WO2017201713A1 - 运动传感器的安装装置及无人飞行器 - Google Patents

运动传感器的安装装置及无人飞行器 Download PDF

Info

Publication number
WO2017201713A1
WO2017201713A1 PCT/CN2016/083481 CN2016083481W WO2017201713A1 WO 2017201713 A1 WO2017201713 A1 WO 2017201713A1 CN 2016083481 W CN2016083481 W CN 2016083481W WO 2017201713 A1 WO2017201713 A1 WO 2017201713A1
Authority
WO
WIPO (PCT)
Prior art keywords
mounting
motion sensor
mounting bracket
damper
elastic member
Prior art date
Application number
PCT/CN2016/083481
Other languages
English (en)
French (fr)
Inventor
祁永泽
于云
杜少鹤
熊荣明
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201680002521.8A priority Critical patent/CN107074376B/zh
Priority to PCT/CN2016/083481 priority patent/WO2017201713A1/zh
Publication of WO2017201713A1 publication Critical patent/WO2017201713A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors

Definitions

  • Motion sensors are a common type of testing instrument and have applications in many industries. With the continuous development of technology, there are more and more types of motion sensors.
  • the commonly used motion sensors mainly include acceleration sensors, gyroscopes, geomagnetic sensors, and inertial measurement units (IMUs), among which IMU (Inertial Measurement Unit)
  • IMU Inertial Measurement Unit
  • the accelerometer and the gyro are included; wherein the accelerometer is used to detect the acceleration component of the object, the gyro is used to detect the angle information of the object; and the general IMU is installed at the center of gravity of the object.
  • the IMU With its ability to measure the three-axis attitude angle (or angular rate) of an object and acceleration, the IMU is often used as a core component of navigation and guidance, and is widely used in vehicles, ships, robots, and aircraft that require motion control.
  • the stiffness of the vibration-damping foam is relatively large, in the case of a limited weight, in order to achieve a good vibration-damping effect, it is necessary to use a column-shaped vibration-damping foam, that is, the vibration-reducing foam is required to have a large height and Small cross-sectional area.
  • the cross-sectional area of the damping foam decreases, the bonding area with the IMU becomes smaller, and the bonding force also becomes smaller.
  • the IMU and the counterweight are easily damped. The reliability of the connection of the damping foam is reduced.
  • the mounting device for the motion sensor and the unmanned aerial vehicle provided by the present invention can solve the problem that the motion sensor in the prior art is easily separated from the vibration-damping foam which acts as a vibration damping, and contributes to Improve the connection reliability of the motion sensor and the vibration damping mechanism.
  • a first aspect of the invention provides a mounting device for a motion sensor, comprising:
  • the plurality of damper mechanisms are respectively spaced apart, and each of the damper mechanisms includes an elastic member that abuts the mounting bracket to dampen the mounting bracket.
  • a second aspect of the present invention provides an unmanned aerial vehicle comprising: a motion sensor mounting device, a motion sensor, and a flight controller;
  • the mounting device of the motion sensor comprises: a mounting bracket, the motion sensor is mounted on the mounting bracket; and a plurality of damping mechanisms connected to the mounting bracket for damping the mounting bracket;
  • the plurality of damper mechanisms are respectively spaced apart, and each of the damper mechanisms includes an elastic member, and the elastic member abuts against the mounting bracket to dampen the mounting bracket;
  • the installation device and the unmanned aerial vehicle of the motion sensor provided by the invention can avoid the contradiction between the vibration damping effect and the connection reliability by reducing the cross-sectional area of the foam in the prior art installation form, that is, installing through the mounting bracket a motion sensor, and a plurality of elastic members of the damper mechanism disposed at a distance are abutted against the mounting frame, so that the elastic member of the damper mechanism closely abuts the mounting frame, and if the vibration damping effect needs to be adjusted, It is only necessary to adjust some or all of the damper mechanisms separately, so that the damper mechanism can adjust the vibration damping effect relatively easily, and does not affect the connection stability and reliability with the mounting bracket.
  • FIG. 1 is a schematic structural diagram of a mounting device for a motion sensor according to an embodiment of the present invention
  • FIG. 2 is a second schematic structural diagram of a mounting device for a motion sensor according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a third structure of a mounting device for a motion sensor according to an embodiment of the present invention.
  • FIG. 7 is a fourth structural schematic diagram of a mounting apparatus for a motion sensor according to an embodiment of the present invention.
  • Figure 8 is a schematic exploded view of Figure 7;
  • FIG. 9 is a schematic structural view of an unmanned aerial vehicle according to an embodiment of the present invention.
  • 1000-mounting frame 1010-mounting area; 1020-mounting body; 1030-damping bracket; 2000-damper mechanism; 2100-elastic member; 2110-damping ball; 2111-upper end; 2112-upper neck 2113-damper body; 2114-lower neck; 2115-lower end; 2200-weighted member; 3000-motion sensor; 4000-aircraft fuselage; 4100-main housing; 4200-arm housing; Propeller; 4122-motor; 5000-cover; 6010-first mounting hole; 6020-second mounting hole; 6030-third mounting hole; 6040-fifth mounting hole; 7000-control circuit board; 7100-flight controller .
  • first and second are used merely to facilitate the description of different components, and are not to be construed as indicating or implying a sequence relationship, relative importance or implicit indication.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the mounting frame 1000 can be made of plastic or other low-density materials to reduce the weight of the mounting device of the motion sensor, and contribute to the weight reduction of the aircraft.
  • This embodiment does not limit the specific structure of the mounting frame 1000. Those skilled in the art can set according to specific design requirements as long as the function of carrying the motion sensor 3000 can be realized.
  • the elastic member 2100 in the plurality of vibration damping mechanisms 2000 is composed of an elastic material having a certain damping effect.
  • the elastic material may be foam, silica gel, rubber or the like.
  • the elastic members 2100 of the plurality of damper mechanisms 2000 may have the same material.
  • the elastic members 2100 may be formed by a hot press molding process using a low-hardness silica material, which is easy to mass-produce, and the elastic member 2100 formed by the silica gel has stable performance. Strong anti-aging ability.
  • the material of the elastic member 2100 in the plurality of vibration damping mechanisms 2000 may be different.
  • the partial elastic member 2100 may be made of low-hardness silica gel, and the remaining elastic members 2100 may be made of foam. Those skilled in the art can set according to specific design requirements.
  • the mounting frame 1000 can be pressed by the elastic member 2100 on the carrier below the aircraft body 4000, and the elastic member 2100; the vibration deformation transmitted by the elastic member 2100 buffers the vibration transmitted by the aircraft body 4000 to the mounting frame 1000. Therefore, the vibration reduction of the mounting frame 1000 is realized, thereby achieving vibration damping of the motion sensor 3000, which helps to improve the accuracy of the measurement of the motion sensor 3000.
  • the elastic members 2100 of the plurality of damper mechanisms 2000 may all be damper balls; or the elastic members 2100 of the plurality of damper mechanisms 2000 may all be springs; or the elastic members 2100 of the plurality of damper mechanisms 2000 may Both are vibration damping pads; or the elastic member 2100 in the partial vibration damping mechanism 2000 is a vibration damping ball, and the elastic member 2100 in the other vibration damping mechanism 2000 is a spring; or the elastic member 2100 in the partial vibration damping mechanism 2000 is a vibration damping ball.
  • the gap not only effectively reduces the sway between the damper mechanism 2000 and the mounting frame 1000, but also further improves the vibration damping effect, and can also make the structure of the mounting device of the motion sensor more compact and slow down the space pressure of the arrangement of the whole machine.
  • the upper neck portion 2112 of the damper ball 2110 is first screwed into the threaded hole on the mounting frame 1000, and then the upper end portion 2111 of the damper ball 2110 and the upper neck portion 2112 are passed. Fit.
  • the lower neck portion 2114 may have a column shape; the outer diameter of the lower neck portion 2114 is larger than the inner diameter of the second mounting hole 6020, the lower neck portion 2114 is disposed in the second mounting hole 6020, and the lower neck portion 2114 and the second portion are mounted.
  • the interference fit of the hole 6020 makes the connection between the damper ball 2110 and the aircraft fuselage 4000 firm and reliable, effectively avoiding the detachment of the mounting frame 1000 and the damper mechanism from the aircraft fuselage 4000, thereby effectively avoiding the bearing on the mounting frame 1000.
  • the motion sensor 3000 and the damper mechanism 2000 are detached from the aircraft body 4000;
  • the motion sensor 3000 can be effectively prevented from being detached from the damper mechanism 2000, and the connection between the damper mechanism 2000 and the aircraft body 4000 is firm and reliable, thereby effectively preventing the motion sensor 3000 and the damper mechanism 2000 from being detached from the aircraft body 4000. .
  • the weight member 2200 can also be used to adjust the center of mass of the mounting frame 1000.
  • the weights of the weight members 2200 in the plurality of vibration damping mechanisms 2000 can also be different, by setting each weighting member.
  • the weight of 2200 makes the center of mass and geometric center of the mounting frame 1000 coincide. It should be noted that when the weights of the weight members 2200 in the plurality of vibration damping mechanisms 2000 are different, the distance between each weight member 2200 and the geometric center of the mounting frame 1000 is adjusted accordingly, so that the weight members are respectively adjusted.
  • the 2200 has the same inertia.
  • the inertia of the mounting frame 1000 is increased to reduce the influence of the vibration of the aircraft body 4000 on the mounting frame 1000, which helps to ensure the stability of the mounting frame 1000. Further, the vibration damping effect of the damper mechanism 2000 on the mounting frame 1000 is further improved.
  • the weight member 2200 can also be coupled to the elastic member 2100 in the damper mechanism 2000.
  • the elastic member 2100 in the damper mechanism 2000 can be a damper ball 2110.
  • the damper ball 2110 can include an upper end portion 2111 and an upper neck portion. 2112, the damping body 2113, the lower neck portion 2114 and the lower end portion 2115, the upper neck portion 2112 is connected between the upper end portion 2111 and the vibration damping body 2113; the weight member 2200 and the mounting frame 1000 are provided with a first mounting hole penetrating therethrough.
  • the upper neck portion 2112 of the damper ball 2110 is disposed in the first mounting hole 6010, and the upper end portion 2111 of the damper ball 2110 is caught on the weight member 2200, and between the upper neck portion 2112 and the first mounting hole 6010.
  • the first fitting gap is formed, and the damping body 2113 is pressed toward the side of the first fitting gap toward the damper ball 2110 toward the leading end of the upper neck portion 2112 to dampen the mounting frame 1000.
  • a mounting bracket mounting hole is formed on the weight member 2200, and a second mounting boss is formed on the surface of the mounting bracket 1000 facing the weight member 2200, and the second mounting boss is disposed in the mounting hole of the mounting bracket, and The outer diameter of the mounting boss is larger than the diameter of the mounting hole of the mounting bracket, thereby fixing the weight member 2200 on the mounting bracket 1000, thereby avoiding the disengagement of the weight member 2200 from the mounting bracket 1000.
  • the weight member 2200 can also be coupled to the elastic member 2100 in the damper mechanism 2000, and the elastic member 2100 in the damper mechanism 2000 can be the damper ball 2110.
  • the weight member 2200 is screwed to the mounting bracket 1000.
  • the mounting bracket 1000 can be provided with a fourth mounting hole, and the fourth mounting hole can be opened on the weight member 2200, and the fourth mounting hole on the mounting bracket 1000 and the weighting member 2200 are passed through the fastener.
  • the weight member 2200 is screwed to the mounting frame 1000, so that the connection between the weight member 2200 and the mounting frame 1000 in the vibration damping mechanism 2000 is firm and reliable, thereby effectively avoiding the motion sensor 3000 and damping. Agency 2000 is detached.
  • FIG. 6 is a schematic structural view of a mounting bracket in a mounting device of a motion sensor according to an embodiment of the present invention; referring to FIG. 6, on the basis of any one of Embodiments 1 to 17 above, the mounting bracket 1000 is provided for A mounting area 1010 of the motion sensor 3000 is mounted, and a plurality of damper mechanisms 2000 are disposed around the mounting area 1010.
  • the mounting frame 1000 may be in the form of a plate, such as a polygonal plate shape, a circular plate shape or an elliptical plate shape.
  • the middle portion of the mounting frame 1000 may be a mounting area 1010, and the mounting area 1010 may be a mounting groove formed by a recess.
  • the vibrating mechanism 2000 is disposed around the mounting slot, and the motion sensor 3000 is mounted in the mounting slot.
  • the plurality of damper mechanisms 2000 are symmetrically disposed about the mounting area 1010 to ensure that the mounting frame 1000 has better isotropic dynamic response characteristics under vibration conditions, which helps to maintain the stability of the mounting frame 1000.
  • the mounting frame 1000 may have a rectangular shape, and the damper mechanism 2000 may be four.
  • the four damper mechanisms 2000 are respectively disposed at four vertices of the mounting frame 1000 due to the vibration damper.
  • the structure 2000 can include a weight member 2200 such that the weight of the mounting bracket 1000 is mainly distributed in the four ports of the X-shape, which helps to ensure the stability of the mounting frame 1000.
  • FIG. 7 is a schematic structural diagram of a fourth embodiment of a mounting apparatus for a motion sensor according to an embodiment of the present invention
  • FIG. 8 is a schematic exploded view of FIG. 7
  • FIG. 7-8 in any one of the foregoing Embodiments 1 to 18
  • the mounting device of the motion sensor further includes a cover plate 5000 for pressing the motion sensor 3000 against the mounting frame 1000.
  • the cover plate 5000 can be made of a metal material; preferably, the cover plate 5000 is made of a plastic material to reduce the weight of the mounting device of the motion sensor, and contributes to the lightweight of the aircraft; A plurality of weight reducing grooves may be provided on a side facing away from the mounting frame 1000 to further reduce the weight of the mounting device of the motion sensor, thereby contributing to weight reduction of the aircraft.
  • a fourth mounting boss facing the mounting frame 1000 may be formed on the cover plate 5000.
  • the mounting bracket 1000 is formed with a cover mounting hole.
  • the outer diameter of the third mounting boss is larger than the inner diameter of the cover mounting hole to enable the fourth mounting.
  • the boss and the cover mounting hole are interference fit.
  • the cover plate 5000 is formed with a fourth mounting boss facing the mounting frame 1000.
  • the mounting bracket 1000 is formed with a cover mounting hole, and the fourth mounting boss is disposed in the cover mounting hole, and is glued.
  • the cover plate 5000 is fixed to the mounting frame 1000.
  • the cover plate 5000 may be formed with a plurality of fifth mounting holes 6040.
  • the mounting bracket 1000 is also formed with the same number of fifth mounting holes 6040 through the cover through fasteners such as bolts or screws.
  • the fifth mounting hole 6040 on the board 5000 and the fifth mounting hole 6040 on the mounting bracket 1000 secure the cover plate 5000 to the mounting bracket 1000 so that the motion sensor 3000 can be pressed into the mounting groove of the mounting bracket 1000.
  • a cover is disposed on a side of the cover plate 5000 toward the motion sensor 3000 to fill a gap between the cover plate 5000 and the motion sensor 3000, thereby protecting the mounting surface of the motion sensor 3000 and the cover plate 5000, and further improving The damping effect on the motion sensor 3000.
  • the gasket can be a silicone gasket.
  • the mounting bracket 1000 includes: a mounting body 1020 , the mounting body 1020 extends to the outside with a plurality of vibration damping brackets 1030 , and the vibration damping bracket 1030 is used to mount the vibration damping mechanism 2000.
  • the mounting body 1020 may be a frame structure, and the frame structure may include: a closed frame, the middle portion of the frame forming a mounting area 1010, the mounting area 1010 may be a cavity, and the plurality of damping mechanisms 2000 are disposed around the cavity, and the movement
  • the sensor 3000 is received in the cavity and is fixedly coupled to the frame by fasteners; the frame may be rectangular, circular or elliptical.
  • the mounting body 1020 may be in the form of a plate, such as a circular plate shape, an elliptical plate shape, a polygonal plate shape, or the like.
  • the middle portion of the mounting body 1020 may be a mounting area 1010, and the mounting area 1010 may be a mounting groove formed by a recess.
  • the plurality of damper mechanisms 2000 are disposed around the mounting slot, and the motion sensor 3000 is received in the mounting slot, and the motion sensor 3000 is pressed against the mounting bracket 1000 through the cover plate 5000.
  • the cover plate 5000 may be formed with the mounting bracket 1000.
  • the third mounting boss has a cover plate mounting hole formed on the mounting frame 1000, and the third mounting boss and the second mounting hole 6020 are connected by an interference fit or screwing or bonding or snapping.
  • FIG. 9 is a schematic structural diagram of an unmanned aerial vehicle according to an embodiment of the present invention. referring to FIG. 9 and FIG. 1 , the embodiment provides an unmanned aerial vehicle including: a motion sensor mounting device and a motion sensor 3000 And flight controller 7100.
  • the mounting device of the motion sensor includes a mounting bracket 1000 and a plurality of damper mechanisms 2000.
  • the motion sensor 3000 is mounted on the mounting bracket 1000.
  • a plurality of damper mechanisms 2000 are coupled to the mounting frame 1000 for damping the mounting frame 1000.
  • the plurality of damper mechanisms 2000 are respectively disposed at intervals.
  • Each damper mechanism 2000 includes an elastic member 2100. The elastic member 2100 abuts the mounting frame 1000 to dampen the motion sensor 3000.
  • the flight controller 7100 is electrically connected to the motion sensor 3000.
  • the unmanned aerial vehicle further includes an aircraft fuselage 4000, and the mounting device of the motion sensor can be mounted on the carrier of the aircraft fuselage 4000.
  • the aircraft fuselage 4000 may include a main housing 4100, an arm housing 4200, and a landing frame; the landing frame is coupled to the main housing 4100 for supporting the aircraft fuselage 4000 when the UAV is landing; the arm housing 4200 and
  • the main housing 4100 can be integrally formed or detachably connected, such as threaded, snapped, welded, riveted, bonded, and the like.
  • the arm housing 4200 is primarily used to carry a rotor assembly that is used to generate lift to support the UAV flying in the air.
  • the rotor assembly may include a motor 4212 and a propeller 4211.
  • the motor 4212 is coupled to the arm housing 4200.
  • the propeller 4211 is coupled to the output shaft of the motor 4212.
  • the motor 4212 is configured to drive the rotation of the propeller 4211 to thereby rotate the motor 4212 by the propeller 4211. Converted to support the lift of an unmanned aerial vehicle flying through the air.
  • the carrier can be the main housing 4100.
  • the main housing 4100 can include a bottom wall and a side wall disposed around the bottom wall.
  • the bottom wall and the side wall together define a receiving space.
  • the mounting device of the motion sensor can be received in the receiving space, for example, the mounting device of the motion sensor.
  • One end of the elastic member 2100 abuts against the mounting bracket 1000, and the other end of the elastic member 2100 abuts against the bottom wall of the main casing 4100.
  • the carrier can be a control circuit board 7000.
  • flight controller 7100 can be mounted on control circuit board 7000, and flight controller 7100 is electrically coupled to control circuit board 7000, which is also coupled to control circuit board 7000.
  • the control circuit board 7000 can be mounted on the aircraft body 4000, for example, the control circuit board 7000 is mounted on the main housing 4100 of the aircraft body 4000.
  • One end of the elastic member 2100 in the mounting device of the motion sensor abuts the mounting frame 1000, and the other end of the elastic member 2100 abuts the control circuit board 7000, thereby facilitating the electrical connection of the motion sensor 3000 with the flight controller 7100.
  • the flight controller 7100 is a core component of the UAV for managing the operating mode of the UAV control system, for solving the control law and generating control signals for unmanned flight.
  • the sensors and servo systems are managed for the control and data exchange of other tasks and electronic components in the UAV, for receiving ground commands and collecting the position information of the unmanned aerial vehicles.
  • the motion sensor is configured to determine and feed back the aircraft's attitude information, and is electrically connected to the flight controller to transmit the aircraft attitude information determined by the motion sensor to the flight controller, so that the flight controller determines subsequent operations.
  • the process of determining the aircraft heading information by the motion sensor is: detecting an acceleration component of the aircraft relative to the ground perpendicular by an accelerometer (ie, an acceleration sensor); detecting an angle information of the aircraft by a gyro (ie, a speed sensor); and receiving the analog-to-digital converter
  • the analog variable outputted by each sensor of the motion sensor converts the analog variable into a digital signal; the central processing unit CPU determines and outputs the pitch angle, the tilt angle and the side slip angle of the aircraft according to the digital signal, thereby determining the attitude information of the aircraft;
  • the electrically erasable programmable memory E/EPROM is used for storing the linear curve of each sensor of the motion sensor and the part number and serial number of each sensor of the motion sensor, so that the image processing unit can read
  • the unmanned aerial vehicle provided in this embodiment can avoid the contradiction between the vibration damping effect and the connection reliability by reducing the cross-sectional area of the foam in the prior art installation form by the installation device of the motion sensor, that is, by installing The frame 1000 is mounted with the motion sensor 3000, and the elastic member 2100 of the damper mechanism 2000 is abutted against the mounting frame 1000, so that the elastic member 2100 of the damper mechanism 2000 and the mounting frame 1000 are closely abutted against each other. If the vibration damping effect needs to be adjusted, Then, some or all of the vibration damping mechanisms may be separately adjusted, so that the vibration damping mechanism adjusts the vibration damping effect relatively easily, and does not affect the connection and reliability between the vibration damping mechanism 2000 and the mounting frame 1000. The accuracy of the motion sensor 3000 detection is ensured, which in turn allows the flight controller to accurately determine the attitude of the UAV.
  • the elastic member 2100 is disposed under the mounting frame 1000, and the mounting frame 1000 can press the elastic member 2100 to compress and deform the elastic member 2100.
  • the vibration transmitted to the mounting frame 1000 by the compression deformation of the elastic member 2100 buffers the vibration of the mounting frame 1000, thereby achieving vibration damping of the mounting frame 1000, thereby achieving vibration damping of the motion sensor 3000, thereby contributing to the improvement of the motion.
  • the elastic member 2100 is disposed above the mounting frame 1000, and the mounting frame 1000 can pull the elastic member 2100 to cause the elastic member 2100 to undergo tensile deformation.
  • the vibration of the mounting body 1000 is buffered by the tensile deformation of the elastic member 2100, thereby realizing the vibration damping of the mounting frame 1000, thereby realizing the vibration damping of the motion sensor 3000, thereby contributing to improvement.
  • the elastic member 2100 may be a damper ball, a spring, a vibration damping pad or the like on the basis of any one of the above embodiments from the twenty-first embodiment to the twenty-third embodiment.
  • the elastic member may be interposed between the mounting frame 1000 and the aircraft body 4000; the tensile deformation or compression deformation of the elastic member buffers the vibration transmitted by the aircraft body 4000 to the mounting frame 1000, thereby implementing the mounting bracket.
  • the damping of 1000, in turn, the vibration damping of the motion sensor 3000 helps to improve the accuracy of the motion sensor 3000 measurement.
  • the damper ball 2110 includes: an upper end portion 2111, an upper neck portion 2112 and a damper body 2113, and an upper neck portion 2112 is connected to the upper end portion 2111. Between the vibration damping body 2113, the upper neck portion 2112 and the upper end portion 2111 are connected to the mounting frame 1000, the vibration damping body 2113 is in contact with the mounting frame 1000, and the vibration damping body 2113 is used for damping the mounting frame 1000.
  • the upper end portion 2111 and the upper neck portion 2112 of the damper ball 2110 are connected to the mounting frame 1000, and the damper body 2113 of the damper ball 2110 is abutted against the mounting frame 1000, so that the damper mechanism 2000 and the mounting frame 1000 are The connection between the two is strong and reliable, and the motion sensor 3000 can be effectively prevented from being detached from the damper mechanism 2000.
  • the upper end portion 2111 is used to mount the damper ball 2110 on the mounting frame 1000.
  • the upper end portion 2111 of the damper ball 2110 is engaged with the mounting frame 1000, the upper neck portion 2112 of the damper ball 2110 is connected to the mounting frame 1000, and the damper main body 2113 is abutted against the mounting frame 1000, so that the damper mechanism
  • the connection between the 2000 and the mounting frame 1000 is firm and reliable, and the motion sensor 3000 can be effectively prevented from being detached from the damper mechanism 2000.
  • the mounting bracket 1000 is provided with a first mounting hole 6010, and the upper neck portion 2112 is interference-fitted with the first mounting hole 6010 of the mounting bracket 1000 to reduce The vibrating body 2113 is in abutment with the mounting bracket 1000.
  • the axial height of the upper neck portion 2112 is smaller than the depth of the first mounting hole 6010 such that the vibration damping body 2113 abuts the mounting frame 1000.
  • the axial height of the upper neck portion 2112 is smaller than the depth of the first mounting hole 6010, a first fitting gap is formed between the upper neck portion 2112 and the first mounting hole 6010, and the damping body 2113 faces the head of the upper neck portion 2112. The end is clamped on the side of the first matching gap toward the damping body 2113, that is, the first end of the damping body 2113 facing the upper neck 2112 can be pressed into the first mounting hole 6010, reducing the damping ball 2110 and mounting.
  • the matching gap between the frames 1000 not only effectively reduces the sway between the damper mechanism 2000 and the mounting frame 1000, but also further improves the vibration damping effect, and can also make the structure of the motion sensor mounting device more compact, and slow down the layout space of the whole machine. pressure.
  • the damper body 2113 abuts the mounting frame 1000, so that the damper mechanism 2000 and the mounting frame 1000
  • the connection between the two is strong and reliable, and the motion sensor 3000 can be effectively prevented from being detached from the damper mechanism 2000.
  • the mounting bracket 1000 is provided with a first mounting hole 6010, and the upper neck portion 2112 is bonded to the first mounting hole 6010 of the mounting bracket 1000 to reduce vibration.
  • the main body 2113 is in abutment with the mounting bracket 1000.
  • the axial height of the upper neck portion 2112 is smaller than the depth of the first mounting hole 6010 such that the vibration damping body 2113 abuts the mounting frame 1000.
  • a first matching gap is formed between the upper neck portion 2112 and the first mounting hole 6010, and the first end of the vibration damping body 2113 is clamped at the first end.
  • a matching gap faces one side of the damping body 2113, that is, an end of the damping body 2113 facing the upper neck portion 2112 can be pressed into the first mounting hole 6010, reducing the fit between the damping ball 2110 and the mounting frame 1000.
  • the gap not only effectively reduces the sway between the damper mechanism 2000 and the mounting frame 1000, but also further improves the vibration damping effect, and can also make the structure of the mounting device of the motion sensor more compact and slow down the space pressure of the arrangement of the whole machine.
  • the upper neck portion 2112 of the damper ball 2110 is bonded to the first mounting hole 6010 of the mounting frame 1000, and the damper body 2113 is abutted against the mounting frame 1000, so that the damper mechanism 2000 and the mounting frame 1000 are disposed.
  • the connection is firm and reliable, and the motion sensor 3000 can be effectively prevented from being detached from the damper mechanism 2000.
  • the damper ball 2110 is detachably coupled to the mounting frame 1000.
  • the damper ball 2110 can be freely coupled to the mounting bracket 1000.
  • the damper ball 2110 is engaged with the mounting frame 1000, and the damper body 2113 is abutted against the mounting frame 1000, so that the connection between the damper mechanism 2000 and the mounting frame 1000 is firm and reliable, thereby effectively preventing motion.
  • the sensor 3000 is disengaged from the damper mechanism 2000.
  • the UAV body 4000 is provided with a second mounting hole 6020, and the damper ball 2110 further includes a lower neck portion 2114 and a lower end portion. 2115, the lower neck 2114 is connected to the vibration damping body 2113, the lower neck 2114 is used to cooperate with the second mounting hole 6020 on the UAV body 4000, and the lower end 2115 is used to mount the damping ball 2110 in the unmanned
  • the aircraft body 4000 is positioned to sandwich the vibration damping body 2113 between the UAV body 4000 and the mounting frame 1000.
  • a second mounting hole 6020 is defined in the unmanned aircraft body 4000.
  • a second mounting hole 6020 is defined in the bottom wall of the main casing of the UAV body 4000, and the lower neck portion 2114 is connected to the second mounting hole 6020.
  • an unmanned aerial vehicle body 4000 is equipped with an flight control board.
  • the flight control board can be installed in the bottom wall of the main casing of the unmanned aircraft body 4000 and the receiving space enclosed by the side wall, and the flight control board is opened.
  • the upper end portion 2111 of the damper ball 2110 is engaged with the mounting frame 1000, the upper neck portion 2112 of the damper ball 2110 is coupled to the mounting frame 1000, and the lower neck portion 2114 of the damper ball 2110 is coupled to the aircraft body 4000.
  • the lower end portion 2115 of the damper ball 2110 is engaged with the aircraft body 4000, and the damper body 2113 is abutted against the mounting frame 1000 and the aircraft body 4000, so that the connection between the damper mechanism 2000 and the mounting frame 1000 is firm and reliable.
  • the motion sensor 3000 can be effectively prevented from being detached from the damper mechanism 2000, and the connection between the damper mechanism 2000 and the aircraft body 4000 is firm and reliable, thereby effectively preventing the motion sensor 3000 and the damper mechanism 2000 from being detached from the aircraft body 4000. .
  • the 2000 further includes a weight member 2200 that is detachably coupled to the damper ball 2110.
  • the weight member 2200 is also detachably coupled to the mounting bracket 1000 to increase the inertia of the mounting bracket 1000.
  • the detachable connection can be an interference fit, a bond, a snap, a screw, or the like.
  • the damper ball 2110 is abutted against the mounting frame 1000, and the weight member 2200 is fixedly coupled to the mounting frame 1000, so that the connection between the damper mechanism 2000 and the mounting frame 1000 is firm and reliable, thereby effectively avoiding the motion sensor. 3000 is detached from the damper mechanism 2000.
  • the elastic members of the plurality of vibration damping mechanisms 2000 have the same damping coefficient.
  • the damper mechanism 2000 is evenly disposed around the motion sensor 3000 mounted on the mounting frame 1000, that is, the elastic members are evenly disposed around the motion sensor 3000, and the distance between each elastic member and the center of gravity of the mounting device of the motion sensor is At the same time, the damping coefficients of the elastic members in the respective damping mechanisms 2000 are the same, so that the damping effect of the mounting device of the motion sensor is uniform and the same, which helps to further improve the vibration damping effect on the motion sensor 3000 on the mounting frame 1000.
  • the damping coefficient of the elastic member of the center of gravity of the mounting device adjacent to the motion sensor is greater than the elastic member of the elastic member of the mounting device remote from the motion sensor. Damping coefficient.
  • the damper mechanism 2000 is evenly disposed around the motion sensor 3000 mounted on the mounting frame 1000, that is, the elastic member is evenly disposed around the motion sensor 3000, and the distance between the elastic member and the center of gravity of the mounting device of the motion sensor is not completely
  • the greater the damping coefficient of the elastic member closer to the center of gravity of the mounting device of the motion sensor the weaker the vibration, which helps to further improve the vibration damping effect on the motion sensor 3000 on the mounting frame 1000.
  • the damper mechanism 2000 further includes a weight member 2200 connected to the mounting frame 1000, and the weight member 2200 is used to apply its own gravity to the mounting frame 1000 to increase the inertia of the mounting frame 1000.
  • the weight member 2200 is formed in a ring shape, and the weight member 2200 can be made of a high-density metal material.
  • the weights of the weight members 2200 in the plurality of vibration damping mechanisms 2000 can be the same, so that the inertia of each weight member 2200 is the same.
  • the stability of the mounting frame 1000 can be ensured.
  • the inertia of the mounting frame 1000 is increased to reduce the influence of the vibration of the aircraft body 4000 on the mounting frame 1000, which helps to ensure the stability of the mounting frame 1000. Further, the vibration damping effect of the damper mechanism 2000 on the mounting frame 1000 is further improved.
  • the weight member 2200 is integrally formed with the mounting bracket 1000.
  • the weight member 2200 is integrally formed with the mounting frame 1000, so that the connection between the weight member 2200 and the mounting frame 1000 in the vibration damping mechanism 2000 is firm and reliable, thereby effectively avoiding the motion sensor 3000 and damping. Agency 2000 is detached.
  • the weight member 2200 is interference-fitted with the mounting frame 1000.
  • the connection between the weight member 2200 and the mounting frame 1000 in the vibration damping mechanism 2000 is firm and reliable, thereby effectively avoiding the motion sensor 3000 and reducing The vibrating mechanism 2000 is disengaged.
  • the weight member 2200 is detachably coupled to the mounting bracket 1000.
  • the weight member 2200 is detachably connected to the mounting frame 1000, so that the connection between the weight member 2200 and the mounting frame 1000 in the vibration damping mechanism 2000 is firm and reliable, thereby effectively avoiding the motion sensor 3000 and reducing The vibrating mechanism 2000 is disengaged.
  • the mounting frame 1000 is provided with a mounting area 1010 for mounting the motion sensor 3000, and a plurality of damping mechanisms 2000 are disposed.
  • the installation area 1010 is set.
  • the plurality of damper mechanisms 2000 are symmetrically disposed around the mounting area 1010 to ensure that the mounting frame 1000 has better isotropic dynamic response characteristics under vibration conditions, and helps to maintain the stability of the mounting frame 1000;
  • Zone 1010 can be a mounting slot to facilitate installation of motion sensor 3000.
  • a plurality of damping mechanisms 2000 are disposed around the mounting area 1010 to better buffer the vibration transmitted by the aircraft body 4000 to the mounting area 1010 to further improve the vibration damping effect on the motion sensor 3000.
  • the mounting device of the motion sensor further includes: a cover plate 5000, and the cover plate 5000 is used for moving the sensor based on any one of the embodiments of the twenty-first embodiment to the thirty-eighth embodiment. 3000 is pressed against the mounting bracket 1000.
  • the motion sensor 3000 is pressed against the mounting frame 1000 through the cover plate 5000, so that the installation of the motion sensor 3000 and the mounting frame 1000 is firm and reliable, and the vibration damping effect on the motion sensor 3000 is further improved;
  • a spacer is disposed between the office and the motion sensor 3000 to fill the gap between the cover plate 5000 and the motion sensor 3000, thereby protecting the motion sensor 3000.
  • the vibration damping effect on the motion sensor 3000 can be further improved.
  • the mounting frame 1000 includes: a mounting body 1020 , and the mounting body 1020 extends to the outside with a plurality of vibration damping brackets 1030 .
  • the vibration damping bracket 1030 is used to mount the vibration damping mechanism 2000.
  • the plurality of vibration-damping brackets 1030 can be evenly disposed around the mounting body 1020 to ensure that the mounting frame 1000 has better isotropic dynamic response characteristics under vibration conditions, achieve better vibration damping effect, and improve the mounting frame 1000. Stationarity.
  • the plurality of vibration-damping brackets 1030 can be disposed diagonally around the mounting body 1020 to achieve a better vibration damping effect and help to maintain the stability of the mounting frame 1000; for example, the mounting body 1020 has a rectangular shape, and the vibration-damping bracket 1030 is 4
  • the four damping brackets 1030 are respectively disposed at four vertices of the mounting body 104.
  • the mounting bracket 1000 is X-shaped. Since the damper mechanism 2000 is mounted on the damper bracket 1030, the damper mechanism 2000 may include The weight 2200 is such that the weight of the mounting frame 1000 is mainly distributed in the four ports of the X-type, which helps to ensure the stability of the mounting frame 1000.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Vibration Prevention Devices (AREA)
  • Toys (AREA)

Abstract

一种运动传感器的安装装置,包括:安装架(1000),用于承载运动传感器(3000);及多个减振机构(2000),与安装架(1000)连接,用于对安装架(1000)进行减振;其中,多个减振机构(2000)分别间隔设置,每个减振机构(2000)包括弹性件(2100),弹性件(2100)与安装架(1000)抵接,以对安装架(1000)进行减振;通过安装架(1000)安装运动传感器(3000),并将弹性件(2100)与安装架(1000)抵接,以使弹性件(2100)与安装架(1000)紧密地相抵顶,若需要调节减振效果,则可以分别对部分或全部的减振机构(2000)进行调节,从而使得所述减振机构(2000)调节减振效果较为容易,且不影响减振机构(2000)与安装架(1000)之间的连接可靠性。

Description

运动传感器的安装装置及无人飞行器 技术领域
本发明涉及运动传感器的安装技术,特别涉及运动传感器的安装装置及无人飞行器。
背景技术
运动传感器是一种常用的检测仪器,在多个行业中都有一定的应用。随着技术的不断发展运动传感器的类型已经越来越多,常用的运动传感器主要有加速度传感器、陀螺仪、地磁传感器、惯性测量单元IMU(Inertial measurement unit)等,其中IMU(Inertial measurement unit)内部包含加速度计和陀螺;其中,加速度计用于检测物体的加速度分量,陀螺用于检测物体的角度信息;一般IMU安装在物体的重心位置。由于具有测量物体三轴姿态角(或角速率)以及加速度的功能,IMU通常作为导航和制导的核心部件,并且广泛地应用于车辆、轮船、机器人以及飞行器等需要进行运动控制的设备中。
在无人飞行器中,IMU用于反馈飞行器的机身姿态,然而,由于无人飞行器的高速运动会使IMU处于振动环境中,过大的振动量级会导致IMU的陀螺和加速度计的漂移较大,难以保证较高的测量精度,严重时甚至会将IMU中的元器件损坏。因此,在IMU的安装过程中,通常会进行减振处理。
现有技术中,IMU是通过封装并增加配重后粘贴在减振泡棉的一个表面上,再将减振泡棉另一面安装在减振盒子底面或减振底板上,进而将减振盒子或减振底板与无人飞行器的主控板硬连接。这种安装方式主要目的是通过调整配重大小以及减振泡棉的硬度、体积等参数获得所需要的适当减振效果。
由于减振泡棉的刚度比较大,在配重受限的情况下,要达到良好的减振效果,就需要采用柱状的减振泡棉、即要求减振泡棉具有较大的高度和较小的截面积。然而,随着减振泡棉的截面积的减小,导致其与IMU的粘接面积变小,粘接力也随之变小,在使用过程中,IMU及配重块极易与起减振作用的减振泡棉的连接可靠性下降。
发明内容
针对现有技术中的上述缺陷,本发明提供的运动传感器的安装装置及无人飞行器,能够解决现有技术中运动传感器极易与起减振作用的减振泡棉脱离的问题,有助于提高运动传感器与减振机构的连接可靠性。
本发明的第一个方面是提供一种运动传感器的安装装置,包括:
安装架,用于承载运动传感器;以及
多个减振机构,与所述安装架连接,用于对所述安装架进行减振;
其中,所述多个减振机构分别间隔设置,每个所述减振机构包括弹性件,所述弹性件与所述安装架抵接,以对所述安装架进行减振。
本发明的第二个方面是提供一种无人飞行器,包括:运动传感器的安装装置、运动传感器和飞行控制器;
所述运动传感器的安装装置包括:安装架,所述运动传感器安装在所述安装架上;以及多个减振机构,与所述安装架连接,用于对所述安装架进行减振;
其中,所述多个减振机构分别间隔设置,每个所述减振机构包括弹性件,所述弹性件与所述安装架抵接,以对所述安装架进行减振;
所述飞行控制器,与所述运动传感器电连接。
本发明提供的运动传感器的安装装置及无人飞行器,能够避免现有技术的安装形式中,通过减小泡棉横截面积来增加减振效果与连接可靠性的矛盾,即,通过安装架安装运动传感器,并将多个间隔设置的减振机构的弹性件与安装架抵接,以使所述减振机构的弹性件与所述安装架紧密地相抵顶,若需要调节减振效果,则可以分别对部分或全部的减振机构进行调节即可,从而使得所述减振机构调节减振效果较为容易,且不影响与所述安装架之间的连接牢固性、可靠性。
附图说明
图1为本发明实施例提供的运动传感器的安装装置的一种结构示意图;
图2为本发明实施例提供的运动传感器的安装装置的第二种结构示意图;
图3为本发明实施例提供的运动传感器的安装装置中减振球的结构示意图;
图4为本发明实施例提供的运动传感器的安装装置的第三种结构示意图;
图5为图4的爆炸示意图;
图6为本发明实施例提供的运动传感器的安装装置中安装架的结构示意图;
图7为本发明实施例提供的运动传感器的安装装置的第四种结构示意图;
图8为图7的爆炸示意图;
图9为本发明实施例无人飞行器的结构示意图。
其中,1000-安装架;1010-安装区;1020-安装本体;1030-减振支架;2000-减振机构;2100-弹性件;2110-减振球;2111-上端部;2112-上颈部;2113-减振主体;2114-下颈部;2115-下端部;2200-配重件;3000-运动传感器;4000-飞行器机身;4100-主壳体;4200-支臂壳体;4211-螺旋桨;4212-电机;5000-盖板;6010-第一安装孔;6020-第二安装孔;6030-第三安装孔;6040-第五安装孔;7000-控制电路板;7100-飞行控制器。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。
基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
需要说明的是,在本发明的描述中,术语“第一”、“第二”仅用于方便描述不同的部件,而不能理解为指示或暗示顺序关系、相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。
实施例一
图1为本发明实施例提供的运动传感器的安装装置的一种结构示意图;请参照图1,本实施例提供了一种运动传感器的安装装置,包括安装架1000、以及多个减振机构2000。在图示的实施例中,运动传感器以IMU为例进行说明。
安装架1000,用于承载运动传感器3000。多个减振机构2000,与安装架1000连接,用于对安装架1000进行减振。
其中,多个减振机构2000分别间隔设置,每个减振机构2000包括弹性件2100,弹性件2100与安装架1000抵接,以对安装架1000进行减振。
具体地,安装架1000可以采用塑料或者其它低密度材料,以减小运动传感器的安装装置的自重,有助于实现飞行器的轻量化;本实施例对于安装架1000的具体结构不做限定,本领域技术人员可以根据具体的设计需求进行设置,只要能够实现承载运动传感器3000的功能即可。
本实施例对于减振机构2000的具体个数也不做限定,本领域技术人员可以根据具体的设计需求进行设置;其中,每相邻的两个减振机构2000之间具有各自的预设距离,本领域技术人员可以根据具体的设计需求对该预设距离进行设置。
多个减振机构2000可以围绕安装架1000均匀设置,以达到较佳的减振效果。减振机构2000中的弹性件2100的一端可以与安装架1000抵接,弹性件2100的另一端可以与飞行器机身抵接,从而通过弹性件2100的形变缓冲传递给安装架1000的振动,从而实现对安装架1000的减振,也即对安装架1000承载的运动传感器3000进行减振。
其中,多个减振机构2000中的弹性件2100由具有一定阻尼作用的弹性材料构成,例如,弹性材料可以为泡棉、硅胶、橡胶等。多个减振机构2000中的弹性件2100的材质可以相同,例如:弹性件2100可以都采用低硬度硅胶材料通过热压成型工艺加工形成,易于批量生产,且硅胶形成的弹性件2100性能稳定,抗老化能力强。或者,多个减振机构2000中的弹性件2100的材质也可以不同,例如:部分弹性件2100可以采用低硬度硅胶制成,剩余的弹性件2100可以采用泡棉制成。本领域技术人员可以根据具体的设计需求对进行设置。
本实施例所提供的运动传感器的安装装置,能够避免现有技术的安装形式中,通过减小泡棉横截面积来增加减振效果与连接可靠性的矛盾,即,通过安装架1000安装运动传感器3000,并将减振机构2000的弹性件2100与安装架1000抵接,以使减振机构2000的弹性件2100与安装架1000紧密地相抵顶,若需要调节减振效果,则可以分别对部分或全部的减振机构进行调节即可,从而使得所述减振机构调节减振效果较为容易,且不影响减振机构2000与安装架1000之间的连接牢固、可靠性。
实施例二
图2为本发明实施例提供的运动传感器的安装装置的第二种结构示意图;请参照图2所示,在上述实施例一的基础上,进一步地,弹性件2100可以设置在安装架1000下方,且安装架1000能够压持弹性件2100,使弹性件2100发生压缩变形。
本实施例中,安装架1000可以通过弹性件2100压持在飞行器机身4000的下方的承载架上,弹性件2100;通过弹性件2100的压缩变形缓冲飞行器机身4000传递给安装架1000的振动,从而实现对安装架1000的减振,进而实现对运动传感器3000的减振,有助于提高运动传感器3000测量的准确性。
具体地,承载架可以为无人飞行器的控制电路板。飞行控制器安装在控制电路板上,并且与所述飞行控制电路板电连接。
其中,“上”、“下”等的用语,是用于描述各个结构在附图中的相对位置关系,仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
实施例三
在上述实施例一的基础上,进一步地,弹性件2100也可以设置在安装架1000上方,且安装架1000能够拉拽弹性件2100,使弹性件2100发生拉伸变形。
本实施例中,安装架1000可以通过弹性件2100悬挂在飞行器机身的承 载架的下方,弹性件2100;通过弹性件2100的拉伸变形缓冲飞行器机身传递给安装架1000的振动,从而实现对安装架1000的减振,进而实现对运动传感器3000的减振,有助于提高运动传感器3000测量的准确性。
其中,“上”、“下”等的用语,是用于描述各个结构在附图中的相对位置关系,仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
实施例四
在上述实施例一至实施例三中任一实施例的基础上,进一步地,弹性件2100可以为减振球、弹簧、减振垫等。
其中,多个减振机构2000中的弹性件2100可以都为减振球;或者多个减振机构2000中的弹性件2100可以都为弹簧;或者多个减振机构2000中的弹性件2100可以都为减振垫;或者部分减振机构2000中的弹性件2100为减振球,其它减振机构2000中的弹性件2100为弹簧;或者部分减振机构2000中的弹性件2100为减振球,其它减振机构2000中的弹性件2100为减振垫;或者部分减振机构2000中的弹性件2100为弹簧,其它减振机构2000中的弹性件2100为减振垫;或者,其中一减振机构2000中的弹性件2100为减振球,另一减振机构2000中的弹性件2100为弹簧,又一减振机构2000中的弹性件2100为减振垫;本领域技术人员可以根据具体的设计需求进行设置。
本实施例中,弹性件2100可以夹设在安装架1000与飞行器机身之间;通过弹性件2100的拉伸变形或者压缩变形缓冲飞行器机身传递给安装架1000的振动,从而实现对安装架1000的减振,进而实现对运动传感器3000的减振,有助于提高运动传感器3000测量的准确性。
实施例五
图3为本发明实施例提供的运动传感器的安装装置中减振球的结构示意图;图4为本发明实施例提供的运动传感器的安装装置的第三种结构示意图;图5为图4的爆炸示意图;请参照图3-5所示,在上述实施例一至实施例四中任一实施例的基础上,进一步地,弹性件2100包括减振球2110。
减振球2110的具体结构可以根据不同需求来设计,例如,在图示的实施例中,减振球2110可以包括上端部2111、上颈部2112和减振主体2113。上颈部2112连接在上端部2111与减振主体2113之间。上颈部2112和上端部2111用于与安装架1000连接。减振主体2113与安装架1000抵接。减振主体2113用于对安装架1000进行减振。
其中,上颈部2112可以呈柱状,安装架1000上可以开设有第一安装孔6010,上颈部2112可以穿设在安装架1000的第一安装孔6010中,以实现减振球2110与安装架1000的连接。
减振主体2113可以呈球形,以便于减振主体2113与安装架1000抵持,从而通过减振主体2113的形变缓冲传递给安装架1000的振动,进而实现对安装架1000的减振,也即对安装架1000承载的运动传感器3000进行减振,并且符合6个自由度减振要求;或者减振主体2113可以呈柱状,且减振主体2113朝向安装架1000的一端呈半球形,以便于减振主体2113与安装架1000抵持,从而通过减振主体2113的形变缓冲传递给安装架1000的振动,进而实现对安装架1000的减振,也即对安装架1000承载的运动传感器3000进行减振,并且符合6个自由度减振要求。
较佳地,减振主体2113可以设置成中空结构,例如中空呈椭圆状、中空呈棱柱状等,多个减振主体2113的形状可以相同,也可以不同;通过将减振主体2113设置成中空结构,一方面,可以增大减振主体2113的变形量,提高减振效果;另一方面,还可以减重,有助于实现飞行器的轻量化。
减振球2110可以一体成型;或者减振球2110的上端部2111与上颈部2112可拆卸连接;或者减振球2110的上端部2111与减振球2110的上颈部2112过盈配合,其中,减振球2110的上颈部2112与减振主体2113一体成型,以保证减振球2110与安装架1000的连接的可靠性。
本实施例中,减振球2110的上端部2111及上颈部2112与安装架1000连接,减振球2110的减振主体2113与安装架1000抵接,使得减振机构2000与安装架1000之间的连接牢固、可靠,进而能够有效避免运动传感器3000与减振机构2000脱离。
实施例六
在上述实施例五的基础上,进一步地,上端部2111用于将减振球2110卡装在安装架1000上。
其中,上端部2111可以为限位凸台。上端部2111的形状可以根据不同需求来设计,例如,上端部2111的横截面可以呈圆形,横截面的直径大于安装架1000上的第一安装孔6010的孔径,且横截面的直径大于上颈部2112的外直径;或者上端部2111的横截面为多边形,该多边形中最长对角线的长度大于第一安装孔6010的孔径且大于上颈部2112的外直径。
上颈部2112与安装架1000配合之后,上端部2111与安装架1000朝向上端部2111的表面相抵靠,从而将减振球2110卡在安装架1000上,限制减振球2110与安装架1000脱离,以进一步提高减振球2110与安装架1000之间连接的可靠性,进而有效避免了运动传感器3000与减振机构2000脱离。
本实施例中,减振球2110的上端部2111与安装架1000卡接,减振球2110的上颈部2112与安装架1000连接,减振主体2113与安装架1000抵接,使得减振机构2000与安装架1000之间的连接牢固、可靠,进而能够有效避免运动传感器3000与减振机构2000脱离。
实施例七
在上述实施例五或实施例六的基础上,进一步地,安装架1000上可以开设有第一安装孔6010,上颈部2112可以与安装架1000的第一安装孔6010过盈配合,以使减振主体2113与安装架1000抵持。
其中,上颈部2112的外直径大于第一安装孔6010的内直径,上颈部2112穿设在第一安装孔6010中,从而实现上颈部2112与安装架1000的第一安装孔6010过盈配合,使得减振球2110与安装架1000之间的连接牢固、可靠,能够有效避免运动传感器3000与减振机构2000脱离。
优选地,上颈部2112的轴向高度小于第一安装孔6010的深度,以使减振主体2113与安装架1000相抵。具体地,由于上颈部2112的轴向高度小于第一安装孔6010的深度,上颈部2112与第一安装孔6010之间形成第一配合间隙,减振主体2113朝向上颈部2112的首端夹持在第一配合间隙朝向减振主体2113的一侧,也即使得减振主体2113朝向上颈部2112的首端能够压入第一安装孔6010,减小了减振球2110与安装架1000之间的配合间隙,不仅 有效减少减振机构2000与安装架1000之间的晃动,进一步提高了减振效果,还能够使运动传感器的安装装置的结构更紧凑,减缓整机的布置空间压力。
本实施例中,通过减振球2110的上颈部2112与安装架1000的第一安装孔6010过盈配合,减振主体2113与安装架1000抵接,使得减振机构2000与安装架1000之间的连接牢固、可靠,进而能够有效避免运动传感器3000与减振机构2000脱离。
实施例八
在上述实施例五或实施例六的基础上,安装架1000上可以开设有第一安装孔6010,上颈部2112可以与安装架1000的第一安装孔6010粘接,以使减振主体2113与安装架1000抵持。
其中,上颈部2112穿设在第一安装孔6010中,且将上颈部2112与第一安装孔6010粘接,由于上颈部2112的表面积较大,上颈部2112与第一安装孔6010之间的粘接面积也较大,使得粘接力较大,进而提高了减振球2110与安装架1000之间连接的可靠性。
较佳地,在上颈部2112与安装架1000的第一安装孔6010粘接的基础上,减振球2110还可以开设有中心孔,通过紧固件在该中心孔中旋紧将减振球2110与安装架1000螺接,使得减振球2110与安装架1000之间的连接更牢固、可靠;紧固件可以为大头螺钉、螺栓等。
优选地,上颈部2112的轴向高度小于第一安装孔6010的深度,以使减振主体2113与安装架1000相抵。具体地,由于上颈部2112的轴向高度小于第一安装孔6010的深度,上颈部2112与第一安装孔6010之间形成第一配合间隙,减振主体2113的首端夹持在第一配合间隙朝向减振主体2113的一侧,也即使得减振主体2113朝向上颈部2112的一端能够压入第一安装孔6010,减小了减振球2110与安装架1000之间的配合间隙,不仅有效减少减振机构2000与安装架1000之间的晃动,进一步提高了减振效果,还能够使运动传感器的安装装置的结构更紧凑,减缓整机的布置空间压力。
本实施例中,通过减振球2110的上颈部2112与安装架1000的第一安装孔6010粘接,减振主体2113与安装架1000抵接,使得减振机构2000与安装架1000之间的连接牢固、可靠,进而能够有效避免运动传感器3000与减 振机构2000脱离。
实施例九
在上述实施例五或实施例六的基础上,减振球2110可以与安装架1000可拆卸连接。优选地,减振球2110可以与安装架1000可徒手连接。
本实施例的一种可选实施方式中,安装架1000上可以开设有第一安装孔6010,减振球2110的上颈部2112穿设在安装架1000的第一安装孔6010中,减振球2110的上端部2111卡在安装架1000上。减振球2110还开设有中心孔,通过紧固件在该中心孔中旋紧将减振球2110与安装架1000螺接,且将减振球2110的上颈部2112夹持在紧固件与安装架1000的第一安装孔6010的孔壁之间,使得减振球2110与安装架1000之间的连接牢固、可靠;紧固件可以为大头螺钉或者螺栓。当上端部2111与安装架1000朝向上端部2111的表面相抵靠,以将减振球2110卡在安装架1000上时,紧固件还可以将上端部2111夹持在紧固件的头部与安装架1000朝向上端部2111的表面之间。
较佳地,在减振球2110与安装架1000螺接的基础上,还可以将上颈部2112与第一安装孔6010粘接,由于上颈部2112的表面积较大,上颈部2112与第一安装孔6010之间的粘接面积也较大,使得粘接力较大,进而提高了减振球2110与安装架1000之间连接的可靠性。
优选地,上颈部2112的轴向高度小于第一安装孔6010的深度,以使减振主体2113与安装架1000相抵。具体地,由于上颈部2112的轴向高度小于第一安装孔6010的深度,上颈部2112与第一安装孔6010形成第一配合间隙,减振主体2113的首端夹持在第一配合间隙朝向减振主体2113的一侧,也即使得减振主体2113朝向上颈部2112的一端能够压入第一安装孔6010,减小了减振球2110与安装架1000之间的配合间隙,不仅有效减少减振机构2000与安装架1000之间的晃动,进一步提高了减振效果,还能够使运动传感器的安装装置的结构更紧凑,减缓整机的布置空间压力。
本实施例的另一种可选实施方式中,安装架1000上开设有第一螺纹孔,减振球2110的上颈部2112形成有外螺纹,通过将上颈部2112拧入安装架1000上的第一螺纹孔将减振球2110与安装架1000螺接。优选地,上颈部2112的轴向高度小于第一安装孔6010的深度,以使减振主体2113与安装架1000 相抵,以减小减振球2110与安装架1000之间的配合间隙,不仅有效减少减振机构2000与安装架1000之间的晃动,进一步提高减振效果,还能够使运动传感器的安装装置的结构更紧凑,减缓整机的布置空间压力。
其中,减振球2110的上端部2111与减振球2110的上颈部2112也可以卡接。例如:减振球2110的上颈部2112上可以开设第二螺纹孔,上端部2111朝向上颈部2112的一端形成有第一凸柱,第一凸柱上设有外螺纹,通过将上端部2111的第一凸柱拧入上颈部2112的第二螺纹孔实现减振球2110的上端部2111与上颈部2112的螺接;或者,减振球2110的上端部2111开设有第三螺纹孔,减振球2110的上颈部2112朝向上端部2111的一端形成有第二凸柱,第二凸柱上形成有外螺纹,通过将上颈部2112的第二凸柱拧入上端部2111的第三螺纹孔实现减振球2110的上端部2111与上颈部2112的螺接。在将减振球2110与安装架1000连接时,首先将减振球2110的上颈部2112拧入安装架1000上的螺纹孔,然后将减振球2110的上端部2111与上颈部2112螺接。
或者,减振球2110的上端部2111与减振球2110的上颈部2112过盈配合,例如:减振球2110的上颈部2112上可以开设第一配合孔,上端部2111朝向上颈部2112的一端形成有第一安装柱,第一安装柱的外直径大于第一配合孔的孔径;或者,减振球2110的上端部2111上可以开设第二配合孔,上颈部2112朝向上端部2111的一端形成有第二安装柱,第二安装柱的外直径大于第二配合孔的孔径。在将减振球2110与安装架1000连接时,首先将减振球2110的上颈部2112拧入安装架1000上的螺纹孔,然后将减振球2110的上端部2111与上颈部2112过盈配合。
本实施例中,通过减振球2110与安装架1000螺接,减振主体2113与安装架1000抵接,使得减振机构2000与安装架1000之间的连接牢固、可靠,进而能够有效避免运动传感器3000与减振机构2000脱离。
实施例十
在上述实施例五至实施例九中任一实施例的基础上,减振球2110还可以包括下颈部2114和下端部2115,下颈部2114与减振主体2113连接,下颈部2114用于与飞行器机身4000上的第二安装孔6020配合,下端部2115用于将 减振球2110卡装在飞行器机身4000上,以将减振主体2113夹持在飞行器机身4000与安装架1000之间。
其中,下颈部2114可以呈柱状;下颈部2114的外直径大于第二安装孔6020的内直径,下颈部2114穿设在第二安装孔6020中,且下颈部2114与第二安装孔6020过盈配合,使得减振球2110与飞行器机身4000之间的连接牢固、可靠,有效避免了安装架1000及减振机构与飞行器机身4000脱离,进而有效避免了安装架1000上承载的运动传感器3000及减振机构2000与飞行器机身4000脱离;
或者,下颈部2114穿设在第二安装孔6020中,且将下颈部2114与第二安装孔6020粘接,由于下颈部2114的表面积较大,下颈部2114与第二安装孔6020之间的粘接面积也较大,使得粘接力较大,进而提高了减振球2110与飞行器机身4000之间连接的可靠性,有效避免了安装架1000及减振机构与飞行器机身4000脱离,进而有效避免了安装架1000上承载的运动传感器3000及减振机构2000与飞行器机身4000脱离;
或者,减振球2110上开设有中心孔,减振球2110的上颈部2112穿设在安装架1000的第一安装孔6010中,减振球2110的下颈部2114穿设在第二安装孔6020中,通过紧固件穿过该中心孔将减振球2110压紧固定到安装架1000、飞行器机身4000上,提高了减振球2110与安装架1000、减振球2110与飞行器机身4000之间的连接的可靠性,有效避免了安装架1000及减振机构与飞行器机身4000脱离,进而有效避免了安装架1000上承载的运动传感器3000及减振机构2000与飞行器机身4000脱离,其中,紧固件可以为大头螺钉或者螺栓。
优选地,下颈部2114的轴向高度小于第二安装孔6020的深度,以使减振主体2113与飞行器机身4000相抵。具体地,由于上颈部2112的轴向高度小于第二安装孔6020的深度,下颈部2114与第二安装孔6020形成第二配合间隙,减振主体2113背离安装架1000的的尾端夹持在第二配合间隙朝向减振主体2113的一侧,也即使得减振主体2113朝向下颈部2114的尾端能够压入第二安装孔6020,减少了减振机构2000与飞行器机身4000之间的配合间隙,减缓整机的布置空间压力,而且通过减振主体2113填补第二配合间隙,能够有效减少减振机构2000与飞行器机身4000之间的晃动,从而有助于减 少振动。
减振球2110可以一体成型;或者减振球2110的下端部2115与下颈部2114卡接;或者减振球2110的下端部2115与减振球2110的下颈部2114过盈配合,其中,减振球2110的下颈部2114与减振主体2113一体成型,以保证减振球2110与飞行器机身4000的连接的可靠性。
本实施例中,减振球2110的上端部2111与安装架1000卡接,减振球2110的上颈部2112与安装架1000连接,减振球2110的下颈部2114与飞行器机身4000连接,减振球2110的下端部2115与飞行器机身4000卡接,减振主体2113与安装架1000及飞行器机身4000抵接,使得减振机构2000与安装架1000之间的连接牢固、可靠,进而能够有效避免运动传感器3000与减振机构2000脱离,还使得减振机构2000与飞行器机身4000的连接牢固、可靠,进而有效避免运动传感器3000及减振机构2000脱离飞行器机身4000被甩出。
实施例十一
在上述实施例五至实施例十中任一实施例的基础上,减振机构2000还可以包括与减振球2110可拆卸连接的配重件22002200。配重件2200还与安装架1000可拆卸连接,以增加安装架1000的惯量。可拆卸连接的方式可以为过盈配合、粘接、卡接、螺接等。
具体在图示的实施例中,配重件2200可以呈环状,配重件2200可以采用高密度金属材料制成,以使减振结构的重量较轻,减轻运动传感器的安装装置的自重,有助于飞行器的轻量化;配重件2200可以通过螺接、粘接、过盈配合等方式与安装架1000固定连接,且配重件2200上形成第一安装孔6010,以使减振球2110通过与第一安装孔6010过盈配合、粘接或者螺接与配重件2200连接,使得减振机构2000的装配工艺较简单,并且,在飞行器升级迭代时,对减振机构2000的更改较少,有利于缩短开发周期。
本实施例中,减振球2110与安装架1000抵接,配重件2200与安装架1000固定连接,使得减振机构2000与安装架1000之间的连接牢固、可靠,进而能够有效避免运动传感器3000与减振机构2000脱离。
实施例十二
在上述实施例一至实施例十一中任一实施例的基础上,多个减振机构2000中的弹性件2100的阻尼系数相同。其中,当减振机构2000围绕安装在安装架1000上的运动传感器3000均匀设置,也即弹性件2100围绕运动传感器3000均匀设置,且每个弹性件2100与运动传感器的安装装置的重心之间的距离相同时,各个减振机构2000中的弹性件2100的阻尼系数相同,以使运动传感器的安装装置受到的阻尼作用均匀且相同,有助于进一步提高对安装架1000上的运动传感器3000的减振效果。
实施例十三
在上述实施例一至实施例十一中任一实施例的基础上,靠近运动传感器的安装装置的重心的弹性件2100的阻尼系数,大于远离运动传感器的安装装置的重心的弹性件2100的阻尼系数,也即越靠近运动传感器的安装装置的重心的弹性件2100的阻尼系数越大。其中,当减振机构2000围绕安装在安装架1000上的运动传感器3000均匀设置,也即弹性件2100围绕运动传感器3000均匀设置,且当弹性件2100与运动传感器的安装装置的重心之间的距离不完全相同时,越靠近运动传感器的安装装置的重心的弹性件2100的阻尼系数越大,其振动也越弱,有助于进一步提高对安装架1000上的运动传感器3000的减振效果。
实施例十四
请继续参照图4-5所示,在上述实施例一至实施例十三中任一实施例的基础上,减振机构2000还包括与安装架1000连接的配重件2200,配重件2200用于将自身的重力作用于安装架1000,以增加安装架1000的惯量,从而进一步提高安装架1000的减振效果。
其中,配重件2200呈环状,配重件2200可以采用高密度金属材料制成,多个减振机构2000中的配重件2200的重量可以相同,使得各个配重件2200的惯量相同,能够保证安装架1000的稳定性。
较佳地,配重件2200还可以用于调整安装架1000的质心,此时,多个减振机构2000中的配重件2200的重量也可以不相同,通过设置各个配重件 2200的重量,使得安装架1000的质心和几何中心重合。需要说明的是,当多个减振机构2000中的配重件2200的重量不相同时,相应地调整各配重件2200与安装架1000的几何中心之间的距离,以使各个配重件2200的惯量相同。
本实施例中,通过在安装架1000上设置配重件2200,增加安装架1000的惯量,以减小飞行器机身4000的振动对安装架1000的影响,有助于保证安装架1000的稳定性,进一步提高减振机构2000对安装架1000的减振效果。
实施例十五
在上述实施例十四的基础上,配重件2200与安装架1000一体成型。其中,配重件2200和安装架1000可以采用同一种金属材料制成,免去了配重件2200的安装,有助于简化运动传感器的安装装置的装配工艺。
其中,配重件2200还可以与减振机构2000中的弹性件2100连接,减振机构2000中的弹性件2100可以为减振球2110;减振球2110可以包括:上端部2111、上颈部2112、减振主体2113、下颈部2114和下端部2115,上颈部2112连接在上端部2111与减振主体2113之间;配重件2200与安装架1000上开设有贯穿的第一安装孔6010,减振球2110的上颈部2112穿设在第一安装孔6010中,且减振球2110的上端部2111卡在配重件2200上,上颈部2112与第一安装孔6010之间形成的第一配合间隙,减振主体2113朝向上颈部2112的首端压入第一配合间隙朝向减振球2110的一侧,以对安装架1000进行减振。
本实施例中,通过配重件2200与安装架1000一体成型,使得减振机构2000中的配重件2200与安装架1000之间的连接牢固、可靠,进而能够有效避免运动传感器3000与减振机构2000脱离。
实施例十六
在上述实施例十四的基础上,配重件2200与安装架1000过盈配合。
其中,安装架1000上开设有贯穿的第三安装孔6030,配重件2200朝向安装架1000的一端形成有第一安装凸台,第一安装凸台穿设在第三安装孔6030中,且第一安装凸台的外直径大于第三安装孔6030的孔径,从而将配 重件2200固定在安装架1000上,避免了配重件2200与安装架1000的脱离;
或者,配重件2200上开设有安装架安装孔,安装架1000上朝向配重件2200的表面上形成有第二安装凸台,第二安装凸台穿设在安装架安装孔中,且第二安装凸台的外直径大于安装架安装孔的孔径,,从而将配重件2200固定在安装架1000上,避免了配重件2200与安装架1000的脱离。
配重件2200还可以与减振机构2000中的弹性件2100连接,减振机构2000中的弹性件2100可以为减振球2110。
减振球的具体结构可以根据不同的需求来设计,例如,在图示的实施例中,减振球2110可以包括上端部2111、上颈部2112、减振主体2113、下颈部2114和下端部2115。上颈部2112连接在上端部2111与减振主体2113之间;配重件2200上开设有贯穿的第一安装孔6010,减振球2110的上颈部2112穿设在第一安装孔6010中,且减振球2110的上端部2111卡在配重件2200上,上颈部2112与第一安装孔6010之间形成的第一配合间隙,减振主体2113朝向上颈部2112的首端压入第一配合间隙朝向减振球2110的一侧,以对安装架1000进行减振。
本实施例中,通过配重件2200与安装架1000过盈配合,使得减振机构2000中的配重件2200与安装架1000之间的连接牢固、可靠,进而能够有效避免运动传感器3000与减振机构2000脱离。
实施例十七
在上述实施例十四的基础上,配重件2200与安装架1000螺接。
其中,安装架1000上可以开设有第四安装孔,配重件2200上可以开设有第四安装孔,通过紧固件穿过安装架1000上的第四安装孔、配重件2200上的第四安装孔,将配重件2200固定在安装架1000上;或者
安装架1000上开设有配重件安装孔,配重件安装孔设有内螺纹,配重件2200朝向安装架1000的一端形成有第三安装凸台,第三安装凸台上形成有外螺纹,通过将配重件2200的第三安装凸台拧入配重件安装孔,实现配重件2200与安装架1000的螺接;或者,
减振机构2000中的弹性件2100可以为减振球2110,减振球2110开设有中心孔,减振球2110可以包括:上端部2111、上颈部2112、减振主体2113、 下颈部2114和下端部2115,上颈部2112连接在上端部2111与减振主体2113之间;安装架1000上开设有配重件安装孔,配重件2200朝向安装架1000的一端形成有第三安装凸台,第三安装凸台穿设在配重件安装孔中,配重件2200上形成有第一安装孔6010,减振球2110的上颈部2112穿设在第一安装孔6010中,通过紧固件在减振球2110上的中心孔中旋紧将配重件2200压紧固定在安装架1000上,不仅能够避免配重件2200与安装架1000的脱离,还能够避免配重件2200与安装架1000之间产生相对移动,从而避免了配重件2200与安装架1000之间的相对移动对减振球2110的上颈部2112的损害,有助于延长减振球2110的使用寿命。
本实施例中,通过配重件2200与安装架1000螺接,使得减振机构2000中的配重件2200与安装架1000之间的连接牢固、可靠,进而能够有效避免运动传感器3000与减振机构2000脱离。
实施例十八
图6为本发明实施例提供的运动传感器的安装装置中安装架的结构示意图;请参照图6,在上述实施例一至实施例十七中任一实施例的基础上,安装架1000设有用于安装运动传感器3000的安装区1010,多个减振机构2000围绕安装区1010设置。
其中,安装架1000可以为框架结构,框架结构可以包括:封闭的框架,框架的框的中部形成安装区1010,该安装区1010可以为空腔,多个减振机构2000围绕空腔设置,运动传感器3000容置在该空腔中,且通过紧固件将运动传感器3000与框架固定连接;框架可以呈多边形、圆形或者椭圆形。
或者,安装架1000可以呈板状,例如多边形板状、圆形板状或者椭圆形板状,安装架1000的中部可以为安装区1010,安装区1010可以为凹陷形成的安装槽,多个减振机构2000围绕安装槽设置,运动传感器3000安装在安装槽中。
优选地,多个减振机构2000以安装区1010为中心对称设置,以保证安装架1000在振动条件下具有较好的各向同性动力学响应特性,有助于保持安装架1000的稳定性。例如,安装架1000可以呈矩形,减振机构2000可以为4个,4个减振机构2000分别设置在安装架1000的4个顶点处,由于减振机 构2000可以包括配重件2200,使得安装架1000的重量主要分布在X型的4个端口,有助于保证安装架1000的平稳性。
实施例十九
图7为本发明实施例提供的运动传感器的安装装置的第四种结构示意图;图8为图7的爆炸示意图;请参照图7-8,在上述实施例一至实施例十八中任一实施例的基础上,运动传感器的安装装置还包括:盖板5000,盖板5000用于将运动传感器3000压紧在安装架1000上。
本实施例中,盖板5000可以采用金属材质制成;较佳地,盖板5000采用塑料材质制成,以减轻运动传感器的安装装置的自重,有助于实现飞行器的轻量化;盖板5000背离安装架1000的一侧可以设有多个减重槽,以进一步减轻运动传感器的安装装置的自重,有助于实现飞行器的轻量化。
盖板5000上可以形成有朝向安装架1000的第四安装凸台,安装架1000上形成有盖板安装孔,第三安装凸台的外直径大于盖板安装孔的内径,以将第四安装凸台与盖板安装孔过盈配合。或者,盖板5000上形成有朝向安装架1000的第四安装凸台,安装架1000上形成有盖板安装孔,第四安装凸台穿设在盖板安装孔中,通过胶粘的方式将盖板5000固定在安装架1000上。
本实施例中,优选地,盖板5000上可以形成有多个第五安装孔6040,安装架1000上也形成有相同数量的第五安装孔6040,通过紧固件如螺栓或者螺钉穿过盖板5000上的第五安装孔6040、安装架1000上的第五安装孔6040将盖板5000固定在安装架1000上,从而可以将运动传感器3000压紧在安装架1000的安装槽中。
其中,较佳地,安装架1000上朝向盖板5000凸设有凸起部,该凸起部呈圆柱状,凸起部上开设有第五安装孔6040;盖板5000上朝向安装架1000的一侧开设有容置该凸起部的圆孔,该圆孔与安装架1000上的第五安装孔6040连通且同轴,以通过凸起部提高安装架1000的强度,延长安装架1000的使用寿命。
进一步地,盖板5000朝向运动传感器3000的一侧设有垫片,以填补盖板5000与运动传感器3000之间的缝隙,既能够保护运动传感器3000与盖板5000的安装面,还可以进一步提高对运动传感器3000的减振效果。其中, 垫片可以为硅胶垫片。
实施例二十
请继续参照图6,在上述实施例一至实施例十九中任一实施例的基础上,安装架1000包括:安装本体1020,安装本体1020朝向外侧延伸有多个减振支架1030,减振支架1030用于安装减振机构2000。
其中,安装本体1020可以为框架结构,框架结构可以包括:封闭的框架,框架的框的中部形成安装区1010,该安装区1010可以为空腔,多个减振机构2000围绕空腔设置,运动传感器3000容置在该空腔中,且通过紧固件与框架固定连接;框架可以呈矩形、圆形或者椭圆形。
较佳地,安装本体1020可以呈板状,例如圆形板状、椭圆形板状、多边形板状等,安装本体1020的中部可以为安装区1010,安装区1010可以为凹陷形成的安装槽,多个减振机构2000围绕安装槽设置,运动传感器3000容置在安装槽中,通过盖板5000将运动传感器3000压紧在安装架1000上,其中,盖板5000上可以形成有朝向安装架1000的第三安装凸台,安装架1000上形成有盖板5000安装孔,第三安装凸台与第二安装孔6020通过过盈配合或者螺接或者粘接或卡接等方式连接。
多个减振支架1030可以围绕安装本体1020均匀设置,以保证安装架1000在振动条件下具有较好的各向同性动力学响应特性,达到较佳的减振效果,提高安装架1000的平稳性。
多个减振支架1030可以围绕安装本体1020对角布局,以达到较佳的减振效果,且有助于保持安装架1000的平稳性;例如,安装本体呈矩形,减振支架1030可以为4个,4个减振支架1030分别设置在安装本体1020的4个顶点处,此时,安装架1000呈X型,由于减振机构2000安装在减振支架1030上,减振机构2000可以包括配重件2200,使得安装架1000的重量主要分布在X型的4个端口,有助于保证安装架1000的平稳性。
实施例二十一
图9为本发明实施例无人飞行器的结构示意图;请参照图9及图1,本实施例提供一种无人飞行器,包括:运动传感器的安装装置、运动传感器3000 和飞行控制器7100。
运动传感器的安装装置包括:安装架1000、以及多个减振机构2000。运动传感器3000安装在安装架1000上。多个减振机构2000与安装架1000连接,用于对安装架1000进行减振。其中,多个减振机构2000分别间隔设置,每个减振机构2000包括弹性件2100,弹性件2100与安装架1000抵接,以对运动传感器3000进行减振。
飞行控制器7100,与运动传感器3000电连接。
其中,无人飞行器还包括飞行器机身4000,运动传感器的安装装置可以安装在飞行器机身4000的承载架上。飞行器机身4000可以包括主壳体4100、支臂壳体4200和着陆架;着陆架与主壳体4100连接,用于在无人飞行器着陆时,支撑飞行器机身4000;支臂壳体4200与主壳体4100可以一体成型,或者采用可拆卸的方式连接,例如螺纹连接、卡接、焊接、铆接、粘接等。
支臂壳体4200主要用于承载旋翼组件,旋翼组件用于产生升力以支持无人飞行器在空中飞行。旋翼组件可以包括:电机4212和螺旋桨4211,电机4212与支臂壳体4200连接,螺旋桨4211与电机4212的输出轴连接,电机4212用于驱动螺旋桨4211旋转,从而通过螺旋桨4211将电机4212的转动功率转化为支持无人飞行器在空中飞行的升力。
承载架可以为主壳体4100。主壳体4100可以包括底壁及与围绕底壁设置的侧壁,底壁与侧壁共同围成一收容空间,运动传感器的安装装置可以收容在该收容空间中,例如,运动传感器的安装装置中的弹性件2100的一端与安装架1000抵接,弹性件2100的另一端与主壳体4100的底壁抵接。
承载架可以为控制电路板7000。例如,在图9所示的实施例中,飞行控制器7100可以安装在控制电路板7000上,并且飞行控制器7100与控制电路板7000电连接,电机4212也与控制电路板7000连接。控制电路板7000可以安装在飞行器机身4000上,例如,控制电路板7000安装在飞行器机身4000的主壳体4100上。运动传感器的安装装置中的弹性件2100的一端与安装架1000抵接,弹性件2100的另一端与控制电路板7000抵接,从而便于运动传感器3000与飞行控制器7100电连接。
飞行控制器7100是无人飞行器的核心元件,用于对无人飞行器控制系统工作模式的管理,用于对控制律进行解算并生成控制信号,用于对无人飞行 器中各传感器及伺服系统进行管理,用于对无人飞行器内其他任务和电子部件的控制及数据交换,用于接收地面指令并采集无人飞行器航姿信息等。
运动传感器用于确定并反馈飞行器的航姿信息,与飞行控制器电连接,以将运动传感器确定的飞行器的航姿信息传输给飞行控制器,以便于飞行控制器确定后续操作。运动传感器确定飞行器航姿信息的过程为:由加速度计(也即加速度传感器)检测飞行器相对于地垂线的加速度分量;由陀螺(也即速度传感器)检测飞行器的角度信息;模数转换器接收运动传感器各传感器输出的模拟变量,并将模拟变量转换为数字信号;中央处理器CPU根据该数字信号确定并输出飞行器的俯仰角度、倾斜角度与侧滑角度,从而确定飞行器的航姿信息;其中,带电可擦除可编程存储器E/EPROM用于存储运动传感器各传感器的线性曲线图与运动传感器各传感器的件号与序号,以在刚开机时,使得图像处理单元能够读取E/EPROM中的线性曲线参数,从而为后续角度计算提供初始信息。
本实施例中的运动传感器的安装装置的具体结构及功能与实施例一相同,在此不再赘述。
本实施例提供的无人飞行器,通过运动传感器的安装装置,能够避免现有技术的安装形式中,通过减小泡棉横截面积来增加减振效果与连接可靠性的矛盾,即,通过安装架1000安装运动传感器3000,并将减振机构2000的弹性件2100与安装架1000抵接,以使减振机构2000的弹性件2100与安装架1000紧密地相抵顶,若需要调节减振效果,则可以分别对部分或全部的减振机构进行调节即可,从而使得所述减振机构调节减振效果较为容易,且不影响减振机构2000与安装架1000之间的连接牢固、可靠性,保证了运动传感器3000检测的精确性,进而使得飞行控制器精确地确定出无人飞行器的航姿。
实施例二十二
请继续参照图2所示,在上述实施例二十一的基础上,弹性件2100设置在安装架1000下方,且安装架1000能够压持弹性件2100,使弹性件2100发生压缩变形。
本实施例中的运动传感器的安装装置的具体结构及功能与实施例二相 同,在此不再赘述。
本实施例中,通过弹性件2100的压缩变形缓冲飞行器机身4000传递给安装架1000的振动,从而实现对安装架1000的减振,进而实现对运动传感器3000的减振,有助于提高运动传感器3000测量的准确性。
实施例二十三
在上述实施例二十一的基础上,弹性件2100设置在安装架1000上方,且安装架1000能够拉拽弹性件2100,使弹性件2100发生拉伸变形。
本实施例中的运动传感器的安装装置的具体结构及功能与实施例三相同,在此不再赘述。
本实施例中,通过弹性件2100的拉伸变形缓冲飞行器机身4000传递给安装架1000的振动,从而实现对安装架1000的减振,进而实现对运动传感器3000的减振,有助于提高运动传感器3000测量的准确性。
实施例二十四
在上述实施例二十一至实施例二十三中任一实施例的基础上,弹性件2100可以为减振球、弹簧、减振垫等。
本实施例中的运动传感器的安装装置的具体结构及功能与实施例四相同,在此不再赘述。
本实施例中,弹性件可以夹设在安装架1000与飞行器机身4000之间;通过弹性件的拉伸变形或者压缩变形缓冲飞行器机身4000传递给安装架1000的振动,从而实现对安装架1000的减振,进而实现对运动传感器3000的减振,有助于提高运动传感器3000测量的准确性。
实施例二十五
请继续参照图3-5所示,在上述实施例二十四的基础上,减振球2110包括:上端部2111、上颈部2112和减振主体2113,上颈部2112连接在上端部2111与减振主体2113之间,上颈部2112和上端部2111用于与安装架1000连接,减振主体2113与安装架1000抵接,且减振主体2113用于对安装架1000进行减振。
本实施例中的运动传感器的安装装置的具体结构及功能与实施例五相同,在此不再赘述。
本实施例中,减振球2110的上端部2111及上颈部2112与安装架1000连接,减振球2110的减振主体2113与安装架1000抵接,使得减振机构2000与安装架1000之间的连接牢固、可靠,进而能够有效避免运动传感器3000与减振机构2000脱离。
实施例二十六
在上述实施例二十五的基础上,上端部2111用于将减振球2110卡装在安装架1000上。
本实施例中的运动传感器的安装装置的具体结构及功能与实施例六相同,在此不再赘述。
本实施例中,减振球2110的上端部2111与安装架1000卡接,减振球2110的上颈部2112与安装架1000连接,减振主体2113与安装架1000抵接,使得减振机构2000与安装架1000之间的连接牢固、可靠,进而能够有效避免运动传感器3000与减振机构2000脱离。
实施例二十七
在上述实施例二十五或者实施例二十六的基础上,安装架1000上开设有第一安装孔6010,上颈部2112与安装架1000的第一安装孔6010过盈配合,以使减振主体2113与安装架1000抵持。
优选地,上颈部2112的轴向高度小于第一安装孔6010的深度,以使减振主体2113与安装架1000相抵。具体地,由于上颈部2112的轴向高度小于第一安装孔6010的深度,上颈部2112与第一安装孔6010之间形成第一配合间隙,减振主体2113朝向上颈部2112的首端夹持在第一配合间隙朝向减振主体2113的一侧,也即使得减振主体2113朝向上颈部2112的首端能够压入第一安装孔6010,减小了减振球2110与安装架1000之间的配合间隙,不仅有效减少减振机构2000与安装架1000之间的晃动,进一步提高了减振效果,还能够使运动传感器的安装装置的结构更紧凑,减缓整机的布置空间压力。
本实施例中的运动传感器的安装装置的具体结构及功能与实施例七相同,在此不再赘述。
本实施例中,通过减振球2110的上颈部2112与安装架1000的第一安装孔6010过盈配合,减振主体2113与安装架1000抵接,使得减振机构2000与安装架1000之间的连接牢固、可靠,进而能够有效避免运动传感器3000与减振机构2000脱离。
实施例二十八
在上述实施例二十五或者实施例二十六的基础上,安装架1000上开设有第一安装孔6010,上颈部2112与安装架1000的第一安装孔6010粘接,以使减振主体2113与安装架1000抵持。
优选地,上颈部2112的轴向高度小于第一安装孔6010的深度,以使减振主体2113与安装架1000相抵。具体地,由于上颈部2112的轴向高度小于第一安装孔6010的深度,上颈部2112与第一安装孔6010之间形成第一配合间隙,减振主体2113的首端夹持在第一配合间隙朝向减振主体2113的一侧,也即使得减振主体2113朝向上颈部2112的一端能够压入第一安装孔6010,减小了减振球2110与安装架1000之间的配合间隙,不仅有效减少减振机构2000与安装架1000之间的晃动,进一步提高了减振效果,还能够使运动传感器的安装装置的结构更紧凑,减缓整机的布置空间压力。
本实施例中的运动传感器的安装装置的具体结构及功能与实施例八相同,在此不再赘述。
本实施例中,通过减振球2110的上颈部2112与安装架1000的第一安装孔6010粘接,减振主体2113与安装架1000抵接,使得减振机构2000与安装架1000之间的连接牢固、可靠,进而能够有效避免运动传感器3000与减振机构2000脱离。
实施例二十九
在上述实施例二十五或者实施例二十六的基础上,减振球2110与安装架1000可拆卸连接。优选地,减振球2110可以与安装架1000可徒手连接。
本实施例中的运动传感器的安装装置的具体结构及功能与实施例九相 同,在此不再赘述。
本实施例中,通过减振球2110与安装架1000卡接,减振主体2113与安装架1000抵接,使得减振机构2000与安装架1000之间的连接牢固、可靠,进而能够有效避免运动传感器3000与减振机构2000脱离。
实施例三十
在上述实施例二十五至实施例二十九中任一实施例的基础上,无人飞行器机身4000上开设有第二安装孔6020,减振球2110还包括下颈部2114和下端部2115,下颈部2114与减振主体2113连接,下颈部2114用于与无人飞行器机身4000上的第二安装孔6020配合,下端部2115用于将减振球2110卡装在无人飞行器机身4000上,以将减振主体2113夹持在无人飞行器机身4000与安装架1000之间。
本实施例中的运动传感器的安装装置的具体结构及功能与实施例十相同,在此不再赘述。
无人飞行器机身4000上开设有第二安装孔6020,例如无人飞行器机身4000的主壳体的底壁上开设有第二安装孔6020,下颈部2114与该第二安装孔6020连接;或者无人飞行器机身4000上安装有飞控板,例如飞控板可以安装在无人飞行器机身4000的主壳体的底壁及侧壁围成的收容空间中,飞控板上开设有第二安装孔6020,下颈部2114与该第二安装孔6020连接。
本实施例中,减振球2110的上端部2111与安装架1000卡接,减振球2110的上颈部2112与安装架1000连接,减振球2110的下颈部2114与飞行器机身4000连接,减振球2110的下端部2115与飞行器机身4000卡接,减振主体2113与安装架1000及飞行器机身4000抵接,使得减振机构2000与安装架1000之间的连接牢固、可靠,进而能够有效避免运动传感器3000与减振机构2000脱离,还使得减振机构2000与飞行器机身4000的连接牢固、可靠,进而有效避免运动传感器3000及减振机构2000脱离飞行器机身4000被甩出。
实施例三十一
在上述实施例二十五至实施例三十中任一实施例的基础上,减振机构 2000还包括配重件2200,配重件2200与减振球2110可拆卸连接的,配重件2200还与安装架1000可拆卸连接,以增加安装架1000的惯量。可拆卸连接的方式可以为过盈配合、粘接、卡接、螺接等。
本实施例中的运动传感器的安装装置的具体结构及功能与实施例十一相同,在此不再赘述。
本实施例中,减振球2110与安装架1000抵接,配重件2200与安装架1000固定连接,使得减振机构2000与安装架1000之间的连接牢固、可靠,进而能够有效避免运动传感器3000与减振机构2000脱离。
实施例三十二
在上述实施例二十一至实施例三十一中任一实施例的基础上,多个减振机构2000中的弹性件的阻尼系数相同。其中,当减振机构2000围绕安装在安装架1000上的运动传感器3000均匀设置,也即弹性件围绕运动传感器3000均匀设置,且每个弹性件与运动传感器的安装装置的重心之间的距离相同时,各个减振机构2000中的弹性件的阻尼系数相同,以使运动传感器的安装装置受到的阻尼作用均匀且相同,有助于进一步提高对安装架1000上的运动传感器3000的减振效果。
实施例三十三
在上述实施例二十一至实施例三十一中任一实施例的基础上,靠近运动传感器的安装装置的重心的弹性件的阻尼系数,大于远离运动传感器的安装装置的重心的弹性件的阻尼系数。
其中,当减振机构2000围绕安装在安装架1000上的运动传感器3000均匀设置,也即弹性件围绕运动传感器3000均匀设置,且当弹性件与运动传感器的安装装置的重心之间的距离不完全相同时,越靠近运动传感器的安装装置的重心的弹性件的阻尼系数越大,其振动也越弱,有助于进一步提高对安装架1000上的运动传感器3000的减振效果。
实施例三十四
请继续参照图4-5所示,在上述实施例二十一至实施例三十三中任一实施 例的基础上,减振机构2000还包括与安装架1000连接的配重件2200,配重件2200用于将自身的重力作用于安装架1000,以增加安装架1000的惯量。
本实施例中的运动传感器的安装装置的具体结构及功能与实施例十四相同,在此不再赘述。
其中,配重件2200呈环状,配重件2200可以采用高密度金属材料制成,多个减振机构2000中的配重件2200的重量可以相同,使得各个配重件2200的惯量相同,能够保证安装架1000的稳定性。
本实施例中,通过在安装架1000上设置配重件2200,增加安装架1000的惯量,以减小飞行器机身4000的振动对安装架1000的影响,有助于保证安装架1000的稳定性,进一步提高减振机构2000对安装架1000的减振效果。
实施例三十五
在上述实施例三十四的基础上,配重件2200与安装架1000一体成型。
本实施例中的运动传感器的安装装置的具体结构及功能与实施例十五相同,在此不再赘述。
本实施例中,通过配重件2200与安装架1000一体成型,使得减振机构2000中的配重件2200与安装架1000之间的连接牢固、可靠,进而能够有效避免运动传感器3000与减振机构2000脱离。
实施例三十六
在上述实施例三十四的基础上,配重件2200与安装架1000过盈配合。
本实施例中的运动传感器的安装装置的具体结构及功能与实施例十六相同,在此不再赘述。
本实施例中,通过配重件2200与安装架1000过盈配合,使得减振机构2000中的配重件2200与安装架1000之间的连接牢固、可靠,进而能够有效避免运动传感器3000与减振机构2000脱离。
实施例三十七
在上述实施例三十四的基础上,配重件2200与安装架1000可拆卸连接。
本实施例中的运动传感器的安装装置的具体结构及功能与实施例十七相同,在此不再赘述。
本实施例中,通过配重件2200与安装架1000可拆卸连接,使得减振机构2000中的配重件2200与安装架1000之间的连接牢固、可靠,进而能够有效避免运动传感器3000与减振机构2000脱离。
实施例三十八
请继续参照图6,在上述实施例二十一至实施例三十七中任一实施例的基础上,安装架1000设有用于安装运动传感器3000的安装区1010,多个减振机构2000围绕安装区1010设置。
本实施例中的运动传感器的安装装置的具体结构及功能与实施例十八相同,在此不再赘述。
其中,多个减振机构2000以安装区1010为中心对称设置,以保证安装架1000在振动条件下具有较好的各向同性动力学响应特性,有助于保持安装架1000的稳定性;安装区1010可以为安装槽,以便于运动传感器3000的安装。
本实施例中,多个减振机构2000围绕安装区1010设置,更好地缓冲飞行器机身4000传递至安装区1010的振动,以进一步提高对运动传感器3000的减振效果。
实施例三十九
请继续参照图7-8,在上述实施例二十一至实施例三十八中任一实施例的基础上,运动传感器的安装装置还包括:盖板5000,盖板5000用于将运动传感器3000压紧在安装架1000上。
本实施例中的运动传感器的安装装置的具体结构及功能与实施例十九相同,在此不再赘述。
本实施例中,通过盖板5000将运动传感器3000压紧在安装架1000上,以使运动传感器3000与安装架1000的安装牢固、可靠,进一步提高对运动传感器3000的减振效果;通过在该办与运动传感器3000之间设置垫片,以填补盖板5000与运动传感器3000之间的缝隙,既能够保护运动传感器3000 与盖板5000的安装面,还可以进一步提高对运动传感器3000的减振效果。
实施例四十
请继续参照图6,在上述实施例二十一至实施例三十九中任一实施例的基础上,安装架1000包括:安装本体1020,安装本体1020朝向外侧延伸有多个减振支架1030,减振支架1030用于安装减振机构2000。
本实施例中的运动传感器的安装装置的具体结构及功能与实施例二十相同,在此不再赘述。
其中,多个减振支架1030可以围绕安装本体1020均匀设置,以保证安装架1000在振动条件下具有较好的各向同性动力学响应特性,达到较佳的减振效果,提高安装架1000的平稳性。
多个减振支架1030可以围绕安装本体1020对角布局,以达到较佳的减振效果,且有助于保持安装架1000的平稳性;例如,安装本体1020呈矩形,减振支架1030为4个,4个减振支架1030分别设置在安装本体104的4个顶点处,此时,安装架1000呈X型,由于减振机构2000安装在减振支架1030上,减振机构2000可以包括配重件2200,使得安装架1000的重量主要分布在X型的4个端口,有助于保证安装架1000的平稳性。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (60)

  1. 一种运动传感器的安装装置,其特征在于,包括:
    安装架,用于承载运动传感器;以及
    多个减振机构,与所述安装架连接,用于对所述安装架进行减振;
    其中,所述多个减振机构分别间隔设置,每个所述减振机构包括弹性件,所述弹性件与所述安装架抵接,以对所述安装架进行减振。
  2. 根据权利要求1所述的运动传感器的安装装置,其特征在于,所述弹性件设置在所述安装架下方,且所述安装架能够压持所述弹性件,使所述弹性件发生压缩变形。
  3. 根据权利要求1所述的运动传感器的安装装置,其特征在于,所述弹性件设置在所述安装架上方,且所述安装架能够拉拽所述弹性件,使所述弹性件发生拉伸变形。
  4. 根据权利要求1所述的运动传感器的安装装置,其特征在于,所述弹性件包括如下至少一种:减振球,弹簧,减振垫。
  5. 根据权利要求1所述的运动传感器的安装装置,其特征在于,所示弹性件包括减振球;
    所述减振球包括上端部、上颈部和减振主体,所述上颈部连接在所述上端部与所述减振主体之间,所述上颈部和上端部用于与所述安装架连接,所述减振主体与所述安装架抵接,且所述减振主体用于对所述安装架进行减振。
  6. 根据权利要求5所述的运动传感器的安装装置,其特征在于,所述上端部用于将所述减振球卡装在所述安装架上。
  7. 根据权利要求5所述的运动传感器的安装装置,其特征在于,所述安装架上开设有第一安装孔,所述上颈部与所述安装架的第一安装孔过盈配合,以使所述减振主体与所述安装架抵持。
  8. 根据权利要求5所述的运动传感器的安装装置,其特征在于,所述安装架上开设有第一安装孔,所述上颈部与所述安装架的第一安装孔粘接,以使所述减振主体与所述安装架抵持。
  9. 根据权利要求7或8所述的运动传感器的安装装置,其特征在于,所述减振球的所述上颈部的轴向高度小于所述安装架上的第一安装孔的深度,以使所述减振主体与所述安装架相抵。
  10. 根据权利要求5所述的运动传感器的安装装置,其特征在于,所述减振球与所述安装架可拆卸连接。
  11. 根据权利要求5所述的运动传感器的安装装置,其特征在于,所述减振球还包括下颈部和下端部,所述下颈部与所述减振主体连接,所述下颈部用于与飞行器机身上的第二安装孔配合,所述下端部用于将所述减振球卡装在飞行器机身上,以将所述减振主体夹持在所述飞行器机身与所述安装架之间。
  12. 根据权利要求5所述的运动传感器的安装装置,其特征在于,所述减振机构还包括配重件,所述配重件与所述减振球过盈配合,所述配重件还与所述安装架固定连接,以增加所述安装架上所述弹性件所在部位的惯量。
  13. 根据权利要求1所述的运动传感器的安装装置,其特征在于,所述减振机构还包括配重件,所述配重件与所述弹性件抵接,并且与所述安装架可拆卸连接,以增加所述安装架上所述弹性件所在部位的惯量。
  14. 根据权利要求1所述的运动传感器的安装装置,其特征在于,所述多个减振机构中的所述弹性件的阻尼系数相同。
  15. 根据权利要求1所述的运动传感器的安装装置,其特征在于,靠近所述运动传感器的安装装置的重心的所述弹性件的阻尼系数,大于远离所述运动传感器的安装装置的重心的所述弹性件的阻尼系数。
  16. 根据权利要求1所述的运动传感器的安装装置,其特征在于,所述多个减振机构中的所述弹性件的材质相同或不同。
  17. 根据权利要求1所述的运动传感器的安装装置,其特征在于,所述减振机构还包括与所述安装架连接的配重件,所述配重件用于将自身的重力作用于所述安装架,以增加所述安装架的惯量。
  18. 根据权利要求17所述的运动传感器的安装装置,其特征在于,所述多个减振机构的配重件的重量相同。
  19. 根据权利要求17所述的运动传感器的安装装置,其特征在于,所述配重件与所述安装架一体成型。
  20. 根据权利要求17所述的运动传感器的安装装置,其特征在于,所述配重件与所述安装架过盈配合。
  21. 根据权利要求17所述的运动传感器的安装装置,其特征在于,所述 配重件与所述安装架可拆卸连接。
  22. 根据权利要求1所述的运动传感器的安装装置,其特征在于,所述安装架设有用于安装所述运动传感器的安装区,所述多个减振机构围绕所述安装区设置。
  23. 根据权利要求22所述的运动传感器的安装装置,其特征在于,所述多个减振机构以所述安装区为中心对称设置。
  24. 根据权利要求22所述的运动传感器的安装装置,其特征在于,所述安装区为安装槽。
  25. 根据权利要求1所述的运动传感器的安装装置,其特征在于,所述运动传感器的安装装置还包括盖板,所述盖板用于将所述运动传感器压紧在所述安装架上。
  26. 根据权利要求25所述的运动传感器的安装装置,其特征在于,所述盖板与所述安装架可拆卸连接。
  27. 根据权利要求25所述的运动传感器的安装装置,其特征在于,所述盖板朝向所述运动传感器的一侧设有垫片,以填补所述盖板与运动传感器之间的缝隙。
  28. 根据权利要求1所述的运动传感器的安装装置,其特征在于,所述安装架包括安装本体,所述安装本体用于承载所述运动传感器,所述安装本体朝向外侧延伸有多个减振支架,所述减振支架用于安装所述减振机构。
  29. 根据权利要求28所述的运动传感器的安装装置,其特征在于,所述多个减振支架围绕所述安装本体均匀设置。
  30. 根据权利要求28所述的运动传感器的安装装置,其特征在于,所述多个减振支架对角布局。
  31. 一种无人飞行器,其特征在于,包括:运动传感器的安装装置、运动传感器和飞行控制器;
    所述运动传感器的安装装置包括安装架以及多个减振机构,所述运动传感器安装在所述安装架上;所述多个减振机构与所述安装架连接,用于对所述安装架进行减振;
    所述飞行控制器,与所述运动传感器电连接;
    其中,所述多个减振机构分别间隔设置,每个所述减振机构包括弹性件,所述弹性件与所述安装架抵接,以对所述运动传感器进行减振。
  32. 根据权利要求31所述的无人飞行器,其特征在于,所述弹性件设置在所述安装架下方,且所述安装架能够压持所述弹性件,使所述弹性件发生压缩变形。
  33. 根据权利要求31所述的无人飞行器,其特征在于,所述弹性件设置在所述安装架上方,且所述安装架能够拉拽所述弹性件,使所述弹性件发生拉伸变形。
  34. 根据权利要求31所述的无人飞行器,其特征在于,所述弹性件包括如下至少一种:减振球,弹簧,减振垫。
  35. 根据权利要求31所述的无人飞行器,其特征在于,所述弹性件包括减振球;
    所述减振球包括上端部、上颈部和减振主体,所述上颈部连接在所述上端部与所述减振主体之间,所述上颈部和上端部用于与所述安装架连接,所述减振主体与所述安装架抵接,且所述减振主体用于对所述安装架进行减振。
  36. 根据权利要求35所述的无人飞行器,其特征在于,所述上端部用于将所述减振球卡装在所述安装架上。
  37. 根据权利要求35所述的无人飞行器,其特征在于,所述安装架上开设有第一安装孔,所述上颈部与所述安装架的第一安装孔过盈配合,以使所述减振主体与所述安装架抵持。
  38. 根据权利要求35所述的无人飞行器,其特征在于,所述安装架上开设有第一安装孔,所述上颈部与所述安装架的第一安装孔粘接,以使所述减振主体与所述安装架抵持。
  39. 根据权利要求37或38所述的无人飞行器,其特征在于,所述减振球的所述上颈部的轴向高度小于所述安装架上的第一安装孔的深度,以使所述减振主体与所述安装架相抵。
  40. 根据权利要求35所述的无人飞行器,其特征在于,所述减振球与所述安装架可拆卸连接。
  41. 根据权利要求35所述的无人飞行器,其特征在于,所述无人飞行器机身上开设有第二安装孔,所述减振球还包括下颈部和下端部,所述下颈部 与所述减振主体连接,所述下颈部用于与无人飞行器机身上的第二安装孔配合,所述下端部用于将所述减振球卡装在无人飞行器机身上,以将所述减振主体夹持在所述无人飞行器机身与所述安装架之间。
  42. 根据权利要求35所述的无人飞行器,其特征在于,所述减振机构还包括配重件,所述配重件与所述减振球过盈配合,所述配重件还与所述安装架固定连接,以增加所述安装架上所述弹性件所在部位的惯量。
  43. 根据权利要求31所述的无人飞行器,其特征在于,所述减振机构还包括配重件,所述配重件与所述弹性件抵接,并且与所述安装架可拆卸连接,以增加所述安装架上所述弹性件所在部位的惯量。
  44. 根据权利要求31所述的无人飞行器,其特征在于,所述多个减振机构中的所述弹性件的阻尼系数相同。
  45. 根据权利要求31所述的无人飞行器,其特征在于,靠近所述运动传感器的安装装置的重心的所述弹性件的阻尼系数,大于远离所述运动传感器的安装装置的重心的所述弹性件的阻尼系数。
  46. 根据权利要求31所述的无人飞行器,其特征在于,所述多个减振机构中的所述弹性件的材质不同或相同。
  47. 根据权利要求31所述的无人飞行器,其特征在于,所述减振机构还包括与所述安装架连接的配重件,所述配重件用于将自身的重力作用于所述安装架,以增加所述安装架的惯量。
  48. 根据权利要求47所述的无人飞行器,其特征在于,所述多个减振机构的配重件的重量相同。
  49. 根据权利要求47所述的无人飞行器,其特征在于,所述配重件与所述安装架一体成型。
  50. 根据权利要求47所述的无人飞行器,其特征在于,所述配重件与所述安装架过盈配合。
  51. 根据权利要求47所述的无人飞行器,其特征在于,所述配重件与所述安装架可拆卸连接。
  52. 根据权利要求31所述的无人飞行器,其特征在于,所述安装架设有用于安装所述运动传感器的安装区,所述多个减振机构围绕所述安装区设置。
  53. 根据权利要求52所述的无人飞行器,其特征在于,所述多个减振机 构以所述安装区为中心对称设置。
  54. 根据权利要求52所述的无人飞行器,其特征在于,所述安装区为安装槽。
  55. 根据权利要求31所述的无人飞行器,其特征在于,所述运动传感器的安装装置还包括盖板,所述盖板用于将所述运动传感器压紧在所述安装架上。
  56. 根据权利要求55所述的无人飞行器,其特征在于,所述盖板与所述安装架可拆卸连接。
  57. 根据权利要求55所述的无人飞行器,其特征在于,所述盖板与所述运动传感器之间设有垫片,以填补所述盖板与运动传感器之间的缝隙。
  58. 根据权利要求31所述的无人飞行器,其特征在于,所述安装架包括:安装本体,所述安装本体朝向外侧延伸有多个减振支架,所述减振支架用于安装所述减振机构。
  59. 根据权利要求58所述的无人飞行器,其特征在于,所述多个减振支架围绕所述安装本体均匀设置。
  60. 根据权利要求58所述的无人飞行器,其特征在于,所述多个减振支架对角布局。
PCT/CN2016/083481 2016-05-26 2016-05-26 运动传感器的安装装置及无人飞行器 WO2017201713A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680002521.8A CN107074376B (zh) 2016-05-26 2016-05-26 运动传感器的安装装置及无人飞行器
PCT/CN2016/083481 WO2017201713A1 (zh) 2016-05-26 2016-05-26 运动传感器的安装装置及无人飞行器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/083481 WO2017201713A1 (zh) 2016-05-26 2016-05-26 运动传感器的安装装置及无人飞行器

Publications (1)

Publication Number Publication Date
WO2017201713A1 true WO2017201713A1 (zh) 2017-11-30

Family

ID=59624169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083481 WO2017201713A1 (zh) 2016-05-26 2016-05-26 运动传感器的安装装置及无人飞行器

Country Status (2)

Country Link
CN (1) CN107074376B (zh)
WO (1) WO2017201713A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108761125A (zh) * 2018-03-29 2018-11-06 顺丰科技有限公司 弹性空速管及飞行器
US20200283118A1 (en) * 2018-01-19 2020-09-10 SZ DJI Technology Co., Ltd. Unmanned aerial vehicle
FR3093702A1 (fr) * 2019-03-15 2020-09-18 Hexadrone Drone comprenant une embase et une enveloppe suspendue

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019090755A1 (zh) * 2017-11-13 2019-05-16 深圳市大疆创新科技有限公司 运动传感器组件及无人机
CN108190036A (zh) * 2017-12-25 2018-06-22 中航联创科技有限公司 一种无人机的惯导减震系统
JP2021504942A (ja) * 2017-12-29 2021-02-15 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd センターボードユニットおよび無人航空機
CN108601281B (zh) * 2018-04-24 2020-11-03 赫星科技有限公司 用于无人机的减震装置、电路板及飞行无人机
CN112997024A (zh) * 2019-12-31 2021-06-18 深圳市大疆创新科技有限公司 运动传感器模组及可移动平台
CN112996724A (zh) * 2019-12-31 2021-06-18 深圳市大疆创新科技有限公司 运动传感器的安装装置、运动传感器模组及可移动平台
CN113825974A (zh) * 2020-09-28 2021-12-21 深圳市大疆创新科技有限公司 惯性测量组件和无人飞行器
CN113562186A (zh) * 2021-07-26 2021-10-29 中国空气动力研究与发展中心低速空气动力研究所 一种飞行器及其抗振模块
CN114560100B (zh) * 2022-02-28 2024-01-26 山东省国土测绘院 一种具有隔振云台的测绘无人机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103738504A (zh) * 2014-01-06 2014-04-23 深圳市大疆创新科技有限公司 飞行器的装载支架、飞行器及其减震方法
CN204358016U (zh) * 2014-11-28 2015-05-27 深圳市大疆创新科技有限公司 减震装置及采用该减震装置的车载云台
CN104776141A (zh) * 2015-04-08 2015-07-15 深圳市大疆创新科技有限公司 减震支架及应用该减震支架的飞行设备
DE102014002210A1 (de) * 2014-02-20 2015-08-20 Grammer Ag Vorrichtung zum Abfedern eines Federungsoberteils in wenigstens einer Raumrichtung gegenüber einem relativ dazu bewegbaren Federungsunterteil
CN204674844U (zh) * 2015-05-15 2015-09-30 深圳市大疆创新科技有限公司 减震板及具有该减震板的无人飞行器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102121829B (zh) * 2010-08-09 2013-06-12 汪滔 一种微型惯性测量系统
CN204250368U (zh) * 2014-11-14 2015-04-08 北华航天工业学院 一种智能航拍的迷你四旋翼飞行器
CN204606226U (zh) * 2015-04-15 2015-09-02 广州快飞计算机科技有限公司 一种航拍设备减震防脱装置
CN105035300B (zh) * 2015-08-27 2017-09-19 深圳市恩孚电子科技有限公司 无人机避震系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103738504A (zh) * 2014-01-06 2014-04-23 深圳市大疆创新科技有限公司 飞行器的装载支架、飞行器及其减震方法
DE102014002210A1 (de) * 2014-02-20 2015-08-20 Grammer Ag Vorrichtung zum Abfedern eines Federungsoberteils in wenigstens einer Raumrichtung gegenüber einem relativ dazu bewegbaren Federungsunterteil
CN204358016U (zh) * 2014-11-28 2015-05-27 深圳市大疆创新科技有限公司 减震装置及采用该减震装置的车载云台
CN104776141A (zh) * 2015-04-08 2015-07-15 深圳市大疆创新科技有限公司 减震支架及应用该减震支架的飞行设备
CN204674844U (zh) * 2015-05-15 2015-09-30 深圳市大疆创新科技有限公司 减震板及具有该减震板的无人飞行器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200283118A1 (en) * 2018-01-19 2020-09-10 SZ DJI Technology Co., Ltd. Unmanned aerial vehicle
EP3741661A4 (en) * 2018-01-19 2021-02-17 SZ DJI Technology Co., Ltd. PILOTLESS AIR VEHICLE
CN108761125A (zh) * 2018-03-29 2018-11-06 顺丰科技有限公司 弹性空速管及飞行器
FR3093702A1 (fr) * 2019-03-15 2020-09-18 Hexadrone Drone comprenant une embase et une enveloppe suspendue

Also Published As

Publication number Publication date
CN107074376A (zh) 2017-08-18
CN107074376B (zh) 2019-02-26

Similar Documents

Publication Publication Date Title
WO2017201713A1 (zh) 运动传感器的安装装置及无人飞行器
US11215633B2 (en) Micro inertial measurement system
CN205652380U (zh) Imu的安装装置及无人飞行器
WO2019090755A1 (zh) 运动传感器组件及无人机
CA2445015C (en) Compact vibration isolation system for an inertial sensor assembly
US20040150144A1 (en) Elastomeric vibration and shock isolation for inertial sensor assemblies
JP6729774B2 (ja) センサーユニット、電子機器、および移動体
US20200283118A1 (en) Unmanned aerial vehicle
US20220154800A1 (en) Motion sensor module and movable platform
CN211810279U (zh) 运动传感器的安装装置、运动传感器模组及可移动平台
CN211810278U (zh) 运动传感器模组及可移动平台
US20190178689A1 (en) Exact Constraint Magnetic Mount for Vibration Sensing Module
CN207917166U (zh) 一种imu机构及无人机
CN108146645A (zh) 一种imu机构及无人机
CN204548475U (zh) 飞行器
WO2021134585A1 (zh) 运动传感器的安装装置、运动传感器模组及可移动平台
JP2583173Y2 (ja) 角速度センサの防振支持装置
CN108750068B (zh) 飞行器
CN110725888B (zh) Imu杠杆减振装置及其方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902703

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902703

Country of ref document: EP

Kind code of ref document: A1