WO2019033753A1 - 惯性测量装置以及机械设备 - Google Patents

惯性测量装置以及机械设备 Download PDF

Info

Publication number
WO2019033753A1
WO2019033753A1 PCT/CN2018/079617 CN2018079617W WO2019033753A1 WO 2019033753 A1 WO2019033753 A1 WO 2019033753A1 CN 2018079617 W CN2018079617 W CN 2018079617W WO 2019033753 A1 WO2019033753 A1 WO 2019033753A1
Authority
WO
WIPO (PCT)
Prior art keywords
inertial measurement
pcb
measurement device
spacer
pcb board
Prior art date
Application number
PCT/CN2018/079617
Other languages
English (en)
French (fr)
Inventor
陈法全
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Priority to EP18765793.7A priority Critical patent/EP3683545B1/en
Priority to EP20215499.3A priority patent/EP3816580B1/en
Priority to US16/132,824 priority patent/US11041726B2/en
Publication of WO2019033753A1 publication Critical patent/WO2019033753A1/zh
Priority to US17/326,500 priority patent/US20210278218A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/18Stabilised platforms, e.g. by gyroscope
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5783Mountings or housings not specific to any of the devices covered by groups G01C19/5607 - G01C19/5719
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/02Housings
    • G01P1/023Housings for acceleration measuring devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0271Arrangements for reducing stress or warp in rigid printed circuit boards, e.g. caused by loads, vibrations or differences in thermal expansion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09063Holes or slots in insulating substrate not used for electrical connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10151Sensor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10409Screws
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/20Details of printed circuits not provided for in H05K2201/01 - H05K2201/10
    • H05K2201/2045Protection against vibrations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to improvements in inertial measurement related devices, and more particularly to inertial measurement devices and mechanical devices.
  • the UMU (Inertial Measurement Unit) board of the UAV industry is generally fixed by means of locking screws.
  • the PTZ IMU inertial measurement unit is mainly composed of a gyroscope. Accelerometer and main control MCU (Microcontroller Unit), gyroscope detects angular velocity, accelerometer detects acceleration, feeds angular velocity and acceleration information to MCU through serial interface, MCU performs further algorithm processing to control cloud
  • the motor of the three axes of the platform performs corresponding motion compensation, thereby realizing the stabilization control of the gimbal.
  • the IMU board is fixed on the lens module and rigidly connected with the Pitch axis. The IMU board can detect the angular velocity and acceleration of the lens module in three directions in real time, and then control the 3-axis motor to realize motion compensation through the pan/tilt algorithm. Realize the stability of the cloud platform.
  • PCB Printed Circuit Board
  • gyroscope or accelerometer IC Integrated Circuit IC
  • the center of the device does not have holes and traces.
  • these designs are designed from the perspective of force, these are only considered from the perspective of stress equalization of the MEMOS chip itself. They are not considered from the perspective of the overall force of the PCB and cannot withstand the large external unbalanced machinery. Stresses, such as lock screws, hard-wired assemblies, etc., make gyroscope and accelerometer noise, zero bias and other performance worse.
  • An inertial measurement device comprising a PCB board and an inertial measurement unit, the PCB board comprising a PCB body portion, and a partition formed by slotting from one side of the PCB board and fixedly connected to the PCB body portion, The inertial measurement unit is disposed at the isolation portion.
  • the PCB body portion is integrally connected to the isolation portion.
  • a connection position is provided on the isolation portion, and the inertial measurement unit is fixedly connected to the connection position.
  • the PCB body portion is symmetrically disposed on a pair of mounting positions on both sides of the connection position.
  • the slot is a slot
  • the PCB is disposed between each of the mounting positions and the connection position.
  • the spacer groove comprises a connecting spacer groove and/or a discontinuous spacing groove.
  • the connected spacer groove is L-shaped or rectangular.
  • the two spaced grooves are symmetrically disposed.
  • the spacer is a groove region formed by removing copper foil on the PCB board or a groove region formed by cutting a portion of the PCB board.
  • the PCB body portion is provided with an isolation region at a periphery of each of the mounting positions.
  • the isolation region is annular.
  • the isolation region is a remaining location of the PCB board from which the conductive copper foil is removed.
  • the inertial measurement unit comprises a gyroscope and/or an accelerometer.
  • the number of inertial measurement units is plural, and a plurality of connection bits are correspondingly disposed on the PCB, and the spacing grooves are also disposed between any adjacent two connection positions.
  • a mechanical device comprising the inertial measurement device of any of the above.
  • the mechanical device is a gimbal, a robot, a drone or a manned aircraft.
  • the inertial measurement device and the mechanical device described above are slotted on one side by optimizing the PCB design of the inertial measurement device, so that the inertial measurement unit is isolated from the PCT main body portion that generates the mechanical stress source, so that the mechanism transmitted to the inertial measurement device
  • the stress is reduced or even eliminated, so that the mechanical stress has less influence on the inertial measurement unit such as the gyroscope and the accelerometer in the inertial measurement device, thereby reducing the noise and reducing the zero offset, which is beneficial to the most of the gyroscope and the accelerometer.
  • Good performance which improves the control accuracy of the inertial measurement device, and is especially suitable for applications or fields such as pan/tilt, robots, drones or manned aircraft.
  • FIG. 1 is a schematic structural view of an inertial measurement device according to an embodiment of the present invention.
  • Fig. 2 is an enlarged schematic cross-sectional view showing the embodiment of Fig. 1 in the A-A direction.
  • FIG. 3 is a schematic structural diagram of a cloud platform according to an embodiment of the present invention.
  • FIG. 4 is a schematic view of another direction of the embodiment shown in FIG.
  • Fig. 5 is a schematic view showing still another direction of the embodiment shown in Fig. 3.
  • FIG. 6 is a schematic perspective view of the embodiment shown in FIG. 3.
  • FIG. 6 is a schematic perspective view of the embodiment shown in FIG. 3.
  • An embodiment of the present invention is an inertial measurement device including a PCB board and an inertial measurement unit, the PCB board including a PCB body portion, and a slot formed from one side of the PCB board and the PCB body portion A fixedly connected partition, the inertial measurement unit being disposed at the partition.
  • a groove is formed between the inertial measurement unit and the main body of the PCB, so that the mechanical stress transmitted from the main body portion of the PCB to the isolation portion and finally reaching the inertial measurement unit can be reduced, so that the mechanical stress has less influence on the inertial measurement unit, thereby reducing
  • the noise and the reduction of the zero offset are beneficial to exert the better performance of the inertial measurement unit, thereby improving the control precision of the inertial measurement device.
  • an isolation portion formed by slotting one side of the PCB board and fixedly connected to the PCB main body portion is: a slot body is formed from one side of the PCB board, a part of the isolation portion and the PCB The main body portion is fixedly connected, and the remaining portion of the partition portion is spaced apart from the PCB main body portion through the opened groove body; in one example, the partition portion is symmetrically grooved from one side of the PCB board and formed
  • the PCB body portion is fixedly connected, that is, an inertial measurement device including a PCB board and an inertial measurement unit, the PCB board including a PCB body portion, and a symmetrical groove formed from one side of the PCB board and described
  • the isolation portion of the PCB main body portion is fixedly connected, and the inertia measurement unit is disposed at the isolation portion.
  • a symmetric groove body is opened from one side of the PCB board, a part of the partition portion is fixedly connected to the PCB main body portion, and the remaining portion of the partition portion passes through the symmetric groove body and the PCB main body portion.
  • the spacing is set; the tank may also be referred to as a spacing groove.
  • the PCB main body portion is integrally connected with the isolation portion, that is, the PCB main body portion and the isolation portion are located on the same PCB board, and the PCB board is slotted to form a partially connected and relatively separated PCB main body portion and Isolation department.
  • the PCB main body portion is provided separately from the partition portion and connected by a connecting portion.
  • a connection position is provided on the isolation portion of the inertial measurement device, and the inertial measurement unit is fixedly coupled to the connection position. In this way, the connection position of the inertial measurement unit can be standardized, the inertial measurement device can be designed as a whole, and the PCB board and the inertial measurement unit in the inertial measurement device can be separately produced.
  • the PCB main body portion is symmetrically disposed with a pair of mounting positions on both sides of the connection position.
  • the symmetrical arrangement is an axisymmetric arrangement with respect to a certain axis of symmetry, for example, the connection bit itself is a symmetrical structure, and the connection bit itself is symmetrically arranged with respect to the axis of symmetry; thus, a symmetrically arranged one
  • the mounting position from the mechanical point of view, it helps to balance the forces on both sides of the connection position, thereby reducing the influence of the inertia measurement unit on the two sides of the PCB main body.
  • the slot is a slot, and the PCB is disposed between each of the mounting positions and the connecting position.
  • the spacing groove is respectively disposed, and the two spacing grooves are symmetrically disposed.
  • the two spacing grooves are also opposite to the axis of symmetry.
  • Axisymmetric settings For example, a connection board is disposed on a PCB board of the inertial measurement device; a pair of mounting positions are symmetrically disposed on both sides of the connection position of the PCB board; and each of the mounting positions on the PCB board is connected to the connection A spacer is provided between the bits.
  • connection bit is used to mount a connection inertial measurement unit for mounting a PCB board;
  • the inertial measurement device described above optimizes the mechanical stress transmitted to the inertial measurement device by optimizing the PCB design of the inertial measurement device Even eliminating, so that the mechanical stress has less influence on the inertial measurement unit in the inertial measurement device, such as the gyroscope and the accelerometer, thereby reducing the noise and reducing the zero offset, which is beneficial to the best performance of the gyroscope and the accelerometer.
  • control accuracy of the inertial measurement device is improved, and it is particularly suitable for applications such as pan/tilt, robots, drones or manned aircraft.
  • connection bit is one or more; when multiple connection bits are arranged on the PCB, spacer grooves are also disposed between any two adjacent connection bits, that is, any two adjacent connection bits. A spacer groove is also provided between them.
  • connection bits are disposed on a PCB of the inertial measurement device; a pair of mounting positions are symmetrically disposed on both sides of the connection position of the PCB; each of the mounting positions on the PCB A spacing groove is disposed between the connection position, and when a plurality of connection positions are disposed on the PCB, a spacing groove is also disposed between any adjacent two connection positions.
  • connection bits are placed on the PCB of the inertial measurement device depending on the number of inertial measurement units that need to be installed.
  • a plurality of connection bits are disposed on the PCB of the inertial measurement device; a pair of mounting positions are symmetrically disposed on both sides of the connection position of the PCB; each of the mounting positions on the PCB
  • a spacing groove is disposed between the connection positions, and a spacing groove is also disposed between any two adjacent connection positions.
  • the spacing grooves provided between each of the mounting positions of the PCB board and the connection position, and the spacing grooves provided between any two adjacent connection positions have the same shape or different shapes.
  • an isolation region is provided around the periphery of each of the mounting positions of the PCB, so that the noise of the inertial measurement unit can be reduced by about 60%.
  • a connection board is disposed on a PCB board of the inertial measurement device; a pair of mounting positions are symmetrically disposed on both sides of the connection position of the PCB board; and each of the mounting positions and the connection position on the PCB board A spacer groove is disposed therebetween; an isolation region is disposed around a periphery of each of the mounting positions of the PCB board.
  • a connection position is set on a PCB board of the inertial measurement device; a pair of mounting positions are symmetrically disposed on both sides of the connection position of the PCB board; and isolation is provided around each of the mounting positions of the PCB board a spacer; a spacer groove is disposed between each of the mounting positions of the PCB board and the connection position.
  • the isolation region is annular.
  • the isolation region is a circular or square ring or a polygonal ring or the like.
  • the PCB board is provided with an isolation region around the periphery of each of the mounting positions, so that since the isolation region has been removed from the conductive copper foil, the rigidity is reduced, and a part of the mechanical stress of the mounting position can be absorbed, thereby reducing the mechanical stress of the mounting position.
  • the effect of the connection bit is annular.
  • the isolation region is a circular or square ring or a polygonal ring or the like.
  • an inertial measurement device 60 includes a PCB board 600; the PCB board 600 includes a partition portion 610 and a PCB body portion 620; and a connection position 611 is provided on the PCB board of the inertial measurement device.
  • the PCB board 600 includes a partition portion 610 and a PCB body portion 620; and a connection position 611 is provided on the PCB board of the inertial measurement device.
  • a spacing groove 640 is disposed between the mounting position and the connecting position; the partition portion is connected to the PCB main body portion through a connecting portion 630 and is separated by two spacing grooves 640.
  • the inertial measurement unit 700 is mounted, for example, the inertial measurement unit is a gyroscope and/or an accelerometer IC.
  • other mounting positions are symmetrically disposed on both sides of the connection position of the PCB board, that is, one or more pairs of mounting positions are also disposed; it can be understood that the two sides of the connection position of the PCB board are symmetric
  • a spacing slot is provided between a pair of mounting positions closest to the connection position and the connection position, as in the connection position and each of the mounting positions
  • Interval slot is provided; for example, when there are multiple connection bits, all the connection bits are integrated as a whole, and a spacing slot is provided between a pair of mounting positions closest to the entire connection position and the entire connection position.
  • a spacer groove is provided between the integral connection position and each of the mounting positions, and so on.
  • two pairs of mounting positions are symmetrically disposed on both sides of the
  • the PCB board is a circuit board; in one embodiment, the PCB board is a printed circuit board, and in one embodiment, the PCB board is a printed circuit board.
  • the isolation region is the remaining position of the printed circuit board from which the conductive region is removed, so that the noise of the inertial measurement unit such as the gyroscope and the accelerometer can be reduced by about 60%.
  • the isolation region is a remaining position of the printed circuit board to remove copper foil; for example, the isolation region includes a remaining position of the printed circuit board to remove copper foil and the printed circuit board is removed.
  • the space formed by the copper foil, the depth of the isolation region is the depth of the space formed by the printed circuit board to remove the copper foil, for example, the thickness of the remaining position of the printed circuit board to remove the copper foil is only different from the thickness of the surrounding PCB.
  • the thickness of the two layers of copper foil, that is, the depth of the isolation region is the thickness of the two layers of copper foil, about 70 microns.
  • the depth of the isolation region is 5% to 20% of the depth of the PCB board, for example, the depth of the isolation region is 5% or 10% of the depth of the PCB board.
  • the mounting location is provided with a mounting structure.
  • the mounting structure includes a screw.
  • the screw is screwed to the mounting position;
  • the mounting structure includes a screw and a nut that passes through the mounting position and is fixed to the nut.
  • the mounting structure includes a snap member or a connector for snapping or plugging into the mounting position; it can be understood that the mounting structure on the mounting position or other structure fixed on the mounting position is The most important source of mechanical stress will cause the inertial measurement device to be affected by mechanical stress to cause deterioration or even damage to the performance parameters.
  • the deterioration of performance parameters mainly includes noise increase and zero offset increase.
  • the manner and position of the spacing groove can be flexibly adjusted according to the location of the stress source.
  • the PCB board is mechanically stressed by the locking screw, and the other embodiments of the present invention are applicable as long as the board is mechanically stressed.
  • the design of the individual spacing grooves or the isolation regions is adopted, and the noise of the inertial measurement unit can be reduced by about 60%, and the embodiment in which the spacing grooves and the isolation regions are simultaneously designed, the inertial measurement unit can The noise caused by mechanical stress is reduced by more than 90%, thereby greatly improving the output precision of the inertial measurement unit, and the control algorithm finally makes the control precision of the mechanical device using the inertial measurement device reach 0.01°.
  • the spacer groove only removes the copper foil forming groove region of the PCB board or cuts off part of the PCB board to form the groove region, and the two forming the groove region can achieve the effect of weakening the stress, wherein only the copper foil of the PCB board is removed.
  • the effect of the groove region on the weakening of the stress is inferior to the effect of forming a groove region by cutting a part of the PCB.
  • the two spacing grooves are symmetrically disposed; for example, the two spacing grooves are axially symmetrically disposed; the position and shape of the spacing grooves are related to the occupied PCB area of the inertial measurement unit circuit and the stress point of the PCB.
  • the spacing groove should be more than 1 mm away from the inertial measurement circuit; in one example, the two spacing grooves, that is, the spacing groove positions on both sides of the connecting position, are axisymmetric structures, for example, about the inertia measuring unit circuit, so that the inertia The measuring unit is balanced on both sides. If the asymmetry, the external force received by the inertial measurement unit is unbalanced, the performance parameters such as gyroscope and accelerometer noise and zero offset will be deteriorated, resulting in lower output accuracy.
  • the spacing groove is L-shaped, two L-shaped spacing grooves are symmetrically disposed, and the connecting position is between two L-shaped spacing grooves; for example, the spacing groove is rectangular, and two rectangular intervals are The slots are symmetrically arranged and the connection is between two rectangular spacers.
  • the position of the connection bit is limited.
  • the width of the spacer is greater than 1 mm; in one example, the width of the spacer is proportional to the width of the connection bit, and the width of the connection is the connection between the two spacers a length perpendicular to the direction of the symmetry axis of the two spacing grooves, which may be measured in micrometers or millimeters.
  • the width of the spacer is mainly related to the PCB fabrication process.
  • the slot of 1 mm width is a conventional process of the board factory, which is beneficial to reduce the plate making cost.
  • the specific width can be flexibly adjusted according to the PCB area and the process capability of the PCB board.
  • the difference in the width of the spacers has less effect on weakening the stress, usually only considering the layout, physical strength and manufacturing process.
  • the width of the spacer can be flexibly adjusted according to the size of the board space and the process capability of the PCB board factory. Under the premise of meeting the strength requirements, the effect of different spacing grooves on the isolation stress is basically the same.
  • the distance between the spacing groove and the connecting position is greater than 1 mm, such that the spacing groove has a certain distance from an inertial measurement unit connected to the connection position, such as a gyroscope and an accelerometer, etc.
  • the wiring space of the inertial measurement unit circuit and the manufacturability of the PCBA process are ensured; for example, the distance between the spacer groove and the connection position is 1.2, 1.5, 2, 3, 4 or 5 mm or the like.
  • the width of the spacer is spaced from the connection bit and the width of the connection bit, and another example is the distance of the spacer from the connection, which is proportional to the width of the connection.
  • the width of the connection bit is the length of the connection position perpendicular to the symmetry axis direction of the two spacing grooves, and the spacing groove and the connection position are larger when the width of the connection bit is larger.
  • the greater the distance, and the distance between the spacer and the connection is at least greater than 1 mm.
  • the PCB board is provided with an isolation region around the periphery of each of the mounting positions, and the isolation region is disposed around the mounting position; thus, the copper foil around the screw hole and other PCB boards are connected
  • the copper foil of the electrical properties is isolated so that a copper foil-free spacer is formed between the copper foil around the screw hole and the copper foil in the PCB.
  • the mounting position is a circular or regular polygon
  • the isolation region is a circular or a regular polygonal ring.
  • the mounting position is a circle
  • the isolation region is a corresponding circular ring.
  • the mounting position is a regular polygon, and the isolation area is a corresponding positive polygonal ring.
  • the width of the isolation area is more than 30% of the diameter of the mounting position, and the upper limit of the width of the isolation area is not limited.
  • the width of the isolation area is 50% to 200% of the diameter of the mounting position, wherein the width of the isolation area can be freely set according to the space of the board, for example
  • the width of the isolation area is related to the space of the board. If the board space is large, the width of the isolation area can be made wider; in one example, the width of the isolation area is 200% of the diameter of the mounting position.
  • the isolation region is a circular ring, and the width of the isolation region is the difference between the radius of the outer circle of the circular ring and the radius of the inner circle, and so on; for example, the width of the isolation region is the installation. 60% to 120% of the diameter of the bit; for example, the isolation region is vacant or the isolation region is filled with a colloid; for example, the colloid is a rubber gasket or the colloid is a liquid colloid-cured structure.
  • the spacer groove comprises a connecting spacer groove and/or a discontinuous spacing groove; wherein the connecting spacer groove is connected, for example, the connecting spacer groove is a rectangular or L-shaped, intermittent type
  • the spacer groove is not connected, and the intermittent groove includes a plurality of intermittent groove regions that are not connected to each other, for example, the intermittent groove region is circular, triangular, rectangular or a combination thereof; for example, the intermittent
  • the width of the spacer groove is the same as or different from the width of the connected spacer groove.
  • the spacer includes a connected spacer and a discontinuous spacer; for example, the intermittent spacer is located between the connected spacer and the connection;
  • the width of the intermittent spacer is 1.2 to 1.5 times the width of the connected spacer, for example, the width of the intermittent spacer is 1.28 times the width of the connected spacer, so that The effect of the isolation stress is excellently improved;
  • the spacer includes a connected spacer and an intermittent spacer, and the intermittent spacer is located at the connected spacer and the connection Between the positions, and the width of the intermittent spacer groove is 1.2 to 1.5 times the width of the connected spacer groove.
  • the intermittent spacer includes a single-layer intermittent spacer and/or a plurality of intermittent spacers.
  • the single-layer intermittent spacer is a layer of intermittent a spacer structure
  • the multi-layer intermittent spacer includes at least two intermittent spacer structures; in one embodiment, one of the intermittent spacer structures includes a plurality of intermittent slots,
  • the intermittent groove region is circular, triangular, rectangular or a combination thereof; for example, the intermittent groove region includes a plurality of circles, similar to an ellipsis shape; in one embodiment, the In the multi-layer intermittent groove, each layer of intermittent groove structure is aligned or staggered; for example, each layer of intermittent groove structure is aligned, so that each layer of the intermittent groove structure is intermittent
  • the trough areas are aligned with the respective intermittent trough areas of the adjacent layers, that is, completely coincident; for example, the intermittent intermittent groove structures of each layer are staggered so that each of the intermittent trough structures of each layer of the intermittent groove structure is Stagg
  • the PCB board includes a partition portion and a PCB body portion, the connection portion is disposed at the partition portion, and the partition portion and the PCB body portion are connected by a connecting portion and pass through two
  • the spacer is spaced apart; in one embodiment, the width of the connecting segment is 5% to 80% of the width of the connecting position; for example, the width of the connecting segment is the width of the connecting bit 8% to 40%, for example, the width of the connecting section is 15% or 38% of the width of the joint.
  • the narrow width of the connecting section is advantageous for the isolation stress, but if it is too narrow, the physical connection strength between the partition and the main body of the PCB is affected, so the width of the connecting section needs to be properly designed.
  • the width of the connecting section is proportional to the length of the spacing groove, which allows the spacer to maintain better stiffness in a vibrating environment.
  • the PCB board is a rigid circuit board and/or a flexible circuit board; for example, when the PCB board is a rigid circuit board, the isolation portion, the connecting portion and the PCB main body portion
  • An integral arrangement, for example, the connecting section is a unitary continuous structure or the connecting section has at least one layer of the intermittent spacer structure; the integral continuous structure is a rectangular continuous structure, a curved continuous structure or a wave continuous structure
  • the partition portion and the PCB main body portion are respectively provided with a reinforcing structure, and at least between the partition portion and the PCB main body portion are disposed.
  • the partition portion and the PCB main body portion are fixed to each other by the connecting bridge; for example, the reinforcing structure of the partition portion and the reinforcing structure of the PCB main body portion are mutually fixed by the connecting bridge;
  • the connecting segment is used to ensure that the PCB board of the inertial measurement device is not easily deformed;
  • the reinforcing structure includes a reinforcing structure of the partition portion and a reinforcing structure of the PCB main body portion, and the reinforcing structure and/or Or the connecting bridge
  • the reinforcing structure and/or the connecting bridge is a steel sheet or an FR4 board or the like; in one embodiment, the connecting bridge is vertical or inclined to the partition; for example, when When there are two of the connecting bridges, the two connecting bridges are symmetrically arranged.
  • the two connecting bridges are generally "
  • the design of the flexible circuit board and the connecting bridge enables the isolation portion and the PCB main body portion to be separately manufactured and assembled, so that the flexible circuit board has the rigidity of the rigid circuit board, and the circuit connection is realized through the flexible circuit board and the isolation portion is realized through the connection bridge.
  • the mutual fixation with the main body of the PCB facilitates further cutting and weakening the energy transfer of the mechanical stress, thereby reducing the adverse effects of mechanical stress on the inertial measurement unit such as the gyroscope and the accelerometer.
  • the PCB board is exemplified by a rigid printed circuit board, and the inertial measurement unit takes a gyroscope and an accelerometer as an example to further illustrate the optimization and advantages of the present invention and its various embodiments.
  • the circuit area where the gyroscope and the accelerometer chip are located is provided with a spacer groove, which is isolated from the PCB area where the stress source is generated, and a single point connection is realized in a region where the PCB is less stressed.
  • the single point is not A point in the mathematical sense can be understood as a connecting segment as described above.
  • the shape of the single point or its width is related to the length of the spacer. For example, the length of the spacer is long.
  • the width of the single-point connection is required to be wider. For example, if the length of the spacer is short, the width of the single-point connection can be narrowed.
  • the copper foil around the mounting holes, such as the screw holes is isolated from the copper foil of other electrical properties in the PCB board, so that the screw holes become islands.
  • the PCB material with copper foil is stiffer than the PCB material without copper foil.
  • the output accuracy, noise, and zero offset of the gyroscope and accelerometer directly affect the attitude accuracy, which affects the accuracy of the PTZ IMU algorithm and the control accuracy of the PTZ. Therefore, good IMU performance is critical to the stability control of the PTZ. .
  • the inertial measurement device of the present invention reduces the influence of external stress on the gyroscope and the accelerometer, and improves the performance of the IMU, thereby reducing the inertial measurement device, only from the viewpoint of mechanical stress, by subtly optimizing the design of the IMU board PCB.
  • the noise can further improve the control accuracy of related mechanical equipment such as the pan/tilt.
  • the following installation structure takes the screw as an example to continue the description. Since the IMU board is screwed to the casing where the lens module is located, the PCB board is subjected to the stress caused by the lock screw, so the PCB design is optimized from two aspects.
  • the circuit area spacing slot where the gyroscope and accelerometer chip are located is isolated from the PCB area where the stress source is generated.
  • a single point of connection in the area where the PCB is less stressed; and the copper foil around the connection screw hole is isolated from the copper foil of other electrical properties in the PCB board, so that the screw hole becomes an island.
  • the reason for this design is that the PCB material with copper foil is stiffer than the PCB material without copper foil. When the copper foil is removed, the rigidity of the isolation zone becomes weak, and a part of the mechanical stress can be absorbed, and the mechanical stress is transmitted to the plate.
  • the process of blocking and weakening the mechanical stress is: when the screw is locked, and when the mounting structure and the device above it vibrate, the stress is transmitted into the board, and the PCB is located at the isolation area.
  • the rigidity of the plate is weakened, a part of the stress is absorbed, and then the remaining stress continues to be transmitted into the plate.
  • the stress is cut off here, so that the stress that can be transmitted to the gyroscope and the accelerometer circuit can only be A narrow connecting section between the partition and the main body of the PCB.
  • the connecting section is at the symmetry point of the upper and lower mounting positions (screw holes) and is far from the screw hole, the stress that can be transmitted to the gyroscope and accelerometer circuit parts is almost negligible.
  • the IMU board uses the same force to lock the screw, and adopts the inertial measurement device of the invention, wherein the noise of the gyroscope and the accelerometer is about 60% lower than that of the unoptimized noise, thereby greatly improving
  • the output precision of the gyroscope and accelerometer, together with the control algorithm finally makes the control accuracy of the gimbal reach 0.01°. This control accuracy is the highest level of current stability control accuracy of aerial pan/tilt; and the zero offset can be reduced by about 30%.
  • a mechanical device comprising the inertial measurement device of any of the above embodiments.
  • the mechanical device is a gimbal, a robot, a drone or a manned aircraft.
  • a pan/tilt head comprising the inertial measurement device of any of the above, and so on.
  • the above mechanical device optimizes the mechanical stress transmitted to the inertial measurement device by optimizing the PCB design of the inertial measurement device, so that the mechanical stress affects the inertial measurement unit such as the gyroscope and the accelerometer in the inertial measurement device. Small, thereby reducing noise and reducing zero offset, is beneficial to the best performance of the gyroscope and accelerometer, thereby improving the control accuracy of the inertial measurement device.
  • the PCB structure design is optimized from the perspective of the overall stress of the PCB, so that the mechanical stress transmitted to the gyroscope and the accelerometer is reduced or eliminated, so that the mechanical stress is on the gyroscope and The adverse effects of the accelerometer are reduced or eliminated, thereby exerting the best performance of the gyroscope and accelerometer, thereby improving the control accuracy of the gimbal.
  • the different directions of the pan/tilt of an embodiment are respectively shown in FIG. 3, FIG. 4 and FIG.
  • a camera main board 100 includes a YAW (heading) axis 200 (for determining a yaw angle), and a roll (roll).
  • the axis 300 for determining the roll angle
  • the Pitch axis 400 for determining the pitch angle
  • the IMU board and the lens module 500 fixed to the IMU board; the three-dimensional structure of the head is shown in FIG.
  • the stress-resistant design of the PCB board can be used not only for the PTZ IMU, but also for other devices that require an inertial measurement unit. , such as robots, drones, manned aircraft, etc., used to reduce or avoid the effects of mechanical stress on gyroscopes and accelerometers
  • embodiments of the present invention further include an inertial measurement device and a mechanical device that can be implemented by combining the technical features in the above embodiments.
  • PCB design is generally only based on the gyroscope or accelerometer wiring guidelines.
  • the lead traces are symmetrical, no other components are placed at a certain distance around the device, and the device center does not punch holes and traces.
  • these designs are designed from the perspective of force, but only from the perspective of stress equalization of the MEMOS chip itself, it is not considered from the perspective of the overall force of the PCB, and it cannot resist the large external unbalanced mechanical stress. .
  • the invention and its various embodiments optimize the PCB board design, cut and weaken the energy transfer of mechanical stress, thereby minimizing the adverse effects of mechanical stress on the gyroscope and the accelerometer, greatly improving the accuracy of the IMU attitude detection. It is beneficial to improve the control precision to the highest standard at the state of the art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • Gyroscopes (AREA)

Abstract

一种惯性测量装置以及机械设备,惯性测量装置包括PCB板和惯性测量单元,PCB板包括PCB主体部,以及自PCB板的一侧开槽形成并与PCB主体部固定连接的隔离部,惯性测量单元设置在隔离部。通过优化惯性测量结构的PCB板设计,使得传递到惯性测量结构的机械应力减小乃至于消除,使得机械应力对惯性测量结构中的惯性测量单元例如陀螺仪和加速度计等影响较小,从而降低噪声及减小零偏,有利于发挥出陀螺仪和加速度计的最好性能,进而提升了惯性测量结构的控制精度,特别适合应用于云台、机器人、无人机或载人航空器等设备或领域。

Description

惯性测量装置以及机械设备
申请要求于2017年8月17日申请的、申请号为201710708522.0、申请名称为“惯性测量装置以及机械设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及惯性测量相关设备的改进,特别是涉及惯性测量装置以及机械设备。
背景技术
无人机技术正在迅速发展,目前无人机行业航拍增稳云台的IMU(惯性测量单元)板通常都是通过锁螺丝的方式固定,具体地说,云台IMU惯性测量单元主要由陀螺仪、加速度计以及主控MCU(Microcontroller Unit,微控制单元)构成,陀螺仪检测角速度,加速度计检测加速度,将角速度和加速度信息通过串行接口反馈给MCU,MCU做进一步的算法处理,来控制云台3个轴的电机做相应的运动补偿,从而实现云台的增稳控制。IMU板固定在镜头模组上,与Pitch(俯仰角)轴刚性连接,IMU板能实时检测镜头模组3个方向的角速度和加速度,然后通过云台算法去控制3轴电机实现运动补偿,从而实现云台增稳。
但是,这样IMU板就会受到螺丝或者其他固定结构产生的机械应力,陀螺仪和加速计会因为受机械应力而产生噪声、零偏(当输入角速率为零时,陀螺仪的输出量称为陀螺仪的零偏)等性能参数变差甚至损坏的问题,这些问题会导致陀螺仪和加速度计输出精度降低,从而导致云台的控制精度降低,云台增稳性能下降。
在传统IMU板设计时,一般只会根据陀螺仪或加速度计IC(Integrated Circuit集成电路)的布局指导进行PCB(Printed Circuit Board,印制电路板)设计,比如引脚的走线对称,器件周围一定距离不放置其它元件,器件中心不打过孔和走线等。虽然这些设计方案都是从受力的角度去进行PCB设计,这些都只是从 MEMOS芯片本身受应力均衡的角度考虑,没有从PCB整体受力的角度去考虑,无法抵抗较大的外部非均衡机械应力,如锁螺丝,装配硬连接等,使得陀螺仪和加速计噪声,零偏等性能变差。
发明内容
基于此,有必要针对如何改进传统的惯性测量结构机械应力较大导致产生噪声及零偏较大等问题,提供一种惯性测量装置以及采用该惯性测量装置的机械设备。
一种惯性测量装置,其包括PCB板和惯性测量单元,所述PCB板包括PCB主体部,以及自所述PCB板的一侧开槽形成并与所述PCB主体部固定连接的隔离部,所述惯性测量单元设置在所述隔离部。
在其中一个实施例中,所述PCB主体部与所述隔离部一体连接。
在其中一个实施例中,所述隔离部上设置连接位,所述惯性测量单元固定连接于所述连接位。
在其中一个实施例中,所述PCB主体部于所述连接位的两侧对称设置一对安装位。
在其中一个实施例中,所述开槽为开设间隔槽,且所述PCB板于每一所述安装位与所述连接位之间均设置有所述间隔槽。
在其中一个实施例中,所述间隔槽包括连通式间隔槽和/或断续式间隔槽。
在其中一个实施例中,所述连通式间隔槽为L形或矩形。
在其中一个实施例中,两个所述间隔槽对称设置。
在其中一个实施例中,所述间隔槽为去掉PCB板上的铜箔形成的槽区或者为切除部分PCB板形成的槽区。
在其中一个实施例中,所述PCB主体部于每一所述安装位的周边设置隔离区。
在其中一个实施例中,所述隔离区为环形。
在其中一个实施例中,所述隔离区为所述PCB板去除导电铜箔的剩余位置。
在其中一个实施例中,所述惯性测量单元包括陀螺仪和/或加速计。
在其中一个实施例中,所述惯性测量单元为多个,所述PCB板上对应设置多个连接位,任意相邻两个连接位之间也设置有所述间隔槽。
一种机械设备,其包括上述任一项所述惯性测量装置。
在其中一个实施例中,所述机械设备为云台、机器人、无人机或载人航空器。
上述惯性测量装置以及机械设备,通过优化惯性测量装置的PCB板设计,在其一侧开槽,这样惯性测量单元与产生机械应力源的PCT主体部隔离开来,使得传递到惯性测量装置的机械应力减小乃至于消除,使得机械应力对惯性测量装置中的惯性测量单元例如陀螺仪和加速度计等影响较小,从而降低噪声及减小零偏,有利于发挥出陀螺仪和加速度计的最好性能,进而提升了惯性测量装置的控制精度,特别适合应用于云台、机器人、无人机或载人航空器等设备或领域。
附图说明
图1为本发明一实施例的惯性测量装置的结构示意图。
图2为图1所示实施例的A-A方向剖视放大示意图。
图3为本发明的一实施例的云台结构示意图。
图4为图3所示实施例的另一方向示意图。
图5为图3所示实施例的又一方向示意图。
图6为图3所示实施例的立体结构示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可 以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本发明一个实施例是,一种惯性测量装置,其包括PCB板和惯性测量单元,所述PCB板包括PCB主体部,以及自所述PCB板的一侧开槽形成并与所述PCB主体部固定连接的隔离部,所述惯性测量单元设置在所述隔离部。这样,在惯性测量单元与PCB主体部之间开槽,从而能够减小从PCB主体部传递到隔离部最终到达惯性测量单元的机械应力,使得机械应力对惯性测量单元的影响较小,从而降低噪声及减小零偏,有利于发挥出惯性测量单元的较佳性能,进而提升了惯性测量装置的控制精度。例如,自所述PCB板的一侧开槽形成并与所述PCB主体部固定连接的隔离部,为:自所述PCB板的一侧开设槽体,所述隔离部的一部分与所述PCB主体部固定连接,所述隔离部的其余部分通过所开设的槽体与所述PCB主体部间隔设置;一个例子是,所述隔离部自所述PCB板的一侧对称开槽形成并与所述PCB主体部固定连接,即,一种惯性测量装置,其包括PCB板和惯性测量单元,所述PCB板包括PCB主体部,以及自所述PCB板的一侧对称开槽形成并与所述PCB主体部固定连接的隔离部,所述惯性测量单元设置在所述隔离部。例如,自所述PCB板的一侧开设有对称的槽体,所述隔离部的一部分与所述PCB主体部固定连接,所述隔离部的其余部分通过对称的槽体与所述PCB主体部间隔设置;所述槽体亦可称为间隔槽。
例如,所述PCB主体部与所述隔离部一体连接,即,所述PCB主体部与所述隔离部位于同一PCB板,在该PCB板上开槽形成部分相连且相对分离的PCB主体部与隔离部。或者,所述PCB主体部与所述隔离部分离设置,通过连接段相连接。例如,所述惯性测量装置的所述隔离部上设置连接位,所述惯性测量 单元固定连接于所述连接位。这样,可以规范惯性测量单元的连接位置,便于整体设计惯性测量装置,并且分别生产惯性测量装置中的PCB板和惯性测量单元。例如,所述PCB主体部于所述连接位的两侧对称设置一对安装位。例如,所述对称设置是相对于某一对称轴的轴对称设置,例如,所述连接位自身为对称结构,所述连接位自身相对于所述对称轴轴对称设置;这样,对称设置的一对安装位,从力学角度上来看,有助于平衡连接位的两侧的受力,从而降低了惯性测量单元于所述PCB主体部的两侧受力不平衡的影响。例如,所述开槽为开设间隔槽,且所述PCB板于每一所述安装位与所述连接位之间均设置有所述间隔槽。一个例子是,两个所述安装位与所述连接位之间,分别设置有一所述间隔槽,两个所述间隔槽对称设置,例如,两个所述间隔槽亦相对于所述对称轴轴对称设置。例如,惯性测量装置的PCB板上设置有连接位;在所述PCB板的所述连接位的两侧对称设置有一对安装位;在所述PCB板的每一所述安装位与所述连接位之间设置间隔槽。例如,所述连接位用于安装连接惯性测量单元,所述安装位用于安装PCB板;上述惯性测量装置,通过优化惯性测量装置的PCB板设计,使得传递到惯性测量装置的机械应力减小乃至于消除,使得机械应力对惯性测量装置中的惯性测量单元例如陀螺仪和加速度计等影响较小,从而降低噪声及减小零偏,有利于发挥出陀螺仪和加速度计的最好性能,进而提升了惯性测量装置的控制精度,特别适合应用于云台、机器人、无人机或载人航空器等设备或领域。当需要安装多个惯性测量单元时,可以设置多个连接位。例如,所述连接位为一个或多个;当PCB板上设置多个连接位时,任意相邻两个连接位之间也设置有间隔槽,也就是说,任意两个相邻的连接位之间也设置有间隔槽。例如,在惯性测量装置的PCB板上设置一个或多个连接位;在所述PCB板的所述连接位的两侧对称设置一对安装位;在所述PCB板的每一所述安装位与所述连接位之间设置间隔槽,且当PCB板上设置多个连接位时,任意相邻两个连接位之间也设置有间隔槽。例如,根据需要安装的惯性测量单元的数量,在惯性测量装置的PCB板上设置一个或多个连接位。又如,在惯性测量装置的PCB板上设置多个连接位;在所述PCB板的所述连接位的两侧对称设置一对安装位;在所述PCB板的每一所述安装位与所述连接位之间设置间隔槽,且任意 相邻两个连接位之间也设置有间隔槽。其中,在所述PCB板的每一所述安装位与所述连接位之间设置的间隔槽,与任意相邻两个连接位之间设置的间隔槽,形状相同或相异。
在其中一个实施例中,在所述PCB板的每一所述安装位的周边设置隔离区,这样,惯性测量单元的噪声能够降低60%左右。例如,惯性测量装置的PCB板上设置连接位;在所述PCB板的所述连接位的两侧对称设置一对安装位;在所述PCB板的每一所述安装位与所述连接位之间设置间隔槽;在所述PCB板的每一所述安装位的周边设置隔离区。又如,惯性测量装置的PCB板上设置连接位;在所述PCB板的所述连接位的两侧对称设置一对安装位;在所述PCB板的每一所述安装位的周边设置隔离区;在所述PCB板的每一所述安装位与所述连接位之间设置间隔槽。这样,通过设置隔离区,由于隔离区已去除导电铜箔,刚度降低,可以吸收安装位的一部分机械应力。在其中一个实施例中,所述隔离区为环形。例如,所述隔离区为圆环形或方环形或多边形环形等。
例如,所述PCB板于每一所述安装位的周边设置隔离区,这样,由于隔离区已去除导电铜箔,刚度降低,可以吸收安装位的一部分机械应力,从而降低了安装位机械应力对连接位的影响。在其中一个实施例中,所述隔离区为环形。例如,所述隔离区为圆环形或方环形或多边形环形等。
例如,如图1与图2所示,一种惯性测量装置60,其包括PCB板600;所述PCB板600包括隔离部610与PCB主体部620;惯性测量装置的PCB板上设置连接位611;在所述PCB板的所述连接位的两侧对称设置一对安装位621;在所述PCB板的每一所述安装位的周边设置隔离区622;在所述PCB板的每一所述安装位与所述连接位之间设置间隔槽640;所述隔离部与所述PCB主体部之间通过连接段630相连接并且通过两个间隔槽640相隔断。为了便于理解,图2中的一个安装位621安装了螺丝623,连接位611上安装有惯性测量单元700,例如,惯性测量单元为陀螺仪及/或加速计IC。例如,在所述PCB板的所述连接位的两侧还对称设置其它安装位,即还设置一对或多对安装位;可以理解,在所述PCB板的所述连接位的两侧对称设置一对或多对安装位,例如,在距离所述连接位最近的一对安装位与所述连接位之间设置间隔槽,又如,在所 述连接位与每一所述安装位之间设置间隔槽;又如,当具有多个连接位时,以所有连接位为一个整体连接位,在距离所述整体连接位最近的一对安装位与所述整体连接位之间设置间隔槽,或者,在所述整体连接位与每一所述安装位之间设置间隔槽,以此类推。如图2所示,在所述PCB板的所述连接位的两侧对称设置两对安装位。
在其中一个实施例中,所述PCB板为电路板;在其中一个实施例中,所述PCB板为印制电路板,在其中一个实施例中,所述PCB板为印制电路板,所述隔离区为所述印制电路板去除导电区的剩余位置,这样,惯性测量单元例如陀螺仪和加速度计的噪声能够降低60%左右。一个例子是,所述隔离区为所述印制电路板去除铜箔的剩余位置;例如,所述隔离区,包括所述印制电路板去除铜箔的剩余位置以及所述印制电路板去除铜箔所形成的空间,隔离区的深度为所述印制电路板去除铜箔所形成的空间的深度,例如所述印制电路板去除铜箔的剩余位置的厚度与周围的PCB厚度只相差了2层铜箔的厚度,即隔离区的深度为2层铜箔的厚度,约70微米。又如,所述隔离区的深度为所述PCB板的深度的5%至20%,例如,所述隔离区的深度为所述PCB板的深度的5%或10%。
在其中一个实施例中,所述安装位上设置有安装结构。在其中一个实施例中,所述安装结构包括螺丝。例如,所述螺丝螺接固定于所述安装位上;又如,所述安装结构包括螺丝与螺母,所述螺丝穿设所述安装位并与所述螺母相固定。又如,所述安装结构包括卡扣件或者插接件,用于卡扣或者插接于所述安装位上;可以理解,安装位上的安装结构或者其他固定于安装位上的结构,是机械应力的最主要来源,会使得惯性测量装置受机械应力影响产生性能参数变差甚至损坏的问题,性能参数变差主要包括噪声增大、零偏增加等,这些问题会导致陀螺仪和加速度计输出精度降低,从而导致采用惯性测量装置的机械设备出现问题,例如云台的控制精度降低,以及云台增稳性能下降等。
例如,采用间隔槽和掏空螺丝孔周围的铜箔的方式,实现阻断机械应力和吸收机械应力,使得IMU受机械应力的影响的程度降到最低,提升IMU性能。其中间隔槽的方式和位置根据应力源所在位置不同,可以灵活调整。所述PCB板因锁螺丝固定会产生机械应力,其他固定板卡的方式,只要对板卡会产生机 械应力,本发明的各个实施例都是适用的。本发明的惯性测量装置的各实施例中,采用单独间隔槽或隔离区的设计,惯性测量单元的噪声能够降低60%左右,而采用同时设计间隔槽和隔离区的实施例,惯性测量单元能够降低90%以上的因机械应力引起的噪声,从而极大地提升了惯性测量单元的输出精度,配合控制算法最终使得采用所述惯性测量装置的机械设备的控制精度可以达到0.01°。
例如,所述间隔槽只去掉PCB板的铜箔形成槽区或者切除部分PCB板形成槽区,两种形成槽区的方式都可以达到削弱应力的效果,其中,只去掉PCB板的铜箔形成槽区对削弱应力的效果会比切除部分PCB板形成槽区的效果差。在其中一个实施例中,两所述间隔槽对称设置;例如,两所述间隔槽轴对称设置;间隔槽的位置和形状与惯性测量单元电路的所占用的PCB区域以及PCB的受力点有关,例如,间隔槽要距离惯性测量电路1mm以上的距离;一个例子是,两个间隔槽,亦即连接位两边的间隔槽位置,为轴对称结构,例如要关于惯性测量单元电路对称,使得惯性测量单元两边受力平衡。如果不对称,惯性测量单元受到的外力不均衡,会使得陀螺仪和加速度计噪声及零偏等性能参数变差,导致输出精度降低。例如,所述间隔槽为L形,两个L形的间隔槽对称设置,所述连接位处于两个L形的间隔槽之间;又如,所述间隔槽为矩形,两个矩形的间隔槽对称设置,所述连接位处于两个矩形的间隔槽之间。也就是说,连接位的位置是受到限制的。例如,所述间隔槽的宽度大于1毫米;一个例子是,所述间隔槽的宽度与所述连接位的宽度成正比,所述连接位的宽度为两所述间隔槽之间的所述连接位垂直于两所述间隔槽的对称轴方向的长度,可以用微米或者毫米作计量单位,当所述连接位的宽度越大时,所述间隔槽的宽度越大,且所述间隔槽的宽度至少大于1毫米。间隔槽宽度主要与PCB制作工艺有关,1mm宽度的槽孔是板厂的常规工艺,有利于降低制版成本。具体宽度可以根据PCB面积大小和PCB板厂的制程能力灵活调整,间隔槽宽度的差异对削弱应力的效果较小,通常只需考虑线路布局、物理强度和制造工序即可。间隔槽宽度可以根据板卡空间大小和PCB制板厂的工艺能力灵活调整,在满足强度要求的前提下,不同的间隔槽宽度对隔离应力的效果基本一致。
在其中一个实施例中,所述间隔槽与所述连接位的距离大于1毫米,这样, 间隔槽与连接位所连接的惯性测量单元例如陀螺仪和加速度计等之间存在一定的距离,以确保惯性测量单元电路的布线空间以及PCBA工艺的可制造性;例如,所述间隔槽与所述连接位的距离为1.2、1.5、2、3、4或5毫米等。例如,间隔槽的宽度与连接位的距离、以及与连接位的宽度单独设置,又一个例子是,所述间隔槽与所述连接位的距离,该距离与所述连接位的宽度成正比,同上所述,所述连接位的宽度即为所述连接位垂直于两所述间隔槽的对称轴方向的长度,当所述连接位的宽度越大时,所述间隔槽与所述连接位的距离越大,且所述间隔槽与所述连接位的距离至少大于1毫米。
在其中一个实施例中,所述PCB板于每一所述安装位的周边设置隔离区,所述隔离区围绕所述安装位设置;这样,将连接螺丝孔周围的铜箔与PCB板内其他电气属性的铜箔隔离,使得螺丝孔周围的铜箔与PCB板内的铜箔之间形成不含铜箔的隔离带。例如,所述安装位为圆形或正多边形,所述隔离区为圆环形或正多边环形,例如,所述安装位为圆形,所述隔离区为对应的圆环形,又如,所述安装位为正多边形,所述隔离区为对应的正多边环形,一个例子是,所述隔离区的宽度为所述安装位的直径的30%以上,隔离区的宽度的上限不作限制,根据板卡的可用空间灵活设置即可,例如,所述隔离区的宽度为所述安装位的直径的50%至200%,其中,隔离区的宽度根据板卡的空间可自由设定,例如,隔离区的宽度与板卡的空间有关,如果板卡空间大,那么隔离区的宽度可以做得更宽;一个例子是,所述隔离区的宽度为所述安装位的直径的200%,当隔离区的宽度在大于安装位的直径的2倍时,继续增大隔离区的宽度对削弱应力的效果已非常有限。例如,所述隔离区为圆环形,所述隔离区的宽度即为圆环形的外圆半径与内圆半径的差值,以此类推;例如,所述隔离区的宽度为所述安装位的直径的60%至120%;例如,所述隔离区空置或者所述隔离区填充设置有胶体;例如,所述胶体为橡胶垫圈或所述胶体为液态胶体固化后的结构。
在其中一个实施例中,所述间隔槽包括连通式间隔槽和/或断续式间隔槽;其中,连通式间隔槽为连通的,例如连通式间隔槽为一个矩形或L形,断续式间隔槽为不连通的,断续式间隔槽包括多个相互之间不连通的断续槽区,例如所述断续槽区为圆形、三角形、矩形或其组合;例如,所述断续式间隔槽的宽 度与所述连通式间隔槽的宽度相同或相异设置。一个例子是,所述间隔槽包括一条连通式间隔槽,以及一条断续式间隔槽;例如,所述断续式间隔槽位于所述连通式间隔槽与所述连接位之间;又如,所述断续式间隔槽的宽度为所述连通式间隔槽的宽度的1.2至1.5倍,例如所述断续式间隔槽的宽度为所述连通式间隔槽的宽度的1.28倍,这样,可以极好地提升隔离应力的效果;一个例子是,所述间隔槽包括一条连通式间隔槽,以及一条断续式间隔槽,所述断续式间隔槽位于所述连通式间隔槽与所述连接位之间,并且,所述断续式间隔槽的宽度为所述连通式间隔槽的宽度的1.2至1.5倍。
在其中一个实施例中,所述断续式间隔槽包括单层断续式间隔槽和/或多层断续式间隔槽,例如,所述单层断续式间隔槽为一层断续式间隔槽结构,所述多层断续式间隔槽包括至少二层断续式间隔槽结构;在其中一个实施例中,一层所述断续式间隔槽结构包括若干个断续槽区,在其中一个实施例中,所述断续槽区为圆形、三角形、矩形或其组合;例如,所述断续槽区包括若干圆形,类似于省略号形状;在其中一个实施例中,所述多层断续式间隔槽中,各层断续式间隔槽结构对齐设置或交错设置;例如,各层断续式间隔槽结构对齐设置,使得每一层断续式间隔槽结构的各个断续槽区均与相邻层的各个断续槽区对齐,亦即完全重合;例如,各层断续式间隔槽结构交错设置,使得每一层断续式间隔槽结构的各个断续槽区均与相邻层的各个断续槽区相互错开或者部分重合,这样可以达到较好的隔离应力的效果。
在其中一个实施例中,所述PCB板包括隔离部与PCB主体部,所述连接位设置于所述隔离部,所述隔离部与所述PCB主体部之间通过连接段相连接并且通过两所述间隔槽相隔断;在其中一个实施例中,所述连接段的宽度为所述连接位的宽度的5%至80%;例如,所述连接段的宽度为所述连接位的宽度的8%至40%,例如,所述连接段的宽度为所述连接位的宽度的15%或38%。连接段的宽度较窄有利于隔离应力,但是过窄的话则会影响隔离部与PCB主体部之间的物理连接强度,因此需要合理设计连接段的宽度。一个例子是,所述连接段的宽度与所述间隔槽的长度成正比,这样可以使得在震动环境下所述隔离部能够保持较好的刚度。
在其中一个实施例中,所述PCB板为硬性电路板和/或柔性电路板;例如,当所述PCB板为硬性电路板时,所述隔离部、所述连接段与所述PCB主体部一体设置,例如,所述连接段为整体连续结构或者所述连接段具有至少一层所述断续式间隔槽结构;所述整体连续结构为矩形连续结构、弧形连续结构或者波浪形连续结构;又如,当所述PCB板为柔性电路板(FPC)时,所述隔离部与所述PCB主体部分别设置有补强结构,且所述隔离部与所述PCB主体部之间设置至少一连接桥,所述隔离部与所述PCB主体部通过所述连接桥相互固定;例如,所述隔离部的补强结构与所述PCB主体部的补强结构通过所述连接桥相互固定;所述连接段用于保证惯性测量装置的PCB板不易形变;例如,所述补强结构包括所述隔离部的补强结构与所述PCB主体部的补强结构,所述补强结构及/或所述连接桥设置于FPC背面,例如,所述补强结构及/或所述连接桥为钢片或FR4板材等;在其中一个实施例中,所述连接桥垂直或倾斜于所述隔离部;例如,当具有两个所述连接桥时,两个所述连接桥对称设置。例如,两个所述连接桥整体为“||”或者“八”形。柔性电路板与连接桥的设计,使得隔离部与PCB主体部可以分别制造、组装使用,可以使得柔性电路板具有硬性电路板的刚度,且通过柔性电路板实现电路连接以及通过连接桥实现隔离部与PCB主体部的相互固定,有利于进一步切断和削弱机械应力的能量传递,从而降低机械应力对惯性测量单元例如陀螺仪和加速度计等的不良影响。
本发明的又一实施例,PCB板以硬性的印制电路板为例,惯性测量单元以陀螺仪和加速度计为例,对本发明及其各实施例的优化和优点进一步作出说明。首先,将陀螺仪和加速度计芯片所在的电路区域开设间隔槽,与产生应力源的PCB区域隔离,并且,在PCB受应力较小的区域实现单点连接,可以理解,所述单点并不是数学意义上的一个点,可以理解为一个如上所述的连接段。单点的形状或其宽度与间隔槽长度有关,例如间隔槽长度长,为了使惯性测量单元所在区域的PCB在震动环境下,能够保持较好的刚度,单点连接的宽度就要求更宽。例如间隔槽长度短,则单点连接的宽度就可以变窄。其次,将连接安装位例如螺丝孔周围的铜箔与PCB板内其他电气属性的铜箔隔离,使螺丝孔成为孤岛。这样设计的原因是,有铜箔的PCB材质刚度要强于没有铜箔的PCB材质。 当把铜箔去掉以后,隔离区的刚度变弱,可以吸收一部分机械应力,减少机械应力往板内传递,这样的设计,至少能够达到吸收50%应力的效果。
陀螺仪和加速度计的输出精度、噪声、零偏等直接影响到姿态准确性,进而影响云台IMU算法的精确度和云台控制精度,因此良好的IMU性能对云台的增稳控制非常关键。影响IMU性能的因素很多,本发明惯性测量装置只从机械应力的角度,通过巧妙地优化IMU板PCB设计,减小外部应力对陀螺仪和加速度计的影响,提升IMU性能,从而降低惯性测量装置的噪音,进而能够提升相关机械设备例如云台的控制精度。
下面安装结构以螺丝为例继续说明,因IMU板采用螺丝固定在镜头模组所在的机壳上,PCB板会受到锁螺丝带来的应力,因此从两个方面优化PCB设计。陀螺仪和加速度计芯片所在的电路区域间隔槽,与产生应力源的PCB区域隔离。在PCB受应力较小的区域单点连接;并将连接螺丝孔周围的铜箔与PCB板内其他电气属性的铜箔隔离,使螺丝孔成为孤岛。这样设计的原因是,有铜箔的PCB材质刚度要强于没有铜箔的PCB材质。当把铜箔去掉以后,隔离区的刚度变弱,可以吸收一部分机械应力,减少机械应力往板内传递。
本发明各实施例所述惯性测量装置,对机械应力的阻断和减弱过程是:当锁螺丝时,以及安装结构及其上面的装置发生振动时,应力往板内传递,在隔离区处PCB板刚性变弱,吸收了一部分应力,然后剩余的应力继续往板内传递,当遇到间隔槽后,应力在此处被截断,这样,能传递到陀螺仪和加速度计电路部分的应力只能通过隔离部与PCB主体部之间很窄的连接段。且由于连接段处于上下两个安装位(螺丝孔)的对称点且与螺丝孔距离较远,因此能传递到陀螺仪和加速度计电路部分的应力几乎可以忽略不计了。通过实验证明,IMU板用同样的力锁紧螺丝的条件下,采用本发明所述惯性测量装置,其中的陀螺仪和加速度计的噪声比没做优化的噪声低60%左右,从而极大地提升了陀螺仪和加速计的输出精度,配合控制算法最终使得云台的控制精度可以达到0.01°。这个控制精度是目前航拍云台增稳控制精度的最高水平;且零偏可以降低30%左右。
一种机械设备,其包括上述任一实施例所述惯性测量装置。在其中一个实 施例中,所述机械设备为云台、机器人、无人机或载人航空器。例如,一种云台,其包括上述任一项所述惯性测量装置,以此类推。上述机械设备,通过优化惯性测量装置的PCB板设计,使得传递到惯性测量装置的机械应力减小乃至于消除,使得机械应力对惯性测量装置中的惯性测量单元例如陀螺仪和加速度计等影响较小,从而降低噪声及减小零偏,有利于发挥出陀螺仪和加速度计的最好性能,进而提升了惯性测量装置的控制精度。
例如,对于云台,通过优化IMU板的PCB设计,从PCB整体受应力的角度去优化PCB结构设计,使得传递到陀螺仪和加速度计的机械应力减小或消除,使得机械应力对陀螺仪和加速计的不良影响降低或消除,从而发挥出陀螺仪和加速度计的最好性能,进而提升了云台控制精度。例如,一实施例的云台的不同方向示意图分别如图3、图4与图5所示,其包括相机主板100、YAW(航向)轴200(用于确定偏航角)、ROLL(横滚)轴300(用于确定翻滚角)、Pitch(俯仰)轴400(用于确定俯仰角)、IMU板及固定于IMU板上的镜头模组500;云台的立体结构如图6所示。
上面以云台IMU的应用为例,可以理解的是,这种PCB板(或称为板卡)的抗应力设计,不仅可以用于云台IMU,也可以用在其他需要惯性测量单元的设备,如机器人、无人机、载人航空器等,用于减小或避免机械应力对陀螺仪和加速度计的影响
需要说明的是,本发明的其它实施例还包括,上述各实施例中的技术特征相互组合所形成的、能够实施的惯性测量装置以及机械设备。传统IMU板设计时,一般只会根据陀螺仪或加速度计的布线指引进行PCB设计,比如引脚的走线对称,器件周围一定距离不放置其它元件,器件中心不打过孔和走线等。虽然这些设计方案都是从受力的角度去进行PCB设计,但只是从MEMOS芯片本身受应力均衡的角度考虑,没有从PCB整体受力的角度去考虑,无法抵抗较大的外部非均衡机械应力。本发明及其各实施例通过优化PCB板设计,切断和削弱机械应力的能量传递,从而使得机械应力对陀螺仪和加速度计的不良影响降到最低,极大提升了IMU姿态检测的准确度,有利于在现有技术水平上提升控制精度到最高标准。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (16)

  1. 一种惯性测量装置(60),其特征在于:包括PCB板(600)和惯性测量单元(700),所述PCB板(600)包括PCB主体部(620),以及自所述PCB板(600)的一侧开槽形成并与所述PCB主体部(620)固定连接的隔离部(610),所述惯性测量单元(700)设置在所述隔离部(610)。
  2. 根据权利要求1所述惯性测量装置(60),其特征在于:所述PCB主体部(620)与所述隔离部(610)一体连接。
  3. 根据权利要求1所述惯性测量装置(60),其特征在于:所述隔离部(610)上设置连接位(611),所述惯性测量单元(700)固定连接于所述连接位(611)。
  4. 根据权利要求3所述惯性测量装置(60),其特征在于:所述PCB主体部(620)于所述连接位(611)的两侧对称设置一对安装位(621)。
  5. 根据权利要求1~4任一项所述惯性测量装置(60),其特征在于:所述开槽为开设间隔槽(640),且所述PCB板(600)于每一所述安装位(621)与所述连接位(611)之间均设置有所述间隔槽(640)。
  6. 根据权利要求5所述惯性测量装置(60),其特征在于,所述间隔槽(640)包括连通式间隔槽和/或断续式间隔槽。
  7. 根据权利要求6所述惯性测量装置(60),其特征在于,所述连通式间隔槽为L形或矩形。
  8. 根据权利要求5所述惯性测量装置(60),其特征在于,两个所述间隔槽(640)对称设置。
  9. 根据权利要求5述惯性测量装置(60),其特征在于,所述间隔槽(640)为去掉PCB板上的铜箔形成的槽区或者为切除部分PCB板形成的槽区。
  10. 根据权利要求4所述惯性测量装置(60),其特征在于,所述PCB主体部(620)于每一所述安装位(621)的周边设置隔离区(622)。
  11. 根据权利要求10所述惯性测量装置(60),其特征在于,所述隔离区(622)为环形。
  12. 根据权利要求10所述惯性测量装置(60),其特征在于,所述隔离区(622)为所述PCB板(600)去除导电铜箔的剩余位置。
  13. 根据权利要求1所述惯性测量装置(60),其特征在于,所述惯性测量单元(700)包括陀螺仪和/或加速计。
  14. 根据权利要求5所述机械设备,其特征在于,所述惯性测量单元(700)为多个,所述PCB板(600)上对应设置多个连接位(611),任意相邻两个连接位(611)之间也设置有所述间隔槽(640)。
  15. 一种机械设备,其特征在于,包括如权利要求1至14中任一项所述惯性测量装置(60)。
  16. 根据权利要求15所述机械设备,其特征在于,所述机械设备为云台、机器人、无人机或载人航空器。
PCT/CN2018/079617 2017-08-17 2018-03-20 惯性测量装置以及机械设备 WO2019033753A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18765793.7A EP3683545B1 (en) 2017-08-17 2018-03-20 Inertial measuring device and mechanical equipment
EP20215499.3A EP3816580B1 (en) 2017-08-17 2018-03-20 Inertial measurement apparatus and mechanical device
US16/132,824 US11041726B2 (en) 2017-08-17 2018-09-17 Inertial measurement apparatus and mechanical device
US17/326,500 US20210278218A1 (en) 2017-08-17 2021-05-21 Inertial measurement apparatus and mechanical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710708522.0 2017-08-17
CN201710708522.0A CN107478224B (zh) 2017-08-17 2017-08-17 惯性测量装置以及机械设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/132,824 Continuation US11041726B2 (en) 2017-08-17 2018-09-17 Inertial measurement apparatus and mechanical device

Publications (1)

Publication Number Publication Date
WO2019033753A1 true WO2019033753A1 (zh) 2019-02-21

Family

ID=60601034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079617 WO2019033753A1 (zh) 2017-08-17 2018-03-20 惯性测量装置以及机械设备

Country Status (3)

Country Link
EP (2) EP3816580B1 (zh)
CN (1) CN107478224B (zh)
WO (1) WO2019033753A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021123644A1 (fr) * 2019-12-18 2021-06-24 Beyond Your Motion Dispositif electronique comportant une centrale inertielle

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11041726B2 (en) 2017-08-17 2021-06-22 Autel Robotics Co., Ltd. Inertial measurement apparatus and mechanical device
CN107478224B (zh) * 2017-08-17 2019-12-24 深圳市道通智能航空技术有限公司 惯性测量装置以及机械设备
EP3736534A4 (en) * 2018-01-05 2021-08-18 SZ DJI Technology Co., Ltd. PRINTED CIRCUIT BOARD AND UNPILOT AIR VEHICLE USING A PRINTED CIRCUIT BOARD
CN108168547A (zh) * 2018-02-01 2018-06-15 深圳市固胜智能科技有限公司 惯性测量单元的安装结构以及云台
CN111426317B (zh) * 2020-04-08 2022-06-17 深圳市道通智能航空技术股份有限公司 一种惯性测量模块、减震系统以及无人机
CN218411208U (zh) * 2022-09-22 2023-01-31 广州导远电子科技有限公司 惯性测量装置和设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201598171U (zh) * 2010-03-05 2010-10-06 南京理工大学 具有应力隔离的mems惯性传感器封装结构
CN102449433A (zh) * 2009-05-27 2012-05-09 感应动力股份公司 一种用于测定围绕三个相互垂直的坐标x、y与z中至少一个坐标旋转运动的微陀螺仪
CN102798733A (zh) * 2011-05-26 2012-11-28 罗伯特·博世有限公司 惯性传感器
CN205256688U (zh) * 2015-11-27 2016-05-25 深圳市星图智控科技有限公司 无人飞行器及其云台控制电路板
CN205664838U (zh) * 2016-06-08 2016-10-26 上海拓攻机器人有限公司 一种用于无人飞行器的惯性测量装置
CN107478224A (zh) * 2017-08-17 2017-12-15 深圳市道通智能航空技术有限公司 惯性测量装置以及机械设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1813951A1 (en) * 2006-01-30 2007-08-01 Infineon Technologies SensoNor AS Inertial measurement unit and packages thereof
JP5133550B2 (ja) * 2006-10-18 2013-01-30 ペンタックスリコーイメージング株式会社 手振補正機能付カメラにおけるジャイロセンサ取付構造
US8330236B2 (en) * 2008-06-20 2012-12-11 Garmin Switzerland Gmbh Isolation channel improving measurement accuracy of MEMS devices
DE102011017692A1 (de) * 2011-04-28 2012-10-31 Robert Bosch Gmbh Leiterplattenanordnung mit einem schwingfähigen System
DE102013211142A1 (de) * 2013-06-14 2014-12-18 Robert Bosch Gmbh Leiterplatte mit einem elastisch gelagerten Sensor
CN207248193U (zh) * 2017-08-17 2018-04-17 深圳市道通智能航空技术有限公司 惯性测量装置以及机械设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102449433A (zh) * 2009-05-27 2012-05-09 感应动力股份公司 一种用于测定围绕三个相互垂直的坐标x、y与z中至少一个坐标旋转运动的微陀螺仪
CN201598171U (zh) * 2010-03-05 2010-10-06 南京理工大学 具有应力隔离的mems惯性传感器封装结构
CN102798733A (zh) * 2011-05-26 2012-11-28 罗伯特·博世有限公司 惯性传感器
CN205256688U (zh) * 2015-11-27 2016-05-25 深圳市星图智控科技有限公司 无人飞行器及其云台控制电路板
CN205664838U (zh) * 2016-06-08 2016-10-26 上海拓攻机器人有限公司 一种用于无人飞行器的惯性测量装置
CN107478224A (zh) * 2017-08-17 2017-12-15 深圳市道通智能航空技术有限公司 惯性测量装置以及机械设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021123644A1 (fr) * 2019-12-18 2021-06-24 Beyond Your Motion Dispositif electronique comportant une centrale inertielle
FR3105399A1 (fr) * 2019-12-18 2021-06-25 Beyond Your Motion Dispositif electronique comportant une centrale inertielle

Also Published As

Publication number Publication date
EP3816580B1 (en) 2024-05-15
EP3683545A4 (en) 2020-07-22
CN107478224A (zh) 2017-12-15
EP3683545A1 (en) 2020-07-22
CN107478224B (zh) 2019-12-24
EP3683545B1 (en) 2021-03-03
EP3816580A1 (en) 2021-05-05

Similar Documents

Publication Publication Date Title
WO2019033753A1 (zh) 惯性测量装置以及机械设备
US20210278218A1 (en) Inertial measurement apparatus and mechanical device
US9227835B2 (en) Vibration isolation interposer die
CN104142150A (zh) 一体化的小型激光陀螺惯性测量装置
JP2019165201A (ja) 無人ビークル用の制御ボックスおよびシステムオンモジュール回路基板
EP3425336B1 (en) Inertia measurement apparatus and unmanned aerial vehicle
CA2565752A1 (en) Mems sensor systems and methods
JP2019165203A (ja) 無人車両用の制御ボックスおよびシステムオンモジュール回路基板
WO2021134584A1 (zh) 运动传感器模组及可移动平台
WO2024061142A1 (zh) 惯性测量装置和设备
US20200122823A1 (en) Flying device
JP2021071370A (ja) 振動デバイス、電子機器および移動体
JP7135901B2 (ja) 慣性センサー、電子機器および移動体
US9546868B2 (en) Modal decoupling via flexure-based transmissions as applied to a micromachined tuning fork gyroscope
CN113325200B (zh) 物理量传感器、电子设备和移动体
JP7404649B2 (ja) 慣性センサー、電子機器および移動体
CN108770183B (zh) 一种基于fr4印制电路板的三轴减振结构
JP2021067630A (ja) 慣性計測装置、電子機器および移動体
CN112698054A (zh) 物理量传感器、电子设备和移动体
JP2021006794A (ja) 慣性センサー、電子機器および移動体
US11740258B2 (en) Physical quantity sensor, electronic apparatus, and vehicle
US9964561B2 (en) Acceleration sensor
CN109506914A (zh) 尾浆变距疲劳试验装置
CN220556327U (zh) 测量装置和电子设备
JP2020139872A (ja) 慣性センサー、電子機器および移動体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018765793

Country of ref document: EP

Effective date: 20180920

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18765793

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE