1.
  • the taper of the conical pin 60 makes the conical pin 60 have good mechanical self-locking performance, accurate positioning, and more convenient assembly and disassembly.
  • the four fastening bolts 70 are used to achieve close contact between the plane of the base plate 30 facing the mounting plate 40 and the plane of the mounting plate 40 facing the base plate 30 and connected to the base plate 30, thereby limiting flight control
  • the substrate 30 may face the plane of the mounting plate 40 and the mounting plate 40 may face the substrate 30 and be in contact with the substrate 30
  • the connected planes are machined so that they have a certain flatness.
  • the presence of the mounting position 34, the first boss 411, and the second boss 412 reduces the amount of machining.
  • the flatness of the surface of the mounting position 34 facing the mounting plate 40 is equal to the flatness of the surface of the two bosses facing the substrate 30.
  • first boss 411 and the second boss 412 may also be omitted, and the area directly connected to the substrate 30 on the mounting plate 40 may be directly machined, while mounting the substrate 30 toward The entire surface of the board 40 is machined to ensure a close fit between the two planes.
  • the flatness of the two planes can be determined according to the specific installation accuracy of the flight control module, and the invention is not limited thereto.
  • the installation structure of the flight control module proposed by the invention solves the problems of fast and accurate positioning and installation of the flight control module, simplifies the process of mass assembly production of the UAV, and improves the efficiency of mass production.
  • the flight control assembly proposed by the present invention can realize "one calibration and multiple loading, unloading and maintenance". That is, even after repeated disassembly and installation, the flight control assembly of the present invention can ensure that the positioning position remains unchanged and maintain a certain positioning accuracy, so the calibration and calibration steps after each disassembly during the later maintenance can be omitted, simplifying the later stage Loading and unloading maintenance process.
  • the present invention realizes the precise installation and positioning of the flight control module through plane constraint, coaxial constraint and point constraint, and realizes complete constraint on the flight control module with full freedom and high-precision positioning. It has the advantages of simple and convenient operation and low machining cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Connection Of Plates (AREA)
  • Navigation (AREA)

Abstract

一种飞控模块(20)安装结构、飞控组件(10)和无人机。其中,飞控模块(20)安装结构包括与飞控模块(20)相连的基板(30)和设于无人机的安装板(40),基板(30)通过定位结构与安装板(40)相连,定位结构包括设于基板(30)上的第一定位部和设于安装板(40)上且与第一定位部配合的第二定位部。该飞控模块(20)安装结构可以省略大量对飞控模块(20)进行标定和校准的时间,提高了大批量生产的效率。

Description

飞控模块安装结构、飞控组件及无人机
【相关申请交叉引用】
本申请要求于2018年10月10日申请的、申请号为201811180166.0、申请名称为“飞控模块安装结构、飞控组件及无人机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
【技术领域】
本发明涉及无人机技术领域,尤其涉及一种飞控模块安装结构、飞控组件和无人机。
【背景技术】
无人机是涵盖飞行控制、视觉算法、云台控制等多学科领域的复杂系统,各功能子系统的模块化与标准化,有利于加速无人机的研发与生产制造过程,方便后期的使用与维护。
飞行控制模块(下文统称为飞控模块)是无人机系统中重要的子系统,其主要功能是测量无人机飞行姿态等状态信息,并实时控制无人机的飞行。为了保证测量的精确性,无人机在安装飞控模块后,必须先进行飞控模块的标定与校准。
目前已有的商用飞控模块安装方式只有胶粘与螺纹固定两种。胶粘式安装方案的可靠性低,而螺纹固定式安装方案虽然提高了可靠性,但仍不能保证大批量生产装配过程中飞控模块的定位精度。即,在大批量生产中,不同无人机中飞控模块的安装位置并不能保证完全相同。因此,对于大批量生产中的每一台无人机,均需要花费大量的时间对飞控模块进行标定与校准,这无疑降低了装配效率。且在后期飞控模块的使用与维护过程中,无法实现“一次标定校准,多次装卸维护”。
【发明内容】
为了解决上述技术问题,本发明实施例提供一种实现飞控模块的精确、快速、便捷安装的飞控模块安装结构、飞控组件及无人机。
为解决上述技术问题,本发明实施例提供以下技术方案:
一种飞控模块安装结构,用于飞控模块和无人机之间的连接,所述飞控模块安装结构包括与所述飞控模块相连的基板和设于所述无人机的安装板,所述基板通过定位结构与所述安装板相连,所述定位结构包括设于所述基板上的第一定位部和设于所述安装板上且与所述第一定位部配合的第二定位部。
在本发明的一实施例中,所述第一定位部与所述第二定位部之间通过面接触或线接触,限制所述飞控模块绕垂直于所述安装板的直线旋转。
在本发明的一实施例中,所述第一定位部与所述第二定位部通过面接触限制所述飞控模块绕垂直于所述安装板的直线旋转,所述第一定位部具有第一抵接面,所述第二定位部具有第二抵接面,所述第一抵接面与所述第二抵接面抵接以限制所述飞控模块绕垂直于所述安装板的直线旋转。
在本发明的一实施例中,所述第一定位部为第一键槽,所述第二定位部包括平键。
在本发明的一实施例中,所述第一键槽与所述平键间隙配合。
在本发明的一实施例中,所述第一键槽呈U形。
在本发明的一实施例中,所述第二定位部还包括第二键槽,所述平键设于所述第二键槽内。
在本发明的一实施例中,所述平键与所述第二键槽为过渡配合。
在本发明的一实施例中,所述第一定位部与所述第二定位部之间通过线接触限制所述飞控模块绕垂直于所述安装板的直线旋转,所述第一定位部为定位孔,所述第二定位部为定位销。
在本发明的一实施例中,所述定位孔与所述定位销间隙配合。
在本发明的一实施例中,所述安装板具有长边和与所述长边相连的短边,所述第二定位部位于过所述安装板中心且平行于所述长边的直线上,所述第一定位部位于过所述基板中心且平行于所述长边的直线上。
在本发明的一实施例中,所述定位结构还包括设于所述基板上的第一定位孔、设于所述安装板上且与所述第一定位孔位置对应的第二定位孔以及穿过所述第一定位孔和所述第二定位孔的定位销。
在本发明的一实施例中,所述定位销与所述第一定位孔、以及所述定位销与所述第二定位孔之间均为过盈配合。
在本发明的一实施例中,所述第一定位孔与所述第一定位部的连线过所述基板中心且平行于所述安装板的长边,所述第二定位孔与所述第二定位部的连线过所述安装板中心且平行于所述安装板的长边。
在本发明的一实施例中,所述定位销为圆锥销。
在本发明的一实施例中,所述圆锥销的锥度为1∶50。
在本发明的一实施例中,所述定位结构还包括设于所述基板四个角位处的第一安装孔、设于所述安装板上且与所述第一安装孔位置对应的第二安装孔以及穿过所述第一安装孔和所述第二安装孔的紧固螺栓;
所述基板的所述四个角位处通过所述紧固螺栓与所述安装板相连,以使得所述基板朝向所述安装板的表面、与所述安装板朝向所述基板并与所述基板相连的表面紧密贴合。
在本发明的一实施例中,所述紧固螺栓与所述第一安装孔之间、以及所述紧固螺栓与所述第二安装孔之间均为间隙配合。
在本发明的一实施例中,所述基板包括基板主体以及分别凸设于所述基板主体的所述四个角位处的安装位,所述第一安装孔贯通所述安装位。
在本发明的一实施例中,所述安装位呈圆形。
在本发明的一实施例中,所述安装位朝向所述安装板的表面为经过机械加工以使其具有一定平面度的表面。
在本发明的一实施例中,所述安装板包括安装板主体和两平行间隔设置在所述安装板主体上的凸台,所述凸台的延伸方向平行于所述安装板的短边,所述第二定位部位于所述凸台上。
在本发明的一实施例中,所述凸台为长条形的凸台。
在本发明的一实施例中,所述凸台朝向所述基板的表面为经过机械加工以使其具有一定平面度的表面。
为解决其技术问题,本发明还提供了一种飞控组件,所述飞控组件包括飞控模块和如上述所述的飞控模块安装结构。
为解决其技术问题,本发明还提供了一种无人机,包括机身、与所述机身相连的机臂和设于所述机臂的动力装置,还包括如上述所述的飞控组件。
本发明提出的飞控模块安装结构,解决了飞控模块的快速精确定位及安装的问题,简化了无人机批量装配生产的流程,提高了大批量生产的效率。且本发明提出的飞控组件,可实现“一次标定校准,多次装卸维护”。即,即使经过多次拆卸和安装,本发明的飞控组件仍然可保证定位精度不变,因此可省略每一次拆装后的标定和校准步骤,简化了后期装卸维护的流程。同时,本发明通过平面约束、同轴约束及点约束来实现飞控模块的精确安装和定位,实现了对飞控模块全自由度的完整约束及较高精度的定位。具有操作简单方便,机械加工成本低等优点。
【附图说明】
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本发明一种飞控组件其中一实施例的结构示意图;
图2为图1所示的飞控组件中基板其中一实施例的结构示意图;
图3为图1所示的飞控组件中安装板其中一实施例的结构示意图;
图4为图1所示的飞控组件中平键的结构示意图;以及
图5为图1所示的飞控组件中圆锥销的结构示意图。
【具体实施方式】
为了便于理解本发明,下面结合附图和具体实施例,对本发明进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“上”、“下”、“内”、“外”、“底部”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本说明书中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本发明。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本发明不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
图1为本发明一种飞控组件10的结构示意图。该飞控组件10包括飞控模块20和用于将所述飞控模块20安装至无人机的飞控模块安装结构。无人机包括机身、与机身相连的机臂和设于机臂的动力装置。机臂与机身可以是固定连接,也可以是可拆卸或以可相对于机身折叠的方式连接。动力装置通常包括电机和与电机的电机轴相连的螺旋桨。电机驱动螺旋桨旋转以提供无人机飞行的升力。在其他实施例中,无人机也可以是固定翼无人机。所述飞控模块安装结构包括与所述飞控模块20相连的基板30和设于所述无人机的机身内的安装板40。值得注意的是,对安装板40在机身上的位置本发明不做限定。所述基板30通过定位结构与所述安装板40相连。在大批量生产过程中,每一台无人机的机身内均会预留出安装所述安装板40的位置,且任意两台无人机上安装板40的位置是相同的。通过所述定位结构,连接有所述基板30的所述飞控模块20在安装板40上的位置可以被确定。因此,对于在大批量生产过程中的任意两台无人机来说,其飞控模块20的位置也是相同的。因此,可以省略大量对飞控模块标定和校准的时间,提高了大批量生产的效率。值得注意的是,安装板40可以是单独的一个部件,也可以是在无人机的机身内加工出的一个部分。
如图2所示,所述基板30包括基板主体31和设于所述基板主体31四个角位处的安装位34。在本发明的一实施例中,所述安装位34自所述基板主体31凸出且呈圆形。在其他可能的实施例中,安装位34也可以是其他形状。
所述定位结构包括设于所述基板主体31朝向所述安装板40的表面的第一定位部。在本实施例中,所述飞控模块20与所述第一定位部分别位于所述基板主体31相对的两个表面上。在本发明的一实施例中,所述第一定位部为 第一键槽32,所述第一键槽32呈U形,第一键槽32贯通所述基板主体31的一个侧边。
在其他可能的实施例中,所述定位结构还可以包括第一定位孔33和分别贯通四个所述安装位34的第一安装孔35。在其他可能的实施例中,可以省略安装位34,而直接在基板主体31的四个角位处开设所述第一安装孔35。
如图3所示,所述安装板40包括安装板主体41和设置在所述安装板主体41上的凸台。所述凸台包括第一凸台421和与所述第一凸台421平行间隔设置的第二凸台422。所述安装板主体41具有长边411和与所述长边411相连的短边412,即在本实施例中,所述安装板主体41整体呈矩形。在其他可能的实施例中,所述安装板主体41还可以是其他形状。在本发明的一实施例中,所述第一凸台421与所述第二凸台422的形状相同,均呈条形,所述第一凸台421和所述第二凸台422的延伸方向均与所述短边412平行。在其他实施例中,所述第一凸台421与所述第二凸台422也可以省略。
所述定位结构还包括设于所述第一凸台421的第二定位部。在本发明的一实施例中,所述第二定位部包括设于所述第一凸台421上的第二键槽43和设于所述第二键槽43内的平键50(如图4所示)。在本发明的一实施例中,所述第二键槽43与所述平键50之间为过渡配合。在其他可能的实施例中,所述第二定位部也可以仅包括平键50,即将所述平键50直接成型于所述第一凸台421上。
在其他可能的实施例中,所述定位结构还可以包括设于所述第二凸台422的第二定位孔44以及分别设于所述第一凸台421和所述第二凸台422的第二安装孔45。所述第一凸台421上设有两个第二安装孔45,两个所述第二安装孔45贯通所述第一凸台421和所述安装板主体41。所述第二凸台422上也设有两个第二安装孔45,两个所述第二安装孔45贯通所述第二凸台422和所述安装板主体41。四个所述第二安装孔45的位置分别与四个所述第一安装孔35的位置相对应。
在本发明的一实施例中,所述第二定位部位于过所述安装板主体41的中心且平行于所述长边411的直线上,且所述第二定位部与所述第二定位孔44的连线L过所述安装板主体41的中心且平行于所述长边411。相应的,所述 第一定位部也位于过所述基板30中心且平行于所述长边411的直线上,所述第一定位部与所述第一定位孔33的连线过所述基板30的中心且平行于所述长边411。
如图5所示,所述定位结构还可包括穿过所述第一定位孔33和所述第二定位孔44的定位销以及穿过所述第一安装孔35和所述第二安装孔45的紧固螺栓70。在本发明的一实施例中,定位销与第一定位孔33之间、以及定位销与第二定位孔44之间均为过盈配合。采用过盈配合能够提高装配精度,适用于不需要频繁装拆飞控模块的场合。可以理解的,定位销与第一定位孔33之间、以及定位销与第二定位孔44之间也可以采用过渡配合或间隙配合,采用过渡配合或间隙配合虽然精度相对稍低,但是更加适用于需要频繁装拆飞控模块的场合。在本发明的一实施例中,定位销为圆锥销60,所述圆锥销60具有1∶50的锥度。圆锥销60具有的锥度,使得圆锥销60本身具有良好的机械自锁性能,且定位更加精确,在装拆方面比圆柱销更为方便。在本发明的一实施例中,所述紧固螺栓70与所述第一安装孔35之间、以及所述紧固螺栓70与所述第二安装孔45之间为间隙配合,以使得所述基板30朝向所述安装板40的表面、与所述安装板40朝向所述基板30并与所述基板30相连的表面紧密贴合。
在安装时,将所述第一键槽32对准所述第二键槽43内的平键50,即从上往下安装,即可实现基板30与安装板40的定位。安装非常简单便捷。也可以沿着图3中直线L方向,将第一键槽32的开口对准平键50,滑动基板30,直至平键50完全插入所述第一键槽32中。从上往下安装时,可以沿着图1中的Y轴方向进行微调,即可基本完成基板30与安装板40的定位。然后将所述圆锥销60轻轻敲入所述第一定位孔33和所述第二定位孔44,最后将四个紧固螺栓70分别装入第一安装孔35和第二安装孔45内并紧固,即可进一步完成飞控模块20的全自由度约束及安装。整个安装过程无需特殊的精细操作,方便快捷的同时可以保证较高的定位精度,十分适合大批量生产。
在本发明的实施例中,在装配状态下,所述第一键槽32与所述平键50为间隙配合。当所述飞控模块20相对于安装板40绕图1中的Z轴微小转动时,所述第一键槽32与所述平键50相互配合可以限制所述飞控模块20绕Z 轴方向的转动。且由于第一键槽32与所述平键50为间隙配合,因此只有平键50的单个侧面与第一键槽32的单个槽壁抵接,从而有效防止了过约束现象的产生。例如,第一键槽32的第一抵接面321(即所述第一键槽32的槽壁)与平键50的第二抵接面501(即所述平键50的一个侧面)抵接。
在本发明的实施例中,平键50具有三个作用。一是可以提供类似于滑轨导向的作用,使得在装配过程中,基板30能够快速对准安装板40,完成定位。二是,平键50与圆锥销60形成非对称布置,可以有效防止反向安装。最后,通过合理的公差配合设计(平键50与第一键槽32之间的间隙配合),有效防止过约束现象的产生。
圆锥销60与第一定位孔33以及第二定位孔44的配合,可以实现第一定位孔33与第二定位孔44的同轴约束,从而限制所述飞控模块20相对于无人机机身的位置,即可限制飞控模块20在图1中沿X方向和Y方向上的移动。同时,圆锥销60具有的锥度,使得圆锥销60具备良好的机械自锁性能,定位精确,装拆也更加方便。
此外,通过四个紧固螺栓70实现基板30朝向所述安装板40的平面、以及安装板40朝向所述基板30并与所述基板30相连的平面之间的紧密贴合,从而限制飞控模块20绕X轴的转动、绕Y轴的转动以及沿Z轴的移动。在本发明的一实施例中,为了保证两个平面之间的紧密贴合,还可以对基板30朝向所述安装板40的平面、以及安装板40朝向所述基板30并与所述基板30相连的平面进行机械加工,使其具有一定的平面度。为了减少加工量,在本实施例中,只需要对基板30上的四个安装位34、第一凸台411和第二凸台412进行机械加工即可。因此,安装位34、第一凸台411和第二凸台412的存在降低了机械加工量。此外,还应当尽量保证安装位34朝向安装板40的表面的平面度、与两个凸台朝向所述基板30的表面的平面度相等。可以理解的是,在其他可能的实施例中,还可以省略第一凸台411和第二凸台412,直接在安装板40上与基板30相连的区域进行机械加工,同时对基板30朝向安装板40的整个表面进行机械加工,来保证两个平面之间的紧密贴合。两个平面的平面度可以根据飞控模块具体的安装精度来确定,对此,本发明不做限定。
本发明提出的飞控模块安装结构,解决了飞控模块的快速精确定位及安装的问题,简化了无人机批量装配生产的流程,提高了大批量生产的效率。且本发明提出的飞控组件,可实现“一次标定校准,多次装卸维护”。即,即使经过多次拆卸和安装,本发明的飞控组件仍然可保证定位位置不变,保持一定的定位精度,因此可省略后期维护时每一次拆装后的标定和校准步骤,简化了后期装卸维护的流程。同时,本发明通过平面约束、同轴约束及点约束来实现飞控模块的精确安装和定位,实现了对飞控模块全自由度的完整约束及较高精度的定位。具有操作简单方便,机械加工成本低等优点。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (26)

  1. 一种飞控模块安装结构,用于飞控模块和无人机之间的连接,其特征在于,所述飞控模块安装结构包括与所述飞控模块相连的基板和设于所述无人机的安装板,所述基板通过定位结构与所述安装板相连,所述定位结构包括设于所述基板上的第一定位部和设于所述安装板上且与所述第一定位部配合的第二定位部。
  2. 根据权利要求1所述的飞控模块安装结构,其特征在于,所述第一定位部与所述第二定位部之间通过面接触或线接触,限制所述飞控模块绕垂直于所述安装板的直线旋转。
  3. 根据权利要求1或2所述的飞控模块安装结构,其特征在于,所述第一定位部与所述第二定位部通过面接触限制所述飞控模块绕垂直于所述安装板的直线旋转,所述第一定位部具有第一抵接面,所述第二定位部具有第二抵接面,所述第一抵接面与所述第二抵接面抵接以限制所述飞控模块绕垂直于所述安装板的直线旋转。
  4. 根据权利要求1-3中任一项所述的飞控模块安装结构,其特征在于,所述第一定位部为第一键槽,所述第二定位部包括平键。
  5. 根据权利要求4所述的飞控模块安装结构,其特征在于,所述第一键槽与所述平键间隙配合。
  6. 根据权利要求4或5所述的飞控模块安装结构,其特征在于,所述第一键槽呈U形。
  7. 根据权利要求4-6中任一项所述的飞控模块安装结构,其特征在于,所述第二定位部还包括第二键槽,所述平键设于所述第二键槽内。
  8. 根据权利要求7所述的飞控模块安装结构,其特征在于,所述平键与所述第二键槽为过渡配合。
  9. 根据权利要求1或2所述的飞控模块安装结构,其特征在于,所述第一定位部与所述第二定位部之间通过线接触限制所述飞控模块绕垂直于所述安装板的直线旋转,所述第一定位部为定位孔,所述第二定位部为定位销。
  10. 根据权利要求9所述的飞控模块安装结构,其特征在于,所述定位孔与所述定位销间隙配合。
  11. 根据权利要求1-10中任一项所述的飞控模块安装结构,其特征在于,所述安装板具有长边和与所述长边相连的短边,所述第二定位部位于过所述安装板中心且平行于所述长边的直线上,所述第一定位部位于过所述基板中心且平行于所述长边的直线上。
  12. 根据权利要求1-11中任一项所述的飞控模块安装结构,其特征在于,所述定位结构还包括设于所述基板上的第一定位孔、设于所述安装板上且与所述第一定位孔位置对应的第二定位孔以及穿过所述第一定位孔和所述第二定位孔的定位销。
  13. 根据权利要求12所述的飞控模块安装结构,其特征在于,所述定位销与所述第一定位孔、以及所述定位销与所述第二定位孔之间均为过盈配合。
  14. 根据权利要求12或13所述的飞控模块安装结构,其特征在于,所述第一定位孔与所述第一定位部的连线过所述基板中心且平行于所述安装板的长边,所述第二定位孔与所述第二定位部的连线过所述安装板中心且平行于所述安装板的长边。
  15. 根据权利要求12-14中任一项所述的飞控模块安装结构,其特征在于,所述定位销为圆锥销。
  16. 根据权利要求15所述的飞控模块安装结构,其特征在于,所述圆锥销的锥度为1∶50。
  17. 根据权利要求1-16中任一项所述的飞控模块安装结构,其特征在于,所述定位结构还包括设于所述基板四个角位处的第一安装孔、设于所述安装板上且与所述第一安装孔位置对应的第二安装孔以及穿过所述第一安装孔和所述第二安装孔的紧固螺栓;
    所述基板的所述四个角位处通过所述紧固螺栓与所述安装板相连,以使得所述基板朝向所述安装板的表面、与所述安装板朝向所述基板并与所述基板相连的表面紧密贴合。
  18. 根据权利要求17所述的飞控模块安装结构,其特征在于,所述紧固螺栓与所述第一安装孔之间、以及所述紧固螺栓与所述第二安装孔之间均为间隙配合。
  19. 根据权利要求17或18所述的飞控模块安装结构,其特征在于,所述基板包括基板主体以及分别凸设于所述基板主体的所述四个角位处的安装 位,所述第一安装孔贯通所述安装位。
  20. 根据权利要求19所述的飞控模块安装结构,其特征在于,所述安装位呈圆形。
  21. 根据权利要求19或20所述的飞控模块安装结构,其特征在于,所述安装位朝向所述安装板的表面为经过机械加工以使其具有一定平面度的表面。
  22. 根据权利要求1-21中任一项所述的飞控模块安装结构,其特征在于,所述安装板包括安装板主体和两平行间隔设置在所述安装板主体上的凸台,所述凸台的延伸方向平行于所述安装板的短边,所述第二定位部位于所述凸台上。
  23. 根据权利要求22所述的飞控模块安装结构,其特征在于,所述凸台为长条形的凸台。
  24. 根据权利要求22或23所述的飞控模块安装结构,其特征在于,所述凸台朝向所述基板的表面为经过机械加工以使其具有一定平面度的表面。
  25. 一种飞控组件,其特征在于,所述飞控组件包括飞控模块和如权利要求1-24中任一项所述的飞控模块安装结构。
  26. 一种无人机,包括机身、与所述机身相连的机臂和设于所述机臂的动力装置,其特征在于,还包括如权利要求25所述的飞控组件。
PCT/CN2019/107500 2018-10-10 2019-09-24 飞控模块安装结构、飞控组件及无人机 WO2020073798A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811180166.0 2018-10-10
CN201811180166.0A CN108974372A (zh) 2018-10-10 2018-10-10 飞控模块安装结构、飞控组件及无人机

Publications (1)

Publication Number Publication Date
WO2020073798A1 true WO2020073798A1 (zh) 2020-04-16

Family

ID=64543449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107500 WO2020073798A1 (zh) 2018-10-10 2019-09-24 飞控模块安装结构、飞控组件及无人机

Country Status (2)

Country Link
CN (1) CN108974372A (zh)
WO (1) WO2020073798A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108974372A (zh) * 2018-10-10 2018-12-11 深圳市道通智能航空技术有限公司 飞控模块安装结构、飞控组件及无人机
CN109823554A (zh) * 2019-04-02 2019-05-31 福建电力职业技术学院 一种无人机飞控舱模块化快速拆装结构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206155792U (zh) * 2016-11-08 2017-05-10 北方民族大学 测霾无人机
CN206171808U (zh) * 2016-11-24 2017-05-17 傲飞创新科技(深圳)有限公司 模块化无人机
CN206446801U (zh) * 2016-12-02 2017-08-29 深圳市九天创新科技有限责任公司 适用于多旋翼无人机的专用飞控减震结构
US20180022451A1 (en) * 2016-05-27 2018-01-25 Uvify Co., Ltd. Unmanned aerial vehicle
CN108974372A (zh) * 2018-10-10 2018-12-11 深圳市道通智能航空技术有限公司 飞控模块安装结构、飞控组件及无人机
CN109094798A (zh) * 2018-10-10 2018-12-28 深圳市道通智能航空技术有限公司 一种无人机及其飞控组件
CN209126980U (zh) * 2018-10-10 2019-07-19 深圳市道通智能航空技术有限公司 飞控模块安装结构、飞控组件及无人机
CN209441667U (zh) * 2018-10-10 2019-09-27 深圳市道通智能航空技术有限公司 一种无人机及其飞控组件

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106448751B (zh) * 2016-07-12 2018-02-13 华能山东石岛湾核电有限公司 一种高温气冷堆金属堆内构件堆芯壳支承结构及安装方法
CN106314113B (zh) * 2016-09-07 2019-03-12 奇瑞汽车股份有限公司 电池安装结构及供电装置
CN206819139U (zh) * 2017-04-18 2017-12-29 西北工业大学 一种无人机飞控安装板
CN207094415U (zh) * 2017-07-31 2018-03-13 东莞嘉盛照明科技有限公司 免螺丝锁装led模组结构
CN107471169A (zh) * 2017-09-21 2017-12-15 北京仿真中心 一种用于飞行模拟转台的被试件安装定位装置
CN207530240U (zh) * 2017-12-05 2018-06-22 洛阳万凝电子科技有限公司 一种带有防止多余物产生的快速安装结构的连接器
CN107866543A (zh) * 2017-12-27 2018-04-03 鲍晨曦 一种镶拼式型芯固定结构
CN108312822A (zh) * 2018-01-11 2018-07-24 深圳市沃特玛电池有限公司 一种电动汽车的前机舱安装结构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180022451A1 (en) * 2016-05-27 2018-01-25 Uvify Co., Ltd. Unmanned aerial vehicle
CN206155792U (zh) * 2016-11-08 2017-05-10 北方民族大学 测霾无人机
CN206171808U (zh) * 2016-11-24 2017-05-17 傲飞创新科技(深圳)有限公司 模块化无人机
CN206446801U (zh) * 2016-12-02 2017-08-29 深圳市九天创新科技有限责任公司 适用于多旋翼无人机的专用飞控减震结构
CN108974372A (zh) * 2018-10-10 2018-12-11 深圳市道通智能航空技术有限公司 飞控模块安装结构、飞控组件及无人机
CN109094798A (zh) * 2018-10-10 2018-12-28 深圳市道通智能航空技术有限公司 一种无人机及其飞控组件
CN209126980U (zh) * 2018-10-10 2019-07-19 深圳市道通智能航空技术有限公司 飞控模块安装结构、飞控组件及无人机
CN209441667U (zh) * 2018-10-10 2019-09-27 深圳市道通智能航空技术有限公司 一种无人机及其飞控组件

Also Published As

Publication number Publication date
CN108974372A (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
WO2020073755A1 (zh) 一种无人机及其飞控组件
WO2020073798A1 (zh) 飞控模块安装结构、飞控组件及无人机
US6317954B1 (en) System and method for aligning aircraft coordinate systems
EP0957335B1 (en) System and method for assembling an aircraft
US8477504B2 (en) Systems and methods for blind-mate connector alignment
CN110062541A (zh) 用于无人驾驶载具的控制箱和系统模块电路板
EP3459846B1 (en) Multi-rotor aircraft
EP3444186B1 (en) Flight vehicle, tilt driving mechanism and control method therefor
US20140325824A1 (en) Latch with a Built-in Adjustment Mechanism
WO2019033753A1 (zh) 惯性测量装置以及机械设备
US20170192338A1 (en) Gimbal and aircraft
US20090138140A1 (en) Vehicular linear sensor system
CN209126980U (zh) 飞控模块安装结构、飞控组件及无人机
CN209441667U (zh) 一种无人机及其飞控组件
WO2020135793A1 (zh) 一种飞行器
CN209905096U (zh) 一种旋翼电机安装夹具
CN210912933U (zh) 一种固定翼无人机舵面测量装置
US9539679B2 (en) Alignment tool
US5522575A (en) Servo case and mounting fixture therefor
CN217455870U (zh) 传感器安装装置和车辆
WO2020134235A1 (zh) 一种无人飞行器及其机翼组件
BR112020005347A2 (pt) freio substituível em linha
WO2020103055A1 (zh) 旋翼组件及无人飞行器
CN209008843U (zh) 拼接式无人机机身
CN220255004U (zh) 磁吸组件及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19870524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19870524

Country of ref document: EP

Kind code of ref document: A1