WO2020134235A1 - 一种无人飞行器及其机翼组件 - Google Patents

一种无人飞行器及其机翼组件 Download PDF

Info

Publication number
WO2020134235A1
WO2020134235A1 PCT/CN2019/107550 CN2019107550W WO2020134235A1 WO 2020134235 A1 WO2020134235 A1 WO 2020134235A1 CN 2019107550 W CN2019107550 W CN 2019107550W WO 2020134235 A1 WO2020134235 A1 WO 2020134235A1
Authority
WO
WIPO (PCT)
Prior art keywords
wing
lock cylinder
rotary lock
rotation axis
wing assembly
Prior art date
Application number
PCT/CN2019/107550
Other languages
English (en)
French (fr)
Inventor
梁智颖
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811622482.9A external-priority patent/CN109572991B/zh
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2020134235A1 publication Critical patent/WO2020134235A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/26Attaching the wing or tail units or stabilising surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/25Fixed-wing aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/10Wings

Definitions

  • the invention relates to the technical field of unmanned aerial vehicles, in particular to an unmanned aerial vehicle and its wing assembly.
  • Unmanned Aerial Vehicle UAV is widely used because of its advantages of flexible maneuverability, fast response, unmanned driving, and low operating requirements.
  • the wing mounted on the unmanned aerial vehicle is easy to be damaged. After the wing is damaged, the unmanned aerial vehicle may continue to fly, which may cause the unmanned aerial vehicle to crash.
  • embodiments of the present invention provide an unmanned aerial vehicle and its wing assembly to facilitate the removal of the wing from the fuselage.
  • a wing assembly for mounting on a fuselage of an unmanned aerial vehicle, the wing assembly includes: a wing; and a rotary lock cylinder, the rotary lock cylinder having a rotation axis, the rotary lock cylinder Is installed on the wing, and the other end of the rotary lock cylinder is used for installation on the fuselage; wherein, the rotary lock cylinder can rotate relative to the wing about the rotation axis, so that The other end of the rotary lock cylinder is disassembled from the fuselage.
  • the wing has two wing surfaces opposite to each other, and a mounting surface between the two wing surfaces; an installation groove is provided in the wing, and the installation groove is located at the The mounting surface is provided with a first opening, one end of the rotary lock core is installed in the mounting groove, and the other end of the rotary lock core extends from the first opening.
  • the mounting groove is provided with a second opening in at least one of the two wing surfaces; the wing assembly further includes a driving roller, and a centerline of the driving roller is opposite to the rotation axis Coincidentally, the driving roller is connected to one end of the rotating lock cylinder, and the driving wheel is exposed in the second opening.
  • one of the driving roller and one end of the rotating lock cylinder is provided with a fixed shaft and the other is provided with a fixed hole; the fixed shaft cooperates with the fixed hole to The driving roller is fixed to one end of the rotating lock cylinder.
  • the two wing surfaces are each provided with one second opening, and the two second openings are opposite; the driving roller is exposed in the two second openings.
  • the lateral cross-sectional dimension of the driving roller is larger than the lateral cross-sectional dimension of the rotating lock cylinder, so that the driving roller protrudes from the second opening.
  • the groove wall of the mounting groove extends with a support plate; the support plate is provided with a rotation hole, the rotation hole penetrates the support plate along the rotation axis; the other end of the rotation lock core Cooperating with the rotation hole, the rotation lock cylinder can rotate relative to the wing about the rotation axis.
  • the rotary lock cylinder includes a limiting portion, a rotating portion, and a fixed portion connected in sequence; the cross-sectional size of the limiting portion and the cross-sectional dimension of the fixing portion are both larger than that of the rotating portion Cross-sectional dimensions, the rotation hole cooperates with the rotating part, the limiting part and the fixing part respectively abut on both sides of the support plate, so that the rotating lock cylinder cannot rotate along the The axis moves relative to the wing.
  • the wing assembly further includes an elastic stopper, the elastic stopper is used to provide resistance to the rotation of the rotary lock cylinder relative to the wing about the axis of rotation.
  • the elastic limiter includes a connecting rod and a stop rod connected to the connecting rod;
  • the rotary lock cylinder includes a limiting surface, the limiting surface is disposed away from the rotation axis, The two limiting surfaces are connected by a rib; when the rotary lock cylinder rotates relative to the wing about the axis of rotation, the rib can squeeze the stop lever and stop the stop The rod is bent relative to the connecting rod.
  • the number of the stop rods is two; two of the stop rods are opposite to each other, and the rotary lock cylinder is located between the two stop rods.
  • the number of the limiting surfaces is four; four of the limiting surfaces are distributed around the rotation axis.
  • the rotary lock cylinder includes a shaft portion and a limit portion connected to the shaft portion; the center line of the shaft portion coincides with the rotation axis, and the limit portion has at least one end along A direction perpendicular to the rotation axis protrudes from the shaft portion.
  • the limit portion has two ends extending in opposite directions, and both ends of the limit portion protrude from the shaft portion in a direction perpendicular to the rotation axis.
  • the rotary lock cylinder includes a stud portion; the center line of the stud portion coincides with the rotation axis, and the stud portion is used for screw connection with the fuselage.
  • an unmanned aerial vehicle including: a fuselage; and a wing assembly as described above connected to the fuselage.
  • the fuselage is provided with a lock hole, and the other end of the rotary lock cylinder passes through the lock hole.
  • the wing assembly is used to be mounted on the fuselage of the unmanned aerial vehicle, and the wing assembly includes: a wing; and a rotation A lock cylinder, the rotary lock cylinder has a rotation axis, one end of the rotary lock cylinder is installed on the wing, and the other end of the rotary lock cylinder is used for installation on the fuselage, the rotary lock cylinder can be wound around The rotation axis rotates relative to the wing so that the other end of the rotary lock cylinder is disassembled from the fuselage.
  • FIG. 1 is a perspective view of an unmanned aerial vehicle according to one embodiment of the present invention.
  • FIG. 2 is an enlarged view at A of FIG. 1;
  • FIG. 3 is a plan view of the keyhole of the UAV shown in FIG. 1;
  • FIG. 4 is an assembly diagram of the lock core, the elastic limiter and the driving roller of the UAV shown in FIG. 1;
  • FIG. 5 is an assembly view of the lock cylinder, the elastic stopper and the driving roller shown in FIG. 4 at another angle;
  • FIG. 6 is a cross-sectional view of the connection between the fuselage and the wing assembly of the UAV shown in FIG. 1;
  • FIG. 7 is a cross-sectional view of the connection between the fuselage and the wing assembly shown in FIG. 6 in another state;
  • FIG. 8 is a cross-sectional view of the limiting portion and the elastic limiting member of the wing assembly shown in FIG. 6;
  • FIG. 9 is a cross-sectional view of the limiting portion shown in FIG. 8 and the elastic limiting member at another angle.
  • One embodiment of the present invention provides an unmanned aerial vehicle 500 including a wing assembly 100, a fuselage 200, a power assembly 300 and a landing gear 400.
  • the wing assembly 100 and the landing gear 300 are both installed on the fuselage 200, and the power assembly 300 is installed on the wing assembly 100.
  • the fuselage 200 includes a control circuit assembly composed of electronic components such as an MCU.
  • the control circuit assembly includes multiple control modules, for example, for controlling the operation of the power assembly to control the flying attitude of the UAV A control module, a positioning module for navigating the unmanned aerial vehicle, and a data processing module for processing environmental information acquired by related airborne equipment.
  • control modules for example, for controlling the operation of the power assembly to control the flying attitude of the UAV
  • a control module for a positioning module for navigating the unmanned aerial vehicle
  • a data processing module for processing environmental information acquired by related airborne equipment.
  • the fuselage 200 has a first surface 201 facing the wing assembly 100 and a second surface 202 facing away from the wing assembly, the fuselage 200 is provided with a lock hole 203, and the lock hole 203 is free from The first surface 201 penetrates to the second surface 202.
  • the lock hole 203 is a special-shaped hole, that is, the lock hole 203 is a non-circular hole, for example, a diamond hole, a square hole, a zigzag hole, and the like.
  • the lock hole 203 includes a shaft hole 204 and an escape hole 205 communicating with each other.
  • the shaft hole 204 and the escape hole 205 both penetrate from the first surface 201 to the second surface 202.
  • the wing assembly 100 includes the wing 10, the rotating lock core 20, the driving roller 30, and the limit elastic member 40.
  • the rotary lock core 20 has a rotation axis O, which coincides with the center line of the shaft hole 204, one end of the rotary lock core 20 is mounted on the wing 10, and the rotary lock core 20 The other end is installed in the lock hole 203 of the fuselage 200, the rotary lock core 20 can rotate relative to the wing 10 about the rotation axis O, so that the other end of the rotary lock core 20 is The lock hole 203 of the body 200 is disassembled.
  • the driving roller 30 is installed at one end of the rotating lock core 20.
  • the driving roller 30 is used to drive the rotating lock core 20 to rotate relative to the wing 10 about the rotation axis O.
  • the user pushes the driving roller 30 to rotate, thereby driving the rotating lock cylinder 20 to rotate.
  • the driving roller 30 may be driven to rotate by a motor, so as to drive the rotating lock cylinder 20 to rotate.
  • the elastic stopper 40 is installed on the wing 10, and when the rotary lock cylinder 20 rotates relative to the wing 10 about the rotation axis O, the elastic stopper 40 is used to provide resistance to the rotation The resistance to rotation of the lock cylinder O.
  • the unfolding direction of the wing 10 is substantially parallel to the rotation axis O.
  • the wing 10 has two wing surfaces 11 opposite to each other, and a mounting surface 12 located between the two wing surfaces 11.
  • the side facing the side has an air pressure difference, so that a lift force is generated on the wing 10 to float the unmanned aerial vehicle 100.
  • the wing 10 is provided with a mounting slot 13, the mounting slot 13 is provided with a first opening 14 on the mounting surface 12, and the mounting slot 13 is provided with a second opening on each of the two wing surfaces 11 15, that is, the number of the second openings 15 is 2, and the two second openings 15 are opposite to each other.
  • One end of the rotary lock cylinder 20 is installed in the installation groove 13, and the other end of the rotary lock cylinder 20 extends from the first opening 14.
  • the driving roller 30 is located in the mounting groove 13, and the driving roller 30 is exposed in the two second openings 15.
  • the rotating lock cylinder 20 located in the mounting groove 13 can be driven to rotate synchronously with the driving roller 30 by turning the driving roller 30 exposed in the two second openings 15.
  • the cross-sectional dimension of the driving roller 30 is larger than the cross-sectional dimension of the rotating lock cylinder 20, so that the driving roller 30 protrudes two of the second openings 15. It should be noted that the so-called cross-sectional normal is normal to the rotation axis O.
  • the number of the second openings 15 is not limited to two, and the number of the second openings 15 may be only one, as long as at least one of the two wing surfaces 11 is provided The second opening 15 is sufficient.
  • the driving roller 30 is provided with a fixing hole 31 provided along the rotation axis O
  • the rotating lock cylinder 20 is provided with a fixing shaft 21 provided along the rotation axis O
  • the fixing shaft 21 It is fixedly connected with the fixing hole 31.
  • the positions of the fixed shaft 21 and the fixed hole 31 can be interchanged, that is, the fixed shaft 21 is disposed on the driving roller 30, and at the same time, the fixed The hole 31 is provided in the rotary lock cylinder 20. Therefore, as long as one of the drive roller 30 and the rotary lock cylinder 20 is provided with the fixed shaft 21, the drive roller 20 and the rotary lock cylinder 30 The other just needs to be provided with the fixing hole 31.
  • the driving roller 20 and the rotating lock cylinder 30 are not limited to being fixedly connected to the fixing hole 31 through the fixing shaft 21. In some other embodiments, the driving roller 30 is connected to all The rotary lock core 20 is integrally formed.
  • a support plate 16 extends from the groove wall of the mounting groove 13, and the support plate 16 is provided with a rotation hole 17 that cooperates with the rotation lock core 20 so that the rotation lock core 20 can be wound around
  • the rotation axis O rotates relative to the wing 10.
  • the rotary lock cylinder 20 includes a lock portion 22, a shaft portion 23, a limiting portion 24, a rotating portion 25, a fixed portion 26 and the fixed shaft 21 connected in this order.
  • the lock portion 22 has a rectangular parallelepiped shape as a whole, and both ends of the lock portion 22 protrude from the shaft portion 23 in a direction perpendicular to the rotation axis O. It can be understood that, according to actual conditions, the lock portion 22 22 is not limited to that both ends protrude the shaft portion 23 in a direction perpendicular to the rotation axis O, for example, one end of the lock portion 22 protrudes from the shaft portion in a direction perpendicular to the rotation axis O 23, for another example, the three ends of the lock portion 22 each protrude from the shaft portion 23 in a direction perpendicular to the rotation axis O, and so on, as long as the lock portion 22 has at least one end perpendicular to the rotation
  • the direction of the axis O only needs to protrude from the shaft portion 23.
  • the shaft portion 23 has a cylindrical shape as a whole, and the center line of the shaft portion 23 coincides with the rotation axis O.
  • the limiting portion 24 is a quadrangular prism as a whole, and the limiting portion 24 has four limiting surfaces 240.
  • the four limiting surfaces 240 are distributed around the rotation axis O, so There are ribs 241 between any two adjacent ones of the four limiting surfaces 240.
  • the number of the limiting surfaces 240 is not limited to four.
  • the number of the limiting surfaces 240 is two, three, or four, as long as the limiting surfaces
  • the number of 240 is at least two, and there is only one rib 241 between the two limiting surfaces 240.
  • the rotating portion 25 has a cylindrical shape as a whole, the center line of the rotating portion 25 coincides with the rotation axis O, the cross-sectional size of the rotating portion 25 is smaller than the cross-sectional size of the limiting portion 24, and The cross-sectional dimension of the rotating part 25 is smaller than the cross-sectional dimension of the fixed part 26.
  • the rotating hole 17 cooperates with the rotating portion 25, the limiting portion 24 and the fixing portion 26 abut on both sides of the supporting plate 16 respectively, so that the rotating lock core 20 can be wound around
  • the rotation axis O rotates relative to the wing 10 and cannot move relative to the wing 10 along the rotation axis O.
  • the mounting surface 12 of the wing 10 abuts the first surface 201 of the fuselage 200.
  • the shaft portion 23 passes through the lock hole 203, and the shaft portion 23 cooperates with the shaft hole 204 of the lock hole 203, so that the rotary lock core 20 can be rotated relative to the The body 200 rotates.
  • the protruding ends of the lock portion 22 can be aligned with the escape hole 205, so that the two portions of the lock portion 22 The end can pass through the escape hole 205 along the rotation axis O, that is, the rotary lock core 20 is detachable from the lock hole 203 of the fuselage 200.
  • the number of the rotary lock cylinders 20 is at least two, and the rotation axes O of the two rotary lock cylinders 20 are parallel to each other, so that the wing 10 and the fuselage 200 Can not rotate relatively.
  • one of the mounting surface 12 of the wing 10 and the first surface 201 of the fuselage 200 is provided with a positioning pin (not shown), and the other is provided with a positioning hole (Not shown), through the cooperation of the positioning pin and the positioning hole, the wing 10 and the fuselage 200 cannot rotate relatively.
  • the lock hole 203 is a threaded hole, and the lock portion 22 and the shaft portion 23 of the rotary lock core 20 are replaced with a stud portion 26, and the center line of the stud portion 26 is The rotation axis O coincides, and the stud portion 26 is screw-fitted with the lock hole.
  • the elastic limiter 40 is installed on the groove wall of the mounting slot 13.
  • the elastic limiter 40 includes two opposite stop rods 41 and a connection between the two stop rods 41
  • the two stop rods 41 can be respectively elastically bent relative to the connecting rod 42, and the limiting portion 24 is located between the two stop rods 41.
  • the rib 241 of the limiting portion 24 can press the stop lever 41 and make The stop lever 41 is bent, and the stop lever 41 is bent to provide resistance against the rotation of the rotary lock cylinder 20.
  • the two stop rods 41 can respectively resist two of the four limit surfaces 240 to
  • the rotary lock cylinder 20 can be fixed relative to the wing 10 in the direction of the rotation axis O, and the rotary lock cylinder 20 can be prevented from rotating relative to the wing 10 by itself.
  • the rotating lock cylinder 20 rotates relative to the wing 10 about the rotation axis O, and the lock portion 22 protrudes from both ends of the shaft body 23 to align with the escape hole 205
  • the two stop rods 41 are respectively in contact with two of the four limiting surfaces 240, so that the two ends of the locking portion 22 protruding from the shaft portion 23 can be conveniently aligned with the avoiding hole 205 .
  • the present invention provides an unmanned aerial vehicle 500 and its wing assembly 100, wherein the wing assembly 100 is used to be mounted on the fuselage 200 of the unmanned aerial vehicle 500, through the
  • the rotary lock core 20 is installed on the wing 10, and the rotary lock core 20 is detached from the fuselage 200 by rotating, so as to facilitate the removal of the wing assembly 100 from the fuselage 200.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Toys (AREA)

Abstract

一种无人飞行器(500)及其机翼组件(100),其中所述机翼组件(100)用于安装于无人飞行器(500)的机身(200),所述机翼组件(100)包括:机翼(10);以及旋转锁芯(20),所述旋转锁芯(20)具有旋转轴线(O),所述旋转锁芯(20)的一端安装于所述机翼(10),所述旋转锁芯(20)的另一端用于安装于所述机身(200);其中,所述旋转锁芯(20)可绕所述旋转轴线(O)相对于所述机翼(10)旋转,以使得所述旋转锁芯(20)的另一端与所述机身(200)相拆卸。通过在所述机翼(10)上安装所述旋转锁芯(20),通过旋转所述旋转锁芯(20)与所述机身(200)相拆卸,以方便将机翼(10)从机身(200)上拆卸下来。

Description

一种无人飞行器及其机翼组件
【相关申请交叉引用】
本申请要求于2018年12月28日申请的、申请号为201811622482.9、申请名称为“一种无人飞行器及其机翼组件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
【技术领域】
本发明涉及无人飞行器技术领域,尤其涉及一种无人飞行器及其机翼组件。
【背景技术】
无人飞行器(Unmanned Aerial Vehicle,UAV)由于具有机动灵活、反应快速、无人驾驶、操作要求低等优点而被广泛使用。
根据应用场景的不同,需要不同类型的机翼。然而安装在无人飞行器上的机翼容易损坏,机翼损坏后无人飞行器继续飞行有可能造成无人飞行器坠机。
【发明内容】
有鉴于此,本发明实施例提供一种无人飞行器及其机翼组件,以方便将机翼从机身上拆卸下来。
为了解决上述技术问题,本发明实施例提供以下技术方案:
一方面,提供一种机翼组件,用于安装于无人飞行器的机身,所述机翼组件包括:机翼;以及旋转锁芯,所述旋转锁芯具有旋转轴线,所述旋转锁芯的一端安装于所述机翼,所述旋转锁芯的另一端用于安装于所述机身;其中,所述旋转锁芯可绕所述旋转轴线相对于所述机翼旋转,以使得所述旋转锁芯的另一端与所述机身相拆卸。
在一些实施例中,所述机翼具有相背的两个翼面,以及位于所述两个翼 面之间的安装面;所述机翼内设置有安装槽,所述安装槽在所述安装面设有第一开口,所述旋转锁芯的一端安装于所述安装槽,所述旋转锁芯的另一端从所述第一开口伸出。
在一些实施例中,所述安装槽在所述两个翼面中的至少一个设置有第二开口;所述机翼组件还包括驱动滚轮,所述驱动滚轮的中心线与所述旋转轴线相重合,所述驱动滚轮连接所述旋转锁芯的一端,所述驱动转轮显露于所述第二开口。
在一些实施例中,在所述驱动滚轮与所述旋转锁芯的一端两者中,其中一个设置有固定轴,另一个设置有固定孔;所述固定轴与所述固定孔相配合,以使得所述驱动滚轮与所述旋转锁芯的一端相固定。
在一些实施例中,所述两个翼面各设置有一个所述第二开口,两个所述第二开口相对;所述驱动滚轮显露于两个所述第二开口。
在一些实施例中,所述驱动滚轮的横向截面尺寸大于所述旋转锁芯的横向截面尺寸,以使得所述驱动滚轮突出所述第二开口。
在一些实施例中,所述安装槽的槽壁延伸有支撑板;所述支撑板设置有旋转孔,所述旋转孔沿所述旋转轴线贯穿所述支撑板;所述旋转锁芯的另一端与所述旋转孔相配合,使得所述旋转锁芯可绕所述旋转轴线相对于所述机翼转动。
在一些实施例中,所述旋转锁芯包括依次相连的限位部、转动部以及固定部;所述限位部的横截面尺寸和所述固定部的横截面尺寸均大于所述转动部的横截面尺寸,所述旋转孔与所述转动部相配合,所述限位部与所述固定部分别抵接于所述支撑板的两侧,以使得所述旋转锁芯不能沿所述旋转轴线相对于所述机翼移动。
在一些实施例中,所述机翼组件还包括弹性限位件,所述弹性限位件用于提供阻碍所述旋转锁芯绕所述旋转轴线相对于所述机翼转动的阻力。
在一些实施例中,所述弹性限位件包括连接杆以及连接于所述连接杆的止挡杆;所述旋转锁芯包括限位面,所述限位面背向所述旋转轴线设置,两个所述限位面通过棱部相连;当所述旋转锁芯绕所述旋转轴线相对于所述机翼旋转时,所述棱部可挤压所述止挡杆并使所述止挡杆相对于所述连接杆弯折。
在一些实施例中,所述止挡杆的数量为两个;两个所述止挡杆相对,所述旋转锁芯位于两个所述止挡杆之间。
在一些实施例中,所述限位面的数量为四个;四个所述限位面绕所述旋转轴线分布。
在一些实施例中,所述旋转锁芯包括轴部以及与所述轴部相连的限位部;所述轴部的中心线与所述旋转轴线相重合,所述限位部具有至少一端沿垂直于所述旋转轴线的方向突出于所述轴部。
在一些实施例中,所述限位部具有朝相反方向延伸的两端,所述限位部的两端各沿垂直于所述旋转轴线的方向突出于所述轴部。
在一些实施例中,所述旋转锁芯包括螺柱部;所述螺柱部的中心线与所述旋转轴线相重合,所述螺柱部用于与所述机身螺纹连接。
在另一方面,提供一种无人飞行器,所述无人飞行器包括:机身;以及与所述机身连接的如上所述的机翼组件。
在一些实施例中,所述机身设置有锁孔,所述旋转锁芯的另一端穿过所述锁孔。
与现有技术相比较,在本发明实施例的无人飞行器及其机翼组件中,机翼组件,用于安装于无人飞行器的机身,所述机翼组件包括:机翼;以及旋转锁芯,所述旋转锁芯具有旋转轴线,所述旋转锁芯的一端安装于所述机翼,所述旋转锁芯的另一端用于安装于所述机身,所述旋转锁芯可绕所述旋转轴线相对于所述机翼旋转,以使得所述旋转锁芯的另一端与所述机身相拆卸。通过在所述机翼上安装所述旋转锁芯,通过旋转所述旋转锁芯与所述机身相拆卸,以方便将机翼从机身上拆卸下来。
【附图说明】
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本发明其中一实施例提供的一种无人飞行器的立体图;
图2为图1所示的A处放大图;
图3为图1所示的无人飞行器的锁孔的平面图;
图4为图1所示的无人飞行器的锁芯、弹性限位件以及驱动滚轮的装配图;
图5为图4所示的锁芯、弹性限位件以及驱动滚轮在另一个角度的装配图;
图6为图1所示的无人飞行器的机身与机翼组件连接处的剖视图;
图7为图6所示的机身与机翼组件连接处在另一种状态的剖视图;
图8为图6所示的机翼组件的限位部与弹性限位件的剖视图;
图9为图8所示的限位部与弹性限位件在另一个角度的剖视图。
【具体实施方式】
为了便于理解本发明,下面结合附图和具体实施方式,对本发明进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”、“内”、“外”以及类似的表述只是为了说明的目的。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是用于限制本发明。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1和图2,本发明其中一实施例提供一种无人飞行器500,包括机翼组件100,机身200,动力组件300以及起落架400。所述机翼组件100与所述起落架300均安装于所述机身200,所述动力组件300安装于所述机翼组件100。
所述机身200内包括由MCU等电子元器件组成的控制电路组件,该控制电路组件包括多个控制模块,如,用于控制所述动力组件工作以控制所述无人飞行器飞行姿态的飞行控制模块,用于导航所述无人飞行器的定位模块,以及用于处理相关机载设备所获取的环境信息的数据处理模块等。为了便于说明本发明实施例,附图仅示出与本发明实施例相关的部件。
所述机身200具有朝向所述机翼组件100的第一表面201和背向所述机翼组件的第二表面202,所述机身200设置有锁孔203,所述锁孔203自所述第一表面201贯穿至所述第二表面202。
请一并参阅图3,所述锁孔203为异形孔,也即所述锁孔203为非圆形孔,例如,菱形孔、方形孔、锯齿形孔等。
所述锁孔203包括相互连通的轴孔204和避让孔205。所述轴孔204和所述避让孔205均自所述第一表面201贯穿至所述第二表面202。
请一并参阅图4至图7,所述机翼组件100包括机翼10,旋转锁芯20,驱动滚轮30,以及限位弹性件40。
所述旋转锁芯20具有旋转轴线O,所述旋转轴线O与所述轴孔204的中心线相重合,所述旋转锁芯20的一端安装于所述机翼10,所述旋转锁芯20的另一端安装于所述机身200的锁孔203,所述旋转锁芯20可绕所述旋转轴线O相对于所述机翼10转动,以使得所述旋转锁芯20的另一端与所述机身200的锁孔203相拆卸。
所述驱动滚轮30安装于所述旋转锁芯20的一端,所述驱动滚轮30用于驱动所述旋转锁芯20绕所述旋转轴线O相对于所述机翼10转动。在一种实施方式中,用户用手推动所述驱动滚轮30转动,从而驱动旋转锁芯20转动。在另一种实施方式中,可以通过电机驱动所述驱动滚轮30转动,从而驱动旋转锁芯20转动。
所述弹性限位件40安装于所述机翼10,当所述旋转锁芯20绕所述旋转轴线O相对于机翼10转动时,所述弹性限位件40用于提供阻碍所述旋转锁芯O转动的阻力。
所述机翼10的展开方向基本平行于所述旋转轴线O,所述机翼10具有相背的两个翼面11,以及位于所述两个翼面11之间的安装面12。
所述两个翼面11,也即上翼面和下翼面,在所述无人飞行器500飞行时,所述机翼10越过空气,所述上翼面朝向的一侧与所述下翼面朝向的一侧具有空气压差,以使得在所述机翼10上产生使所述无人飞行器100浮空的升力。
所述机翼10设置有安装槽13,所述安装槽13在所述安装面12上开设有第一开口14,所述安装槽13在所述两个翼面11各设置有一个第二开口15,也即所述第二开口15的数量为2,两个所述第二开口15相对。所述旋转锁芯 20的一端安装于所述安装槽13内,所述旋转锁芯20的另一端从所述第一开口14伸出。
所述驱动滚轮30位于所述安装槽13内,所述驱动滚轮30显露于两个所述第二开口15。可通过拨动显露于两个所述第二开口15的驱动滚轮30,驱动位于所述安装槽13内的旋转锁芯20随所述驱动滚轮30同步转动。
所述驱动滚轮30的横截面尺寸大于所述旋转锁芯20的横截面尺寸,使得所述驱动滚轮30突出两个所述第二开口15。需要说明的是,所谓横截面法向于所述旋转轴线O。
可以理解的是,根据实际情况,所述第二开口15的数量并不限制为两个,所述第二开口15的数量也可以只有一个,只要所述两个翼面11中的至少一个设置有所述第二开口15即可。
在本实施例中,所述驱动滚轮30设置有沿所述旋转轴线O设置的固定孔31,所述旋转锁芯20设置有沿所述旋转轴线O设置的固定轴21,所述固定轴21与所述固定孔31固定连接。可以理解的是,根据实际情况,在一方面,所述固定轴21与所述固定孔31的位置可以互换,也即所述固定轴21设置于所述驱动滚轮30,同时,所述固定孔31设置于所述旋转锁芯20,因此,只要所述驱动滚轮30与所述旋转锁芯20中的一个设置有所述固定轴21,所述驱动滚轮20与所述旋转锁芯30中的另一个设置有所述固定孔31即可。在另一方面,所述驱动滚轮20与所述旋转锁芯30并不仅限于通过所述固定轴21与所述固定孔31固定连接,在一些其他的实施例中,所述驱动滚轮30与所述旋转锁芯20一体成型。
所述安装槽13的槽壁延伸有支撑板16,所述支撑板16设置有旋转孔17,所述旋转孔17与所述旋转锁芯20相配合,以使得所述旋转锁芯20可绕所述旋转轴线O相对于所述机翼10转动。
所述旋转锁芯20包括依次相连的锁部22,轴部23,限位部24,转动部25,固定部26以及所述固定轴21。
所述锁部22整体呈长方体状,所述锁部22的两端各沿垂直于所述旋转轴线O的方向突出于所述轴部23,可以理解的是,根据实际情况,所述锁部22并不仅限为两端各沿垂直于所述旋转轴线O的方向突出所述轴部23,例如,所述锁部22的一端沿垂直于所述旋转轴线O的方向突出于所述轴部23,又例 如,所述锁部22的三端各沿垂直于所述旋转轴线O的方向突出于所述轴部23,等等,只要所述锁部22具有至少一端沿垂直于所述旋转轴线O的方向突出于所述轴部23即可。
所述轴部23整体呈圆柱体状,所述轴部23的中心线与所述旋转轴线O相重合。
请参阅图8和图9,所述限位部24整体呈四棱柱,所述限位部24具有四个限位面240,所述四个限位面240围绕所述旋转轴线O分布,所述四个限位面240中任意相邻的两个之间具有棱部241。可以理解的是,根据实际情况,所述限位面240的数量并不仅限于四个,例如,所述限位面240的数量为两个、三个或者四个等,只要所述限位面240的数量至少为两个,并且两个所述限位面240之间具有一个棱部241即可。
所述转动部25整体呈圆柱体状,所述转动部25的中心线与所述旋转轴线O相重合,所述转动部25的横截面尺寸小于所述限位部24的横截面尺寸,并且,所述转动部25的横截面尺寸小于所述固定部26的横截面尺寸。
所述旋转孔17与所述转动部25相配合,所述限位部24与所述固定部26分别抵接于所述支撑板16的两侧,以使得所述旋转锁芯20可绕所述旋转轴线O相对于所述机翼10旋转,并且不能沿所述旋转轴线O相对于所述机翼10移动。
所述机翼10的安装面12与所述机身200的第一表面201相抵。
所述轴部23穿过所述锁孔203,并且所述轴部23与所述锁孔203的轴孔204相配合,以使得所述旋转锁芯20可绕所述旋转轴线O相对于所述机身200转动。
所述锁部22突出所述轴部23的两端均抵接于所述第二表面202,以使得所述机翼10与所述机身200在沿所述旋转轴线O的方向上固定。
当所述旋转锁芯20绕所述旋转轴线O相对于所述机身200转动时,所述锁部22突出的两端可对准所述避让孔205,以使得所述锁部22的两端可沿所述旋转轴线O穿过所述避让孔205,也即所述旋转锁芯20与所述机身200的锁孔203相拆卸。
进一步地,在本实施例中,所述旋转锁芯20的数量为至少两个,两个所述旋转锁芯20的旋转轴线O相互平行,以使得所述机翼10与所述机身200 不能相对转动。在一些其他的实施例中,在所述机翼10的安装面12与所述机身200的第一表面201两者中,一个设置有定位销(图未示),另一个设置有定位孔(图未示),通过定位销与定位孔的配合,以使得所述机翼10与所述机身200不能相对转动。
在一些其他的实施例中,所述锁孔203为螺纹孔,所述旋转锁芯20的锁部22和轴部23替换成螺柱部26,所述螺柱部26的中心线与所述旋转轴线O相重合,所述螺柱部26与所述锁孔相螺纹配合。
所述弹性限位件40安装于所述安装槽13的槽壁,所述弹性限位件40包括相对的两个止挡杆41,以及连接于所述两个止挡杆41之间的连接杆42,所述两个止挡杆41可分别相对于所述连接杆42弹性地弯折,所述限位部24位于所述两个止挡杆41之间。
当所述旋转锁芯20绕所述旋转轴线O相对于所述机翼10旋转时,如图9所示,所述限位部24的棱部241可挤压所述止挡杆41并使所述止挡杆41弯折,所述止挡杆41弯折以提供阻碍所述旋转锁芯20转动的阻力。
当所述旋转锁芯20绕所述旋转轴线O相对于所述机翼10转动时,所述两个止挡杆41可分别与所述四个限位面240中的其中两个相抵,以使得所述旋转锁芯20可绕所述旋转轴线O的方向上相对于所述机翼10固定,可避免所述旋转锁芯20相对于所述机翼10自行转动。
进一步地,当所述旋转锁芯20绕所述旋转轴线O相对于所述机翼10转动,并且所述锁部22突出所述轴体23的两端对准所述避让孔205时,所述两个止挡杆41分别与所述四个限位面240中的其中两个相抵,以使得所述锁部22突出所述轴部23的两端可方便地对准所述避让孔205。
与现有技术相比较,本发明提供的一种无人飞行器500及其机翼组件100,其中,所述机翼组件100用于安装于所述无人飞行器500的机身200,通过在所述机翼10上安装所述旋转锁芯20,通过旋转所述旋转锁芯20与所述机身200相拆卸,以方便将所述机翼组件100从所述机身200上拆卸下来。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实 施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (17)

  1. 一种机翼组件,用于安装于无人飞行器的机身,其特征在于,所述机翼组件包括:
    机翼;以及
    旋转锁芯,所述旋转锁芯具有旋转轴线,所述旋转锁芯的一端安装于所述机翼,所述旋转锁芯的另一端用于安装于所述机身;
    其中,所述旋转锁芯可绕所述旋转轴线相对于所述机翼旋转,以使得所述旋转锁芯的另一端与所述机身相拆卸。
  2. 根据权利要求1所述的机翼组件,其特征在于,所述机翼具有相背的两个翼面,以及位于所述两个翼面之间的安装面;
    所述机翼内设置有安装槽,所述安装槽在所述安装面设有第一开口,所述旋转锁芯的一端安装于所述安装槽,所述旋转锁芯的另一端从所述第一开口伸出。
  3. 根据权利要求2所述的机翼组件,其特征在于,所述安装槽在所述两个翼面中的至少一个设置有第二开口;
    所述机翼组件还包括驱动滚轮,所述驱动滚轮的中心线与所述旋转轴线相重合,所述驱动滚轮连接所述旋转锁芯的一端,所述驱动转轮显露于所述第二开口。
  4. 根据权利要求3所述的机翼组件,其特征在于,在所述驱动滚轮与所述旋转锁芯的一端两者中,其中一个设置有固定轴,另一个设置有固定孔;
    所述固定轴与所述固定孔相配合,以使得所述驱动滚轮与所述旋转锁芯的一端相固定。
  5. 根据权利要求3或4所述的机翼组件,其特征在于,所述两个翼面各设置有一个所述第二开口,两个所述第二开口相对;
    所述驱动滚轮显露于两个所述第二开口。
  6. 根据权利要求3或4所述的机翼组件,其特征在于,所述驱动滚轮的横向截面尺寸大于所述旋转锁芯的横向截面尺寸,以使得所述驱动滚轮突出所述第二开口。
  7. 根据权利要求2至4任一项所述的机翼组件,其特征在于,所述安装 槽的槽壁延伸有支撑板;
    所述支撑板设置有旋转孔,所述旋转孔沿所述旋转轴线贯穿所述支撑板;
    所述旋转锁芯的另一端与所述旋转孔相配合,使得所述旋转锁芯可绕所述旋转轴线相对于所述机翼转动。
  8. 根据权利要求7所述的机翼组件,其特征在于,所述旋转锁芯包括依次相连的限位部、转动部以及固定部;
    所述限位部的横截面尺寸和所述固定部的横截面尺寸均大于所述转动部的横截面尺寸,所述旋转孔与所述转动部相配合,所述限位部与所述固定部分别抵接于所述支撑板的两侧,以使得所述旋转锁芯不能沿所述旋转轴线相对于所述机翼移动。
  9. 根据权利要求1至4任一项所述的机翼组件,其特征在于,所述机翼组件还包括弹性限位件,所述弹性限位件用于提供阻碍所述旋转锁芯绕所述旋转轴线相对于所述机翼转动的阻力。
  10. 根据权利要求9所述的机翼组件,其特征在于,所述弹性限位件包括连接杆以及连接于所述连接杆的止挡杆;
    所述旋转锁芯包括限位面,所述限位面背向所述旋转轴线设置,两个所述限位面通过棱部相连;
    当所述旋转锁芯绕所述旋转轴线相对于所述机翼旋转时,所述棱部可挤压所述止挡杆并使所述止挡杆相对于所述连接杆弯折。
  11. 根据权利要求10所述的机翼组件,其特征在于,所述止挡杆的数量为两个;
    两个所述止挡杆相对,所述旋转锁芯位于两个所述止挡杆之间。
  12. 根据权利要求10所述的机翼组件,其特征在于,所述限位面的数量为四个;
    四个所述限位面绕所述旋转轴线分布。
  13. 根据权利要求1至4任一项所述的机翼组件,其特征在于,所述旋转锁芯包括轴部以及与所述轴部相连的限位部;
    所述轴部的中心线与所述旋转轴线相重合,所述限位部具有至少一端沿垂直于所述旋转轴线的方向突出于所述轴部。
  14. 根据权利要求13所述的机翼组件,其特征在于,所述限位部具有朝 相反方向延伸的两端,所述限位部的两端各沿垂直于所述旋转轴线的方向突出于所述轴部。
  15. 根据权利要求1至4任一项所述的机翼组件,其特征在于,所述旋转锁芯包括螺柱部;
    所述螺柱部的中心线与所述旋转轴线相重合,所述螺柱部用于与所述机身螺纹连接。
  16. 一种无人飞行器,其特征在于,所述无人飞行器包括:
    机身;以及
    与所述机身连接的如权利要求1至15任一项所述的机翼组件。
  17. 根据权利要求16所述的无人飞行器,其特征在于,所述机身设置有锁孔,所述旋转锁芯的另一端穿过所述锁孔。
PCT/CN2019/107550 2018-12-28 2019-09-24 一种无人飞行器及其机翼组件 WO2020134235A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811622482.9 2018-12-28
CN201811622482.9A CN109572991B (zh) 2018-12-28 一种无人飞行器及其机翼组件

Publications (1)

Publication Number Publication Date
WO2020134235A1 true WO2020134235A1 (zh) 2020-07-02

Family

ID=65933360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107550 WO2020134235A1 (zh) 2018-12-28 2019-09-24 一种无人飞行器及其机翼组件

Country Status (1)

Country Link
WO (1) WO2020134235A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2747638A (en) * 1950-12-23 1956-05-29 Emanuel L Cederquist Bolt with locking and retaining means
CN102310941A (zh) * 2010-06-04 2012-01-11 达索飞机制造公司 飞行器结构组件和相关联的组装方法
CN108639308A (zh) * 2018-05-11 2018-10-12 南京航天猎鹰飞行器技术有限公司 一种用于固定翼飞行器的机翼拆装机构
CN208165244U (zh) * 2018-03-27 2018-11-30 山西迪奥普科技有限公司 一种无人机机翼与尾翼的快拆快装结构装置
CN109572991A (zh) * 2018-12-28 2019-04-05 深圳市道通智能航空技术有限公司 一种无人飞行器及其机翼组件
CN209521851U (zh) * 2018-12-28 2019-10-22 深圳市道通智能航空技术有限公司 一种无人飞行器及其机翼组件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2747638A (en) * 1950-12-23 1956-05-29 Emanuel L Cederquist Bolt with locking and retaining means
CN102310941A (zh) * 2010-06-04 2012-01-11 达索飞机制造公司 飞行器结构组件和相关联的组装方法
CN208165244U (zh) * 2018-03-27 2018-11-30 山西迪奥普科技有限公司 一种无人机机翼与尾翼的快拆快装结构装置
CN108639308A (zh) * 2018-05-11 2018-10-12 南京航天猎鹰飞行器技术有限公司 一种用于固定翼飞行器的机翼拆装机构
CN109572991A (zh) * 2018-12-28 2019-04-05 深圳市道通智能航空技术有限公司 一种无人飞行器及其机翼组件
CN209521851U (zh) * 2018-12-28 2019-10-22 深圳市道通智能航空技术有限公司 一种无人飞行器及其机翼组件

Also Published As

Publication number Publication date
CN109572991A (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
EP3241741A1 (en) Foldable unmanned aerial vehicle
US9540103B2 (en) Passive deployment mechanism for lift fan
US11420734B2 (en) Propeller, propeller kit, power assembly, power kit and unmanned aerial vehicle
WO2021078267A1 (zh) 一种无人飞行器
WO2021078265A1 (zh) 一种无人飞行器
WO2018094669A1 (zh) 螺旋桨的锁紧机构、螺旋桨、电机、动力组件及无人飞行器
WO2019242225A1 (zh) 无人飞行器及其机臂组件和转轴机构
CN109592008B (zh) 一种合页机构、一种折叠式机翼以及一种发射体
WO2020134235A1 (zh) 一种无人飞行器及其机翼组件
US20200317325A1 (en) Folding propeller, power component and unmanned aerial vehicle
US11821648B2 (en) Air sweeping mechanism and air conditioner with air sweeping mechanism
CN106218884B (zh) 可拼接式便携多旋翼飞行器
CN108609159A (zh) 机翼、尾翼及飞行器
WO2020073798A1 (zh) 飞控模块安装结构、飞控组件及无人机
CN109572991B (zh) 一种无人飞行器及其机翼组件
JP2021070469A (ja) ロータマウントアセンブリ、ロータシート、推進システム、および無人航空機(uav)
US20200355886A1 (en) Lens assembly and mobile terminal
WO2022077290A1 (zh) 多旋翼无人飞行器
WO2020103055A1 (zh) 旋翼组件及无人飞行器
WO2023142702A1 (zh) 一种锁定装置及无人机
CN214776618U (zh) 照明无人机
CN208947583U (zh) 机翼、尾翼及飞行器
CN109835467B (zh) 一种小型固定翼无人机快速拆装舵面连接结构
CN209521851U (zh) 一种无人飞行器及其机翼组件
WO2021013188A1 (zh) 螺旋桨保护罩及飞行器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904273

Country of ref document: EP

Kind code of ref document: A1