WO2020073755A1 - 一种无人机及其飞控组件 - Google Patents

一种无人机及其飞控组件 Download PDF

Info

Publication number
WO2020073755A1
WO2020073755A1 PCT/CN2019/104238 CN2019104238W WO2020073755A1 WO 2020073755 A1 WO2020073755 A1 WO 2020073755A1 CN 2019104238 W CN2019104238 W CN 2019104238W WO 2020073755 A1 WO2020073755 A1 WO 2020073755A1
Authority
WO
WIPO (PCT)
Prior art keywords
flight control
positioning
control assembly
control module
assembly according
Prior art date
Application number
PCT/CN2019/104238
Other languages
English (en)
French (fr)
Inventor
陈刚
钟自鸣
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2020073755A1 publication Critical patent/WO2020073755A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D43/00Arrangements or adaptations of instruments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/10Manufacturing or assembling aircraft, e.g. jigs therefor

Definitions

  • the invention relates to the technical field of unmanned aerial vehicles, in particular to an unmanned aerial vehicle and its flight control components.
  • Drones are complex systems covering multi-disciplinary fields such as flight control, visual algorithms, and gimbal control.
  • the modularization and standardization of functional subsystems are conducive to accelerating the development and manufacturing process of drones, and facilitating later use maintain.
  • the flight control module (hereinafter collectively referred to as the flight control module) is an important subsystem in the UAV system. Its main function is to measure status information such as the flight attitude of the drone, and control the flight of the drone in real time. In order to ensure the accuracy of the measurement, after installing the flight control module, the drone must first calibrate and calibrate the flight control module.
  • embodiments of the present invention provide a drone and its flight control assembly.
  • the flight control module and the mounting plate of the flight control assembly are easy to assemble and disassemble, and the efficiency is high.
  • a flight control assembly which includes a flight control module and a mounting plate provided on the drone, and the flight control module is mounted on the mounting plate through a snap structure.
  • the buckle structure includes at least two buckles provided on the mounting plate, the at least two buckles are respectively engaged with the flight control module, and the at least two cards Buckles are provided on both sides of the flight control module.
  • any one of the at least two buckles includes a main body part connected to the mounting plate and a buckle part bent and extending from the main body part to the flight control module.
  • the buckle portion is substantially perpendicular to the body portion.
  • the buckle portion is integrally formed with the main body portion.
  • the buckle portion has a first guide slope, and the first guide slope is inclined toward the mounting plate.
  • the flight control module is provided with a second guide slope that cooperates with the first guide slope.
  • the buckle is an elastic buckle.
  • the flight control assembly further includes an elastic gasket provided between the flight control module and the mounting plate, the elastic gasket when the flight control module is connected to the mounting plate It is in a compressed state.
  • the flight control assembly further includes a thrust structure for restricting movement of the flight control module in a first direction parallel to the mounting plate.
  • the thrust structure includes a limit block provided on the mounting plate, and the limit block is provided on one side of the flight control module.
  • the limit block has a third guide slope inclined toward the mounting plate.
  • the flight control module is provided with a fourth guide slope that cooperates with the third guide slope.
  • the number of the limiting blocks is 2, and the two limiting blocks are arranged at intervals.
  • the flight control assembly further includes a first positioning structure for restricting the movement of the flight control module in a second direction parallel to the mounting plate, the second direction Opposite to the first direction.
  • the first positioning structure includes a first positioning portion provided on the flight control module and a second positioning portion provided on the mounting plate, the first positioning portion and the first positioning portion The two positioning parts are in line contact to restrict the movement of the flight control module in a direction parallel to the mounting plate.
  • the first positioning portion is a positioning column having a circular arc surface
  • the second positioning portion includes a positioning plate provided on the mounting plate and a V-shaped groove opened on the positioning plate, The opening of the V-shaped groove faces the flight control module, and the arc surface of the positioning column abuts against the groove wall of the V-shaped groove to form a line contact.
  • the flight control module includes a base plate, and the positioning post is provided on the base plate.
  • the flight control module further includes a base plate
  • the first positioning structure includes a first positioning hole provided on the base plate, a mounting plate provided on the mounting plate and corresponding to the position of the first positioning hole A second positioning hole and a positioning pin passing through the first positioning hole and the second positioning hole.
  • the positioning pin is a conical pin.
  • the flight control assembly further includes a second positioning structure, the second positioning structure is used to restrict the rotation of the flight control module about a straight line perpendicular to the mounting plate.
  • the second positioning structure includes a third positioning portion provided on the flight control module and a fourth positioning portion provided on the mounting plate, the third positioning portion and the fourth positioning The part restricts the rotation of the flight control module about a straight line perpendicular to the mounting plate through surface contact.
  • the third positioning portion is a first key slot
  • the fourth positioning portion is a flat key
  • the first keyway is U-shaped.
  • the fourth positioning portion further includes a second key slot, and the flat key is disposed in the second key slot.
  • the first positioning structure and the second positioning structure are located on the same straight line.
  • a drone including a fuselage, an arm connected to the fuselage, and a power device provided on the arm, characterized in that the drone further includes the Flight control components.
  • the flight control assembly proposed by the invention solves the problems of fast and accurate positioning and installation of the flight control module, simplifies the process of mass assembly production of drones, and improves the efficiency of mass production.
  • the flight control assembly proposed by the present invention can realize "one calibration and multiple loading, unloading and maintenance". That is, even after repeated disassembly and installation, the flight control assembly of the present invention can ensure that the positioning accuracy remains unchanged, so the calibration and calibration steps after each disassembly can be omitted, simplifying the post-installation maintenance process.
  • the present invention realizes the precise installation and positioning of the flight control module through plane constraint, coaxial constraint and point constraint, and realizes complete constraint on the flight control module with full freedom and high-precision positioning. It has the advantages of simple and convenient operation and low machining cost.
  • FIG. 1 is a schematic structural diagram of a drone according to an embodiment of the present invention
  • FIG. 2 is a three-dimensional structural schematic diagram of the drone flight control assembly shown in FIG. 1;
  • FIG. 3 is a top view of the flight control assembly shown in FIG. 2;
  • FIG. 4 is an exploded view of the flight control assembly shown in FIG. 2;
  • FIG. 5 is an exploded view of the flight control assembly shown in FIG. 4 from another angle;
  • FIG. 6 is an exploded view of the flight control assembly shown in FIG. 2 in some other embodiments, in which some parts are omitted.
  • the drone 500 includes: a fuselage 100, an arm 200 connected to the fuselage 100, and disposed on the arm 200 Power unit 300 and a flight control assembly 400 provided on the fuselage 100.
  • the arm 200 and the body 100 may be fixedly connected, integrally formed, or may be detachable or connected in a foldable manner relative to the body 100.
  • the power unit 300 generally includes a motor and a propeller connected to a motor shaft of the motor. The motor drives the propeller to rotate to provide lift for the drone 500 to fly.
  • the UAV 500 may also be a fixed-wing UAV.
  • the flight control assembly 400 includes a mounting board 10, a flight control module 20, and a snap structure 30.
  • the flight control module 20 is installed on the mounting board 10 through the snap structure 30.
  • the mounting plate 10 has a reference surface 11 facing the flight control module 20.
  • the reference surface 11 is a flat surface processed on the mounting plate 10 so as to have a certain flatness.
  • the mounting plate 10 may be a separate component provided in the body 100, or may be a part processed in the body 100.
  • the flight control module 20 includes a flight control module body 21 and a substrate 22 connected to the flight control module body 21.
  • the plane size of the base plate 22 for mounting the flight control module body 21 is slightly larger than the plane size of the flight control module body 21 and the base plate 22 in contact.
  • the substrate 22 may be a separate component, or may be integrally formed with the flight control module body 21. In other possible embodiments, the substrate 22 may also be omitted.
  • the flight control module body 21 is provided with a flight control system.
  • the flight control system (not shown) is used to stabilize the flying attitude of the UAV 500 and control the UAV 500 to autonomously or semi-autonomously fly.
  • the flight control system can collect the flight status data measured by the sensors of the UAV in real time, receive the control commands and data sent from the control terminal, and output the control commands and data to the actuator (such as the power device 300) to realize the unmanned Control of aircraft flight attitude or mission.
  • the buckle structure 30 is engaged with the substrate 22.
  • the buckle structure 30 may also be directly engaged with the flight control module body 21.
  • the buckle structure 30 includes at least two buckles 31 provided on the reference surface 11, and the at least two buckles 31 are symmetrically provided on the flight control module 20 On both sides.
  • the buckle structure 30 includes four buckles 31, and the four buckles 31 are arranged symmetrically with respect to the reference line S. That is, the two pairs of buckles 31 are respectively disposed on the two sides of the substrate 22, so that the two sides of the substrate 22 can be uniformly stressed, preventing any side between the two sides of the substrate 22 from being unevenly stressed The resulting warp relative to the reference surface 11.
  • the reference line S is a virtual straight line passing through the symmetry center of the mounting plate 10 as defined in the description of the present invention, which is parallel to the longer side of the mounting plate 10.
  • any one of the at least two buckles 31 includes a main body 310 connected to the reference plane 11 and from the main body 310
  • the buckle portion 311 is bent and extended toward the flight control module 20.
  • the locking portion 311 is substantially perpendicular to the main body portion 310.
  • the locking portion 311 has a first guiding slope 312.
  • the first guide inclined surface 312 is disposed away from the reference surface 11, and the first guide inclined surface 312 is inclined from its end away from the flight control module 20 toward its end closer to the flight control module 20, so that When the flight control module 20 is mounted on the mounting plate 10 from top to bottom, the resistance is smaller and the installation is smoother.
  • a position corresponding to the first guide slope 312 on the substrate 22 may also be provided with a second guide slope 220, and the second guide slope 220 and the first guide slope 312 have the same inclination direction and angle, The resistance to installation can be further reduced.
  • the substrate 22 After being snapped into place, the substrate 22 is located between the buckle portion 311 and the reference surface 11, so that the flight control module 20 is fixed on the mounting board 10.
  • the buckle 31 is an elastic buckle, which can be made of a plastic material with a certain elasticity. It can be understood that, according to the actual situation, the buckle 31 is not limited to plastic material, but can also be made of other metals, non-metals, or a combination of the two, as long as the buckle 31 is elastic.
  • the buckle 31 and the mounting plate 10 can be integrally formed. In other possible embodiments, the buckle 31 and the mounting plate 10 may also be fixedly connected by means of bonding, screwing, or the like.
  • the integral formation of the snap 31 and the mounting plate 10 can reduce the processing cost.
  • the locking portion 311 and the main body portion 310 are integrally formed. It can be understood that, since the integrally formed snap 31 is generally made of plastic material, when the number of disassembly and assembly of the flight control module 20 and the mounting plate 10 is too many, the snap 31 may easily cause fatigue fracture.
  • the buckle portion 311 and the main body portion 310 can also be connected by a hinge, although the buckle portion 311 and the main body portion 310 can be hinged to avoid the flight control module and the mounting plate 10
  • the buckle 31 breaks due to excessive disassembly, but the accuracy is not as high as the integrally formed buckle 31.
  • the flight control assembly 400 further includes an elastic gasket provided between the flight control module 20 and the mounting plate 10 40.
  • the elastic spacer 40 is sandwiched between the substrate 22 and the reference surface 11.
  • the elastic gasket 40 is in a compressed state when the flight control module 20 is installed on the mounting plate 10, thereby providing an elastic pretension to the flight control module 20, so that the flight control module 20 and the mounting plate 10 The connection between them is stronger.
  • the elastic gasket 40 can be made of plastic, sponge and other materials with a certain elasticity.
  • the elastic spacer 40 is in a compressed state when the base plate 22 is connected to the mounting plate 10 to provide the base plate 22 with a pretension force away from the reference plane 11, the base plate 22 and the buckle
  • the portion 311 is in close contact so that the substrate 22 is fixed relative to the mounting board 10 in a direction perpendicular to the reference plane 11.
  • the substrate 22 can be brought into close contact with the locking portion 311 to achieve the substrate 22 Relative to the reference surface 11, from the other side, it is difficult to ensure that the distance between the latching portion 311 and the reference surface 11 completely matches the thickness value of the substrate 22 to achieve the substrate 22
  • the purpose of fixing with respect to the reference surface 11 is that, by providing an elastic washer 40 between the reference surface 11 and the substrate 22, the distance between the locking portion 311 and the reference surface 11 only needs to be It may be greater than the thickness value of the substrate 22, and the processing difficulty is low.
  • the buckle structure 30 of the present invention can restrict the movement of the flight control module 20 away from the mounting plate 10 in the Z axis direction, and restrict the rotation of the flight control module 20 about the X axis and the Y axis. Therefore, the snap structure 30 can limit the three degrees of freedom of the flight control module 20. Moreover, the snap structure 30 can simplify the installation operation of the flight control module 20 and realize the tool-free rapid installation of the flight control module 20.
  • the flight control assembly 400 further includes a thrust structure 50, a first positioning structure 60, and a second positioning structure 70.
  • the thrust structure 50 is used to restrict the movement of the substrate 22 in a first direction parallel to the reference surface 11 (ie, the negative direction of the X axis in FIG. 2), the first direction is parallel to the reference Line S.
  • the thrust structure 50, the first positioning structure 60, and the second positioning structure 70 are used to position the flight control module 20 so that the flight control module 20 occupies a certain position on the mounting board 10 position. That is, the flight control component proposed by the present invention can realize "one-time calibration and calibration, multiple loading and unloading maintenance". Specifically, even after multiple disassembly and installation, the flight control assembly of the present invention can ensure that the positioning position remains unchanged and maintain a certain positioning accuracy, so the calibration and calibration steps after each disassembly during the later maintenance can be omitted, simplifying The later loading and unloading maintenance process.
  • the thrust structure 50 includes a limiting block 51 provided on the reference surface 11 of the mounting plate 10.
  • the limiting block 51 is in contact with the substrate 22 of the flight control module 20.
  • the limiting block 51 is located on one side of the substrate 22.
  • the surface of the substrate 22 facing the reference surface 11 is provided with a receiving groove for receiving the limiting block 51, and the limiting block 51 can be received in the receiving groove and abut The groove wall of the receiving groove.
  • the number of the limiting blocks 51 is two, and the two limiting blocks 51 are arranged at intervals.
  • the two limiting blocks 51 are relative to the reference line S Symmetrically distributed.
  • the limiting block 51 has a third guiding slope 510.
  • the third guide inclined surface 510 faces away from the reference surface 11, and the third guide surface 510 is inclined from its end away from the flight control module 20 toward its end closer to the flight control module 20, so that the The base plate 22 and the mounting plate 10 are more convenient for installation.
  • a fourth guide slope 221 may be provided on the substrate 22 at a position corresponding to the third guide slope 510.
  • the fourth guide slope 221 and the third guide slope 510 The tilt direction and angle are the same to further facilitate installation.
  • the limiting block 51 can be made of a material with a certain elasticity.
  • the limiting block 51 is an elastic piece, and the limiting block 51 abuts against the substrate 22 along the first direction At this time, the limiting block 51 is slightly bent toward the side away from the substrate 22 to provide the substrate 22 with a thrust in the second direction, which is opposite to the first direction (second The direction is the positive direction of the X axis in FIG. 2).
  • the limiting block 51 is not limited to an elastic piece.
  • the limiting block 51 may also be a spring, an elastic rubber ball, etc., as long as the limiting block 51 can limit the The flight control module 20 may be moved in the first direction.
  • the limiting block 51 and the mounting plate 10 may be integrally formed. It should be noted that, according to actual conditions, in some other embodiments, the limiting block 51 and the mounting plate 10 may also be connected by bonding or bolting.
  • the first positioning structure 60 is used to restrict the movement of the flight control module 20 in the second direction.
  • the first positioning structure 60 is located on the reference line S, and the thrust structure 30 are respectively located on both sides of the flight control module 20.
  • the first positioning structure 60 includes a first positioning portion 61 provided on the substrate 22 and a second positioning portion 62 provided on the reference surface 11.
  • the first positioning portion 61 and the second positioning portion 62 are in line contact with each other to restrict the movement of the flight control module 20 in a direction parallel to the reference plane 11, that is, the flight control module 20 is restricted Movement in the X and Y axis directions.
  • the first positioning portion 61 is a positioning post 610 having a circular arc surface
  • the second positioning portion 62 includes a positioning plate 620 provided on the reference surface 11 and opened on the base
  • the V-shaped groove 621 of the positioning plate 620, the opening of the V-shaped groove 621 faces the base plate 22, and the arc surface of the positioning post 620 abuts the groove wall of the V-shaped groove 621 to form line contact.
  • the arc surface of the positioning column 620 has a central axis O, and when the arc surface of the positioning column 620 comes into line contact with the groove wall of the V-shaped groove 621, the central axis O is perpendicular to the reference Face 11.
  • the V-shaped groove 621 has a first groove wall 6210 and a second groove wall 6211.
  • the first groove wall 6210 and the second groove wall 6211 are substantially perpendicular to the reference plane 11, the first groove wall 6210 and the second groove wall 6211 are disposed at a predetermined angle, and the predetermined clip The angle bisector of the angle coincides with the reference line S.
  • the central axis O intersects the reference line S at a point.
  • a line constraint on the flight control module 20 can be achieved to limit the two translational degrees of freedom of the flight control module 20, that is, movement in the X and Y axis directions in FIG.
  • the V-shaped groove 621 can realize that the central axis O of the cylindrical surface intersects the reference line S, and the V-shaped groove 621 and the positioning plate 620 can be directly formed on the mounting plate 10, so there is no need for mechanical processing, which can improve the efficiency of mass production.
  • the first positioning structure 60 includes a first positioning hole provided in the substrate 22, and a second positioning hole provided in the reference plane 10 and corresponding to the position of the first positioning hole And a positioning pin passing through the first positioning hole and the second positioning hole, preferably, the positioning pin is a conical pin.
  • the cooperation of the conical pin with the first positioning hole and the second positioning hole can realize the coaxial constraint of the first positioning hole and the second positioning hole, thereby restricting the position of the flight control module relative to the drone body, Limit the movement of the flight control module in the X and Y directions in Figure 2.
  • the taper of the conical pin makes the conical pin have good mechanical self-locking performance, accurate positioning, and more convenient for assembly and disassembly.
  • the second positioning structure 70 is used to restrict the 20 around a straight line perpendicular to the reference plane 11 (ie, the central axis O) Turn.
  • the second positioning structure 70 is located on the reference line S.
  • the second positioning structure 70 includes a third positioning portion provided on the substrate 22 and a fourth positioning portion provided on the reference surface 11.
  • the third positioning portion and the fourth positioning portion restrict the substrate 22 to rotate about a straight line perpendicular to the reference surface 11 through surface contact.
  • the third positioning portion is a first key slot 71
  • the fourth positioning portion is a flat key 72.
  • the flat key 72 is received in the first key slot 71, and the flat key 72 can abut the groove wall of the first key slot 71 to restrict the base plate 22 from being perpendicular to the reference plane 11 Straight line.
  • the first key groove 71 is provided on the surface of the substrate 22 facing the reference plane 11.
  • the first key slot 71 is U-shaped, that is, the opening of the first key slot 71 penetrates one side of the substrate 22, so that the flat key 72 is received in the first key slot 71.
  • the first key groove 71 and the flat key 72 are clearance-fitted, so that only a single side of the flat key 72 abuts the single groove wall of the first key groove 71, thereby effectively preventing The occurrence of over-constraint phenomenon.
  • the first abutment surface 710 of the first key slot 71 that is, the groove wall of the first key slot 71
  • the second abutment surface 720 of the flat key 72 that is, one side surface of the flat key
  • the flat key 72 has two functions. First, it can provide a function similar to the guide of the slide rail, so that during the assembly process, the substrate 22 can be quickly aligned with the reference surface 11 to complete positioning. Second, through reasonable tolerance fit design (gap fit between the flat key 72 and the first key slot 71), the phenomenon of over-constraint can be effectively prevented.
  • the fourth positioning portion may further include a second key groove 73 provided on the surface of the reference surface 11 facing the substrate 22.
  • the flat key 72 is disposed in the second key slot 73.
  • the flat key 72 can also be directly formed on the reference surface 11, that is, the flat key 72 can also be integrally formed with the mounting plate 10.
  • the height value of the limit block 51 and the height value of the positioning plate 620 are greater than the height value of the flat key, so that When the mounting plate is assembled, the mounting plate 10 is first positioned with the limiting block 51 and the positioning plate 620.
  • the elastic spacer 40 is embedded in an area surrounded by the snap structure 30, the thrust structure 50, the first positioning structure 60, and the second positioning structure 70.
  • a basic alignment operation needs to be performed, that is, the first key slot 71 is aligned with the flat key 72 and the positioning post 620 is aligned with the V-shaped slot 621, and then the flight control module 20 is pressed down so that The base plate 22 is in contact with the third guide inclined surface 510 of the limit block 51 and / or the first guide inclined surface 312 of the locking portion 311 to facilitate the limit block 51 to generate thrust to the flight control module 20 and ensure the positioning post 620 and the V shape The groove 621 fits tightly. Finally, press the flight control module 20 into the buckle 31 from above to realize the installation and positioning of the flight control module 20.
  • the flight control component proposed by the invention solves the problems of fast and accurate positioning and installation of the flight control module, can realize tool-free installation, simplifies the process of mass production of unmanned aerial vehicles and improves the efficiency of mass production.
  • the flight control assembly proposed by the present invention can realize "one calibration and multiple loading, unloading and maintenance". That is, even after repeated disassembly and installation, the flight control assembly of the present invention can ensure that the positioning position remains unchanged and maintain a certain positioning accuracy, so the calibration and calibration steps after each disassembly during the later maintenance can be omitted, simplifying the later stage Loading and unloading maintenance process.
  • the present invention realizes the precise installation and positioning of the flight control module through plane constraint, coaxial constraint and point constraint, and realizes complete constraint on the flight control module with full freedom and high-precision positioning. It has the advantages of simple and convenient operation and low machining cost.

Abstract

一种无人机(500)及其飞控组件(400),其中,所述飞控组件(400),包括飞控模块(20)和设于所述无人机(500)的安装板(10),所述飞控模块(20)通过卡扣结构(30)安装于所述安装板(10)上。通过上述方式,可实现所述飞控组件(400)的飞控模块(20)与安装板(10)拆装方便,效率较高。

Description

一种无人机及其飞控组件
【相关申请交叉引用】
本申请要求于2018年10月10日申请的、申请号为201811180095.4、申请名称为“一种无人机及其飞控组件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
【技术领域】
本发明涉及无人机技术领域,尤其涉及一种无人机及其飞控组件。
【背景技术】
无人机是涵盖飞行控制、视觉算法、云台控制等多学科领域的复杂系统,各功能子系统的模块化与标准化,有利于加速无人机的研发与生产制造过程,方便后期的使用与维护。
飞行控制模块(下文统称为飞控模块)是无人机系统中重要的子系统,其主要功能是测量无人机飞行姿态等状态信息,并实时控制无人机的飞行。为了保证测量的精确性,无人机在安装飞控模块后,必须先进行飞控模块的标定与校准。
目前已有的商用飞控模块安装方式只有胶粘与螺纹固定两种。胶粘式安装方案的可靠性低,而螺纹固定式安装方案虽然提高了可靠性,但仍不能保证大批量生产装配过程中飞控模块的定位精度。即,在大批量生产中,不同无人机中飞控模块的安装位置并不能保证完全相同。因此,对于大批量生产中的每一台无人机,均需要花费大量的时间对飞控模块进行标定与校准,这无疑降低了装配效率。且在后期飞控模块的使用与维护过程中,无法实现“一次标定校准,多次装卸维护”。
【发明内容】
为了解决上述技术问题,本发明实施例提供一种无人机及其飞控组件, 所述飞控组件的飞控模块与安装板拆装方便,效率较高。
为了解决上述技术问题,本发明实施例提供以下技术方案:
一方面,提供一种飞控组件,包括飞控模块和设于所述无人机的安装板,所述飞控模块通过卡扣结构安装于所述安装板上。
在一些实施例中,所述卡扣结构包括至少两个设于所述安装板上的卡扣,所述至少两个卡扣分别与所述飞控模块卡接,且所述至少两个卡扣分别设置在所述飞控模块的两侧。
在一些实施例中,所述至少两个卡扣中的任意一个卡扣均包括与所述安装板相连的主体部以及自所述主体部向所述飞控模块弯折延伸的卡扣部。
在一些实施例中,所述卡扣部与所述主体部大体垂直。
在一些实施例中,所述卡扣部与所述主体部一体成型。
在一些实施例中,所述卡扣部具有第一导向斜面,所述第一导向斜面向所述安装板倾斜。
在一些实施例中,所述飞控模块上设有与所述第一导向斜面配合的第二导向斜面。
在一些实施例中,所述卡扣为弹性卡扣。
在一些实施例中,所述飞控组件还包括设于所述飞控模块与所述安装板之间的弹性垫片,所述弹性垫片在所述飞控模块与所述安装板相连时处于压缩状态。
在一些实施例中,所述飞控组件还包括止推结构,所述止推结构用于限制所述飞控模块沿平行于所述安装板的第一方向移动。
在一些实施例中,所述止推结构包括设于所述安装板上的限位块,所述限位块设于所述飞控模块的一侧。
在一些实施例中,所述限位块具有向所述安装板倾斜的第三导向斜面。
在一些实施例中,所述飞控模块上设有与所述第三导向斜面配合的第四导向斜面。
在一些实施例中,所述限位块的数量为2,两个所述限位块间隔设置。
在一些实施例中,所述飞控组件还包括第一定位结构,所述第一定位结构用于限制所述飞控模块沿平行于所述安装板的第二方向移动,所述第二方向与所述第一方向相反。
在一些实施例中,所述第一定位结构包括设于所述飞控模块上的第一定位部和设于所述安装板上的第二定位部,所述第一定位部和所述第二定位部通过线接触,以限制所述飞控模块沿平行于所述安装板的方向移动。
在一些实施例中,所述第一定位部为具有圆弧面的定位柱,所述第二定位部包括设于所述安装板上的定位板和开设于所述定位板的V形槽,所述V形槽的开口朝向所述飞控模块,所述定位柱的圆弧面与所述V形槽的槽壁抵接以形成线接触。
在一些实施例中,所述飞控模块包括基板,所述定位柱设于所述基板。
在一些实施例中,所述飞控模块还包括基板,所述第一定位结构包括设于所述基板的第一定位孔、设于所述安装板且与所述第一定位孔位置对应的第二定位孔以及穿过所述第一定位孔和所述第二定位孔的定位销。
在一些实施例中,所述定位销为圆锥销。
在一些实施例中,所述飞控组件还包括第二定位结构,所述第二定位结构用于限制所述飞控模块绕垂直于所述安装板的直线转动。
在一些实施例中,所述第二定位结构包括设于所述飞控模块的第三定位部和设于所述安装板的第四定位部,所述第三定位部和所述第四定位部通过面接触限制所述飞控模块绕垂直于所述安装板的直线转动。
在一些实施例中,所述第三定位部为第一键槽,所述第四定位部为平键。
在一些实施例中,所述第一键槽与所述平键间隙配合。
在一些实施例中,所述第一键槽呈U形。
在一些实施例中,所述第四定位部还包括第二键槽,所述平键设于所述第二键槽内。
在一些实施例中,所述第一定位结构和所述第二定位结构位于同一条直线上。
另一方面,提供一种无人机,包括机身、与所述机身相连的机臂、设于所述机臂的动力装置,其特征在于,所述无人机还包括如上所述的飞控组件。
本发明提出的飞控组件,解决了飞控模块的快速精确定位及安装的问题,简化了无人机批量装配生产的流程,提高了大批量生产的效率。且本发明提出的飞控组件,可实现“一次标定校准,多次装卸维护”。即,即使经过多次拆卸和安装,本发明的飞控组件仍然可保证定位精度不变,因此可省略每 一次拆装后的标定和校准步骤,简化了后期装卸维护的流程。同时,本发明通过平面约束、同轴约束及点约束来实现飞控模块的精确安装和定位,实现了对飞控模块全自由度的完整约束及较高精度的定位。具有操作简单方便,机械加工成本低等优点。
【附图说明】
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本发明其中一实施例提供的一种无人机的结构示意图;
图2为图1所示的无人机的飞控组件的立体结构示意图;
图3为图2所示的飞控组件的俯视图;
图4为图2所示的飞控组件的分解图;
图5为图4所示的飞控组件另一角度的分解图;
图6为图2所示的飞控组件在一些其他的实施例中的分解图,其中部分零部件被省略。
【具体实施方式】
为了便于理解本发明,下面结合附图和具体实施方式,对本发明进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”、“内”、“外”以及类似的表述只是为了说明的目的。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是用于限制本发明。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1,本发明其中一实施例提供一种无人机500,所述无人机500包括:机身100,与所述机身100相连的机臂200,设于所述机臂200的动力装置300,以及设于所述机身100的飞控组件400。其中,所述机臂200与所述机身100可以是固定连接、一体成型、也可以是可拆卸或以可相对于所述机身100折叠的方式连接。所述动力装置300通常包括电机和与电机的电机轴相连的螺旋桨。电机驱动螺旋桨旋转以提供所述无人机500飞行的升力。在一些其他的实施例中,所述无人机500也可以是固定翼无人机。
请参阅图2至图5,所述飞控组件400包括安装板10,飞控模块20,卡扣结构30。其中,所述飞控模块20通过所述卡扣结构30安装于所述安装板10。在本发明的一实施例中,所述安装板10具有朝向所述飞控模块20的基准面11。在本实施例中,基准面11为安装板10上经过加工使其具有一定平面度的平面。需要说明的是,所述安装板10可以是设于所述机身100内的单独的一个部件,也可以是在所述机身100内加工出的一个部分。
如图4所示,在本发明的一实施例中,所述飞控模块20包括飞控模块主体21以及与所述飞控模块主体21相连的基板22。基板22的用于安装所述飞控模块主体21的平面尺寸略大于飞控模块主体21与基板22接触的平面尺寸。需要说明的是,所述基板22可以是单独的零部件,也可以与所述飞控模块主体21一体成型。在其他可能的实施例中,基板22也可以省略。
所述飞控模块主体21内设有飞控系统,飞控系统(图未示出)用于稳定无人机500的飞行姿态并控制无人机500自主或半自主飞行。飞控系统可以实时采集无人机各传感器测量的飞行状态数据、接收控制终端发来的控制指令及数据,并将该控制指令和数据输出给执行机构(例如动力装置300)以实现对无人机飞行姿态或执行任务的控制。
如图2-图4所示,在本发明的一实施例中,所述卡扣结构30与所述基板22相卡接。当省略基板22时,卡扣结构30也可以与飞控模块主体21直接卡接。
在本发明的一实施例中,所述卡扣结构30包括至少两个设于所述基准面11上的卡扣31,所述至少两个卡扣31对称设于所述飞控模块20的两侧。较优地,在本发明的一实施例中,所述卡扣结构30包括4个卡扣31,4个卡扣31相对于基准线S对称设置。即,两对卡扣31分别设置于所述基板22的两 侧,可以使所述基板22的两侧受力均匀,防止所述基板22的两侧之间的任意一侧因受力不均导致的相对于所述基准面11的翘起。基准线S为本发明方便描述所定义的一条过所述安装板10对称中心的虚拟的直线,其平行于所述安装板10的较长的侧边。
如图4所示,在本发明的一实施例中,所述至少两个卡扣31中的任意一个卡扣31均包括与所述基准面11相连的主体部310以及自所述主体部310向所述飞控模块20弯折延伸的卡扣部311。优选地,所述卡扣部311与所述主体部310大体垂直。
在本实施例中,所述卡扣部311具有第一导向斜面312。所述第一导向斜面312背离所述基准面11设置,且所述第一导向斜面312自其远离所述飞控模块20的一端朝其靠近所述飞控模块20的一端倾斜,以使得所述飞控模块20从上至下安装至安装板10时,阻力更小,安装更加顺畅。在本发明的一实施例中,基板22上与第一导向斜面312相对应的位置还可以设有第二导向斜面220,第二导向斜面220与第一导向斜面312的倾斜方向和角度相同,能够进一步减小安装的阻力。
卡合到位之后,所述基板22位于所述卡扣部311与所述基准面11之间,使得所述飞控模块20被固定于安装板10上。
在本实施例中,所述卡扣31为弹性卡扣,可由具有一定弹性的塑料材质制得。可以理解的是,根据实际情况,所述卡扣31并不仅限为塑料材质,也可由其他金属、非金属或者两者结合的复合材料制得,只要所述卡扣31具有弹性即可。
在本发明的一实施例中,卡扣31与安装板10可以一体成型。在其他可能的实施例中,卡扣31与安装板10也可以通过粘接、螺接等方式固定连接。卡扣31与安装板10一体成型可以减少加工的成本。在本实施例中,所述卡扣部311与所述主体部310一体成型。可以理解的是,由于一体成型的卡扣31一般为塑料材质,在所述飞控模块20与所述安装板10拆装次数过多的情况下,容易导致所述卡扣31疲劳断裂。因此,在其它可能实施例中,所述卡扣部311与所述主体部310还可以通过铰链连接,虽然卡扣部311与主体部310铰接可避免因所述飞控模块与所述安装板10拆装过多导致的卡扣31断裂,但是精度不如一体成型的卡扣31高。
为避免主体部310过高引起的卡扣部311与基板22之间出现的空隙,所述飞控组件400还包括设于所述飞控模块20与所述安装板10之间的弹性垫片40。所述弹性垫片40夹持于所述基板22与所述基准面11之间。
所述弹性垫片40在所述飞控模块20安装于所述安装板10时处于压缩状态,从而给所述飞控模块20提供一弹性预紧力,使得飞控模块20与安装板10之间的连接更加牢固。所述弹性垫片40可由具有一定弹性的塑胶、海绵等材质制得。所述弹性垫片40在所述基板22与所述安装板10相连时处于压缩状态,以向所述基板22提供背离所述基准面11的预紧力,所述基板22与所述卡扣部311紧密接触,使得所述基板22在沿垂直于所述基准面11的方向上相对于所述安装板10固定。值得说明的是,通过在所述基板22与所述基准面11之间设置所述弹性垫片40,可以使所述基板22与所述卡扣部311紧密接触,以达到使所述基板22相对所述基准面11固定,从另一侧来说,很难保证所述卡扣部311与所述基准面11的距离值完全匹配所述基板22的厚度值,以达到使所述基板22相对所述基准面11固定的目的,所以,通过在所述基准面11与所述基板22之间设置弹性垫片40,所述卡扣部311与所述基准面11的距离值只需要略大于所述基板22的厚度值即可,加工难度低。
本发明的卡扣结构30可限制飞控模块20沿Z轴向远离所述安装板10的方向移动、以及限制所述飞控模块20绕X轴和绕Y轴的转动。因此,卡扣结构30可以限制飞控模块20的三个自由度。且卡扣结构30能够简化飞控模块20的安装操作,实现飞控模块20的免工具快速安装。
如图2所示,在本发明的一实施例中,所述飞控组件400还包括止推结构50,第一定位结构60,以及第二定位结构70。其中,所述止推结构50用于限制所述基板22沿平行于所述基准面11的第一方向移动(即图2中X轴的负方向),所述第一方向平行于所述基准线S。
所述止推结构50、所述第一定位结构60以及所述第二定位结构70用于对所述飞控模块20进行定位,使所述飞控模块20在所述安装板10上占据确定位置。即本发明提出的飞控组件,可实现“一次标定校准,多次装卸维护”。具体来说,即使经过多次拆卸和安装,本发明的飞控组件仍然可保证定位位置不变,保持一定的定位精度,因此可省略后期维护时每一次拆装后的标定和校准步骤,简化了后期装卸维护的流程。
在本发明的一实施例中,所述止推结构50包括设于所述安装板10的基准面11上的限位块51。所述限位块51抵接于所述飞控模块20的基板22,所述限位块51位于所述基板22的一侧。在一些其他的实施例中,所述基板22朝向所述基准面11的表面设置有用于收容所述限位块51的收容槽,所述限位块51可收容于所述收容槽并抵接于所述收容槽的槽壁。
在本发明的一实施例中,所述限位块51的数量为2,两个所述限位块51间隔设置,较优地,两个所述限位块51相对于所述基准线S对称分布。在本发明的一实施例中,所述限位块51具有第三导向斜面510。所述第三导向斜面510背离所述基准面11,并且所述第三导向面510自其远离所述飞控模块20的一端朝其靠近所述飞控模块20的一端倾斜,以使得所述基板22与所述安装板10在安装时更加方便。在一些其他的实施例中,如图6所示,基板22上在与所述第三导向斜面510对应的位置还可以设置第四导向斜面221,第四导向斜面221与第三导向斜面510的倾斜方向和角度相同,以进一步方便安装。
所述限位块51可由具有一定弹性的材质制得,在本实施例中,所述限位块51为弹片,在所述限位块51沿所述第一方向抵接于所述基板22时,所述限位块51朝远离所述基板22的一侧轻微弯折,以向所述基板22提供朝所述第二方向的推力,所述第二方向与第一方向相反(第二方向为图2中X轴的正方向)。可以理解的是,根据实际情况,所述限位块51并不限制为弹片,例如,所述限位块51还可以为弹簧、弹性橡胶球等,只要所述限位块51能够限制所述飞控模块20沿第一方向的移动即可。
在本实施例中,所述限位块51与所述安装板10可一体成型。需要说明的是,根据实际情况,在一些其他的实施例中,所述限位块51与所述安装板10还可以通过粘接、螺栓连接等。
如图2-图4所示,所述第一定位结构60用于限制所述飞控模块20沿第二方向移动。
所述第一定位结构60位于所述基准线S上,与所述止推结构30分别位于所述飞控模块20的两侧。在本发明的一实施例中,所述第一定位结构60包括设于所述基板22上的第一定位部61和设于所述基准面11上的第二定位部62。所述第一定位部61与所述第二定位部62通过线接触,以限制所述飞 控模块20沿平行于所述基准面11的方向移动,即限制所述飞控模块20沿图2中X和Y轴方向的移动。
在本发明的一实施例中,所述第一定位部61为具有圆弧面的定位柱610,所述第二定位部62包括设于所述基准面11上的定位板620和开设于所述定位板620的V形槽621,所述V形槽621的开口朝向所述基板22,所述定位柱620的圆弧面与所述V形槽621的槽壁抵接以形成线接触。
具体地,所述定位柱620的圆弧面具有中轴线O,当所述定位柱620的圆弧面与所述V形槽621的槽壁形成线接触时,所述中轴线O垂直于基准面11。所述V形槽621具有第一槽壁6210和第二槽壁6211。所述第一槽壁6210与所述第二槽壁6211大体垂直所述基准面11,所述第一槽壁6210与所述第二槽壁6211呈预设夹角设置,所述预设夹角的角平分线与所述基准线S相重合。在所述定位柱620的圆柱面同时与所述第一槽壁6210、所述第二槽壁6211线接触时,所述中轴线O与所述基准线S相交于一点。
V形槽621与定位柱620圆弧面的配合可实现自动找中,即,不需要精确对准,通过V形槽621与定位柱620的作用,定位柱620的中轴线O最终会落在V形槽621的角平分线上,从而实现快速定位。此外,结合止推结构30,可以实现对飞控模块20的线约束,限制飞控模块20的两个平动自由度,即图2中沿X和Y轴方向的移动。
需要说明的是,所述V形槽621可以实现所述圆柱面的中轴线O与所述基准线S相交,并且所述V形槽621与所述定位板620可以直接成型于所述安装板10,因此无需进行机械加工,能够提高大批量生产的效率。
在一些其他的实施例中,所述第一定位结构60包括设于所述基板22的第一定位孔、设于所述基准面10且与所述第一定位孔位置对应的第二定位孔以及穿过所述第一定位孔和所述第二定位孔的定位销,优选地,所述定位销为圆锥销。圆锥销与第一定位孔以及第二定位孔的配合,可以实现第一定位孔与第二定位孔的同轴约束,从而限制所述飞控模块相对于无人机机身的位置,即可限制飞控模块在图2中沿X方向和Y方向上的移动。同时,圆锥销具有的锥度,使得圆锥销具备良好的机械自锁性能,定位精确,装拆也更加方便。
如图4所示,在本发明的一实施例中,所述第二定位结构70用于限制所 述20绕垂直于所述垂直于所述基准面11的直线(即所述中轴线O)转动。
所述第二定位结构70位于所述基准线S上,所述第二定位结构70包括设于所述基板22的第三定位部和设于所述基准面11的第四定位部。所述第三定位部和所述第四定位部通过面接触限制所述基板22绕垂直于所述基准面11的直线转动。
在本发明的一实施例中,所述第三定位部为第一键槽71,所述第四定位部为平键72。所述平键72收容于所述第一键槽71,并且所述平键72可通过抵接于所述第一键槽71的槽壁,以限制所述基板22绕垂直于所述基准面11的直线转动。
所述第一键槽71设置于所述基板22朝向所述基准面11的表面。优选地,所述第一键槽71呈U形,即所述第一键槽71的开口贯通所述基板22的一侧边,以便于所述平键72收容于所述第一键槽71。
在本发明的一实施例中,所述第一键槽71与所述平键72间隙配合,因此所述平键72只有单个侧面与所述第一键槽71的单个槽壁抵接,从而有效防止了过约束现象的产生。例如,所述第一键槽71的第一抵接面710(即所述第一键槽71的槽壁)与所述平键72的第二抵接面720(即所述平键的一个侧面)抵接。
值得说明的是,所述平键72具有两个作用。一是可以提供类似于滑轨导向的作用,使得在装配过程中,所述基板22能够快速对准所述基准面11,完成定位。二是,通过合理的公差配合设计(所述平键72与所述第一键槽71之间的间隙配合),有效防止过约束现象的产生。
在本实施例中,所述第四定位部还可以包括第二键槽73,所述第二键槽73设于所述基准面11朝向所述基板22的表面。所述平键72设于所述第二键槽73内。在其他可能的实施例中,所述平键72还可以直接成型于所述基准面11,即所述平键72还可以与所述安装板10一体成型。
在本实施例中,以所述基准面11为参考,所述限位块51的高度值和所述定位板620的高度值均大于所述平键的高度值,使得在所述基板与所述安装板在装配时,所述安装板10先与所述限位块51、所述定位板620进行定位。
所述飞控组件400在装配时,具体过程如下:
首先,将弹性垫片40嵌入由卡扣结构30、止推结构50、第一定位结构 60和第二定位结构70围合形成的区域中。在装入飞控模块20之前需要做基本的对齐操作,即,分别将第一键槽71对准平键72以及将定位柱620对准V形槽621,然后向下压入飞控模块20使其基板22与限位块51的第三导向斜面510和/或卡扣部311的第一导向斜面312接触,以方便限位块51对飞控模块20产生推力,保证定位柱620与V形槽621紧密配合。最后从上往下将飞控模块20压入卡扣31中,实现飞控模块20的安装与定位。
本发明提出的飞控组件,解决了飞控模块的快速精确定位及安装的问题,可实现免工具安装,简化了无人机批量装配生产的流程,提高了大批量生产的效率。且本发明提出的飞控组件,可实现“一次标定校准,多次装卸维护”。即,即使经过多次拆卸和安装,本发明的飞控组件仍然可保证定位位置不变,保持一定的定位精度,因此可省略后期维护时每一次拆装后的标定和校准步骤,简化了后期装卸维护的流程。同时,本发明通过平面约束、同轴约束及点约束来实现飞控模块的精确安装和定位,实现了对飞控模块全自由度的完整约束及较高精度的定位。具有操作简单方便,机械加工成本低等优点。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (28)

  1. 一种飞控组件,其特征在于,包括飞控模块和设于所述无人机的安装板,所述飞控模块通过卡扣结构安装于所述安装板上。
  2. 根据权利要求1所述的飞控组件,其特征在于,所述卡扣结构包括至少两个设于所述安装板上的卡扣,所述至少两个卡扣分别与所述飞控模块卡接,且所述至少两个卡扣分别设置在所述飞控模块的两侧。
  3. 根据权利要求2所述的飞控组件,其特征在于,所述至少两个卡扣中的任意一个卡扣均包括与所述安装板相连的主体部以及自所述主体部向所述飞控模块弯折延伸的卡扣部。
  4. 根据权利要求3所述的飞控组件,其特征在于,所述卡扣部与所述主体部大体垂直。
  5. 根据权利要求3或4所述的飞控组件,其特征在于,所述卡扣部与所述主体部一体成型。
  6. 根据权利要求3-5中任一项所述的飞控组件,其特征在于,所述卡扣部具有第一导向斜面,所述第一导向斜面向所述安装板倾斜。
  7. 根据权利要求6所述的飞控组件,其特征在于,所述飞控模块上设有与所述第一导向斜面配合的第二导向斜面。
  8. 根据权利要求2-7中任一项所述的飞控组件,其特征在于,所述卡扣为弹性卡扣。
  9. 根据权利要求1-8中任一项所述的飞控组件,其特征在于,所述飞控组件还包括设于所述飞控模块与所述安装板之间的弹性垫片,所述弹性垫片在所述飞控模块与所述安装板相连时处于压缩状态。
  10. 根据权利要求1-9中任一项所述的飞控组件,其特征在于,所述飞控组件还包括止推结构,所述止推结构用于限制所述飞控模块沿平行于所述安装板的第一方向移动。
  11. 根据权利要求10所述的飞控组件,其特征在于,所述止推结构包括设于所述安装板上的限位块,所述限位块设于所述飞控模块的一侧。
  12. 根据权利要求11所述的飞控组件,其特征在于,所述限位块具有向所述安装板倾斜的第三导向斜面。
  13. 根据权利要求12所述的飞控组件,其特征在于,所述飞控模块上设有与所述第三导向斜面配合的第四导向斜面。
  14. 根据权利要求11-13中任一项所述的飞控组件,其特征在于,所述限位块的数量为2,两个所述限位块间隔设置。
  15. 根据权利要求10-14中任一项所述的飞控组件,其特征在于,所述飞控组件还包括第一定位结构,所述第一定位结构用于限制所述飞控模块沿平行于所述安装板的第二方向移动,所述第二方向与所述第一方向相反。
  16. 根据权利要求15所述的飞控组件,其特征在于,所述第一定位结构包括设于所述飞控模块上的第一定位部和设于所述安装板上的第二定位部,所述第一定位部和所述第二定位部通过线接触,以限制所述飞控模块沿平行于所述安装板的方向移动。
  17. 根据权利要求16所述的飞控组件,其特征在于,所述第一定位部为具有圆弧面的定位柱,所述第二定位部包括设于所述安装板上的定位板和开设于所述定位板的V形槽,所述V形槽的开口朝向所述飞控模块,所述定位柱的圆弧面与所述V形槽的槽壁抵接以形成线接触。
  18. 根据权利要求17所述的飞控组件,其特征在于,所述飞控模块包括基板,所述定位柱设于所述基板。
  19. 根据权利要求15所述的飞控组件,其特征在于,所述飞控模块还包括基板,所述第一定位结构包括设于所述基板的第一定位孔、设于所述安装板且与所述第一定位孔位置对应的第二定位孔以及穿过所述第一定位孔和所述第二定位孔的定位销。
  20. 根据权利要求19所述的飞控组件,其特征在于,所述定位销为圆锥销。
  21. 根据权利要求15-20中任一项所述的飞控组件,其特征在于,所述飞控组件还包括第二定位结构,所述第二定位结构用于限制所述飞控模块绕垂直于所述安装板的直线转动。
  22. 根据权利要求21所述的飞控组件,其特征在于,所述第二定位结构包括设于所述飞控模块的第三定位部和设于所述安装板的第四定位部,所述第三定位部和所述第四定位部通过面接触限制所述飞控模块绕垂直于所述安装板的直线转动。
  23. 根据权利要求22所述的飞控组件,其特征在于,所述第三定位部为第一键槽,所述第四定位部为平键。
  24. 根据权利要求23所述的飞控组件,其特征在于,所述第一键槽与所述平键间隙配合。
  25. 根据权利要求23或24所述的飞控组件,其特征在于,所述第一键槽呈U形。
  26. 根据权利要求23-25中任一项所述的飞控组件,其特征在于,所述第四定位部还包括第二键槽,所述平键设于所述第二键槽内。
  27. 根据权利要求21-26中任一项所述的飞控组件,其特征在于,所述第一定位结构和所述第二定位结构位于同一条直线上。
  28. 一种无人机,包括机身、与所述机身相连的机臂、设于所述机臂的动力装置,其特征在于,所述无人机还包括如权利要求1-27中任一项所述的飞控组件。
PCT/CN2019/104238 2018-10-10 2019-09-03 一种无人机及其飞控组件 WO2020073755A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811180095.4 2018-10-10
CN201811180095.4A CN109094798A (zh) 2018-10-10 2018-10-10 一种无人机及其飞控组件

Publications (1)

Publication Number Publication Date
WO2020073755A1 true WO2020073755A1 (zh) 2020-04-16

Family

ID=64868391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104238 WO2020073755A1 (zh) 2018-10-10 2019-09-03 一种无人机及其飞控组件

Country Status (2)

Country Link
CN (1) CN109094798A (zh)
WO (1) WO2020073755A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108974372A (zh) * 2018-10-10 2018-12-11 深圳市道通智能航空技术有限公司 飞控模块安装结构、飞控组件及无人机
CN109094798A (zh) * 2018-10-10 2018-12-28 深圳市道通智能航空技术有限公司 一种无人机及其飞控组件
CN109823554A (zh) * 2019-04-02 2019-05-31 福建电力职业技术学院 一种无人机飞控舱模块化快速拆装结构
KR102584876B1 (ko) * 2021-11-15 2023-10-05 한국항공우주연구원 무인기용 비행제어컴퓨터 보호장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204776051U (zh) * 2015-06-24 2015-11-18 哈瓦国际航空技术(深圳)有限公司 一种无人机机舱结构
CN206446801U (zh) * 2016-12-02 2017-08-29 深圳市九天创新科技有限责任公司 适用于多旋翼无人机的专用飞控减震结构
CN107380418A (zh) * 2017-08-10 2017-11-24 河南谷翼自动化科技有限公司 一种模块化装配四轴植保无人机
US20180022451A1 (en) * 2016-05-27 2018-01-25 Uvify Co., Ltd. Unmanned aerial vehicle
CN109094798A (zh) * 2018-10-10 2018-12-28 深圳市道通智能航空技术有限公司 一种无人机及其飞控组件
CN209441667U (zh) * 2018-10-10 2019-09-27 深圳市道通智能航空技术有限公司 一种无人机及其飞控组件

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203607383U (zh) * 2013-12-10 2014-05-21 科思通自动化设备(苏州)有限公司 一种smd托盘定位治具
CN103818544B (zh) * 2014-01-24 2016-05-18 深圳一电航空技术有限公司 无人机、无人机机身及其制造方法
CN205010500U (zh) * 2015-08-10 2016-02-03 普宙飞行器科技(深圳)有限公司 一种无人飞行器的云台快拆装置
KR101615169B1 (ko) * 2015-11-23 2016-04-25 주식회사 사이엑스 조립성과 내구성이 향상된 학습교구용 드론
CN205747377U (zh) * 2016-06-27 2016-11-30 广东美的制冷设备有限公司 电控板安装结构及具有该电控板安装结构的电器设备
CN106448751B (zh) * 2016-07-12 2018-02-13 华能山东石岛湾核电有限公司 一种高温气冷堆金属堆内构件堆芯壳支承结构及安装方法
CN206171827U (zh) * 2016-08-26 2017-05-17 北京三足航空电子有限公司 一种无人机自动驾驶仪的安装架
EP3550214B1 (en) * 2016-12-05 2023-03-29 Mitsubishi Electric Corporation Outdoor unit of air conditioning device
CN207881112U (zh) * 2017-12-26 2018-09-18 奥克斯空调股份有限公司 一种空调器及其电控盒

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204776051U (zh) * 2015-06-24 2015-11-18 哈瓦国际航空技术(深圳)有限公司 一种无人机机舱结构
US20180022451A1 (en) * 2016-05-27 2018-01-25 Uvify Co., Ltd. Unmanned aerial vehicle
CN206446801U (zh) * 2016-12-02 2017-08-29 深圳市九天创新科技有限责任公司 适用于多旋翼无人机的专用飞控减震结构
CN107380418A (zh) * 2017-08-10 2017-11-24 河南谷翼自动化科技有限公司 一种模块化装配四轴植保无人机
CN109094798A (zh) * 2018-10-10 2018-12-28 深圳市道通智能航空技术有限公司 一种无人机及其飞控组件
CN209441667U (zh) * 2018-10-10 2019-09-27 深圳市道通智能航空技术有限公司 一种无人机及其飞控组件

Also Published As

Publication number Publication date
CN109094798A (zh) 2018-12-28

Similar Documents

Publication Publication Date Title
WO2020073755A1 (zh) 一种无人机及其飞控组件
AU2019257691B2 (en) Clip-on propeller mount
US10780975B2 (en) Clip-on propeller mount
CN108001668B (zh) 螺旋桨、螺旋桨套件、动力组件、动力套件及无人机
US8477504B2 (en) Systems and methods for blind-mate connector alignment
WO2021078267A1 (zh) 一种无人飞行器
US20060268509A1 (en) Apparatus and method for securing a component in an information handling system
WO2017201713A1 (zh) 运动传感器的安装装置及无人飞行器
WO2020134235A1 (zh) 一种无人飞行器及其机翼组件
CN113514082B (zh) 微半球谐振陀螺结构装配夹具、装配系统及装配方法
WO2020073798A1 (zh) 飞控模块安装结构、飞控组件及无人机
CN209441667U (zh) 一种无人机及其飞控组件
WO2019007101A1 (zh) 飞行器、倾转驱动机构及其控制方法
US10005543B2 (en) Actuator for flight control surface
CN106218884B (zh) 可拼接式便携多旋翼飞行器
WO2020135796A1 (zh) 一种风扇组件、惯性测量组件以及无人飞行器
US20240045525A1 (en) Protective cover for control stick and remote controller
JP2021070469A (ja) ロータマウントアセンブリ、ロータシート、推進システム、および無人航空機(uav)
CN209126980U (zh) 飞控模块安装结构、飞控组件及无人机
US10669013B2 (en) Split gimbal
CN217455870U (zh) 传感器安装装置和车辆
WO2019144673A1 (zh) 镜头组件及移动终端
CN210912933U (zh) 一种固定翼无人机舵面测量装置
US5522575A (en) Servo case and mounting fixture therefor
CN212243865U (zh) 一种飞行器起降平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19870933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19870933

Country of ref document: EP

Kind code of ref document: A1