WO2021078265A1 - 一种无人飞行器 - Google Patents

一种无人飞行器 Download PDF

Info

Publication number
WO2021078265A1
WO2021078265A1 PCT/CN2020/123312 CN2020123312W WO2021078265A1 WO 2021078265 A1 WO2021078265 A1 WO 2021078265A1 CN 2020123312 W CN2020123312 W CN 2020123312W WO 2021078265 A1 WO2021078265 A1 WO 2021078265A1
Authority
WO
WIPO (PCT)
Prior art keywords
assembly
eccentric wheel
hole
mounting
unmanned aerial
Prior art date
Application number
PCT/CN2020/123312
Other languages
English (en)
French (fr)
Inventor
王胜龙
李麦克斯韦
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2021078265A1 publication Critical patent/WO2021078265A1/zh
Priority to US17/660,251 priority Critical patent/US12065241B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/16Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like specially adapted for mounting power plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/06Frames; Stringers; Longerons ; Fuselage sections
    • B64C1/061Frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/02Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis vertical when grounded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/10Wings
    • B64U30/12Variable or detachable wings, e.g. wings with adjustable sweep
    • B64U30/14Variable or detachable wings, e.g. wings with adjustable sweep detachable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • B64U30/291Detachable rotors or rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/20Vertical take-off and landing [VTOL] aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/40Empennages, e.g. V-tails

Definitions

  • This application relates to the field of unmanned aerial vehicles, in particular to an unmanned aerial vehicle.
  • an embodiment of the present application provides an unmanned aerial vehicle with a power assembly that can be easily disassembled and assembled from the body.
  • an unmanned aerial vehicle comprising: a body provided with a first mounting portion, the first mounting portion including a first mounting body and a connecting rod formed on the first mounting body, the connecting rod being along a pitch axis direction Extension; and a power assembly, including a first assembly body and an eccentric wheel mounted on the first assembly body, the eccentric wheel can be around the rotation axis of the first assembly body in the first rotation position of the first assembly body and When rotating between the second rotation positions, the rotation axis is perpendicular to the pitch axis direction; wherein, when the eccentric wheel rotates to the first rotation position, the connecting rod can be inserted into the eccentric wheel along the pitch axis direction; When the eccentric wheel rotates to the second rotation position and the connecting rod is inserted into the eccentric wheel, the connecting rod cannot exit the eccentric wheel in the direction of the pitch axis.
  • the first mounting body includes a first mounting surface, and the connecting rod is formed on the first mounting surface; the first mounting body includes a first mounting surface and a first side connected to each other. Surface, the first mounting surface is used to fit the first mounting surface, the first mounting surface is formed with a connecting hole, the connecting hole is used for inserting the connecting rod, and the first side surface is formed There is a rotation hole, the rotation hole has the rotation axis and communicates with the connection hole; the eccentric is installed in the rotation hole.
  • the connecting rod includes a rod body and a limiting body; the rod body extends along the pitch axis direction, and the limiting body is connected to an end of the rod body away from the first mounting body.
  • the size is smaller than the cross-sectional size of the limiting body;
  • the eccentric wheel includes a runner in which a cavity is formed, the runner includes a cylindrical surface arranged around the axis of rotation, and the cylindrical surface is sleeved
  • an arc-shaped guide groove and an escape groove are formed on the cylindrical surface, and the arc-shaped guide groove is communicated with the cavity and is arranged around the rotation axis.
  • the guide groove has a first end and a second end.
  • the escape groove is connected to the cavity and communicates with the first end; when the eccentric wheel rotates to the first rotation position, the escape groove Align the connecting hole, the limiting body can be received in the cavity through the connecting hole along the direction of the pitch axis; when the eccentric rotates to the second rotation position, and the limiting body is received When in the containing cavity, the second end is aligned with the connecting hole, and the limiting body cannot exit the containing cavity through the arc guide groove along the pitch axis direction.
  • the limiting body is spherical.
  • the first assembly body further includes a second side surface, the second side surface is opposite to the second surface, and the first assembly surface is connected to the first side surface and the second surface.
  • the rotation hole extends from the first side surface to the second side surface, the opening of the rotation hole on the second side surface is closed by a sealing plate, the sealing The plate is detachably connected to the second side surface; the hole wall of the rotation hole protrudes with an annular stopper at a position close to the first side surface, and the annular stopper is arranged around the rotation axis.
  • the runner further includes a first end surface and a second end surface opposite to each other, the cylindrical surface is connected between the first end surface and the second end surface, and the first end surface abuts At the annular stop part, the second end surface abuts against the baffle.
  • the eccentric wheel further includes a boss; the boss is formed in the center of the first end surface and is exposed in the rotating hole, and the boss faces away from the first end surface.
  • a groove for screwing by a screwdriver is formed on it.
  • the annular stopper portion is formed with an arc-shaped protrusion in the direction of the first end surface; the eccentric wheel further includes an interference portion formed on the protrusion along the direction perpendicular to the rotation In the direction of the axis; the first end surface abuts against the annular stop part through the arc-shaped protrusion; when the eccentric rotates to the first rotational position, the interference part abuts against the One end of the arc-shaped protrusion; when the eccentric wheel rotates to the second rotation position, the interference portion abuts against the other end of the arc-shaped protrusion.
  • a positioning beam is also formed on the first mounting surface, and the positioning beam extends along the pitch axis direction; a positioning hole is also formed on the first assembly surface, and the positioning hole is used for The positioning beam is inserted.
  • the cross section of the positioning beam is non-circular.
  • the cross section of the positioning beam is square.
  • the first mounting surface is provided with a first plug-in terminal; the first assembly surface is provided with a second plug-in terminal, and the second plug-in terminal is used to connect with the first plug-in terminal.
  • the terminals are plugged in.
  • the power assembly includes a fixed wing assembly and a rotor assembly; the fixed wing assembly and the rotor assembly are interchangeably connected to the first mounting part; when the fixed wing assembly is connected to the second When a mounting part is connected, the body and the fixed wing assembly together form a vertical take-off and landing fixed-wing UAV; when the rotor assembly is connected to the first mounting part, the body and the rotor assembly are shared A multi-rotor drone is constituted; any one of the fixed wing assembly and the rotor assembly includes the first assembly body and the eccentric wheel.
  • the connecting rod can be inserted into the eccentric wheel along the pitch axis direction, and when the eccentric wheel is rotated to the second rotation position and the connecting rod is inserted into the eccentric wheel, the connecting rod cannot be along the pitch axis Exit the eccentric wheel in the direction to lock the connecting rod, and after the connecting rod is inserted into the eccentric wheel, the connecting rod can be locked only by rotating the eccentric wheel. People flying machine.
  • Fig. 1 is a schematic structural diagram of a multi-rotor unmanned aircraft type of an unmanned aerial vehicle provided by one of the embodiments of the application;
  • Figure 2 is a schematic diagram of the disassembly of the multi-rotor drone shown in Figure 1;
  • Fig. 3 is a schematic structural diagram of a vertical take-off and landing fixed-wing unmanned structure of an unmanned aerial vehicle according to one of the embodiments of the application;
  • Figure 4 is a schematic diagram of the disassembly of the vertical take-off and landing fixed-wing UAV shown in Figure 3;
  • Fig. 5 is a schematic structural diagram of the body of the multi-rotor drone shown in Fig. 1 or the vertical take-off and landing fixed-wing drone shown in Fig. 3;
  • Fig. 6 is a first partial view of the body shown in Fig. 5, which mainly shows one of the first mounting parts of the body;
  • Fig. 7 is a partial view of the first mounting part shown in Fig. 5, which mainly shows one of the connecting rods of the first mounting part;
  • FIG. 8 is a second partial view of the body shown in FIG. 6, which mainly shows two first mounting parts of the body;
  • FIG. 9 is a third partial view of the body shown in FIG. 5, which mainly shows a second mounting part of the body;
  • FIG. 10 is a fourth partial view of the body shown in FIG. 8, which mainly shows two second mounting parts of the body;
  • Fig. 11 is a schematic structural diagram of the rotor assembly of the multi-rotor drone shown in Fig. 2;
  • Fig. 12 is a partial view of one of the arm parts of the rotor assembly shown in Fig. 11, which mainly shows the first assembly part of the arm part;
  • FIG. 13 is a cross-sectional view of the first assembly part of the rotor assembly shown in FIG. 12, which mainly shows the rotation hole, the eccentric wheel and the cover of the first assembly part;
  • Fig. 14 is a schematic structural diagram of the eccentric wheel shown in Fig. 13;
  • FIG. 15 is a schematic structural diagram of the fixed-wing assembly of the vertical take-off and landing fixed-wing UAV shown in FIG. 4, in which the third rotor motor of the fixed-wing assembly is in the first position;
  • Fig. 16 is a perspective view of one of the side wing parts of the fixed wing assembly shown in Fig. 15, wherein the third rotor motor of the side wing part is in the second position;
  • Fig. 17 is a schematic diagram of the structure of the tail assembly of the vertical take-off and landing fixed-wing UAV shown in Fig. 4.
  • an unmanned aerial vehicle 100 provided by one embodiment of this application includes a body 10, a power assembly, and a tail assembly 40. Both the power assembly and the tail assembly 40 are detachably connected to the body 10.
  • the power assembly includes a rotor assembly 20 and a fixed wing assembly 30. The rotor assembly 20 and the fixed wing assembly 30 are interchangeably connected to the body 10.
  • the rotor assembly 20 When the rotor assembly 20 is connected to the body 10, the rotor assembly 20 and the body 10 together form a multi-rotor drone, which is shown in FIG. 1.
  • the fixed wing assembly 30 and the tail assembly 40 When the fixed wing assembly 30 and the tail assembly 40 are connected to the body 10, the fixed wing assembly 30, the tail assembly 40, and the body 10 together form a vertical take-off and landing fixed-wing UAV.
  • the vertical take-off and landing fixed-wing UAV is shown in Figure 3. Show.
  • the body 10 as a whole is a long strip extending along the roll axis direction y, and includes a nose 11, a fuselage 12, and a tail 13 arranged in sequence along the roll axis direction y.
  • the body 10 is equipped with a circuit module (not shown in the figure).
  • the circuit module includes a circuit board and a variety of electronic components mounted on the circuit board, and is mainly used to control electronic equipment installed outside the body 10 and a rotor assembly 20 or a fixed wing assembly 30 connected to the body 10.
  • the electronic device arranged outside the body 10 includes two first rotor motors 14 and two antennas 15.
  • the two first rotor motors 14 and the two antennas 15 are both arranged on the same side of the body 10 along the direction z of its heading axis.
  • One of the first rotor motors 14 is arranged on the nose 11 or the fuselage 12 is close to the nose 11, and the other rotor motor 14 is arranged on the tail 13 or the fuselage 12 is close to the tail 13.
  • the two first rotor motors 14 are used to provide lift together, and the rotating shaft of each first rotor motor 14 is arranged along the direction of the yaw axis z, and a first propeller (not shown in the figure) is installed.
  • the number of first rotor motors is not limited to 2. According to the actual situation, if the load mounted on the airframe is less, or the airframe is lighter, the number of first rotor motors can be less, for example, the load mounted on the airframe is lower. If more, or the body is heavier, the number of first rotor motors can be more.
  • the two first rotor motors 14 and the two antennas 15 are all arranged along the roll axis direction y, and the antennas 15 and the first rotor motors 14 are alternately arranged.
  • the two antennas 15 are used together for navigation and positioning of the unmanned aerial vehicle.
  • Each antenna 15 may be an RTK (Real-time kinematic, real-time dynamic) antenna.
  • the number of antennas is not limited to two, and the number of antennas can be less or more according to actual conditions.
  • the body 10 is also provided with a hanging tail 16, a landing gear 17, two first mounting parts 18 and two second mounting parts 19.
  • the hanging tail 16 and the landing gear 17 are both arranged on the other side of the body 10 along the direction z of its yaw axis and away from the two first rotor motors 14.
  • a drooping tail 16 is provided at the tail 13 of the aircraft.
  • the supporting frame 17 is disposed on the fuselage 12, and the supporting frame 17 includes two supporting parts 170.
  • the two branches 170 have an "eight"-shaped structure and are used together with the hanging tail 16 to support the body 10.
  • the two first mounting portions 18 are respectively provided on both sides of the fuselage 12 along the pitch axis direction x.
  • the two second mounting parts 19 are respectively arranged on both sides of the tail 13 in the direction x of its pitch axis.
  • the first mounting portion 18 includes a first mounting body 180, two connecting rods 181, a positioning beam 182 and a first plug terminal 183.
  • the first mounting body 180 is disposed on a corresponding side of the fuselage 12 along the pitch axis direction x, and includes a first mounting surface 1800.
  • the first mounting surface 1800 is disposed facing away from the fuselage 12, and the two connecting rods 181, the positioning beam 182 and the first plug terminal 183 are all formed on the first mounting surface 1800.
  • Each connecting rod 181 extends in the pitch axis direction x.
  • the positioning beam 182 is a hollow profile with a square cross-section extending along the pitch axis direction x.
  • the cross-sectional shape of the positioning beam can also be designed in other shapes, such as ellipse, triangle, pentagon, etc., as long as it is non-circular. That's it.
  • the first plug terminal 183 is electrically connected to the circuit module.
  • the connecting rod 181 includes a seat body 1810, a rod body 1811 and a limiting body 1812.
  • the base 1810 is formed on the first mounting surface 1800.
  • the rod body 1811 extends along the pitch axis direction x, one end of which is connected to the base 1810, and the other end of which is connected to the limiting body 1812.
  • the cross-sectional size of the rod body 1811 is smaller than the cross-sectional size of the limiting body 1812.
  • the limiting body 1812 is spherical. According to actual conditions, the limiting body 1812 can have any shape, as long as its cross-sectional size is larger than the cross-sectional size of the rod 1811.
  • a cross beam 184 penetrates through the first mounting surfaces 1800 of the two first mounting parts 18, and two positioning beams 182 of the first mounting parts 18 are formed at both ends of the cross beam 184. .
  • the positioning beam 182 may also be integrally formed with the first installation body 180.
  • Each second mounting portion 19 includes a second mounting surface 190.
  • the second mounting surface 190 is set away from the tail 13.
  • the two second mounting parts 19 are jointly formed with a shaft hole 191 and an arc-shaped guide hole 192. Both the shaft hole 191 and the arc-shaped guide hole 192 penetrate the second mounting surfaces 190 of the two second mounting portions 19.
  • the shaft hole 191 and the arc-shaped guide hole 182 both extend along the pitch axis direction x, and the arc-shaped guide hole 192 is provided around the shaft hole 191.
  • the rotor assembly 20 includes an arm part 21.
  • the number of arm parts 21 corresponds to the number of first mounting parts 18, and each arm part 21 is used to connect to a corresponding first mounting part 18.
  • the arm part 21 includes an arm main body 22, a second rotor motor 23 and a first assembling part 24.
  • the arm main body 22 extends along the pitch axis direction x, one end of the arm main body 22 is connected to the second rotor motor 23, and the other end of the arm main body 22 is connected to the first assembly part 24.
  • the arm body 22 is hollow, and is used for routing the second rotor motor 23 to electrically connect the second rotor motor 23 and the first assembling part 24.
  • the rotating shaft of the second rotor motor 23 is arranged along the yaw axis direction z, and a second propeller (not shown in the figure) is installed, and the second rotor motor 23 is used to provide lift.
  • the first assembling portion 24 is used to connect to a corresponding first assembling portion 18, and the first assembling portion 24 includes an assembling body 240, an eccentric 241 and a second plug terminal 242.
  • the assembly body 240 includes a first assembly surface 2400, a first side surface 2401 and a second side surface 2402.
  • the first side surface 2401 and the second side surface 2402 are opposite to each other, and the first assembly surface 2400 is connected between the first side surface 2401 and the second side surface 2402.
  • the first mounting surface 2400 is used to fit the first mounting surface 1800 of the first mounting portion 18, and the first mounting surface 2400 is formed with a positioning hole 243 and a connecting hole 244.
  • the positioning hole 243 is matched with the positioning beam 182 of the first mounting part 18 for inserting the positioning beam 182.
  • the number of connecting holes 244 corresponds to the number of connecting rods 181, and each connecting hole 244 is used for inserting a corresponding connecting rod 181.
  • a rotating hole 245 is formed on the first side surface 2401, and the number of the rotating hole 245 corresponds to the number of the connecting hole 244.
  • the second plug terminal 242 is disposed on the first assembly surface 2400.
  • the second plug terminal 242 of the arm component 21 is electrically connected to the second rotor motor 23.
  • the rotating hole 245 has a rotating axis o, which is perpendicular to the pitch axis direction x, and the rotating hole 245 communicates with a corresponding connecting hole 244.
  • the rotating hole 245 extends from the first side surface 2401 to the second side surface 2402, and the wall of the rotating hole 245 protrudes with an annular stop 2450 at a position close to the first side surface 2401.
  • the annular stop 2450 is arranged around the rotation axis o, and has an arc-shaped protrusion 2451 protruding in the direction of the second side surface 2402.
  • the arc-shaped protrusion 2451 is arranged around the rotation axis o.
  • the opening of the rotation hole 245 on the second side surface 2402 is closed by a sealing plate 2452, and the sealing plate 2452 can be fixed to the second side surface 2403 by threaded fasteners.
  • the number of eccentric wheels 241 corresponds to the number of rotating holes 245, and each eccentric wheel 241 is installed in a corresponding rotating hole 245 for locking a corresponding connecting rod 181.
  • the eccentric wheel 241 includes a runner 2410, a boss 2411 and an interference portion 2412.
  • the runner 2410 is arranged around the rotation axis o, and a cavity 2413 is formed in the runner 2410 for accommodating the limiting body 1812.
  • the runner 2410 includes a first end surface 2414, a second end surface 2415 and a cylindrical surface 2416. The first end surface 2414 and the second end surface 2415 are opposite to each other.
  • the cylindrical surface 2416 surrounds the rotation axis o and is connected between the first end surface 2414 and the second end surface 2415.
  • the cylindrical surface 2416 is formed with an arc guide groove 2417 and an escape groove 2418.
  • the arc-shaped guide slot 2417 communicates with the cavity 2413 and is arranged around the rotation axis o.
  • the arc-shaped guide slot 2417 has a first end and a second end.
  • the arc-shaped guide slot 2417 is used for the rod body 1811 to follow an arc around the rotation axis o.
  • the guide groove 2417 rotates and prevents the stop body 1812 from moving along the pitch axis direction x.
  • the escape groove 2418 communicates with the cavity 2413 and communicates with the first end of the arc-shaped guide groove 2417, and the escape groove 2418 is used for the restricting body 1812 to pass through.
  • the boss 2411 is formed in the center of the first end surface 2414.
  • the side of the boss 2411 facing away from the first end surface 2414 is formed with a groove 2419 that can be screwed by a screwdriver.
  • the groove 2419 is like a "one" groove and a "cross”. Slots, quincunx slots, hexagon sockets, etc., are “one” slots in the figure.
  • the boss 2411 has an interference portion 2412 protruding in a direction perpendicular to the rotation axis o.
  • the eccentric wheel 241 is inserted into the rotating hole 245.
  • the first end surface 2414 of the runner 2410 abuts against the arc-shaped protrusion 2451, and/or the interference part 2412 abuts against the annular stop part 2450.
  • the cylindrical surface 2416 is sleeved on the wall of the rotating hole 245.
  • the connecting hole 244 communicating with the rotating hole 245 is aligned with the arc-shaped guide groove 2417 or the avoiding groove 2418.
  • the boss 2411 is exposed at the opening of the rotating hole 245 opened on the first side surface 2401. Subsequently, the sealing plate 2452 is installed on the second side surface 2402. After the sealing plate 2452 is installed on the second side surface 2402, the sealing plate 2452 abuts against the second end surface 2415 of the runner 241. At this time, the eccentric wheel 241 is completely installed in the rotating hole 245.
  • the eccentric wheel 241 After the eccentric wheel 241 is installed in the rotating hole 245, the eccentric wheel 241 can only rotate about the rotation axis o between the first rotating position and the second rotating position in the rotating hole 245.
  • the following describes the eccentric wheel 241 and the rotating hole 245 To explain why the eccentric wheel 241 can only rotate between the first rotation position and the second rotation position in the rotation hole 245 around the rotation axis o, as follows:
  • the eccentric wheel 241 can only rotate about the rotation axis o between the first rotation position and the second rotation position in the rotation hole 245.
  • the interference portion 2412 abuts on one end of the arc-shaped protrusion 2451, and the avoiding groove 2418 is aligned with the connecting hole 244.
  • the interference portion 2412 abuts the other end of the arc-shaped protrusion 2451, and the second end of the arc-shaped guide groove 2417 is aligned with the connecting hole 244.
  • the first mounting part is connected with the first assembling part.
  • the positioning beam 182 is aligned with and inserted into the positioning hole 243.
  • each connecting rod 181 is automatically aligned and inserted into a corresponding connecting hole 244, on the other hand, A plug-in terminal 183 is automatically aligned and plugged into the second plug-in terminal 242.
  • the eccentric wheel 241 rotates to the first rotation position, and the avoiding groove 2418 of the eccentric wheel 241 is aligned with the connecting hole 244.
  • the limiting body 1812 of the connecting rod 181 passes through the connecting hole 244 and the avoiding groove 2418 in sequence.
  • the connecting rod 181 is completely inserted into the connecting hole 244, the limiting body 1812 of the connecting rod 181 is received in the cavity 2413 of the eccentric 241, and the rod body 1811 of the connecting rod 181 is located in the avoiding groove 2418.
  • each connecting rod 181 is also completely inserted into a corresponding connecting hole 244.
  • the first plug terminal 183 is also completely connected to the second plug The terminals 242 are plugged into each other.
  • the first mounting surface 1800 is in contact with the first mounting surface 2400. Subsequently, the eccentric wheel 241 is rotated to the second rotation position, and the rod body 1811 is located at the second end of the arc guide groove 2417 of the eccentric wheel 241. At this time, the rotor assembly 20 is completely connected to the body 10.
  • the rotor assembly 20 After the rotor assembly 20 is connected to the body 10, the rotor assembly 20 is fixed to the body 10. The following describes the assembly relationship between the rotor assembly 20 and the body 10 to explain why the rotor assembly 20 and the body 10 are fixed.
  • the positioning beam 182 Since the positioning beam 182 is inserted into the positioning hole 243, the positioning beam 182 fits the positioning hole 243, and the cross section of the positioning beam 182 is square, thus limiting the remaining degrees of freedom of the arm component 21 except for moving along the pitch axis direction x.
  • the arc-shaped guide groove 2417 prevents the restricting body 1812 from exiting the cavity 2413, and cooperates with the first mounting surface 1800 to abut the first mounting surface 2400, which limits the freedom of movement of the arm component 21 along the pitch axis direction x.
  • the number of connecting rods 181 is not limited to 2. According to actual conditions, for example, the weight of the fuselage 10 or the load mounted on the fuselage 10 is less, the number of connecting rods 181 can be less, and vice versa, the connecting rods 181 The number can be more.
  • the first assembling part of the arm part is inserted into a corresponding first assembling part, and is fixed by threaded fasteners.
  • the two first rotor motors 14 and the second rotor motors 23 of the two arm parts 21 work together with four rotor motors to provide vertical take-off and landing lift for the multi-rotor drone.
  • the differential control of the four rotor motors it provides multi-rotor UAV pitch control, roll control, heading control and flying in all directions.
  • the drooping tail 16 can also ensure the stability of the multi-rotor UAV.
  • the size of the first propeller installed by the first rotor motor 14 is equal to the size of the second propeller installed by the second rotor motor 23.
  • the first propeller and the second propeller as large-sized propellers, the heavy-weight vertical take-off and landing of the multi-rotor UAV can be guaranteed.
  • the fixed wing assembly 30 includes two side wing parts 31.
  • the side wing part 31 includes a side wing body 32, a wing end 33, a third rotor motor 34, a tilting motor (not shown in the figure) and a second assembly part 35.
  • the side wing main body 32 extends along the pitch axis direction x, one end of the side wing main body 32 is connected to the wing end 33, the other end of the side wing main body 32 is connected to the second assembly part 35, the tilting motor is installed on the side wing main body 32 and connected to the wing end 33, the third The rotor motor 34 is installed at the wing end 33.
  • the wing end 33 is rotatable relative to the side wing body 32 about the pitch axis direction x, so that the third rotor motor 34 mounted on the wing end 33 rotates between the first tilt position and the second tilt position about the pitch axis direction x.
  • the tilt motor is used to drive the wing tip 33 to rotate around the pitch axis direction x.
  • the wing end 33 is substantially flush with the side wing body 32.
  • the third rotor motor 34 rotates to the second position, as shown in FIG. 13, the wing end 33 is substantially orthogonal to the side wing main body 32.
  • the rotation axis of the third rotor motor 34 is arranged perpendicular to the pitch axis direction x, and the rotation axis of the third rotor motor 34 is equipped with a third propeller (not shown in the figure).
  • the rotation axis of the third rotor motor 34 When the third rotor motor 34 rotates to the first tilting position, the rotation axis of the third rotor motor 34 is substantially along the roll axis direction y for providing thrust.
  • the rotation axis of the third rotor motor 34 is substantially along the yaw axis direction z for providing lift.
  • the second assembling part 35 is used to connect to the corresponding first assembling part 18, and the second assembling part 35 is similar in structure to the first assembling part 24, that is, either the second assembling part 35 and the first assembling part 24 It includes a first assembly body 240, an eccentric wheel 241 and a second plug-in terminal 242.
  • the structure of the first assembly portion 24 please refer to FIG. 12 again, and will not be repeated here.
  • the second plug-in terminal 242 of the side wing component 31 is electrically connected to the tilt motor and the third rotor motor 34 respectively.
  • the first mounting part is connected to the second mounting part. Since the second mounting part is similar in structure to the first mounting part, the assembly process of the second mounting part and the first mounting part is also the same as that of the first mounting part and the first mounting part. The assembly process is similar and will not be repeated here.
  • the tail assembly 40 includes a tail component 41, a rotating shaft 42 and a transmission shaft 43.
  • the number of the tail parts 41 corresponds to the number of the second mounting parts 19, and one of the tail parts 40 is taken as an example.
  • the tail component 41 includes a second assembly surface 410.
  • the second assembly surface 410 is substantially perpendicular to the pitch axis direction x, and the second assembly surface 410 is formed with a first insertion hole 44 and a second insertion hole 45.
  • the first insertion hole 44 and the second insertion hole 45 are both arranged along the pitch axis direction x, and are used for inserting one end of the rotating shaft 42 and one end of the transmission shaft 43 respectively.
  • the rotating shaft 42 is inserted into the shaft hole 191, and both ends thereof are exposed outside the shaft hole 191.
  • the transmission shaft 43 is inserted into the arc-shaped guide hole 192, and both ends thereof are exposed outside the arc-shaped guide hole 192.
  • the first insertion hole 44 of each tail part 41 is inserted into the corresponding one end of the rotation shaft 43.
  • the second insertion hole of each tail part 41 45 is for one end of the corresponding drive shaft 43 to be inserted.
  • each tail component 41 After the first insertion hole 44 of each tail component 41 is fully inserted into the corresponding end of the rotating shaft 42, and the second insertion hole 45 of each tail component 41 is fully inserted into the corresponding end of the transmission shaft 43 , The second mounting surface 410 of each tail wing component 41 is in contact with a second mounting surface 190 of the second mounting portion 19 corresponding thereto. At this time, the tail assembly 40 is completely connected to the body 10.
  • the transmission shaft 43 rotates along the arc guide hole 192 around the pitch axis direction x to drive the two tail components 41 to rotate around the rotation axis 42.
  • a driving motor (not shown in the figure) for driving the transmission shaft 43 to rotate around the pitch axis direction x is provided in the hanging tail 16, and the driving motor is connected to the transmission shaft 43 through a transmission mechanism such as a connecting rod.
  • the two first rotor motors 14 provide lift and pitch control, and the third rotor motors 34 of the two side wing parts 31 rotate to the second tilt position to provide auxiliary lift.
  • the differential control of the third rotor motor 34 and the differential control of the tilting motor of the two side wing parts 31 provide roll and heading control.
  • the two first rotor motors 14 stop working, the side wing body 32 of the two side wing parts 31 provides lift, the two tail parts 41 provide pitch control, and the third rotor motor 34 of the two side wing parts 31 rotates. Tilt to the first position to provide thrust, through the differential control of the third rotor motor 34 of the two side wing parts 31, and the tilting differential control of the tilt motor of the two side wing parts 31 to provide roll and heading control .
  • the connecting rod can be inserted into the eccentric wheel along the pitch axis direction, and when the eccentric wheel rotates to the second rotation position and the connecting rod is inserted into the eccentric wheel, the connecting rod cannot Exit the eccentric wheel along the pitch axis to lock the connecting rod, and after the connecting rod is inserted into the eccentric wheel, the connecting rod can be locked only by rotating the eccentric wheel, realizing a power assembly that can be easily detached from the body Installed unmanned aerial vehicle.
  • the fixed wing component and the rotor component are interchangeably connected to the body, the fixed wing component is connected with the body to form a vertical take-off and landing fixed wing drone, and the rotor component is connected to the body to form a multi-rotor drone to achieve a UAV that can switch between vertical take-off and landing fixed-wing UAV and multi-rotor UAV.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Toys (AREA)
  • Remote Sensing (AREA)

Abstract

一种无人飞行器(100),包括:机体(10),设置有第一安装部(18),第一安装部(18)包括第一安装主体(180)以及成型于第一安装主体(180)的连接杆(181),连接杆(181)沿俯仰轴方向(x)延伸;以及动力组件,包括第一装配主体(24)以及安装于第一装配主体(24)的偏心轮(241),偏心轮(241)可绕第一装配主体(24)的旋转轴线(o)在第一装配主体(24)的第一旋转位置和第二旋转位置之间转动,旋转轴线(o)垂直于俯仰轴方向(x);其中,当偏心轮(241)旋转至第一旋转位置时,连接杆(181)可沿俯仰轴方向(x)插入偏心轮(241);当偏心轮(241)旋转至第二旋转位置,并且连接杆(181)插入偏心轮(241)时,连接杆(181)不能沿俯仰轴方向(x)退出偏心轮(241),实现了一种动力组件可较为方便地与机体(10)拆装的无人飞行器(100)。

Description

一种无人飞行器
本申请要求于2019年10月23日提交中国专利局、申请号为201911013306.X、申请名称为“一种无人飞行器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
【技术领域】
本申请涉及无人飞行器领域,尤其涉及一种无人飞行器。
【背景技术】
在无人飞行器领域中,面对不同的工作环境,需要更换无人机的动力组件。
而在目前的无人机中,机体与动力组件多采用固定连接,或者螺栓连接,导致动力组件不可拆卸或者拆卸过程繁琐。
【发明内容】
为了解决上述技术问题,本申请实施例提供一种动力组件可较为方便地与机体拆装的无人飞行器。
为了解决上述技术问题,本申请实施例提供以下技术方案:
提供一种无人飞行器,包括:机体,设置有第一安装部,所述第一安装部包括第一安装主体以及成型于所述第一安装主体的连接杆,所述连接杆沿俯仰轴方向延伸;以及动力组件,包括第一装配主体以及安装于所述第一装配主体的偏心轮,所述偏心轮可绕所述第一装配主体的旋转轴线在第一装配主体的第一旋转位置和第二旋转位置之间转动,所述旋转轴线垂直于俯仰轴方向;其中,当所述偏心轮旋转至所述第一旋转位置时,所述连接杆可沿俯仰轴方向插入所述偏心轮;当所述偏心轮旋转至所述第二旋转位置,并且所述连接杆插入所述偏心轮时,所述连接杆不能沿俯仰轴方向退出所述偏心轮。
在一些实施例中,所述第一安装主体包括第一安装面,所述连接杆成型于所述第一安装面上;所述第一装配主体包括相连接的第一装配面和第一侧 表面,所述第一装配面用于贴合所述第一安装面,所述第一装配面成型有连接孔,所述连接孔用于供所述连接杆插入,所述第一侧表面成型有旋转孔,所述旋转孔具有所述旋转轴线,并与所述连接孔相连通;所述偏心轮安装于所述旋转孔内。
在一些实施例中,所述连接杆包括杆体和限位体;所述杆体沿俯仰轴方向延伸,所述限位体连接所述杆体远离所述第一安装主体的一端,所述杆体的截面尺寸小于所述限位体的截面尺寸;所述偏心轮包括转轮,所述转轮内成型有容腔,所述转轮包括绕所述旋转轴线设置的圆柱面,所述圆柱面套设于所述旋转孔的孔壁,所述圆柱面上成型有弧形导槽和避让槽,所述弧形导槽与所述容腔相连通,并绕所述旋转轴线设置,所述弧形导槽具有第一端和第二端,所述避让槽与所述容腔相连通,并连通所述第一端;当所述偏心轮旋转至所述第一旋转位置时,所述避让槽对准所述连接孔,所述限位体可沿俯仰轴方向经由所述连接孔收容于所述容腔;当所述偏心轮旋转至所述第二旋转位置,并且所述限位体收容于所述容腔时,所述第二端对准所述连接孔,所述限位体不能沿所述俯仰轴方向经由所述弧形导槽退出所述收容腔。
在一些实施例中,所述限位体为球形。
在一些实施例中,所述第一装配主体还包括第二侧表面,所述第二侧表面与所述第二表面相背,所述第一装配面连接于所述第一侧表面和所述第二侧表面之间;所述旋转孔自所述第一侧表面延伸至所述第二侧表面,所述旋转孔在所述第二侧表面的开口通过一个封板封闭,所述封板可拆卸地连接所述第二侧表面;所述旋转孔的孔壁在靠近所述第一侧表面的位置凸起有环形止挡部,所述环形止挡部绕所述旋转轴线设置。
在一些实施例中,所述转轮还包括相背的第一端面和第二端面,所述圆柱面连接于所述第一端面和所述第二端面之间,所述第一端面抵接于所述环形止挡部,所述第二端面抵接于所述挡板。
在一些实施例中,所述偏心轮还包括凸台;所述凸台成型于所述第一端面的中心,并显露于所述旋转孔,所述凸台背向所述第一端面的一面上成型有可供螺丝刀拧动的凹槽。
在一些实施例中,所述环形止挡部朝第一端面的方向成型有弧形凸块;所述偏心轮还包括干涉部,所述干涉部成型于所述凸台沿垂直于所述旋转轴 线的方向上;所述第一端面通过所述弧形凸块抵接于所述环形止挡部;当所述偏心轮旋转至所述第一旋转位置时,所述干涉部抵接于所述弧形凸块的一端;当所述偏心轮旋转至所述第二旋转位置时,所述干涉部抵接于所述弧形凸块的另一端。
在一些实施例中,所述第一安装面上还成型有定位梁,所述定位梁沿俯仰轴方向延伸;所述第一装配面上还成型有定位孔,所述定位孔用于供所述定位梁插入。
在一些实施例中,所述定位梁的截面为非圆形。
在一些实施例中,所述定位梁的截面为方形。
在一些实施例中,所述第一安装面设置有第一插接端子;所述第一装配面设置有第二插接端子,所述第二插接端子用于与所述第一插接端子相插接。
在一些实施例中,所述动力组件包括固定翼组件和旋翼组件;所述固定翼组件和所述旋翼组件可替换地与所述第一安装部相连;当所述固定翼组件与所述第一安装部相连时,所述机体与所述固定翼组件共同构成垂直起降固定翼无人机;当所述旋翼组件与所述第一安装部相连时,所述机体与所述旋翼组件共同构成多旋翼无人机;所述固定翼组件和所述旋翼组件中的任意一个包括所述第一装配主体和所述偏心轮。
与现有技术相比较,在本申请实施例的无人飞行器中,通过在动力组件上配置偏心轮,并在机体上配置连接杆,当所述偏心轮旋转至所述第一旋转位置时,所述连接杆可沿俯仰轴方向插入所述偏心轮,而当所述偏心轮旋转至所述第二旋转位置,并且所述连接杆插入所述偏心轮时,所述连接杆不能沿俯仰轴方向退出所述偏心轮,以将连接杆锁定,并且在连接杆插入偏心轮后,仅通过旋转偏心轮即可将连接杆锁定,实现了一种动力组件可较为方便地与机体拆装的无人飞行器。
【附图说明】
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本申请其中一实施例提供的一种无人飞行器的多旋翼无人机构型 的结构示意图;
图2为图1所示的多旋翼无人机的拆解示意图;
图3为本申请其中一实施例提供的一种无人飞行器的垂直起降固定翼无人机构型的结构示意图;
图4为图3所示的垂直起降固定翼无人机的拆解示意图;
图5为图1所示的多旋翼无人机或者图3所示的垂直起降固定翼无人机的机体的结构示意图;
图6为图5所示的机体的第一局部视图,其主要示出了机体的其中一个第一安装部;
图7为图5所示的第一安装部的局部视图,其主要示出了第一安装部的其中一个连接杆;
图8为图6所示的机体的第二局部视图,其主要示出了机体的两个第一安装部;
图9为图5所示的机体的第三局部视图,其主要示出了机体的一个第二安装部;
图10为图8所示的机体的第四局部视图,其主要示出了机体的两个第二安装部;
图11为图2所示的多旋翼无人机的旋翼组件的结构示意图;
图12为图11所示的旋翼组件的其中一个机臂部件的局部视图,其主要示出了该机臂部件的第一装配部;
图13为图12所示的旋翼组件的第一装配部的剖视图,其主要示出了第一装配部的旋转孔,偏心轮以及封盖;
图14为图13所示的偏心轮的结构示意图;
图15为图4所示的垂直起降固定翼无人机的固定翼组件的结构示意图,其中固定翼组件的第三旋翼电机处于第一位置;
图16为图15所示的固定翼组件的其中一个侧翼部件的立体图,其中该侧翼部件的第三旋翼电机处于第二位置;
图17为图4所示的垂直起降固定翼无人机的尾翼组件的结构示意图。
【具体实施方式】
为了便于理解本申请,下面结合附图和具体实施方式,对本申请进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”、“内”、“外”以及类似的表述只是为了说明的目的。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1至图4,为本申请其中一实施例提供的一种无人飞行器100,包括机体10,动力组件以及尾翼组件40。所述动力组件和所述尾翼组件40皆可拆卸地与所述机体10相连。所述动力组件包括旋翼组件20和固定翼组件30。旋翼组件20与固定翼组件30可替换地连接机体10。
当旋翼组件20与机体10相连时,旋翼组件20与机体10共同构成多旋翼无人机,多旋翼无人机如图1所示。
当固定翼组件30及尾翼组件40皆与机体10相连时,固定翼组件30、尾翼组件40以及机体10共同构成垂直起降固定翼无人机,垂直起降固定翼无人机如图3所示。
请一并参阅图5,机体10整体呈沿横滚轴方向y延伸的长条状,包括沿横滚轴方向y依次排列的机头11、机身12以及机尾13。
机体10内配置有电路模组(图未示出)。电路模组包括电路板以及搭载于电路板的多种电子元器件,主要用于控制机体10外设置的电子设备,以及与机体10相连的旋翼组件20或者固定翼组件30。
设置于机体10外的电子设备包括两个第一旋翼电机14和两个天线15。两个第一旋翼电机14及两个天线15皆设置于机体10沿其航向轴方向z的同一侧。其中一个第一旋翼电机14设置于机头11上或者机身12靠近机头11的位置上,另一个旋翼电机14设置于机尾13上或者机身12靠近机尾13的位置上。两个第一旋翼电机14共同用于提供升力,每个第一旋翼电机14的 转轴沿航向轴z方向设置,并安装有一个第一螺旋桨(图未示出)。
可以理解,第一旋翼电机的数量并不限制为2,根据实际情况,如机体挂载的负载较少,或者机体较轻,第一旋翼电机的数量可以更少,如机体挂载的负载较多,或者机体较重,第一旋翼电机的数量可以更多。
两个第一旋翼电机14及两个天线15四者皆沿横滚轴方向y排列,并且天线15与第一旋翼电机14相交替设置。两个天线15共同用于为无人飞行器导航定位。每个天线15可以为RTK(Real-time kinematic,实时动态)天线。
可以理解,天线的数量并不限制为2,根据实际情况,天线的数量可以更少或者更多。
机体10外还设置有下垂尾16,起落架17,两个第一安装部18以及两个第二安装部19。下垂尾16及起落架17皆设置于机体10沿其航向轴方向z并背离两个第一旋翼电机14的另一侧。下垂尾16设置于机尾13。支撑架17设置于机身12,支撑架17包括两个支部170。两个支部170呈“八”字形结构,与下垂尾16共同用于支撑机体10。
两个第一安装部18分别设置于机身12沿其俯仰轴方向x的两侧。
两个第二安装部19分别设置于机尾13沿其俯仰轴方向x的两侧。
请一并参阅图6,以其中一个第一安装部18为例,第一安装部18包括第一安装主体180,两个连接杆181,定位梁182以及第一插接端子183。第一安装主体180设置于机身12沿其俯仰轴方向x的相应一侧,包括第一安装面1800。第一安装面1800背向机身12设置,两个连接杆181、定位梁182以及第一插接端子183皆成型于第一安装面1800上。每个连接杆181沿俯仰轴方向x延伸。定位梁182呈沿俯仰轴方向x延伸,中空且截面为方形的型材,根据实际情况,定位梁的截面形状也可以设计为其他形状,如椭圆形,三角形,五边形等,只要是非圆形即可。第一插接端子183与电路模组电性连接。
请一并参阅图7,以其中一个连接杆181为例,连接杆181包括座体1810,杆体1811以及限位体1812。座体1810成型于第一安装面1800上。杆体1811沿俯仰轴方向x延伸,其一端连接底座1810,其另一端连接限位体1812。杆体1811的截面尺寸小于限位体1812的截面尺寸。在本实施例中,限位体1812 为球体状,根据实际情况,限位体1812可以为任意形状,只要其截面尺寸大于杆体1811的截面尺寸即可。
在本实施例中,请一并参阅图8,一根横梁184贯穿两个第一安装部18的第一安装面1800,横梁184的两端分别成型两个第一安装部18的定位梁182。而在其他一些实施例中,定位梁182也可以与第一安装主体180一体成型。
请一并参阅图9和图10,每个第二安装部19包括第二安装面190。第二安装面190背向机尾13设置。两个第二安装部19共同成型有一个轴孔191和一个弧形导孔192。轴孔191和弧形导孔192皆贯穿两个第二安装部19的第二安装面190。轴孔191和弧形导孔182皆沿俯仰轴方向x延伸,并且弧形导孔192绕轴孔191设置。
请一并参阅图11,旋翼组件20包括机臂部件21。机臂部件21的数量与第一安装部18的数量相对应,每个机臂部件21用于与一个与其对应的第一安装部18相连。以其中一个机臂部件21为例,机臂部件21包括机臂主体22、第二旋翼电机23以及第一装配部24。机臂主体22沿俯仰轴方向x延伸,机臂主体22的一端连接第二旋翼电机23,机臂主体22的另一端连接第一装配部24。机臂主体22中空,用于供第二旋翼电机23走线,以供第二旋翼电机23与第一装配部24电性连接。第二旋翼电机23的转轴沿航向轴方向z设置,并安装有一个第二螺旋桨(图未示出),第二旋翼电机23用于提供升力。
请一并参阅图12,第一装配部24用于与一个与其对应的第一安装部18相连,第一装配部24包括装配主体240,偏心轮241以及第二插接端子242。装配主体240包括第一装配面2400,第一侧表面2401以及第二侧表面2402。第一侧表面2401及第二侧表面2402相背,第一装配面2400连接于第一侧表面2401及第二侧表面2402之间。第一装配面2400用于贴合第一安装部18的第一安装面1800,第一装配面2400成型有定位孔243和连接孔244。定位孔243与第一安装部18的定位梁182相适配,用于供定位梁182插入。连接孔244的数量与连接杆181的数量相对应,每个连接孔244用于供一个与其对应的连接杆181插入。第一侧表面2401上成型有旋转孔245,旋转孔245 的数量与连接孔244的数量相对应。第二插接端子242设置于第一装配面2400上。机臂部件21的第二插接端子242与第二旋翼电机23电性连接。
请一并参阅图13,以其中一个旋转孔245为例,旋转孔245具有旋转轴线o,旋转轴线o垂直于俯仰轴方向x设置,旋转孔245连通一个与其对应的连接孔244。旋转孔245由第一侧表面2401延伸至第二侧表面2402,旋转孔245的孔壁在靠近第一侧表面2401的位置凸起有环形止挡部2450。环形止挡部2450绕旋转轴线o设置,并朝第二侧表面2402的方向凸起有弧形凸块2451。弧形凸块2451绕旋转轴线o设置。旋转孔245在第二侧表面2402的开口通过一个封板2452封闭,封板2452可通过螺纹紧固件固定于第二侧表面2403。
请一并参阅图14,偏心轮241的数量与旋转孔245的数量相对应,每个偏心轮241安装于一个与其对应的旋转孔245,用于锁定一个与其相对应的连接杆181。以其中一个偏心轮241为例,偏心轮241包括转轮2410,凸台2411以及干涉部2412。转轮2410绕旋转轴线o设置,转轮2410内成型有容腔2413,用于收容限位体1812。转轮2410包括第一端面2414,第二端面2415以及圆柱面2416。第一端面2414和第二端面2415相背,圆柱面2416绕旋转轴线o并连接于第一端面2414和第二端面2415之间,圆柱面2416上成型有弧形导槽2417和避让槽2418。弧形导槽2417与容腔2413相连通,并绕旋转轴线o设置,弧形导槽2417具有第一端和第二端,弧形导槽2417用于供杆体1811绕旋转轴线o沿弧形导槽2417转动,并且阻碍限位体1812沿俯仰轴方向x移动。避让槽2418连通容腔2413,并连通弧形导槽2417的第一端,避让槽2418用于供限位体1812通过。凸台2411成型于第一端面2414的中心,凸台2411背向第一端面2414的一面成型有可供改螺丝刀拧动的凹槽2419,凹槽2419如“一”字槽,“十”字槽,梅花槽,内六角槽等,在图示中为“一”字槽。凸台2411沿垂直于旋转轴线o的方向凸起有干涉部2412。
偏心轮241安装于旋转孔245的过程如下:
将转轮2410的第一端面2414对准旋转孔245开设于第二侧表面2402的开口后,将偏心轮241插入旋转孔245。待偏心轮241完全插入旋转孔245后,在第一方面,转轮2410的第一端面2414抵接于弧形凸块2451,和/或干涉部2412抵接于环形止挡部2450,在第二方面,圆柱面2416套设于旋转孔245的孔壁,在第三方面,与旋转孔245相连通的连接孔244对准弧形导槽2417 或者避让槽2418,在第四方面,凸台2411显露于旋转孔245开设于第一侧表面2401的开口。随后,将封板2452安装于第二侧表面2402。待封板2452安装于第二侧表面2402后,封板2452抵接于转轮241的第二端面2415。此时,偏心轮241完成安装于旋转孔245。
待偏心轮241完成安装于旋转孔245后,偏心轮241仅可绕旋转轴线o在旋转孔245内的第一旋转位置和第二旋转位置之间转动,以下通过说明偏心轮241与旋转孔245的装配关系,以解释偏心轮241为何仅可绕旋转轴线o在旋转孔245内的第一旋转位置和第二旋转位置之间转动,如下:
由于转轮2410的第一端面2414抵接于弧形凸块2451,和/或干涉部2412抵接于环形止挡部2450,并且转轮2410的第二端面2415抵接于盖板2452,因此限制了除偏心轮241沿垂直于旋转轴线o的方向移动的两个移动自由度以及绕旋转轴线o旋转的一个旋转自由度,再通过转轮2410的圆柱面2416套设于旋转孔244的孔壁,进一步限制了偏心轮241沿垂直旋转轴线o的方向移动的两个移动自由度。此外,在偏心轮241绕旋转轴线o旋转的过程中,弧形凸块2451将挡住干涉部2412,以阻止偏心轮241继续转动。综上,偏心轮241仅可绕旋转轴线o在旋转孔245内的第一旋转位置和第二旋转位置之间转动。当偏心轮241旋转至第一旋转位置时,干涉部2412抵接于弧形凸块2451的一端,避让槽2418对准连接孔244。当偏心轮241旋转至第二旋转位置时,干涉部2412抵接于弧形凸块2451的另一端,弧形导槽2417的第二端对准连接孔244。
以下说明旋翼组件20如何与机体10相连:
第一安装部与第一装配部相连。定位梁182对准并插入定位孔243,在定位梁182完全插入定位孔243的过程中,一方面,每个连接杆181自动对准并插入一个与其对应的连接孔244,另一方面,第一插接端子183自动对准并插接第二插接端子242。
在连接杆181插入连接孔244的过程中,偏心轮241转动至第一旋转位置,偏心轮241的避让槽2418对准连接孔244。连接杆181的限位体1812依次穿过连接孔244和避让槽2418。待连接杆181完全插入连接孔244后,连接杆181的限位体1812收容于偏心轮241的容腔2413内,连接杆181的杆 体1811则位于避让槽2418内。
待定位梁182完全插入定位孔243后,在第一方面,每个连接杆181也完全插入一个与其对应的连接孔244,在第二方面,第一插接端子183也完全与第二插接端子242相插接,在第三方面,第一安装面1800与第一装配面2400相接触。随后,将偏心轮241转动至第二旋转位置,杆体1811位于偏心轮241的弧形导槽2417的第二端。此时,旋翼组件20完成与机体10相连。
待旋翼组件20完成与机体10相连后,旋翼组件20与机体10相固定,以下通过说明旋翼组件20与机体10的装配关系,以说明为何旋翼组件20与机体10相固定。
由于定位梁182插入定位孔243,定位梁182与定位孔243相适配,并且定位梁182的截面为方形,因此限制了机臂部件21除沿俯仰轴方向x移动以外的其余自由度。而弧形导槽2417阻碍限位体1812退出容腔2413,配合第一安装面1800抵接第一装配面2400,则限制了机臂部件21沿俯仰轴方向x移动的自由度。
可以理解,连接杆181的数量并不限制为2,根据实际情况,例如机身10的重量或者机身10所挂载的负载较少,连接杆181的数量可以更少,反之,连接杆181的数量可以更多。
在其他一些实施例中,机臂部件的第一装配部与一个与其对应的第一安装部相插接,并通过螺纹紧固件固定。
多旋翼无人机具体工作过程如下:
两个第一旋翼电机14和两个机臂部件21的第二旋翼电机23共四个旋翼电机共同工作,以提供多旋翼无人机垂直起降的升力。通过四个旋翼电机的差速控制,以提供多旋翼无人机俯仰控制、横滚控制、航向控制以及各个方向的飞行。同时,下垂尾16还可保障多旋翼无人机的航向稳定。
在一些实施例中,第一旋翼电机14所安装的第一螺旋桨的尺寸等于第二旋翼电机23所安装的第二螺旋桨的尺寸。在实际应用中,通过将第一螺旋桨和第二螺旋桨设计为大尺寸螺旋桨,可以保障多旋翼无人机的大重量垂直起降。
请参阅图15和图16,固定翼组件30包括两个侧翼部件31。以其中一个侧翼部件31为例,侧翼部件31包括侧翼主体32,翼端33,第三旋翼电机34,倾转电机(图未示出)以及第二装配部35。侧翼主体32沿俯仰轴方向x延伸,侧翼主体32的一端连接翼端33,侧翼主体32的另一端连接第二装配部35,倾转电机安装于侧翼主体32,并连接翼端33,第三旋翼电机34安装于翼端33。翼端33可相对于侧翼主体32绕俯仰轴方向x转动,以使翼端33所安装的第三旋翼电机34绕俯仰轴方向x在第一倾转位置和第二倾转位置之间转动。倾转电机用于驱动翼端33绕俯仰轴方向x转动。
当第三旋翼电机34倾转至第一位置时,如图12所示,翼端33基本与侧翼主体32持平。当第三旋翼电机34转动至第二位置时,如图13所示,翼端33基本与侧翼主体32正交。
第三旋翼电机34的转轴垂直于俯仰轴方向x设置,第三旋翼电机34的转轴安装有第三螺旋桨(图未示出)。当第三旋翼电机34转动至第一倾转位置时,第三旋翼电机34的转轴基本沿横滚轴方向y,用于提供推力。当第三旋翼电机34转动至第二倾转位置时,第三旋翼电机34的转轴基本沿航向轴方向z,用于提供升力。
第二装配部35用于一个与其对应的第一安装部18相连,第二装配部35与第一装配部24的结构相似,也即第二装配部35和第一装配部24中的任意一个包括第一装配主体240,偏心轮241以及第二插接端子242,第一装配部24的结构请复参阅图12,此处不再赘述。侧翼部件31的第二插接端子242分别与倾转电机和第三旋翼电机34电性连接。
以下说明固定翼组件30如何与机体10相连:
第一安装部与第二装配部相连,由于第二装配部与第一装配部的结构相似,故第二装配部与第一安装部的装配过程也与第一装配部与第一安装部的装配过程相似,此处不再赘述。
请一并参阅图17,尾翼组件40包括尾翼部件41,转动轴42以及传动轴43。尾翼部件41的数量与第二安装部19的数量对应,以其中一个尾翼部件40为例。尾翼部件41包括第二装配面410。第二装配面410基本垂直于俯仰 轴方向x设置,第二装配面410上成型有第一插接孔44和第二插接孔45。第一插接孔44和第二插接孔45皆沿俯仰轴方向x设置,分别用于供转动轴42一端及传动轴43的一端插接。
尾翼组件40与机体10相连的过程具体如下:
将转动轴42插入轴孔191,并且其两端皆显露于轴孔191外。另外,将传动轴43插入弧形导孔192,并且其两端皆显露于弧形导孔192外。在将转动轴42及传动轴43安装完,将每个尾翼部件41的第一插接孔44供一个与其对应的转动轴43一端插入,另外,将每个尾翼部件41的第二插接孔45供一个与其对应的传动轴43一端插入。待每个尾翼部件41的第一插接孔44供一个与其对应的转动轴42一端完全插入,并且每个尾翼部件41的第二插接孔45供一个与其对应的传动轴43一端完全插入后,每个尾翼部件41的第二装配面410与一个与其对应的第二安装部19的第二安装面190相接触。此时,尾翼组件40完成与机体10相连。
待尾翼组件40与机体10相连后,通过传动轴43绕俯仰轴方向x沿弧形导孔192转动,以带动两个尾翼部件41绕转轴42转动。在一些实施例中,下垂尾16内设置有用于驱动传动轴43绕俯仰轴方向x转动的驱动电机(图未示出),驱动电机通过如连杆等传动机构与传动轴43连接。
垂直起降固定翼无人机具体工作过程如下:
在垂直起降时,两个第一旋翼电机14提供升力和俯仰控制,两个侧翼部件31的第三旋翼电机34转动至第二倾转位置,以提供辅助升力,通过两个侧翼部件31的第三旋翼电机34差速控制,以及两个侧翼部件31的倾转电机倾转差动控制,以提供横滚及航向控制。
在续航飞行时,两个第一旋翼电机14停止工作,由两个侧翼部件31的侧翼主体32提供升力,由两个尾翼部件41提供俯仰控制,两个侧翼部件31的第三旋翼电机34转动至第一位置倾转,以提供推力,通过两个侧翼部件31的第三旋翼电机34差速控制,以及两个侧翼部件31的倾转电机倾转差动控制,以提供横滚及航向控制。
与现有技术相比较,本申请实施例提供的一种无人飞行器100中,通过 在动力组件上配置偏心轮,并在机体上配置连接杆,当所述偏心轮旋转至所述第一旋转位置时,所述连接杆可沿俯仰轴方向插入所述偏心轮,而当所述偏心轮旋转至所述第二旋转位置,并且所述连接杆插入所述偏心轮时,所述连接杆不能沿俯仰轴方向退出所述偏心轮,以将连接杆锁定,并且在连接杆插入偏心轮后,仅通过旋转偏心轮即可将连接杆锁定,实现了一种动力组件可较为方便地与机体拆装的无人飞行器。
此外,通过固定翼组件和旋翼组件可替换地与所述机体相连,固定翼组件与机体相连构成垂直起降固定翼无人机,旋翼组件与机体相连构成多旋翼无人机,以实现一种可以在垂直起降固定翼无人机及多旋翼无人机之间进行切换的无人机。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (13)

  1. 一种无人飞行器,其特征在于,包括:
    机体,设置有第一安装部,所述第一安装部包括第一安装主体以及成型于所述第一安装主体的连接杆,所述连接杆沿俯仰轴方向延伸;以及
    动力组件,包括第一装配主体以及安装于所述第一装配主体的偏心轮,所述偏心轮可绕所述第一装配主体的旋转轴线在第一装配主体的第一旋转位置和第二旋转位置之间转动,所述旋转轴线垂直于俯仰轴方向;
    其中,当所述偏心轮旋转至所述第一旋转位置时,所述连接杆可沿俯仰轴方向插入所述偏心轮;
    当所述偏心轮旋转至所述第二旋转位置,并且所述连接杆插入所述偏心轮时,所述连接杆不能沿俯仰轴方向退出所述偏心轮。
  2. 根据权利要求1所述的无人飞行器,其特征在于,所述第一安装主体包括第一安装面,所述连接杆成型于所述第一安装面上;
    所述第一装配主体包括相连接的第一装配面和第一侧表面,所述第一装配面用于贴合所述第一安装面,所述第一装配面成型有连接孔,所述连接孔用于供所述连接杆插入,所述第一侧表面成型有旋转孔,所述旋转孔具有所述旋转轴线,并与所述连接孔相连通;
    所述偏心轮安装于所述旋转孔内。
  3. 根据权利要求2所述的无人飞行器,其特征在于,所述连接杆包括杆体和限位体;
    所述杆体沿俯仰轴方向延伸,所述限位体连接所述杆体远离所述第一安装主体的一端,所述杆体的截面尺寸小于所述限位体的截面尺寸;
    所述偏心轮包括转轮,所述转轮内成型有容腔,所述转轮包括绕所述旋转轴线设置的圆柱面,所述圆柱面套设于所述旋转孔的孔壁,所述圆柱面上成型有弧形导槽和避让槽,所述弧形导槽与所述容腔相连通,并绕所述旋转轴线设置,所述弧形导槽具有第一端和第二端,所述避让槽与所述容腔相连通,并连通所述第一端;
    当所述偏心轮旋转至所述第一旋转位置时,所述避让槽对准所述连接孔,所述限位体可沿俯仰轴方向经由所述连接孔收容于所述容腔;
    当所述偏心轮旋转至所述第二旋转位置,并且所述限位体收容于所述容腔时,所述第二端对准所述连接孔,所述限位体不能沿所述俯仰轴方向经由所述弧形导槽退出所述收容腔。
  4. 根据权利要求3所述的无人飞行器,其特征在于,所述限位体为球形。
  5. 根据权利要求3或4所述的无人飞行器,其特征在于,所述第一装配主体还包括第二侧表面,所述第二侧表面与所述第二表面相背,所述第一装配面连接于所述第一侧表面和所述第二侧表面之间;
    所述旋转孔自所述第一侧表面延伸至所述第二侧表面,所述旋转孔在所述第二侧表面的开口通过一个封板封闭,所述封板可拆卸地连接所述第二侧表面;
    所述旋转孔的孔壁在靠近所述第一侧表面的位置凸起有环形止挡部,所述环形止挡部绕所述旋转轴线设置。
  6. 根据权利要求5所述的无人飞行器,其特征在于,所述转轮还包括相背的第一端面和第二端面,所述圆柱面连接于所述第一端面和所述第二端面之间,所述第一端面抵接于所述环形止挡部,所述第二端面抵接于所述挡板。
  7. 根据权利要求6所述的无人飞行器,其特征在于,所述偏心轮还包括凸台;
    所述凸台成型于所述第一端面的中心,并显露于所述旋转孔,所述凸台背向所述第一端面的一面上成型有可供螺丝刀拧动的凹槽。
  8. 根据权利要求7所述的无人飞行器,其特征在于,所述环形止挡部朝第一端面的方向成型有弧形凸块;
    所述偏心轮还包括干涉部,所述干涉部成型于所述凸台沿垂直于所述旋转轴线的方向上;
    所述第一端面通过所述弧形凸块抵接于所述环形止挡部;
    当所述偏心轮旋转至所述第一旋转位置时,所述干涉部抵接于所述弧形凸块的一端;
    当所述偏心轮旋转至所述第二旋转位置时,所述干涉部抵接于所述弧形凸块的另一端。
  9. 根据权利要求2至8任一项所述的无人飞行器,其特征在于,所述第一安装面上还成型有定位梁,所述定位梁沿俯仰轴方向延伸;
    所述第一装配面上还成型有定位孔,所述定位孔用于供所述定位梁插入。
  10. 根据权利要求9所述的无人飞行器,其特征在于,所述定位梁的截面为非圆形。
  11. 根据权利要求10所述的无人飞行器,其特征在于,所述定位梁的截面为方形。
  12. 根据权利要求2至11任一项所述的无人飞行器,其特征在于,所述第一安装面设置有第一插接端子;
    所述第一装配面设置有第二插接端子,所述第二插接端子用于与所述第一插接端子相插接。
  13. 根据权利要求1至12任一项所述的无人飞行器,其特征在于,所述动力组件包括固定翼组件和旋翼组件;
    所述固定翼组件和所述旋翼组件可替换地与所述第一安装部相连;
    当所述固定翼组件与所述第一安装部相连时,所述机体与所述固定翼组件共同构成垂直起降固定翼无人机;
    当所述旋翼组件与所述第一安装部相连时,所述机体与所述旋翼组件共同构成多旋翼无人机;
    所述固定翼组件和所述旋翼组件中的任意一个包括所述第一装配主体和所述偏心轮。
PCT/CN2020/123312 2019-10-23 2020-10-23 一种无人飞行器 WO2021078265A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/660,251 US12065241B2 (en) 2019-10-23 2022-04-22 Unmanned aerial vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911013306.XA CN110615096A (zh) 2019-10-23 2019-10-23 一种无人飞行器
CN201911013306.X 2019-10-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/660,251 Continuation US12065241B2 (en) 2019-10-23 2022-04-22 Unmanned aerial vehicle

Publications (1)

Publication Number Publication Date
WO2021078265A1 true WO2021078265A1 (zh) 2021-04-29

Family

ID=68926653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123312 WO2021078265A1 (zh) 2019-10-23 2020-10-23 一种无人飞行器

Country Status (3)

Country Link
US (1) US12065241B2 (zh)
CN (1) CN110615096A (zh)
WO (1) WO2021078265A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220097842A1 (en) * 2020-09-28 2022-03-31 Travis Kunkel Rugged unmanned airborne vehicle
US11869363B1 (en) 2019-09-17 2024-01-09 Travis Kunkel System and method for autonomous vehicle and method for swapping autonomous vehicle during operation
CN110615096A (zh) 2019-10-23 2019-12-27 深圳市道通智能航空技术有限公司 一种无人飞行器
CN110615097A (zh) * 2019-10-23 2019-12-27 深圳市道通智能航空技术有限公司 一种无人飞行器
CN115180125B (zh) * 2022-09-09 2022-12-20 致导创新(天津)科技有限公司 一种无人机脚架连接结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180057136A1 (en) * 2016-09-01 2018-03-01 Horizon Hobby, LLC Wing lock and disconnect mechanisms for a rc aircraft
CN208897306U (zh) * 2018-09-29 2019-05-24 四川长虹电器股份有限公司 无人机机身与机翼快速拆装连接结构
CN109808868A (zh) * 2018-11-22 2019-05-28 成都飞机工业(集团)有限责任公司 一种小型无人机用内外翼对接结构
CN110615096A (zh) * 2019-10-23 2019-12-27 深圳市道通智能航空技术有限公司 一种无人飞行器
CN110615097A (zh) * 2019-10-23 2019-12-27 深圳市道通智能航空技术有限公司 一种无人飞行器
CN110775248A (zh) * 2019-10-21 2020-02-11 深圳市道通智能航空技术有限公司 一种无人机
US20200070973A1 (en) * 2018-08-31 2020-03-05 InSitu, Inc., a subsidiary of the Boeing Company Unmanned aerial vehicle (uav) tethered wing recovery

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3161373A (en) * 1949-01-24 1964-12-15 Vogt Richard Automatic alignment mechanism for composite aircraft
GB1465885A (en) * 1974-05-03 1977-03-02 Neuhierl H Model aircraft
US7237750B2 (en) * 2004-10-29 2007-07-03 L3 Communications Autonomous, back-packable computer-controlled breakaway unmanned aerial vehicle (UAV)
CA2815850C (en) * 2013-05-13 2019-04-09 Winehawk Inc. Unmanned aerial vehicle
US20150014482A1 (en) * 2013-07-15 2015-01-15 Design Intelligence Incorporated, LLC Unmanned aerial vehicle (uav) with inter-connecting wing sections
US9217532B2 (en) * 2013-08-23 2015-12-22 Becklin Holdings, Inc. Wing spar retention system and method
GB2536448A (en) * 2015-03-17 2016-09-21 Airbus Operations Ltd A connector between two aircraft components, such as a wing and wing tip device
KR101776949B1 (ko) * 2016-03-16 2017-09-08 주식회사 에이디이 고정익 드론의 날개결합장치
US10196143B2 (en) * 2016-06-02 2019-02-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration System and method for modular unmanned aerial system
US11148781B2 (en) * 2016-09-09 2021-10-19 Skydio, Inc. Airframe attachments
EP3389451A4 (en) * 2017-02-23 2019-12-25 MCS Industries, Inc. SYSTEM AND METHOD FOR HANGING AN ARTICLE FROM A SUPPORT SURFACE
US10767682B2 (en) * 2017-06-29 2020-09-08 Insitu, Inc. Frangible fasteners with flexible connectors for unmanned aircraft, and associated systems and methods
US11046434B2 (en) * 2017-09-19 2021-06-29 The Boeing Company Methods and apparatus to align and secure aircraft
NL2020397B1 (en) * 2017-12-05 2019-08-14 Boeing Co Unmanned aerial vehicle
US10787255B2 (en) * 2018-11-30 2020-09-29 Sky Canoe Inc. Aerial vehicle with enhanced pitch control and interchangeable components
KR101988428B1 (ko) * 2019-01-07 2019-06-12 주식회사 조이드론 본체와 날개가 분리가능한 드론
US20230039018A1 (en) * 2021-08-09 2023-02-09 InSitu, Inc., a subsidiary of the Boeing Company Unmanned aerial vehicles including wing capture devices and related methods
CN217836006U (zh) * 2022-03-28 2022-11-18 上海峰飞航空科技有限公司 一种机翼快拆结构及无人机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180057136A1 (en) * 2016-09-01 2018-03-01 Horizon Hobby, LLC Wing lock and disconnect mechanisms for a rc aircraft
US20200070973A1 (en) * 2018-08-31 2020-03-05 InSitu, Inc., a subsidiary of the Boeing Company Unmanned aerial vehicle (uav) tethered wing recovery
CN208897306U (zh) * 2018-09-29 2019-05-24 四川长虹电器股份有限公司 无人机机身与机翼快速拆装连接结构
CN109808868A (zh) * 2018-11-22 2019-05-28 成都飞机工业(集团)有限责任公司 一种小型无人机用内外翼对接结构
CN110775248A (zh) * 2019-10-21 2020-02-11 深圳市道通智能航空技术有限公司 一种无人机
CN110615096A (zh) * 2019-10-23 2019-12-27 深圳市道通智能航空技术有限公司 一种无人飞行器
CN110615097A (zh) * 2019-10-23 2019-12-27 深圳市道通智能航空技术有限公司 一种无人飞行器

Also Published As

Publication number Publication date
US20220242563A1 (en) 2022-08-04
CN110615096A (zh) 2019-12-27
US12065241B2 (en) 2024-08-20

Similar Documents

Publication Publication Date Title
WO2021078265A1 (zh) 一种无人飞行器
WO2021078267A1 (zh) 一种无人飞行器
CN111655578B (zh) 固定翼垂直起降混合动力uav
CN108698682B (zh) 无人飞行器及其机架、套件、组装方法、以及操作方法
EP3797070B1 (en) Folding concentrically mounted propeller blades for drag reduction
US20140284419A1 (en) Aircraft
US11447258B2 (en) Motor and unmanned aerial vehicle
WO2024093476A1 (zh) 共轴双旋翼无人机
WO2022078092A1 (zh) 一种无人飞行器
WO2022052644A1 (zh) 无人机
US20210222809A1 (en) Aircraft tail lock
WO2020062758A1 (zh) 无人机及倾转机构
WO2020151608A1 (zh) 旋转翼无人机
CN112644701A (zh) 一种横列式双旋翼无人机
WO2020000690A1 (zh) 固定翼无人机及其尾翼
CN211731806U (zh) 一种无人飞行器
WO2020135448A1 (zh) 一种无人飞行器
CN211731805U (zh) 一种无人飞行器
CN214451820U (zh) 一种横列式双旋翼无人机
CN114771821A (zh) 一种用于垂直起降飞机的升力支撑梁的连接结构
CN211076330U (zh) 倾转翼机构以及倾转旋翼无人机
CN210437384U (zh) 三翼式无人机
CN113086174A (zh) 模块化交叉式无人机及其工作方法
CN217994770U (zh) 一种飞行装置舵面传动机构
CN221458020U (zh) 一种无人机的机翼组件和无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20878461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20878461

Country of ref document: EP

Kind code of ref document: A1