WO2020067451A1 - Curable polysilsesquioxane compound, curable composition, cured product, and, method for using curable composition - Google Patents

Curable polysilsesquioxane compound, curable composition, cured product, and, method for using curable composition Download PDF

Info

Publication number
WO2020067451A1
WO2020067451A1 PCT/JP2019/038220 JP2019038220W WO2020067451A1 WO 2020067451 A1 WO2020067451 A1 WO 2020067451A1 JP 2019038220 W JP2019038220 W JP 2019038220W WO 2020067451 A1 WO2020067451 A1 WO 2020067451A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable
curable composition
polysilsesquioxane compound
group
compound
Prior art date
Application number
PCT/JP2019/038220
Other languages
French (fr)
Japanese (ja)
Inventor
明来子 梅田
学 宮脇
秀一 中山
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to CN201980063631.9A priority Critical patent/CN112739748B/en
Priority to KR1020217006901A priority patent/KR20210066800A/en
Priority to JP2020531676A priority patent/JP6830563B2/en
Publication of WO2020067451A1 publication Critical patent/WO2020067451A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/24Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen halogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5435Silicon-containing compounds containing oxygen containing oxygen in a ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present invention is a curable polysilsesquioxane compound, containing the curable polysilsesquioxane compound, excellent curability, and a curable composition having a low refractive index, curing the curable composition And a method of using the curable composition as an adhesive for an optical element fixing material or a sealing material for an optical element fixing material.
  • curable compositions have been variously improved depending on applications, and have been widely used in industry as raw materials for optical components and molded articles, adhesives, coating agents, and the like. Also, the curable composition has been receiving attention as a composition for optical element fixing materials such as an adhesive for optical element fixing materials and a sealing material for optical element fixing materials.
  • the optical element includes various lasers such as a semiconductor laser (LD), a light emitting element such as a light emitting diode (LED), a light receiving element, a composite optical element, an optical integrated circuit, and the like.
  • a semiconductor laser LD
  • a light emitting element such as a light emitting diode (LED)
  • LED light emitting diode
  • a composite optical element an optical integrated circuit, and the like.
  • blue and white light optical elements having a shorter peak wavelength of light emission have been developed and widely used.
  • Such a light emitting element having a short peak wavelength of light emission has been dramatically improved in luminance, and accordingly, the amount of heat generated by the optical element tends to be further increased.
  • Patent Documents 1 to 3 propose compositions for an optical element fixing material containing a polysilsesquioxane compound as a main component.
  • a polysilsesquioxane compound as a main component.
  • Patent Document 4 describes a curable composition containing a curable polysilsesquioxane compound having a fluoroalkyl group as a curable composition giving a cured product having a low refractive index.
  • a curable composition containing a curable polysilsesquioxane compound having a high ratio of repeating units having a fluoroalkyl group is used, a cured product having a high adhesive strength is obtained. It was difficult to get things.
  • the cured product of the curable composition described in Patent Document 4 had a trade-off relationship between high adhesive strength and low refractive index. For this reason, when the curable composition described in Patent Document 4 was used, it was difficult to obtain a cured product having both high adhesive strength and low refractive index.
  • JP 2004-359933 A JP 2005-263869 A JP 2006-328231 A WO2017 / 110948 (US2018 / 0355111 @ A1)
  • the present invention has been made in view of the above-described prior art, and has excellent curability and a curable composition having a low refractive index, and a curable polysilsesquie useful as a component of the curable composition.
  • the aim is to provide a method.
  • the “curable composition” refers to a composition that changes into a cured product when a predetermined condition such as heating is satisfied.
  • the “curable polysilsesquioxane compound” is a polysilsesquioxane compound that changes into a cured product alone by satisfying predetermined conditions such as heating, or in the curable composition.
  • curable polysilsesquioxane compound (A) a curable polysilsesquioxane compound having a fluoroalkyl group in order to solve the above problems.
  • (1) The problem of introducing a fluoroalkyl group into the curable polysilsesquioxane compound to lower the adhesive strength of the cured product is caused by the requirement of having a specific repeating unit and the molecular structure (the requirement described below).
  • curable polysilsesquioxane compound (A) a curable polysilsesquioxane compound that satisfies both requirements on molecular weight
  • the curable composition containing the curable polysilsesquioxane compound (A) has the property of being excellent in curability, it also has an advantage that the curing reaction can be performed without excessive heating. Having Was found. Furthermore, the curable composition containing the curable polysilsesquioxane compound (A) and a solvent having a boiling point of 254 ° C. or higher has a small change in viscosity even after being left for a long time after the application, and thus has the same effect as immediately after the application. It was found that it had workability. The present invention has been completed based on these findings.
  • curable polysilsesquioxane compounds of [1] to [5] curable compositions of [6] to [9]
  • cured products of [10] and [11] and [12]
  • a method for using the curable composition of [13] is provided.
  • R 1 represents a fluoroalkyl group represented by a composition formula: C m H (2m ⁇ n + 1) F n .
  • m represents an integer of 1 to 10
  • n represents an integer of 2 or more and (2m + 1) or less.
  • D represents a linking group (excluding an alkylene group) or a single bond for bonding R 1 and Si.
  • Region (2) When 29 Si-NMR of the curable polysilsesquioxane compound was measured, one or more peaks were observed in the region [region (2)] of -62 ppm or more and less than -52 ppm, and -52 ppm or more and less than -45 ppm. At least one of the region [region (1)] and -73 ppm or more and less than -62 ppm [region (3)], and Z2 derived from the following formula is 20 or more. 4040%.
  • the weight average molecular weight (Mw) of the curable polysilsesquioxane compound is from 4,000 to 11,000.
  • R 2 represents an unsubstituted alkyl group having 1 to 10 carbon atoms or a substituted or unsubstituted aryl group having 6 to 12 carbon atoms.
  • R 4 The curable polysilsesquioxane compound according to [3], wherein the proportion of the repeating unit represented by the formula (a-2) is more than 0 mol% and 75 mol% or less based on all repeating units.
  • Z3 derived from the following formula is 60 to 80%; 4]
  • a curable composition comprising the following component (A) and a solvent having a boiling point of 254 ° C or higher.
  • Component (A) the curable polysilsesquioxane compound according to any one of [1] to [5] [7], and the curable composition according to [6], further comprising the following component (B): .
  • Component (B) The curable composition according to [6] or [7], further comprising the following component (C): a silane coupling agent having a nitrogen atom in the molecule [8].
  • the present invention excellent curability, and a curable composition having a low refractive index, a curable polysilsesquioxane compound useful as a component of the curable composition, and curing the curable composition.
  • the present invention provides a cured product having high adhesive strength and a method of using the curable composition as an adhesive for an optical element fixing material or a sealing material for an optical element fixing material.
  • Curable polysilsesquioxane compound The curable polysilsesquioxane compound of the present invention [curable polysilsesquioxane compound (A)] has a repeating unit represented by the following formula (a-1). A curable polysilsesquioxane compound, characterized by satisfying the above requirements 1 and 2.
  • R 1 represents a fluoroalkyl group represented by a composition formula: C m H (2m ⁇ n + 1) F n .
  • m represents an integer of 1 to 10
  • n represents an integer of 2 or more and (2m + 1) or less.
  • D represents a linking group (excluding an alkylene group) or a single bond for bonding R 1 and Si.
  • R 1 represents a fluoroalkyl group represented by a composition formula: C m H (2m ⁇ n + 1) F n .
  • m represents an integer of 1 to 10
  • n represents an integer of 2 or more and (2m + 1) or less.
  • m is preferably an integer of 1 to 5, more preferably an integer of 1 to 3.
  • fluoroalkyl group represented by the composition formula: C m H (2m ⁇ n + 1) F n , CF 3 , CF 3 CF 2 , CF 3 (CF 2 ) 2 , CF 3 (CF 2 ) 3 , CF 3 ( Perfluoroalkyl groups such as CF 2 ) 4 , CF 3 (CF 2 ) 5 , CF 3 (CF 2 ) 6 , CF 3 (CF 2 ) 7 , CF 3 (CF 2 ) 8 , CF 3 (CF 2 ) 9
  • a hydrofluoroalkyl group such as CF 3 CH 2 CH 2 , CF 3 (CF 2 ) 3 CH 2 CH 2 , CF 3 (CF 2 ) 5 CH 2 CH 2 , CF 3 (CF 2 ) 7 CH 2 CH 2 ; Is mentioned.
  • D represents a linking group (excluding an alkylene group) for bonding R 1 and Si, or a single bond.
  • the linking group for D include arylene groups having 6 to 20 carbon atoms, such as 1,4-phenylene group, 1,3-phenylene group, 1,2-phenylene group, and 1,5-naphthylene group.
  • the curable polysilsesquioxane compound (A) may be a compound having one kind of (R 1 -D) (homopolymer) or a compound having two or more kinds of (R 1 -D). (Polymer).
  • the curable polysilsesquioxane compound (A) may be a random copolymer, a block copolymer, a graft copolymer, an alternating copolymer. It may be any of a union and the like, but a random copolymer is preferred from the viewpoint of ease of production and the like.
  • the structure of the curable polysilsesquioxane compound (A) may be any of a ladder structure, a double decker structure, a cage structure, a partially-cleaved cage structure, a cyclic structure, and a random structure. Is also good.
  • the proportion of the repeating unit represented by the formula (a-1) contained in the curable polysilsesquioxane compound (A) is preferably at least 25 mol%, more preferably 25 to 90 mol%, based on all repeating units. Preferably it is 25 to 85 mol%.
  • the curable polysilsesquioxane compound (A) may further be a compound (copolymer) having a repeating unit represented by the following formula (a-2).
  • R 2 represents an unsubstituted alkyl group having 1 to 10 carbon atoms or an aryl group having a substituent or unsubstituted having 6 to 12 carbon atoms.
  • Examples of the unsubstituted alkyl group having 1 to 10 carbon atoms for R 2 include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, and n. -Pentyl, n-hexyl, n-octyl, n-nonyl, n-decyl and the like.
  • Examples of the unsubstituted aryl group having 6 to 12 carbon atoms for R 2 include a phenyl group, a 1-naphthyl group, and a 2-naphthyl group.
  • Examples of the substituent of the aryl group having 6 to 12 carbon atoms having a substituent of R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an s-butyl group, an isobutyl group, and a t-group.
  • Alkyl groups such as butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group and isooctyl group; halogen atoms such as fluorine atom, chlorine atom and bromine atom; methoxy group and ethoxy group An alkoxy group;
  • R 2 an unsubstituted alkyl group having 1 to 10 carbon atoms is preferable, and an unsubstituted alkyl group having 1 to 10 carbon atoms is preferable because a cured product having higher adhesive strength and excellent heat resistance is easily obtained. Is more preferable, and an unsubstituted alkyl group having 1 to 3 carbon atoms is particularly preferable.
  • the curable polysilsesquioxane compound (A) is one having a repeating unit represented by the formula (a-2), the curable polysilsesquioxane compound (A) has one of R 2 Or two or more types of R 2 .
  • the proportion thereof is preferably more than 0 mol%, 75 mol% or less, based on all repeating units. More preferably, it is 10 to 75 mol%, and still more preferably, 15 to 75 mol%.
  • the ratio of the repeating unit represented by the formula (a-1) or (a-2) in the curable polysilsesquioxane compound (A) is, for example, the ratio of the curable polysilsesquioxane compound (A) It can be determined by measuring 29 Si-NMR.
  • the curable polysilsesquioxane compound (A) is a ketone solvent such as acetone; an aromatic hydrocarbon solvent such as benzene; a sulfur-containing solvent such as dimethyl sulfoxide; an ether solvent such as tetrahydrofuran; Since these compounds are soluble in various organic solvents such as ester solvents; halogen-containing solvents such as chloroform; and mixed solvents of two or more of these solvents, the curable polysilsesquioxane compounds can be prepared using these solvents. 29 Si-NMR in a solution state of (A) can be measured.
  • the repeating unit represented by the formula (a-1) and the repeating unit represented by the formula (a-2) are represented by the following formula (a-3).
  • G represents (R 1 -D) or R 2 .
  • R 1 , D and R 2 each have the same meaning as described above.
  • O 1/2 means that an oxygen atom is shared with an adjacent repeating unit.
  • the curable polysilsesquioxane compound (A) has three oxygen atoms bonded to a silicon atom and is generally called a T site, and the other group (G Has a partial structure formed by bonding one group.
  • T site contained in the curable polysilsesquioxane compound (A) include those represented by the following formulas (a-4) to (a-6).
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • alkyl group having 1 to 10 carbon atoms for R 3 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an s-butyl group, an isobutyl group and a t-butyl group.
  • a plurality of R 3 may be all the same or different.
  • * represents a silicon atom.
  • the T sites represented by the formulas (a-4) and (a-5) include a group (R 3 —O) that can contribute to a polycondensation reaction. Therefore, these polysilsesquioxane compounds containing many T sites are excellent in reactivity. Further, a composition containing such a polysilsesquioxane compound has excellent curability.
  • the T sites represented by the formulas (a-5) and (a-6) are bonded to two or more silicon atoms (silicon atoms in adjacent T sites). Therefore, these polysilsesquioxane compounds containing many T sites tend to have a large molecular weight.
  • the polysilsesquioxane compound containing a large number of T sites represented by the formula (a-5) has a relatively large molecular weight and sufficient reactivity.
  • the present invention has been made based on this finding. That is, the curable polysilsesquioxane compound (A) of the present invention satisfies the following requirement 1.
  • P1 integral value in region (1)
  • P2 integral value in region (2)
  • P3 integral value in region (3)
  • integral value in region (1) is -52 ppm to -45 ppm and -62 ppm to -52 ppm, respectively. , -73 ppm to -62 ppm.
  • the peaks observed in the region (1), the region (2), and the region (3) correspond to the peaks in the T site represented by the formulas (a-4), (a-5), and (a-6), respectively. It is derived from silicon atoms.
  • the curable polysilsesquioxane compound satisfying the requirement 1 contains the T site represented by the formula (a-5) in an amount of 20 to 40% based on the entire T site.
  • This curable polysilsesquioxane compound has a relatively large molecular weight and sufficient reactivity as described above, and is useful as a curable component of a curable composition.
  • the value of Z2 is preferably 24-36%, more preferably 27-32%. If Z2 is too small, the reactivity is not sufficient, and if Z2 is too large, the storage stability decreases.
  • curable polysilsesquioxane compound (A) one or two or more peaks were observed in region (3) when 29 Si-NMR was measured, and Z3 derived from the following formula was 60 to Preferably it is 80%.
  • the curable polysilsesquioxane compound (A) in which Z3 is 60 to 80% contains the T site represented by the formula (a-6) in an amount of 60 to 80% of the entire T site.
  • the curable polysilsesquioxane compound (A) having a value of Z3 in the range of 60 to 80% is more excellent in the balance between molecular weight and reactivity. Since this effect can be more easily obtained, the value of Z3 is more preferably from 64 to 76%, further preferably from 68 to 73%.
  • Z2 and Z3 can be calculated, for example, by measuring 29 Si-NMR under the conditions described in the examples to obtain P1 to P3, and by the above formula.
  • the curable polysilsesquioxane compound (A) satisfies the above requirement 2. That is, the curable polysilsesquioxane compound (A) has a mass average molecular weight (Mw) of 4,000 to 11,000, preferably 4,000 to 8,000, and more preferably 6,000 to 7, , 000.
  • Mw mass average molecular weight
  • the curable polysilsesquioxane compound satisfying requirement 1 tends to have a relatively large molecular weight.
  • Requirement 2 clarifies the range of the molecular weight.
  • a curable polysilsesquioxane compound (A) having a weight average molecular weight (Mw) within the above range as a curable component, a curable composition giving a cured product having high adhesive strength and excellent heat resistance can be obtained. Obtainable.
  • the molecular weight distribution (Mw / Mn) of the curable polysilsesquioxane compound (A) is not particularly limited, but is usually in the range of 1.0 to 10.0, preferably 1.1 to 6.0.
  • a curable polysilsesquioxane compound (A) having a molecular weight distribution (Mw / Mn) within the above range as a curable component, a curable composition giving a cured product having more excellent adhesiveness and heat resistance is obtained. be able to.
  • the mass average molecular weight (Mw) and the number average molecular weight (Mn) can be determined, for example, as standard polystyrene conversion values by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as a solvent.
  • the curable polysilsesquioxane compound (A) is, for example, a compound represented by the following formula (a-7) (hereinafter sometimes referred to as “silane compound (1)”) or silane compound (1) And a compound represented by the following formula (a-8) (hereinafter sometimes referred to as “silane compound (2)”), by subjecting it to polycondensation in the presence of a polycondensation catalyst.
  • R 1 , R 2 , and D represent the same meaning as described above.
  • R 4 and R 5 each independently represent an alkyl group having 1 to 10 carbon atoms;
  • X 1 and X 2 each independently represent a halogen atom;
  • p and q each independently represent an integer of 0 to 3. Represent.
  • a plurality of R 4 and R 5 and a plurality of X 1 and X 2 may be the same or different from each other.
  • alkyl group having 1 to 10 carbon atoms for R 4 and R 5 those similar to the alkyl groups having 1 to 10 carbon atoms for R 2 can be mentioned.
  • halogen atom for X 1 and X 2 include a chlorine atom and a bromine atom.
  • Examples of the silane compound (1) include CF 3 Si (OCH 3 ) 3 , CF 3 CF 2 Si (OCH 3 ) 3 , CF 3 CF 2 CF 2 Si (OCH 3 ) 3 , CF 3 CF 2 CF 2 Si (OCH 3) 3, CF 3 CH 2 CH 2 Si (OCH 3) 3, CF 3 CF 2 CF 2 CF 2 CH 2 CH 2 Si (OCH 3) 3, CF 3 CF 2 CF 2 CF 2 CF 2 CH 2 CH 2 Si (OCH 3 ) 3, CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CH 2 CH 2 Si (OCH 3) 3, CF 3 (C 6 H 4) Si (OCH 3 ) 3 (4- (trifluoromethyl) phenyl trimethoxy silane), CF 3 Si (OCH 2 CH 3) 3, CF 3 CF 2 Si (OCH 2 CH 3) 3, C 3 CF 2 CF 2 Si (OCH 2 CH 3) 3, C 3 CF 2
  • silane compound (2) examples include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltripropoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, n-propyl Alkyl trialkoxysilane compounds such as tripropoxysilane, n-propyltributoxysilane, n-butyltrimethoxysilane, isobutyltrimethoxysilane, n-pentyltrimethoxysilane, n-hexyltrimethoxysilane, isooctyltriethoxysilane ;
  • the silane compound (2) can be used alone or in combination of two or more. Among these, as the silane compound (2), those contained in alkyl trialkoxysilane compounds are preferable.
  • the method of polycondensing the silane compound is not particularly limited, and a known method can be used.
  • a known method can be used.
  • the curable polysilsesquioxane compound (A) there are the following problems, so that the reaction conditions need to be specially studied.
  • Patent Document 4 One of the problems in producing the curable polysilsesquioxane compound (A) is described in Patent Document 4 described above. That is, from Table 1 of Patent Document 4, it can be seen that as the use ratio of the silane compound having a fluoroalkyl group increases, the obtained polymer tends to have a lower molecular weight. As described above, since the reactivity of the silane compound (1) and the reactivity of the silane compound (2) are greatly different, the conventional knowledge on the polycondensation reaction of the silane compound (2) is used as it is, and the requirements 1 and 2 are used. It is difficult to obtain a curable polysilsesquioxane compound satisfying the above.
  • a polymer is actually produced by performing a polycondensation reaction using a silane compound having a fluoroalkyl group.
  • the molecular weight of the polymer cannot be controlled because the mixing ratio of the silane compound used in the reaction greatly affects the reaction.
  • a silane compound having low reactivity a silane compound having a fluoroalkyl group
  • the present inventors have studied the polycondensation reaction using the silane compound (1). As a result, the polycondensation reaction is carried out over a relatively long period of time under relatively mild conditions, whereby a curable policy satisfying the requirements 1 and 2 is satisfied. It was found that a sesquioxane compound was obtained. Specifically, in a solvent or without solvent, using a suitable amount of an acid catalyst, a polycondensation reaction of a silane compound is performed at a predetermined temperature to obtain a reaction solution containing a production intermediate, and then a base is added to react. By neutralizing the liquid and further performing a polycondensation reaction, a curable polysilsesquioxane compound (A) can be produced.
  • the solvent examples include water; aromatic hydrocarbons such as benzene, toluene, and xylene; esters such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate, and methyl propionate; acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • Ketones alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, s-butyl alcohol, t-butyl alcohol; and the like.
  • These solvents can be used alone or in combination of two or more. When a solvent is used, it is used in an amount of usually 0.001 to 10.000 liter, preferably 0.010 to 0.9 liter, per 1 mol of the total mol of the silane compound.
  • the acid catalyst examples include inorganic acids such as phosphoric acid, hydrochloric acid, boric acid, sulfuric acid and nitric acid; organic acids such as citric acid, acetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid and p-toluenesulfonic acid; Is mentioned.
  • organic acids such as citric acid, acetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid and p-toluenesulfonic acid
  • at least one selected from phosphoric acid, hydrochloric acid, boric acid, sulfuric acid, citric acid, acetic acid, and methanesulfonic acid is preferable.
  • the amount of the acid catalyst used is usually 0.01 to 2.00 mol%, preferably 0.05 to 1.00 mol%, more preferably 0.10 to 0.30, based on the total mol amount of
  • the reaction temperature of the reaction in the presence of an acid catalyst is usually from 20 to 90 ° C, preferably from 25 to 80 ° C.
  • the reaction time of the reaction in the presence of the acid catalyst is usually 1 to 48 hours, preferably 3 to 24 hours.
  • the weight average molecular weight (Mw) of the intermediate produced by the reaction in the presence of the acid catalyst is usually from 800 to 5,000, preferably from 1,200 to 4,000.
  • the base used for neutralizing the reaction solution is ammonia water; trimethylamine, triethylamine, pyridine, 1,8-diazabicyclo [5.4.0] -7-undecene, aniline, picoline, 1,4-diazabicyclo [2 2.2.2]
  • Organic bases such as octane and imidazole; organic salt hydroxides such as tetramethylammonium hydroxide and tetraethylammonium hydroxide; metals such as sodium methoxide, sodium ethoxide, sodium t-butoxide and potassium t-butoxide Alkoxides; Metal hydrides such as sodium hydride and calcium hydride; Metal hydroxides such as sodium hydroxide, potassium hydroxide and calcium hydroxide; Metal carbonates such as sodium carbonate, potassium carbonate and magnesium carbonate; Sodium hydrogen carbonate , Potassium bicarbonate, etc. Genus bicarbonate; and the like.
  • the amount of the base used for neutralization of the reaction solution is usually 0.01 to 2.00 mol%, preferably 0.05 to 1.00 mol%, more preferably 0.10 to 1.00 mol%, based on the total mol amount of the silane compound. The range is 0.70.
  • the amount (mol) of the base used for neutralizing the reaction solution is preferably 0.5 to 5.0 times, more preferably 0.8 to 3.0 times the amount (mol) of the acid catalyst used one step before. It is 0 times, more preferably 1.0 to 2.0 times.
  • the pH of the reaction solution after neutralization is generally 6.0 to 8.0, preferably 6.2 to 7.0, and more preferably 6.4 to 6.9.
  • the reaction temperature of the reaction after the neutralization is usually 40 to 90 ° C, preferably 50 to 80 ° C.
  • the reaction time of the reaction after the neutralization is usually 20 to 200 minutes, preferably 30 to 150 minutes.
  • the main purpose is hydrolysis in the reaction in the presence of an acid catalyst, and the main purpose is dehydration condensation in the reaction after neutralization.
  • the curable polysilsesquioxane compound of the present invention has a repeating unit having a fluoroalkyl group, has sufficient reactivity, and has a relatively large molecular weight.
  • Such a curable polysilsesquioxane compound has excellent curability and is useful as a curable component of a curable composition having a low refractive index.
  • Curable composition contains the following component (A) and a solvent having a boiling point of 254 ° C or higher (hereinafter sometimes referred to as “solvent (S1)”). It is characterized by doing.
  • the curable polysilsesquioxane compound (A) can be used alone or in combination of two or more.
  • the content of the curable polysilsesquioxane compound (A) in the curable composition of the present invention is usually from 40 to 80% by mass, preferably from 50 to 70% by mass, based on the whole solid content of the curable composition. %.
  • the boiling point of the solvent (S1) is 254 ° C. or higher, and preferably 254 to 300 ° C.
  • the boiling point means a boiling point at 1013 hPa (the same applies in the present specification).
  • the solvent (S1) is not particularly limited as long as it has a boiling point of 254 ° C. or higher and can dissolve the curable polysilsesquioxane compound (A). Such a solvent (S1) has a relatively slow volatilization rate. Therefore, the curable composition containing the solvent (S1) has a small change in viscosity even after being left for a long time after application, so that an optical element or the like can be mounted favorably similarly to immediately after application.
  • the solvent (S1) include tripropylene glycol-n-butyl ether (boiling point: 274 ° C.), 1,6-hexanediol diacrylate (boiling point: 260 ° C.), diethylene glycol dibutyl ether (boiling point: 256 ° C.), Examples include ethylene glycol butyl methyl ether (boiling point 261 ° C.), polyethylene glycol dimethyl ether (boiling point 264 to 294 ° C.), tetraethylene glycol dimethyl ether (boiling point 275 ° C.), and polyethylene glycol monomethyl ether (boiling point 290 to 310 ° C.).
  • the solvent (S1) tripropylene glycol-n-butyl ether and 1,6-hexanediol diacrylate are preferable from the viewpoint that the effects of the present invention can be more easily obtained.
  • the solvent (S1) can be used alone or in combination of two or more.
  • the curable composition of the present invention may contain a solvent other than the solvent (S1).
  • a solvent other than the solvent (S1) a solvent having a boiling point of 200 ° C. or more and less than 254 ° C. (hereinafter, sometimes referred to as “solvent (S2)”) is preferable.
  • the solvent (S2) is not particularly limited as long as it has a boiling point of 200 ° C. or more and less than 254 ° C. and can dissolve the curable polysilsesquioxane compound (A). By using the solvent (S1) and the solvent (S2) in combination, the curability of the curable composition is improved.
  • the solvent (S2) include diethylene glycol monobutyl ether acetate (boiling point 247 ° C.), dipropylene glycol-n-butyl ether (boiling point 229 ° C.), benzyl alcohol (boiling point 204.9 ° C.), dipropylene glycol methyl ether acetate ( (Boiling point 209 ° C), diethylene glycol butyl methyl ether (boiling point 212 ° C), dipropylene glycol-n-propyl ether (boiling point 212 ° C), tripropylene glycol dimethyl ether (boiling point 215 ° C), triethylene glycol dimethyl ether (boiling point 216 ° C), diethylene glycol Monoethyl ether acetate (boiling point 217.4 ° C), diethylene glycol-n-butyl ether (boiling point 230 ° C), ethylene glycol monophenyl
  • the solvent (S2) is preferably a glycol-based solvent, since its effects are easily obtained, diethylene glycol monobutyl ether acetate and dipropylene glycol-n-butyl ether are preferable, and diethylene glycol monobutyl ether acetate is more preferable.
  • solvent (S1) and the solvent (S2) are used in combination, specifically, a combination of tripropylene glycol-n-butyl ether (solvent (S1)) and diethylene glycol monobutyl ether acetate (solvent (S2)), A combination of hexanediol diacrylate (solvent (S1)) and diethylene glycol monobutyl ether acetate (solvent (S2)), tripropylene glycol-n-butyl ether (solvent (S1)) and dipropylene glycol-n-butyl ether (solvent (S2) )), And a combination of 1,6-hexanediol diacrylate (solvent (S1)) and dipropylene glycol-n-butyl ether (organic solvent (S2)).
  • the curable composition of the present invention contains a solvent in such an amount that the solid concentration is preferably 50 to 95% by mass, more preferably 60 to 85% by mass. When the solid content is within this range, the effects of the solvent (S1) and the solvent (S2) are sufficiently exhibited.
  • the total amount of the solvent (S1) and the solvent (S2) contained in the curable composition of the present invention is usually from 50 to 100% by mass, preferably from 70 to 100% by mass, more preferably from 90 to 100% by mass, based on all the solvents. 100% by mass.
  • the content of the solvent (S1) contained in the curable composition of the present invention is usually 20 to 100% by mass, preferably 30 to 85% by mass, based on the total amount of the solvent (S1) and the solvent (S2). More preferably, it is 50 to 80% by mass.
  • the curable composition containing the solvent (S1) or the solvent (S2) at such a ratio is such that the adhesiveness and the wet-spreading property (the property relating to the spread of the droplet described later) are appropriately balanced. Become.
  • the curable composition of the present invention contains, as the component (B), a silane coupling agent having a nitrogen atom in the molecule (hereinafter, may be referred to as “silane coupling agent (B)”). Is also good.
  • the curable composition containing the silane coupling agent (B) has excellent workability in the application step, and gives a cured product having more excellent adhesiveness, peel resistance, and heat resistance.
  • excellent in workability in the coating step means that the curable composition is discharged from the discharge pipe in the coating step, and then, when the discharge pipe is pulled up, the amount of stringing is small or the fiber breaks immediately.
  • the silane coupling agent (B) is not particularly limited as long as it is a silane coupling agent having a nitrogen atom in the molecule.
  • Examples include a trialkoxysilane compound represented by the following formula (b-1), a dialkoxyalkylsilane compound or a dialkoxyarylsilane compound represented by the formula (b-2).
  • R a represents a methoxy group, an ethoxy group, n- propoxy group, isopropoxy group, n- butoxy group, an alkoxy group having 1 to 6 carbon atoms such as t- butoxy.
  • a plurality of R a each other may be different from each be the same.
  • R b is an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a t-butyl group; or a phenyl group, a 4-chlorophenyl group, An aryl group having a substituent or an unsubstituted group, such as a methylphenyl group and a 1-naphthyl group.
  • R c represents an organic group having a nitrogen atom and having 1 to 10 carbon atoms. Further, R c may be further bonded to another group containing a silicon atom. Specific examples of the organic group having 1 to 10 carbon atoms for R c include N-2- (aminoethyl) -3-aminopropyl group, 3-aminopropyl group, N- (1,3-dimethyl-butylidene) amino Propyl, 3-ureidopropyl, N-phenyl-aminopropyl and the like.
  • R c is an organic group bonded to another group containing a silicon atom
  • a compound having an isocyanurate skeleton To form an isocyanurate-based silane coupling agent by bonding to another silicon atom, or to form a urea-based silane coupling agent by bonding to another silicon atom through a urea skeleton.
  • silane coupling agent (B) an isocyanurate silane coupling agent and a urea silane coupling agent are preferable because a cured product having higher adhesive strength is easily obtained.
  • those having four or more alkoxy groups bonded to a silicon atom Having four or more alkoxy groups bonded to silicon atoms means that the total number of alkoxy groups bonded to the same silicon atom and alkoxy groups bonded to different silicon atoms is four or more.
  • a compound represented by the following formula (b-3) is a urea-based silane coupling agent having four or more silicon-bonded alkoxy groups.
  • the ring agent include a compound represented by the following formula (b-4).
  • Ra has the same meaning as described above.
  • t1 to t5 each independently represent an integer of 1 to 10, preferably an integer of 1 to 6, and particularly preferably 3.
  • Specific examples of the compound represented by the formula (b-3) include 1,3,5-N-tris (3-trimethoxysilylpropyl) isocyanurate and 1,3,5-N-tris (3-tri Ethoxysilylpropyl) isocyanurate, 1,3,5-N-tris (3-trii-propoxysilylpropyl) isocyanurate, 1,3,5-N-tris (3-tributoxysilylpropyl) isocyanurate and the like 1,3,5-N-tris [(tri (1-6 carbon) alkoxy) silyl (1-10 carbon) alkyl] isocyanurate; 1,3,5-N-tris (3-dimethoxymethylsilylpropyl) isocyanurate, 1,3,5-N-tris (3-dimethoxyethylsilylpropyl) isocyanurate, 1,3,5-N-tris (3-dimethoxy i-propylsilylpropyl) isocyanurate, 1,3,
  • the compound represented by the formula (b-4) include N, N′-bis (3-trimethoxysilylpropyl) urea, N, N′-bis (3-triethoxysilylpropyl) urea, N N, such as N, N'-bis (3-tripropoxysilylpropyl) urea, N, N'-bis (3-tributoxysilylpropyl) urea, and N, N'-bis (2-trimethoxysilylethyl) urea N'-bis [(tri (C1-6) alkoxysilyl) (C1-10) alkyl] urea; N, N'-bis (3-dimethoxymethylsilylpropyl) urea, N, N'-bis (3-dimethoxyethylsilylpropyl) urea, N, N'-bis (3-diethoxymethylsilylpropyl) urea and the like N, N'-bis [(di (C1-6) alk
  • 1,3,5-N-tris (3-trimethoxysilylpropyl) isocyanurate and 1,3,5-N-tris (3-triethoxysilylpropyl) are examples of the silane coupling agent (B).
  • Isocyanurate hereinafter, referred to as “isocyanurate compound”
  • N, N′-bis (3-trimethoxysilylpropyl) urea N, N′-bis (3-triethoxysilylpropyl) urea
  • the use ratio of both is preferably from 100: 1 to 100: 200 by mass ratio of (isocyanurate compound) to (urea compound), and 10-100: 110 is more preferable.
  • the content of the component (B) is not particularly limited.
  • a mass ratio of the component (B) [component (A): component (B)] it is preferably 100: 0.1 to 100: 90, more preferably 100: 0.3 to 100: 60, and more preferably 100: 1.
  • the amount is from 100: 50, more preferably from 100: 3 to 100: 40, particularly preferably from 100: 5 to 100: 30.
  • the cured product of the curable composition containing the components (A) and (B) at such a ratio has higher adhesive strength and more excellent heat resistance.
  • the curable composition of the present invention contains, as a component (C), a silane coupling agent having an acid anhydride structure in the molecule (hereinafter, may be referred to as “silane coupling agent (C)”). May be.
  • the curable composition containing the silane coupling agent (C) is excellent in workability in the application step, has higher adhesive strength, and gives a cured product having more excellent peel resistance and heat resistance.
  • silane coupling agent (C) examples include 2- (trimethoxysilyl) ethyl succinic anhydride, 2- (triethoxysilyl) ethyl succinic anhydride, 3- (trimethoxysilyl) propyl succinic anhydride, and 3- (trimethoxysilyl) propyl succinic anhydride.
  • Tri (1-6 carbon) alkoxysilyl (2-8 carbon) alkyl succinic anhydrides such as ethoxysilyl) propyl succinic anhydride
  • Di (1-6 carbon) alkoxymethylsilyl (2-8 carbon) alkyl succinic anhydrides such as 2- (dimethoxymethylsilyl) ethyl succinic anhydride
  • (C1-6) alkoxydimethylsilyl (C2-8) alkyl succinic anhydrides such as 2- (methoxydimethylsilyl) ethyl succinic anhydride
  • Trihalogenosilyl (2-8 carbon atoms) alkyl succinic anhydrides such as 2- (trichlorosilyl) ethyl succinic anhydride and 2- (tribromosilyl) ethyl succinic anhydride; Dihalogenomethylsilyl (C2-8) alkyl succinic anhydride, such as 2- (dichloromethylsilyl) ethyl succinic anhydride; Halogenodimethylsilyl (2-8 carbon atoms) alkyl succinic anhydride, such as 2- (chlorodimethylsilyl) ethyl succinic anhydride;
  • the silane coupling agent (C) can be used alone or in combination of two or more.
  • silane coupling agent (C) tri (1-6 carbon) alkoxysilyl (2-8 carbon) alkyl succinic anhydrides are preferable, and 3- (trimethoxysilyl) propyl succinic anhydride or 3- (Triethoxysilyl) propyl succinic anhydride is particularly preferred.
  • the content of the component (C) is not particularly limited, but the amount is the same as that of the component (A).
  • a mass ratio of the component (C) [component (A): component (C)] it is preferably 100: 0.1 to 100: 30, more preferably 100: 0.3 to 100: 20, and more preferably 100: 0. 0.5 to 100: 15, more preferably 100: 1 to 100: 10.
  • the cured product of the curable composition containing the component (C) at such a ratio has higher adhesive strength.
  • the curable composition of the present invention may contain, as the component (D), fine particles having an average primary particle diameter of 5 to 40 nm (hereinafter sometimes referred to as “fine particles (D)”).
  • the curable composition containing the fine particles (D) has excellent workability in the application step. Since this effect can be more easily obtained, the average primary particle diameter of the fine particles (D) is preferably 5 to 30 nm, more preferably 5 to 20 nm.
  • the average primary particle diameter of the fine particles (D) can be determined by observing the shape of the fine particles using a transmission electron microscope.
  • the specific surface area of the fine particles (D) is preferably from 10 to 500 m 2 / g, more preferably from 20 to 300 m 2 / g. When the specific surface area is within the above range, a curable composition that is more excellent in workability in the application step is easily obtained.
  • the specific surface area can be determined by the BET multipoint method.
  • the shape of the fine particles (D) may be spherical, chain-like, needle-like, plate-like, flake-like, rod-like, fibrous, or the like, but is preferably spherical.
  • spherical means a substantially spherical shape including a polyhedral shape that can be approximated to a sphere such as a spheroid, an ovoid, a spinous sugar, and a cocoon in addition to a true sphere.
  • the constituents of the fine particles (D) are not particularly limited, and include metals; metal oxides; minerals; metal carbonates such as calcium carbonate and magnesium carbonate; metal sulfates such as calcium sulfate and barium sulfate; Metal hydroxides; metal silicates such as aluminum silicate, calcium silicate and magnesium silicate; inorganic components such as silica; silicones; organic components such as acrylic polymers; and the like.
  • the fine particles (D) to be used may have a modified surface.
  • Metals refer to Group 1 (excluding H), Groups 2 to 11, Group 12 (excluding Hg), Group 13 (excluding B), Group 14 (excluding C and Si), and group 15 (excluding C and Si) in the periodic table.
  • metal oxide examples include titanium oxide, alumina, boehmite, chromium oxide, nickel oxide, copper oxide, titanium oxide, zirconium oxide, indium oxide, zinc oxide, and composite oxides thereof.
  • the metal oxide fine particles also include sol particles made of these metal oxides.
  • Examples of the mineral include smectite and bentonite.
  • Examples of the smectite include montmorillonite, beidellite, hectorite, saponite, stevensite, nontronite, and sauconite.
  • Examples of the silica include dry silica, wet silica, and surface-modified silica (silica having a modified surface).
  • the fine particles (D) can be used alone or in combination of two or more.
  • silica, a metal oxide, and a mineral are preferable as the fine particles (D), and silica is more preferable because a cured product having excellent transparency is easily obtained.
  • a surface-modified silica is preferable, and a hydrophobic surface-modified silica is more preferable, since a curable composition having more excellent workability in an application step is easily obtained.
  • the hydrophobic surface-modified silica include a trialkylsilyl group having 1 to 20 carbon atoms such as a trimethylsilyl group; an alkylsilyl group having 1 to 20 carbon atoms such as a dimethylsilyl group; and a carbon such as an octylsilyl group.
  • the hydrophobic surface-modified silica is, for example, a silane having a trialkylsilyl group having 1 to 20 carbon atoms, an alkylsilyl group having 1 to 20 carbon atoms, an alkylsilyl group having 1 to 20 carbon atoms, or the like in silica particles. It can be obtained by surface modification using a coupling agent or by treating silica particles with silicone oil. Also, commercially available surface-modified silica can be used as it is.
  • the content of the component (D) is not particularly limited, but the amount is not limited to the components (A) and (D).
  • a mass ratio of [(A) component: (D) component preferably from 100: 0.1 to 100: 90, more preferably from 100: 0.2 to 100: 60, and even more preferably from 100: 0.3.
  • the amount is 100: 50, more preferably 100: 0.5 to 100: 40, and more preferably 100: 0.8 to 100: 30.
  • the curable composition of the present invention contains, as the component (E), fine particles having an average primary particle diameter of more than 0.04 ⁇ m and 8 ⁇ m or less (hereinafter sometimes referred to as “fine particles (E)”). Is also good.
  • the average primary particle diameter of the fine particles (E) is preferably 0.06 to 7 ⁇ m, more preferably 0.3 to 6 ⁇ m, and still more preferably 0.5 to 4 ⁇ m.
  • the average primary particle diameter of the fine particles (E) is determined by measuring the particle size distribution by a laser scattering method using a laser diffraction / scattering type particle size distribution analyzer (for example, product name “LA-920” manufactured by HORIBA, Ltd.). Required.
  • a laser diffraction / scattering type particle size distribution analyzer for example, product name “LA-920” manufactured by HORIBA, Ltd.
  • the shape of the fine particles (E) may be any of a spherical shape, a chain shape, a needle shape, a plate shape, a flake shape, a rod shape, a fiber shape and the like, but is preferably a spherical shape.
  • spherical means a substantially spherical shape including a polyhedral shape that can be approximated to a sphere such as a spheroid, an ovoid, a spinous sugar, and a cocoon in addition to a true sphere.
  • the constituent components of the fine particles (E) those similar to those exemplified as the constituent components of the fine particles (D) can be mentioned.
  • the fine particles (E) can be used alone or in combination of two or more.
  • the fine particles (E) are preferably at least one type of fine particles selected from the group consisting of metal oxides coated with silicone, silica, and silicone, because the above effects are easily obtained. Is more preferred.
  • the content of the component (E) is not particularly limited, but the amount of the component (A) and the component (E) is not limited.
  • the weight ratio [(A) component: (E) component] is preferably 100: 0.1 to 100: 40, more preferably 100: 0.2 to 100: 30, and more preferably 100: 0.3 to 100. : 20, more preferably 100: 0.5 to 100: 15, even more preferably 100: 0.8 to 100: 12.
  • the curable composition of the present invention may contain components (component (F)) other than the components (A) to (E) as long as the object of the present invention is not impaired.
  • components (component (F) include an antioxidant, an ultraviolet absorber, and a light stabilizer.
  • Antioxidants are added to prevent oxidative degradation during heating.
  • the antioxidant include a phosphorus-based antioxidant, a phenol-based antioxidant, and a sulfur-based antioxidant.
  • Examples of the phosphorus-based antioxidants include phosphites and oxaphosphaphenanthrene oxides.
  • Examples of the phenolic antioxidant include monophenols, bisphenols, and high-molecular phenols.
  • Examples of the sulfur-based antioxidants include dilauryl-3,3'-thiodipropionate, dimyristyl-3,3'-thiodipropionate, distearyl-3,3'-thiodipropionate, and the like.
  • antioxidants can be used alone or in combination of two or more.
  • the amount of the antioxidant used is usually 10% by mass or less based on the component (A).
  • the ultraviolet absorber is added for the purpose of improving the light resistance of the obtained cured product.
  • examples of the ultraviolet absorber include salicylic acids, benzophenones, benzotriazoles, hindered amines, and the like.
  • the ultraviolet absorbers can be used alone or in combination of two or more.
  • the amount of the ultraviolet absorber used is usually 10% by mass or less based on the component (A).
  • the light stabilizer is added for the purpose of improving the light resistance of the obtained cured product.
  • the light stabilizer include poly [ ⁇ 6- (1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl ⁇ (2,2,6 , 6-tetramethyl-4-piperidine) imino ⁇ hexamethylene ⁇ (2,2,6,6-tetramethyl-4-piperidine) imino ⁇ ] and the like. These light stabilizers can be used alone or in combination of two or more.
  • the total amount of the component (F) is usually 20% by mass or less based on the component (A).
  • the curable composition of the present invention can be prepared, for example, by mixing the above component (A) with the solvent (S1) and, if desired, components other than these at a predetermined ratio and defoaming.
  • the mixing method and the defoaming method are not particularly limited, and known methods can be used.
  • the curable composition of the present invention contains a curable polysilsesquioxane compound (A). Therefore, the curable composition of the present invention is excellent in curability and has a low refractive index. Further, the curable composition of the present invention is useful as a material for forming a cured product having high adhesive strength.
  • the refractive index (nD) at 25 ° C. of the curable composition of the present invention is usually from 1.380 to 1.434, preferably from 1.380 to 1.430, more preferably from 1.380 to 1.428, and furthermore Preferably it is 1.380-1.425.
  • the refractive index (nD) of the curable composition can be measured by the method described in Examples.
  • the curable composition of the present invention contains a solvent (S1). Therefore, even when the curable composition of the present invention has been left for a long time after the application, the work such as mounting of the optical element can be performed in the same manner as immediately after the application.
  • the same operation as immediately after the application can be performed after the application, usually after 20 minutes or more, preferably 30 minutes or more, more preferably 60 minutes or more.
  • the cured product of the present invention is obtained by curing the curable composition of the present invention.
  • heat curing can be mentioned.
  • the heating temperature at the time of curing is usually 100 to 200 ° C., and the heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
  • the cured product of the present invention has high adhesive strength and excellent heat resistance.
  • the fact that the cured product of the present invention has these properties can be confirmed, for example, as follows. That is, a predetermined amount of the curable composition of the present invention is applied to a mirror surface of a silicon chip, the applied surface is placed on an adherend, pressure-bonded, and cured by heat treatment. This is left for 30 seconds on a measurement stage of a bond tester heated to a predetermined temperature (for example, 23 ° C., 100 ° C.) in advance, and from a position 50 ⁇ m above the adherend in a horizontal direction (shear Direction), and the adhesive force between the test piece and the adherend is measured.
  • a predetermined temperature for example, 23 ° C., 100 ° C.
  • the adhesive strength of the cured product of the present invention at 23 ° C. is preferably 60 N / 4 mm 2 or more, more preferably 80 N / 4 mm 2 or more, and particularly preferably 100 N / 4 mm 2 or more.
  • the adhesive strength of the cured product is preferably at 100 ° C. is 30 N / 4 mm 2 or more, more preferably 40N / 4 mm 2 or more, still more preferably 50 N / 4 mm 2 or more, 60N / 4 mm 2 It is particularly preferable that the above is satisfied.
  • “4 mm 2 ” means 2 mm ⁇ 2 mm (a square having a side of 2 mm).
  • the cured product of the present invention is preferably used as an optical element fixing material.
  • the method of the present invention is a method of using the curable composition of the present invention as an adhesive for an optical element fixing material or a sealing material for an optical element fixing material.
  • the optical element include a light emitting element such as an LED and an LD, a light receiving element, a composite optical element, an optical integrated circuit, and the like.
  • the curable composition of the present invention can be suitably used as an adhesive for an optical element fixing material.
  • a method of using the curable composition of the present invention as an adhesive for an optical element fixing material the composition is applied to one or both adhesive surfaces of a material (an optical element and a substrate thereof) to be bonded. Then, after pressure bonding, a method of heating and hardening to firmly bond the materials to be bonded to each other can be used.
  • the coating amount of the curable composition of the present invention is not particularly limited, and may be any amount as long as the materials to be bonded can be firmly bonded to each other by curing. Usually, the amount is such that the thickness of the coating film of the curable composition is 0.5 to 5 ⁇ m, preferably 1 to 3 ⁇ m.
  • Glass materials such as soda lime glass, heat-resistant hard glass, etc .; ceramics; sapphire; iron, copper, aluminum, gold, silver, platinum, chromium, titanium, and alloys of these metals as substrate materials for bonding optical elements And metals such as stainless steel (SUS302, SUS304, SUS304L, SUS309, etc.); polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, ethylene-vinyl acetate copolymer, polystyrene, polycarbonate, polymethylpentene, polysulfone, polyetheretherketone , Polyether sulfone, polyphenylene sulfide, polyetherimide, polyimide, polyamide, acrylic resin, norbornene-based resin, cycloolefin resin, glass epoxy resin, and other synthetic resins; It is below.
  • the heating temperature at the time of heating and curing depends on the curable composition to be used and the like, but is usually 100 to 200 ° C.
  • the heating time is usually from 10 minutes to 20 hours, preferably from 30 minutes to 10 hours.
  • the curable composition of the present invention can be suitably used as a sealing material for an optical element fixing material.
  • a method of using the curable composition of the present invention as a sealing material for an optical element fixing material for example, the composition is molded into a desired shape, and after obtaining a molded body including the optical element, A method of manufacturing a sealed optical element by heating and curing an object may be used.
  • the method for molding the curable composition of the present invention into a desired shape is not particularly limited, and a known transfer molding method or a known molding method such as a casting method can be employed.
  • the heating temperature at the time of heating and curing depends on the curable composition to be used and the like, but is usually 100 to 200 ° C.
  • the heating time is usually from 10 minutes to 20 hours, preferably from 30 minutes to 10 hours.
  • the obtained optical element sealing body uses the curable composition of the present invention, it has excellent heat resistance and high adhesive strength.
  • Example 1 After charging 17.0 g (77.7 mmol) of 3,3,3-trifluoropropyltrimethoxysilane and 32.33 g (181.3 mmol) of methyltriethoxysilane in a 300 mL eggplant-shaped flask, the mixture was stirred. Meanwhile, an aqueous solution obtained by dissolving 0.0675 g of 35% hydrochloric acid (the amount of HCl was 0.65 mmol, 0.25 mol% based on the total amount of the silane compound) in 14.0 g of distilled water was added, and the total volume was increased. Was heated at 30 ° C. for 2 hours, then heated to 70 ° C. and stirred for 20 hours.
  • Example 2 Curable polysilsesquioxane compound (2) and curable polysilsesquioxane compound (2) in the same manner as in Example 1 except that the stirring time after adding the mixed solution of 28% aqueous ammonia and propyl acetate was changed to 120 minutes. Composition (2) was obtained.
  • Example 3 The curable polysilsesquioxane compound (3) and the curable compound were prepared in the same manner as in Example 1 except that the stirring time after adding the mixed solution of 28% ammonia water and propyl acetate was changed to 90 minutes. Composition (3) was obtained.
  • Example 4 The curable polysilsesquioxane compound (4) and the curable compound were prepared in the same manner as in Example 1 except that the stirring time after adding the mixed solution of 28% aqueous ammonia and propyl acetate was changed to 50 minutes. Composition (4) was obtained.
  • Example 5 The curable polysilsesquioxane compound (5) and the curable compound were prepared in the same manner as in Example 1 except that the stirring time after adding the mixed solution of 28% aqueous ammonia and propyl acetate was changed to 40 minutes. Composition (5) was obtained.
  • Example 1 (Comparative Example 1) According to the method of Example 8 of WO2017 / 110948, a curable polysilsesquioxane compound (6) was obtained. Next, 20 parts of a silica filler having an average primary particle diameter of 7 nm and 10 parts of a silicone filler having an average primary particle diameter of 0.8 ⁇ m were added to 100 parts of the curable polysilsesquioxane compound (6). Further, after adding 30 parts of diethylene glycol monobutyl ether acetate as a solvent, the whole volume was stirred.
  • Mass average molecular weight measurement The mass average molecular weight (Mw) of the curable polysilsesquioxane compound was measured using the following apparatus and conditions.
  • Apparatus name HLC-8220GPC, manufactured by Tosoh Corporation Column: TSKgelGMHXL, TSKgelGMHXL, and TSKgel2000HXL sequentially connected
  • Solvent Tetrahydrofuran Standard substance: Polystyrene Injection amount: 20 ⁇ l Measurement temperature: 40 ° C Flow rate: 0.6 ml / min Detector: differential refractometer
  • Viscosity evaluation Using a rheometer (manufactured by Anton Paar, MCR301), using a cone plate having a radius of 50 mm and a cone angle of 0.5 °, the viscosity at 25 ° C. was 2 s ⁇ 1 and the shear rate was 200 s ⁇ 1 , respectively. It was measured. From the obtained measured values, a thixotropic index (viscosity at a shear rate of 2 s ⁇ 1 / viscosity at a shear rate of 200 s ⁇ 1 ) was determined.
  • the curable composition is applied to a mirror surface of a silicon chip having a side of 2 mm (area of 4 mm 2 ) so as to have a thickness of about 2 ⁇ m, and the applied surface is applied to an adherend (silver-plated copper plate). It was placed on top and crimped. Then, it was heated and cured at 170 ° C. for 2 hours to obtain an adherend with a test piece.
  • adherend silver-plated copper plate
  • the adherend with the test piece was left for 30 seconds on a measurement stage of a bond tester (Series 4000, manufactured by Daige Co., Ltd.) preheated to a predetermined temperature (23 ° C., 100 ° C.), and a height of 100 ⁇ m from the adherend From the position, stress was applied to the bonding surface in a horizontal direction (shear direction) at a speed of 200 ⁇ m / s, and the bonding strength (N / 4 mm 2 ) between the test piece and the adherend at 23 ° C. and 100 ° C. was measured. .
  • a bond tester Series 4000, manufactured by Daige Co., Ltd.
  • the curable composition is applied to a mirror surface of a square (area of 0.25 mm 2 ) glass chip having a side of 0.5 mm so as to have a thickness of about 2 ⁇ m, and the applied surface is an adherend (silver-plated copper plate) And crimped. Then, it was cured by heating at 170 ° C. for 2 hours to obtain an adherend with a test piece.
  • a curable composition is applied to an LED lead frame (5050 D / G PKG LEADFRAME, manufactured by Enomoto Co.) about 0.4 mm ⁇ , and a 0.5 mm-square sapphire chip (area 0.25 mm 2 ) is applied. Crimped. Then, after heating and curing at 170 ° C. for 2 hours, a sealing material (LPS-3419, manufactured by Shin-Etsu Chemical Co., Ltd.) is poured into the cup, heated at 120 ° C. for 1 hour, and further heated at 150 ° C. for 1 hour. To obtain a test piece. After exposing this test piece to an environment of 85 ° C.
  • the number of times the elements were peeled together was counted, and the evaluation was "A” if the rate of occurrence of peeling was 25% or less, “B” if it was greater than 25% and 50% or less, and "C” if it was greater than 50%.
  • Table 1 shows the following.
  • the curable polysilsesquioxane compounds (1) to (5) obtained in Examples 1 to 5 showed that the value of Z2 was in the range of 20 to 40% as a result of 29 Si-NMR measurement.
  • the mass average molecular weights of the curable polysilsesquioxane compounds (1) to (5) are all in the range of 4000 to 11,000.
  • the curable compositions (1) to (5) containing these curable polysilsesquioxane compounds have a low refractive index (nD) and are sufficiently cured at a relatively low temperature.
  • the cured products of the curable compositions (1) to (5) have high adhesive strength.
  • Comparative Examples 1 to 3 respectively use the curable polysilsesquioxane compounds [curable polysilsesquioxane compounds (6) to (8)] of Examples 8 to 10 of Patent Document 4. It is.
  • a large amount of an acid catalyst is used in order to compensate for the low reactivity of a silane compound having a fluoroalkyl group.
  • a curable polysilsesquioxane compound having a small Z2 value could be obtained.
  • the mass average molecular weight of the curable polysilsesquioxane compound decreases. Due to these reasons, the curable compositions (6) to (8) of Comparative Examples 1 to 3 are different from the curable compositions (1) of Examples 1 to 5 in the curability and the adhesive strength of the cured product. Inferior to (5).
  • the curable polysilsesquioxane compound (9) obtained in Comparative Example 4 has no repeating unit derived from 3,3,3-trifluoropropyltrimethoxysilane. Therefore, the refractive index (nD) of the curable composition (9) has a large value. Moreover, since the curable polysilsesquioxane compound (9) has a small Z2 value, the curability of the curable composition (9) is not sufficient.
  • the curable polysilsesquioxane compound (10) obtained in Comparative Example 5 has too large a molecular weight. As a result, the curable composition (10) is inferior to the curable compositions (1) to (5) of Examples 1 to 5 in curability and adhesive strength of the cured product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

The present invention is: a curable polysilsesquioxane compound having a repeating unit represented by the following formula (a-1), wherein said curable polysilsesquioxane compound is characterized by fulfilling a specified requirement relating to 29Si-NMR and having a mass-average molecular weight (Mw) in a specified range; a curable composition containing said curable polysilsesquioxane compound; a cured product made by curing the curable composition; and, a method for using the curable composition as an adhesive for an optical element fixing material or as a sealing material for an optical element fixing material. The curable composition according to the present invention has excellent curing properties and a low refractive index. In formula (a-1), R1 represents a fluoroalkyl group represented by a compositional formula CmH(2m-n+1)Fn. m represents an integer from 1-10, and n represents an integer of at least 2 and no more than (2m+1). D represents a connecting group (except for an alkylene group) which joins the R1 and Si, or represents a single bond. Formula (a-1): R1-D-SiO3/2

Description

硬化性ポリシルセスキオキサン化合物、硬化性組成物、硬化物、及び、硬化性組成物の使用方法Curable polysilsesquioxane compound, curable composition, cured product, and method of using curable composition
 本発明は、硬化性ポリシルセスキオキサン化合物、前記硬化性ポリシルセスキオキサン化合物を含有する、硬化性に優れ、かつ、屈折率が低い硬化性組成物、前記硬化性組成物を硬化してなる、接着強度が高い硬化物、及び、前記硬化性組成物を、光素子固定材用接着剤又は光素子固定材用封止材として使用する方法に関する。 The present invention is a curable polysilsesquioxane compound, containing the curable polysilsesquioxane compound, excellent curability, and a curable composition having a low refractive index, curing the curable composition And a method of using the curable composition as an adhesive for an optical element fixing material or a sealing material for an optical element fixing material.
 従来、硬化性組成物は用途に応じて様々な改良がなされ、光学部品や成形体の原料、接着剤、コーティング剤等として産業上広く利用されてきている。
 また、硬化性組成物は、光素子固定材用接着剤や光素子固定材用封止材等の光素子固定材用組成物としても注目を浴びてきている。
2. Description of the Related Art Conventionally, curable compositions have been variously improved depending on applications, and have been widely used in industry as raw materials for optical components and molded articles, adhesives, coating agents, and the like.
Also, the curable composition has been receiving attention as a composition for optical element fixing materials such as an adhesive for optical element fixing materials and a sealing material for optical element fixing materials.
 光素子には、半導体レーザー(LD)等の各種レーザーや発光ダイオード(LED)等の発光素子、受光素子、複合光素子、光集積回路等がある。
 近年においては、発光のピーク波長がより短波長である青色光や白色光の光素子が開発され広く使用されてきている。このような発光のピーク波長の短い発光素子の高輝度化が飛躍的に進み、これに伴い、光素子の発熱量がさらに大きくなっていく傾向にある。
The optical element includes various lasers such as a semiconductor laser (LD), a light emitting element such as a light emitting diode (LED), a light receiving element, a composite optical element, an optical integrated circuit, and the like.
In recent years, blue and white light optical elements having a shorter peak wavelength of light emission have been developed and widely used. Such a light emitting element having a short peak wavelength of light emission has been dramatically improved in luminance, and accordingly, the amount of heat generated by the optical element tends to be further increased.
 ところが、近年における光素子の高輝度化に伴い、光素子固定材用組成物の硬化物が、より高いエネルギーの光や光素子から発生するより高温の熱に長時間さらされ、接着力が低下するという問題が生じた。 However, with the recent increase in brightness of optical devices, the cured product of the optical device fixing material composition has been exposed to higher energy light or higher temperature heat generated from the optical device for a long time, and the adhesive strength has been reduced. Problem arises.
 この問題を解決するべく、特許文献1~3には、ポリシルセスキオキサン化合物を主成分とする光素子固定材用組成物が提案されている。
 しかしながら、特許文献1~3に記載された組成物の硬化物であっても、十分な接着力を保ちつつ、耐熱性を得るのは困難な場合があった。
In order to solve this problem, Patent Documents 1 to 3 propose compositions for an optical element fixing material containing a polysilsesquioxane compound as a main component.
However, even with the cured products of the compositions described in Patent Literatures 1 to 3, it has been difficult in some cases to obtain sufficient heat resistance while maintaining sufficient adhesive strength.
 また、硬化性組成物を用いて光素子等を固定する場合、目的に合った屈折率を有する硬化物を形成することが重要になることが多い。特に、従来の硬化性組成物やその硬化物は屈折率が高いものが多かったため、屈折率がより低い硬化性組成物が求められていた。 In addition, when fixing an optical element or the like using a curable composition, it is often important to form a cured product having a refractive index suitable for the purpose. In particular, since many of the conventional curable compositions and cured products thereof have a high refractive index, a curable composition having a lower refractive index has been demanded.
 特許文献4には、屈折率が低い硬化物を与える硬化性組成物として、フルオロアルキル基を有する硬化性ポリシルセスキオキサン化合物を含有する硬化性組成物が記載されている。
 しかしながら、特許文献4の実施例で示されるように、フルオロアルキル基を有する繰り返し単位の割合が高い硬化性ポリシルセスキオキサン化合物を含有する硬化性組成物を用いた場合、接着強度が高い硬化物を得ることは困難であった。このように、特許文献4に記載の硬化性組成物の硬化物は、高い接着強度と低い屈折率の間にトレードオフの関係があった。このため、特許文献4に記載の硬化性組成物を用いた場合、高い接着強度と低い屈折率の両方の特性を有する硬化物を得ることは困難であった。
Patent Document 4 describes a curable composition containing a curable polysilsesquioxane compound having a fluoroalkyl group as a curable composition giving a cured product having a low refractive index.
However, as shown in Examples of Patent Document 4, when a curable composition containing a curable polysilsesquioxane compound having a high ratio of repeating units having a fluoroalkyl group is used, a cured product having a high adhesive strength is obtained. It was difficult to get things. Thus, the cured product of the curable composition described in Patent Document 4 had a trade-off relationship between high adhesive strength and low refractive index. For this reason, when the curable composition described in Patent Document 4 was used, it was difficult to obtain a cured product having both high adhesive strength and low refractive index.
 また、硬化性組成物にフィラー等を添加することで、作業性等が改善することが知られている。
 しかしながら、一般に、フィラー等を含有する硬化性組成物やその硬化物は屈折率が高くなる傾向があるため、フィラー等を添加しても、屈折率が低い硬化性組成物が切望されていた。
It is known that workability and the like are improved by adding a filler or the like to the curable composition.
However, in general, a curable composition containing a filler or the like and a cured product thereof tend to have a high refractive index. Therefore, even when a filler or the like is added, a curable composition having a low refractive index has been desired.
特開2004-359933号公報JP 2004-359933 A 特開2005-263869号公報JP 2005-263869 A 特開2006-328231号公報JP 2006-328231 A WO2017/110948号(US2018/0355111 A1)WO2017 / 110948 (US2018 / 0355111 @ A1)
 本発明は、上記した従来技術の実情に鑑みてなされたものであり、硬化性に優れ、かつ、屈折率が低い硬化性組成物、この硬化性組成物の成分として有用な硬化性ポリシルセスキオキサン化合物、前記硬化性組成物を硬化してなる、接着強度が高い硬化物、及び、前記硬化性組成物を、光素子固定材用接着剤又は光素子固定材用封止材として使用する方法を提供することを目的とする。
 本発明において、「硬化性組成物」とは、加熱等の所定の条件を満たすことにより、硬化物に変化する組成物をいう。
 本発明において、「硬化性ポリシルセスキオキサン化合物」とは、加熱等の所定の条件を満たすことにより、単独で硬化物に変化するポリシルセスキオキサン化合物、又は、前記硬化性組成物において硬化性成分として機能するポリシルセスキオキサン化合物をいう。
The present invention has been made in view of the above-described prior art, and has excellent curability and a curable composition having a low refractive index, and a curable polysilsesquie useful as a component of the curable composition. An oxane compound, a cured product obtained by curing the curable composition, having a high adhesive strength, and using the curable composition as an adhesive for an optical element fixing material or a sealing material for an optical element fixing material. The aim is to provide a method.
In the present invention, the “curable composition” refers to a composition that changes into a cured product when a predetermined condition such as heating is satisfied.
In the present invention, the “curable polysilsesquioxane compound” is a polysilsesquioxane compound that changes into a cured product alone by satisfying predetermined conditions such as heating, or in the curable composition. A polysilsesquioxane compound that functions as a curable component.
 本発明者らは、上記課題を解決すべく、フルオロアルキル基を有する硬化性ポリシルセスキオキサン化合物について鋭意検討を重ねた。
 その結果、
(1)硬化性ポリシルセスキオキサン化合物にフルオロアルキル基を導入することにより硬化物の接着強度が低下するという問題は、特定の繰り返し単位を有し、かつ、分子構造に関する要件(後述する要件1)と、分子量に関する要件(後述する要件2)を共に満たす硬化性ポリシルセスキオキサン化合物(以下、「硬化性ポリシルセスキオキサン化合物(A)」ということがある。)を用いることで解決し得ること、及び、
(2)硬化性ポリシルセスキオキサン化合物(A)を含有する硬化性組成物は、硬化性に優れるという特性を有するため、過度に加熱することなく硬化反応を行うことができるという利点をも有すること、
を見出した。
 さらに、硬化性ポリシルセスキオキサン化合物(A)と254℃以上の沸点を有する溶媒を含有する硬化性組成物は、塗布後に長時間放置されても粘度変化が小さいため、塗布直後と同様の作業性を有することを見出した。
 本発明は、これらの知見に基づいて完成されたものである。
Means for Solving the Problems The present inventors have intensively studied a curable polysilsesquioxane compound having a fluoroalkyl group in order to solve the above problems.
as a result,
(1) The problem of introducing a fluoroalkyl group into the curable polysilsesquioxane compound to lower the adhesive strength of the cured product is caused by the requirement of having a specific repeating unit and the molecular structure (the requirement described below). By using 1) and a curable polysilsesquioxane compound that satisfies both requirements on molecular weight (requirement 2 described later) (hereinafter sometimes referred to as “curable polysilsesquioxane compound (A)”). Solvable; and
(2) Since the curable composition containing the curable polysilsesquioxane compound (A) has the property of being excellent in curability, it also has an advantage that the curing reaction can be performed without excessive heating. Having
Was found.
Furthermore, the curable composition containing the curable polysilsesquioxane compound (A) and a solvent having a boiling point of 254 ° C. or higher has a small change in viscosity even after being left for a long time after the application, and thus has the same effect as immediately after the application. It was found that it had workability.
The present invention has been completed based on these findings.
 かくして本発明によれば、下記〔1〕~〔5〕の硬化性ポリシルセスキオキサン化合物、〔6〕~〔9〕の硬化性組成物、〔10〕、〔11〕の硬化物、及び〔12〕、〔13〕の硬化性組成物の使用方法が提供される。 Thus, according to the present invention, the following curable polysilsesquioxane compounds of [1] to [5], curable compositions of [6] to [9], cured products of [10] and [11], and [12] A method for using the curable composition of [13] is provided.
〔1〕下記式(a-1)で示される繰り返し単位を有する硬化性ポリシルセスキオキサン化合物であって、下記要件1及び要件2を満たすことを特徴とする硬化性ポリシルセスキオキサン化合物。 [1] A curable polysilsesquioxane compound having a repeating unit represented by the following formula (a-1), which satisfies the following requirements 1 and 2 .
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
〔Rは、組成式:C(2m-n+1)で表されるフルオロアルキル基を表す。mは1~10の整数、nは2以上、(2m+1)以下の整数を表す。Dは、RとSiとを結合する連結基(ただし、アルキレン基を除く)又は単結合を表す。〕
〔要件1〕
 硬化性ポリシルセスキオキサン化合物の29Si-NMRを測定したときに、-62ppm以上-52ppm未満の領域〔領域(2)〕に1又は2以上のピークが観測され、-52ppm以上-45ppm未満の領域〔領域(1)〕と-73ppm以上-62ppm未満の領域〔領域(3)〕の少なくとも一方の領域に1又は2以上のピークが観測され、かつ、下記式で導かれるZ2が、20~40%である。
[R 1 represents a fluoroalkyl group represented by a composition formula: C m H (2m−n + 1) F n . m represents an integer of 1 to 10, n represents an integer of 2 or more and (2m + 1) or less. D represents a linking group (excluding an alkylene group) or a single bond for bonding R 1 and Si. ]
[Requirement 1]
When 29 Si-NMR of the curable polysilsesquioxane compound was measured, one or more peaks were observed in the region [region (2)] of -62 ppm or more and less than -52 ppm, and -52 ppm or more and less than -45 ppm. At least one of the region [region (1)] and -73 ppm or more and less than -62 ppm [region (3)], and Z2 derived from the following formula is 20 or more. 4040%.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
P1:領域(1)における積分値
P2:領域(2)における積分値
P3:領域(3)における積分値
〔要件2〕
 硬化性ポリシルセスキオキサン化合物の質量平均分子量(Mw)が、4,000~11,000である。
P1: integral value in region (1) P2: integral value in region (2) P3: integral value in region (3) [requirement 2]
The weight average molecular weight (Mw) of the curable polysilsesquioxane compound is from 4,000 to 11,000.
〔2〕式(a-1)で示される繰り返し単位の割合が、全繰り返し単位に対して25mol%以上である、〔1〕に記載の硬化性ポリシルセスキオキサン化合物。
〔3〕さらに、下記式(a-2)で示される繰り返し単位を有する、〔1〕又は〔2〕に記載の硬化性ポリシルセスキオキサン化合物。
[2] The curable polysilsesquioxane compound according to [1], wherein the proportion of the repeating unit represented by the formula (a-1) is at least 25 mol% based on all repeating units.
[3] The curable polysilsesquioxane compound according to [1] or [2], further comprising a repeating unit represented by the following formula (a-2).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
〔Rは、無置換の炭素数1~10のアルキル基、又は、置換基を有する、若しくは無置換の炭素数6~12のアリール基を表す。〕
〔4〕式(a-2)で示される繰り返し単位の割合が、全繰り返し単位に対して0mol%超、75mol%以下である、〔3〕に記載の硬化性ポリシルセスキオキサン化合物。
〔5〕29Si-NMRを測定したときに、領域(3)に1又は2以上のピークが観測され、かつ、下記式で導かれるZ3が、60~80%である、〔1〕~〔4〕のいずれかに記載の硬化性ポリシルセスキオキサン化合物。
[R 2 represents an unsubstituted alkyl group having 1 to 10 carbon atoms or a substituted or unsubstituted aryl group having 6 to 12 carbon atoms. ]
[4] The curable polysilsesquioxane compound according to [3], wherein the proportion of the repeating unit represented by the formula (a-2) is more than 0 mol% and 75 mol% or less based on all repeating units.
[5] When 29 Si-NMR is measured, one or more peaks are observed in the region (3), and Z3 derived from the following formula is 60 to 80%; 4] The curable polysilsesquioxane compound according to any one of the above.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
〔6〕下記(A)成分、及び、254℃以上の沸点を有する溶媒を含有することを特徴とする硬化性組成物。
(A)成分:〔1〕~〔5〕のいずれかに記載の硬化性ポリシルセスキオキサン化合物
〔7〕さらに、下記(B)成分を含有する、〔6〕に記載の硬化性組成物。
(B)成分:分子内に窒素原子を有するシランカップリング剤
〔8〕さらに、下記(C)成分を含有する、〔6〕又は〔7〕に記載の硬化性組成物。
(C)成分:分子内に酸無水物構造を有するシランカップリング剤
〔9〕さらに、下記(D)成分を含有する、〔6〕~〔8〕のいずれかに記載の硬化性組成物。
(D)成分:平均一次粒子径が5~40nmの微粒子
〔10〕前記〔6〕~〔9〕のいずれかに記載の硬化性組成物を硬化して得られる硬化物。
〔11〕光素子固定材である〔10〕に記載の硬化物。
〔12〕前記〔6〕~〔9〕のいずれかに記載の硬化性組成物を、光素子固定材用接着剤として使用する方法。
〔13〕前記〔6〕~〔9〕のいずれかに記載の硬化性組成物を、光素子固定材用封止材として使用する方法。
[6] A curable composition comprising the following component (A) and a solvent having a boiling point of 254 ° C or higher.
Component (A): the curable polysilsesquioxane compound according to any one of [1] to [5] [7], and the curable composition according to [6], further comprising the following component (B): .
Component (B): The curable composition according to [6] or [7], further comprising the following component (C): a silane coupling agent having a nitrogen atom in the molecule [8].
Component (C): The curable composition according to any one of [6] to [8], further comprising the following component (D): a silane coupling agent having an acid anhydride structure in the molecule [9].
Component (D): fine particles having an average primary particle diameter of 5 to 40 nm [10] A cured product obtained by curing the curable composition according to any one of [6] to [9].
[11] The cured product according to [10], which is an optical element fixing material.
[12] A method of using the curable composition according to any one of [6] to [9] as an adhesive for an optical element fixing material.
[13] A method of using the curable composition according to any one of [6] to [9] as a sealing material for an optical element fixing material.
 本発明によれば、硬化性に優れ、かつ、屈折率が低い硬化性組成物、この硬化性組成物の成分として有用な硬化性ポリシルセスキオキサン化合物、前記硬化性組成物を硬化してなる、接着強度が高い硬化物、及び、前記硬化性組成物を、光素子固定材用接着剤又は光素子固定材用封止材として使用する方法が提供される。 According to the present invention, excellent curability, and a curable composition having a low refractive index, a curable polysilsesquioxane compound useful as a component of the curable composition, and curing the curable composition. The present invention provides a cured product having high adhesive strength and a method of using the curable composition as an adhesive for an optical element fixing material or a sealing material for an optical element fixing material.
 以下、本発明を、1)硬化性ポリシルセスキオキサン化合物、2)硬化性組成物、3)硬化物、及び、4)硬化性組成物の使用方法、に項分けして詳細に説明する。 Hereinafter, the present invention will be described in detail by dividing into 1) a curable polysilsesquioxane compound, 2) a curable composition, 3) a cured product, and 4) a method of using the curable composition. .
1)硬化性ポリシルセスキオキサン化合物
 本発明の硬化性ポリシルセスキオキサン化合物〔硬化性ポリシルセスキオキサン化合物(A)〕は、下記式(a-1)で示される繰り返し単位を有する硬化性ポリシルセスキオキサン化合物であって、上記要件1及び要件2を満たすことを特徴とする。
1) Curable polysilsesquioxane compound The curable polysilsesquioxane compound of the present invention [curable polysilsesquioxane compound (A)] has a repeating unit represented by the following formula (a-1). A curable polysilsesquioxane compound, characterized by satisfying the above requirements 1 and 2.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
〔Rは、組成式:C(2m-n+1)で表されるフルオロアルキル基を表す。mは1~10の整数、nは2以上、(2m+1)以下の整数を表す。Dは、RとSiとを結合する連結基(ただし、アルキレン基を除く)又は単結合を表す。〕 [R 1 represents a fluoroalkyl group represented by a composition formula: C m H (2m−n + 1) F n . m represents an integer of 1 to 10, n represents an integer of 2 or more and (2m + 1) or less. D represents a linking group (excluding an alkylene group) or a single bond for bonding R 1 and Si. ]
 式(a-1)中、Rは、組成式:C(2m-n+1)で表されるフルオロアルキル基を表す。mは1~10の整数、nは2以上、(2m+1)以下の整数を表す。mは、好ましくは1~5の整数、より好ましくは1~3の整数である。
 Rを有する硬化性ポリシルセスキオキサン化合物を用いることで、屈折率が低い硬化性組成物を得ることができる。
In the formula (a-1), R 1 represents a fluoroalkyl group represented by a composition formula: C m H (2m−n + 1) F n . m represents an integer of 1 to 10, n represents an integer of 2 or more and (2m + 1) or less. m is preferably an integer of 1 to 5, more preferably an integer of 1 to 3.
By using the curable polysilsesquioxane compound having R 1, may be a refractive index to obtain a low-curable composition.
 組成式:C(2m-n+1)で表されるフルオロアルキル基としては、CF、CFCF、CF(CF、CF(CF、CF(CF、CF(CF、CF(CF、CF(CF、CF(CF、CF(CF等のパーフルオロアルキル基;CFCHCH、CF(CFCHCH、CF(CFCHCH、CF(CFCHCH等のハイドロフルオロアルキル基;が挙げられる。 As the fluoroalkyl group represented by the composition formula: C m H (2m−n + 1) F n , CF 3 , CF 3 CF 2 , CF 3 (CF 2 ) 2 , CF 3 (CF 2 ) 3 , CF 3 ( Perfluoroalkyl groups such as CF 2 ) 4 , CF 3 (CF 2 ) 5 , CF 3 (CF 2 ) 6 , CF 3 (CF 2 ) 7 , CF 3 (CF 2 ) 8 , CF 3 (CF 2 ) 9 A hydrofluoroalkyl group such as CF 3 CH 2 CH 2 , CF 3 (CF 2 ) 3 CH 2 CH 2 , CF 3 (CF 2 ) 5 CH 2 CH 2 , CF 3 (CF 2 ) 7 CH 2 CH 2 ; Is mentioned.
 式(a-1)中、Dは、RとSiとを結合する連結基(ただし、アルキレン基を除く)又は単結合を表す。
 Dの連結基としては、1,4-フェニレン基、1,3-フェニレン基、1,2-フェニレン基、1,5-ナフチレン基等の炭素数が6~20のアリーレン基が挙げられる。
In the formula (a-1), D represents a linking group (excluding an alkylene group) for bonding R 1 and Si, or a single bond.
Examples of the linking group for D include arylene groups having 6 to 20 carbon atoms, such as 1,4-phenylene group, 1,3-phenylene group, 1,2-phenylene group, and 1,5-naphthylene group.
 硬化性ポリシルセスキオキサン化合物(A)は、1種の(R-D)を有するもの(単独重合体)であっても、2種以上の(R-D)を有するもの(共重合体)であってもよい。
 硬化性ポリシルセスキオキサン化合物(A)が共重合体である場合、硬化性ポリシルセスキオキサン化合物(A)は、ランダム共重合体、ブロック共重合体、グラフト共重合体、交互共重合体等のいずれであってもよいが、製造容易性等の観点からは、ランダム共重合体が好ましい。
 また、硬化性ポリシルセスキオキサン化合物(A)の構造は、ラダー型構造、ダブルデッカー型構造、籠型構造、部分開裂籠型構造、環状型構造、ランダム型構造のいずれの構造であってもよい。
The curable polysilsesquioxane compound (A) may be a compound having one kind of (R 1 -D) (homopolymer) or a compound having two or more kinds of (R 1 -D). (Polymer).
When the curable polysilsesquioxane compound (A) is a copolymer, the curable polysilsesquioxane compound (A) may be a random copolymer, a block copolymer, a graft copolymer, an alternating copolymer. It may be any of a union and the like, but a random copolymer is preferred from the viewpoint of ease of production and the like.
The structure of the curable polysilsesquioxane compound (A) may be any of a ladder structure, a double decker structure, a cage structure, a partially-cleaved cage structure, a cyclic structure, and a random structure. Is also good.
 硬化性ポリシルセスキオキサン化合物(A)に含まれる式(a-1)で示される繰り返し単位の割合は、全繰り返し単位に対して好ましくは25mol%以上、より好ましくは25~90mol%、さらに好ましくは25~85mol%である。
 式(a-1)で示される繰り返し単位の割合が、全繰り返し単位に対して25mol%以上の硬化性ポリシルセスキオキサン化合物(A)を用いることで、屈折率がより低い硬化性組成物を得ることができる。
The proportion of the repeating unit represented by the formula (a-1) contained in the curable polysilsesquioxane compound (A) is preferably at least 25 mol%, more preferably 25 to 90 mol%, based on all repeating units. Preferably it is 25 to 85 mol%.
By using the curable polysilsesquioxane compound (A) in which the proportion of the repeating unit represented by the formula (a-1) is at least 25 mol% based on all repeating units, a curable composition having a lower refractive index Can be obtained.
 硬化性ポリシルセスキオキサン化合物(A)は、さらに、下記式(a-2)で示される繰り返し単位を有するもの(共重合体)であってもよい。 The curable polysilsesquioxane compound (A) may further be a compound (copolymer) having a repeating unit represented by the following formula (a-2).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(a-2)中、Rは、無置換の炭素数1~10のアルキル基、又は、置換基を有する、若しくは無置換の炭素数6~12のアリール基を表す。 In the formula (a-2), R 2 represents an unsubstituted alkyl group having 1 to 10 carbon atoms or an aryl group having a substituent or unsubstituted having 6 to 12 carbon atoms.
 Rの無置換の炭素数1~10のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、n-ノニル基、n-デシル基等が挙げられる。 Examples of the unsubstituted alkyl group having 1 to 10 carbon atoms for R 2 include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, and n. -Pentyl, n-hexyl, n-octyl, n-nonyl, n-decyl and the like.
 Rの無置換の炭素数6~12のアリール基としては、フェニル基、1-ナフチル基、2-ナフチル基等が挙げられる。
 Rの置換基を有する炭素数6~12のアリール基の置換基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、イソオクチル基等のアルキル基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;が挙げられる。
Examples of the unsubstituted aryl group having 6 to 12 carbon atoms for R 2 include a phenyl group, a 1-naphthyl group, and a 2-naphthyl group.
Examples of the substituent of the aryl group having 6 to 12 carbon atoms having a substituent of R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an s-butyl group, an isobutyl group, and a t-group. Alkyl groups such as butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group and isooctyl group; halogen atoms such as fluorine atom, chlorine atom and bromine atom; methoxy group and ethoxy group An alkoxy group;
 これらの中でも、Rとしては、接着強度がより高く、耐熱性により優れる硬化物が得られ易いことから、無置換の炭素数1~10のアルキル基が好ましく、無置換の炭素数1~6のアルキル基がより好ましく、無置換の炭素数1~3のアルキル基が特に好ましい。 Among these, as R 2 , an unsubstituted alkyl group having 1 to 10 carbon atoms is preferable, and an unsubstituted alkyl group having 1 to 10 carbon atoms is preferable because a cured product having higher adhesive strength and excellent heat resistance is easily obtained. Is more preferable, and an unsubstituted alkyl group having 1 to 3 carbon atoms is particularly preferable.
 硬化性ポリシルセスキオキサン化合物(A)が式(a-2)で示される繰り返し単位を有するものである場合、硬化性ポリシルセスキオキサン化合物(A)は、1種のRを有するものであっても、2種以上のRを有するものであってもよい。 When the curable polysilsesquioxane compound (A) is one having a repeating unit represented by the formula (a-2), the curable polysilsesquioxane compound (A) has one of R 2 Or two or more types of R 2 .
 硬化性ポリシルセスキオキサン化合物(A)が式(a-2)で示される繰り返し単位を有するものである場合、その割合は、全繰り返し単位に対して好ましくは0mol%超、75mol%以下、より好ましくは10~75mol%、さらに好ましくは15~75mol%である。
 式(a-2)で示される繰り返し単位の割合が上記範囲内の硬化性ポリシルセスキオキサン化合物(A)を用いることで、接着強度がより高く、耐熱性により優れる硬化物が得られ易くなる。
When the curable polysilsesquioxane compound (A) has a repeating unit represented by the formula (a-2), the proportion thereof is preferably more than 0 mol%, 75 mol% or less, based on all repeating units. More preferably, it is 10 to 75 mol%, and still more preferably, 15 to 75 mol%.
By using the curable polysilsesquioxane compound (A) in which the proportion of the repeating unit represented by the formula (a-2) is within the above range, a cured product having higher adhesive strength and more excellent heat resistance can be easily obtained. Become.
 硬化性ポリシルセスキオキサン化合物(A)中の、式(a-1)や式(a-2)で示される繰り返し単位の割合は、例えば、硬化性ポリシルセスキオキサン化合物(A)の29Si-NMRを測定することにより求めることができる。 The ratio of the repeating unit represented by the formula (a-1) or (a-2) in the curable polysilsesquioxane compound (A) is, for example, the ratio of the curable polysilsesquioxane compound (A) It can be determined by measuring 29 Si-NMR.
 硬化性ポリシルセスキオキサン化合物(A)は、アセトン等のケトン系溶媒;ベンゼン等の芳香族炭化水素系溶媒;ジメチルスルホキシド等の含硫黄系溶媒;テトラヒドロフラン等のエーテル系溶媒;酢酸エチル等のエステル系溶媒;クロロホルム等の含ハロゲン系溶媒;及びこれらの2種以上からなる混合溶媒;等の各種有機溶媒に可溶であるため、これらの溶媒を用いて、硬化性ポリシルセスキオキサン化合物(A)の溶液状態での29Si-NMRを測定することができる。 The curable polysilsesquioxane compound (A) is a ketone solvent such as acetone; an aromatic hydrocarbon solvent such as benzene; a sulfur-containing solvent such as dimethyl sulfoxide; an ether solvent such as tetrahydrofuran; Since these compounds are soluble in various organic solvents such as ester solvents; halogen-containing solvents such as chloroform; and mixed solvents of two or more of these solvents, the curable polysilsesquioxane compounds can be prepared using these solvents. 29 Si-NMR in a solution state of (A) can be measured.
 式(a-1)で示される繰り返し単位や、式(a-2)で示される繰り返し単位は、下記式(a-3)で示されるものである。 繰 り 返 し The repeating unit represented by the formula (a-1) and the repeating unit represented by the formula (a-2) are represented by the following formula (a-3).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
〔Gは、(R-D)又はRを表す。R、D、Rは、それぞれ上記と同じ意味を表す。O1/2とは、酸素原子が隣の繰り返し単位と共有されていることを表す。〕 [G represents (R 1 -D) or R 2 . R 1 , D and R 2 each have the same meaning as described above. O 1/2 means that an oxygen atom is shared with an adjacent repeating unit. ]
 式(a-3)で示されるように、硬化性ポリシルセスキオキサン化合物(A)は、一般にTサイトと総称される、ケイ素原子に酸素原子が3つ結合し、それ以外の基(Gで表される基)が1つ結合してなる部分構造を有する。
 硬化性ポリシルセスキオキサン化合物(A)に含まれるTサイトとしては、下記式(a-4)~(a-6)で示されるものが挙げられる。
As shown in the formula (a-3), the curable polysilsesquioxane compound (A) has three oxygen atoms bonded to a silicon atom and is generally called a T site, and the other group (G Has a partial structure formed by bonding one group.
Examples of the T site contained in the curable polysilsesquioxane compound (A) include those represented by the following formulas (a-4) to (a-6).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(a-4)、(a-5)及び(a-6)中、Gは、上記と同じ意味を表す。Rは、水素原子又は炭素数1~10のアルキル基を表す。Rの炭素数1~10のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基等が挙げられる。複数のR同士は、すべて同一であっても相異なっていてもよい。また、上記式(a-4)~(a-6)中、*には、ケイ素原子が結合している。 In the formulas (a-4), (a-5) and (a-6), G represents the same meaning as described above. R 3 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. Examples of the alkyl group having 1 to 10 carbon atoms for R 3 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an s-butyl group, an isobutyl group and a t-butyl group. A plurality of R 3 may be all the same or different. In the above formulas (a-4) to (a-6), * represents a silicon atom.
 式(a-4)及び式(a-5)で示されるTサイトは、重縮合反応に寄与し得る基(R-O)を含む。したがって、これらのTサイトを多く含むポリシルセスキオキサン化合物は反応性に優れる。また、このようなポリシルセスキオキサン化合物を含有する組成物は硬化性に優れる。
 一方、式(a-5)及び式(a-6)で示されるTサイトは、2以上のケイ素原子(隣のTサイト中のケイ素原子)と結合している。したがって、これらのTサイトを多く含むポリシルセスキオキサン化合物は、大きな分子量を有する傾向がある。
The T sites represented by the formulas (a-4) and (a-5) include a group (R 3 —O) that can contribute to a polycondensation reaction. Therefore, these polysilsesquioxane compounds containing many T sites are excellent in reactivity. Further, a composition containing such a polysilsesquioxane compound has excellent curability.
On the other hand, the T sites represented by the formulas (a-5) and (a-6) are bonded to two or more silicon atoms (silicon atoms in adjacent T sites). Therefore, these polysilsesquioxane compounds containing many T sites tend to have a large molecular weight.
 したがって、式(a-5)で示されるTサイトを多く含むポリシルセスキオキサン化合物は、比較的大きな分子量を有し、かつ、十分な反応性を有する。
 本発明は、この知見に基づいてなされたものである。
 すなわち、本発明の硬化性ポリシルセスキオキサン化合物(A)は、以下の要件1を満たすものである。
Therefore, the polysilsesquioxane compound containing a large number of T sites represented by the formula (a-5) has a relatively large molecular weight and sufficient reactivity.
The present invention has been made based on this finding.
That is, the curable polysilsesquioxane compound (A) of the present invention satisfies the following requirement 1.
〔要件1〕
 硬化性ポリシルセスキオキサン化合物の29Si-NMRを測定したときに、-62ppm以上-52ppm未満の領域〔領域(2)〕に1又は2以上のピークが観測され、-52ppm以上-45ppm未満の領域〔領域(1)〕と-73ppm以上-62ppm未満の領域〔領域(3)〕の少なくとも一方の領域に1又は2以上のピークが観測され、かつ、下記式で導かれるZ2が、20~40%である。
 なお、「領域(1)に観測されるピーク」とは、ピークトップが、領域(1)の範囲にあることをいう。「領域(2)に観測されるピーク」、「領域(3)に観測されるピーク」についても同様である。
[Requirement 1]
When 29 Si-NMR of the curable polysilsesquioxane compound was measured, one or more peaks were observed in the region [region (2)] of -62 ppm or more and less than -52 ppm, and -52 ppm or more and less than -45 ppm. At least one of the region [region (1)] and -73 ppm or more and less than -62 ppm [region (3)], and Z2 derived from the following formula is 20 or more. 4040%.
The “peak observed in the region (1)” means that the peak top is in the range of the region (1). The same applies to “peaks observed in region (2)” and “peaks observed in region (3)”.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
P1:領域(1)における積分値
P2:領域(2)における積分値
P3:領域(3)における積分値
P1: integral value in region (1) P2: integral value in region (2) P3: integral value in region (3)
 本明細書において、「領域(1)における積分値」、「領域(2)における積分値」、「領域(3)における積分値」とは、それぞれ、-52ppm~-45ppm、-62ppm~-52ppm、-73ppm~-62ppmを積分範囲として計算して得られた値をいう。 In the present specification, "integral value in region (1)", "integral value in region (2)", and "integral value in region (3)" are -52 ppm to -45 ppm and -62 ppm to -52 ppm, respectively. , -73 ppm to -62 ppm.
 領域(1)、領域(2)、領域(3)に観測されるピークは、それぞれ、式(a-4)、式(a-5)、式(a-6)で示されるTサイト中のケイ素原子に由来するものである。 The peaks observed in the region (1), the region (2), and the region (3) correspond to the peaks in the T site represented by the formulas (a-4), (a-5), and (a-6), respectively. It is derived from silicon atoms.
 したがって、要件1を満たす硬化性ポリシルセスキオキサン化合物は、式(a-5)で示されるTサイトを、Tサイト全体に対して20~40%含むものである。
 この硬化性ポリシルセスキオキサン化合物は、上記のように、比較的大きな分子量を有し、かつ、十分な反応性を有するものであり、硬化性組成物の硬化性成分として有用である。
Therefore, the curable polysilsesquioxane compound satisfying the requirement 1 contains the T site represented by the formula (a-5) in an amount of 20 to 40% based on the entire T site.
This curable polysilsesquioxane compound has a relatively large molecular weight and sufficient reactivity as described above, and is useful as a curable component of a curable composition.
 要件1中、Z2の値は、好ましくは24~36%、より好ましくは27~32%である。Z2が小さ過ぎると反応性が十分でなく、Z2が大き過ぎると貯蔵安定性が低下する。 中 In requirement 1, the value of Z2 is preferably 24-36%, more preferably 27-32%. If Z2 is too small, the reactivity is not sufficient, and if Z2 is too large, the storage stability decreases.
 硬化性ポリシルセスキオキサン化合物(A)は、29Si-NMRを測定したときに、領域(3)に1又は2以上のピークが観測され、かつ、下記式で導かれるZ3が、60~80%であることが好ましい。 In the curable polysilsesquioxane compound (A), one or two or more peaks were observed in region (3) when 29 Si-NMR was measured, and Z3 derived from the following formula was 60 to Preferably it is 80%.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 Z3が60~80%である硬化性ポリシルセスキオキサン化合物(A)は、式(a-6)で示されるTサイトを、Tサイト全体に対して60~80%含むものである。
 Z3の値が60~80%の範囲内の硬化性ポリシルセスキオキサン化合物(A)は、分子量と反応性のバランスにより優れるものである。
 この効果がより得られ易いことから、Z3の値は、64~76%がより好ましく、68~73%がさらに好ましい。
The curable polysilsesquioxane compound (A) in which Z3 is 60 to 80% contains the T site represented by the formula (a-6) in an amount of 60 to 80% of the entire T site.
The curable polysilsesquioxane compound (A) having a value of Z3 in the range of 60 to 80% is more excellent in the balance between molecular weight and reactivity.
Since this effect can be more easily obtained, the value of Z3 is more preferably from 64 to 76%, further preferably from 68 to 73%.
 Z2やZ3の値は、例えば、実施例に記載の条件で29Si-NMRを測定し、P1~P3を得、上記式に従って算出することができる。 The values of Z2 and Z3 can be calculated, for example, by measuring 29 Si-NMR under the conditions described in the examples to obtain P1 to P3, and by the above formula.
 硬化性ポリシルセスキオキサン化合物(A)は、上記要件2を満たすものである。
 すなわち、硬化性ポリシルセスキオキサン化合物(A)の質量平均分子量(Mw)は、4,000~11,000であり、好ましくは4,000~8,000、より好ましくは6,000~7,000である。
The curable polysilsesquioxane compound (A) satisfies the above requirement 2.
That is, the curable polysilsesquioxane compound (A) has a mass average molecular weight (Mw) of 4,000 to 11,000, preferably 4,000 to 8,000, and more preferably 6,000 to 7, , 000.
 上記のように、要件1を満たす硬化性ポリシルセスキオキサン化合物は、比較的大きな分子量を有する傾向がある。要件2は、その分子量の範囲を明確にするものである。
 質量平均分子量(Mw)が上記範囲内にある硬化性ポリシルセスキオキサン化合物(A)を硬化性成分として用いることで、接着強度が高く、耐熱性に優れる硬化物を与える硬化性組成物を得ることができる。
As described above, the curable polysilsesquioxane compound satisfying requirement 1 tends to have a relatively large molecular weight. Requirement 2 clarifies the range of the molecular weight.
By using a curable polysilsesquioxane compound (A) having a weight average molecular weight (Mw) within the above range as a curable component, a curable composition giving a cured product having high adhesive strength and excellent heat resistance can be obtained. Obtainable.
 硬化性ポリシルセスキオキサン化合物(A)の分子量分布(Mw/Mn)は、特に制限されないが、通常1.0~10.0、好ましくは1.1~6.0の範囲である。分子量分布(Mw/Mn)が上記範囲内にある硬化性ポリシルセスキオキサン化合物(A)を硬化性成分として用いることで、接着性及び耐熱性により優れる硬化物を与える硬化性組成物を得ることができる。
 質量平均分子量(Mw)及び数平均分子量(Mn)は、例えば、テトラヒドロフラン(THF)を溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)による標準ポリスチレン換算値として求めることができる。
The molecular weight distribution (Mw / Mn) of the curable polysilsesquioxane compound (A) is not particularly limited, but is usually in the range of 1.0 to 10.0, preferably 1.1 to 6.0. By using a curable polysilsesquioxane compound (A) having a molecular weight distribution (Mw / Mn) within the above range as a curable component, a curable composition giving a cured product having more excellent adhesiveness and heat resistance is obtained. be able to.
The mass average molecular weight (Mw) and the number average molecular weight (Mn) can be determined, for example, as standard polystyrene conversion values by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as a solvent.
 硬化性ポリシルセスキオキサン化合物(A)は、例えば、下記式(a-7)で示される化合物(以下、「シラン化合物(1)」ということがある。)、又は、シラン化合物(1)及び下記式(a-8)で示される化合物(以下、「シラン化合物(2)」ということがある。)を、重縮合触媒の存在下に重縮合させることにより製造することができる。 The curable polysilsesquioxane compound (A) is, for example, a compound represented by the following formula (a-7) (hereinafter sometimes referred to as “silane compound (1)”) or silane compound (1) And a compound represented by the following formula (a-8) (hereinafter sometimes referred to as “silane compound (2)”), by subjecting it to polycondensation in the presence of a polycondensation catalyst.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式(a-7)、(a-8)中、R、R、Dは、上記と同じ意味を表す。R、Rは、それぞれ独立に炭素数1~10のアルキル基を表し、X、Xは、それぞれ独立にハロゲン原子を表し、p、qは、それぞれ独立に0~3の整数を表す。複数のR、R、及び複数のX、Xは、それぞれ、互いに同一であっても、相異なっていてもよい。 In Formulas (a-7) and (a-8), R 1 , R 2 , and D represent the same meaning as described above. R 4 and R 5 each independently represent an alkyl group having 1 to 10 carbon atoms; X 1 and X 2 each independently represent a halogen atom; and p and q each independently represent an integer of 0 to 3. Represent. A plurality of R 4 and R 5 and a plurality of X 1 and X 2 may be the same or different from each other.
 R、Rの炭素数1~10のアルキル基としては、Rの炭素数1~10のアルキル基として示したものと同様のものが挙げられる。
 X、Xのハロゲン原子としては、塩素原子、及び臭素原子等が挙げられる。
As the alkyl group having 1 to 10 carbon atoms for R 4 and R 5 , those similar to the alkyl groups having 1 to 10 carbon atoms for R 2 can be mentioned.
Examples of the halogen atom for X 1 and X 2 include a chlorine atom and a bromine atom.
 シラン化合物(1)としては、CFSi(OCH、CFCFSi(OCH、CFCFCFSi(OCH、CFCFCFCFSi(OCH、CFCHCHSi(OCH、CFCFCFCFCHCHSi(OCH、CFCFCFCFCFCFCHCHSi(OCH、CFCFCFCFCFCFCFCFCHCHSi(OCH、CF(C)Si(OCH(4-(トリフルオロメチル)フェニルトリメトキシシラン)、CFSi(OCHCH、CFCFSi(OCHCH、CFCFCFSi(OCHCH、CFCFCFCFSi(OCHCH、CFCHCHSi(OCHCH、CFCFCFCFCHCHSi(OCHCH、CFCFCFCFCFCFCHCHSi(OCHCH、CFCFCFCFCFCFCFCFCHCHSi(OCHCH、CF(C)Si(OCHCH、4-(トリフルオロメチル)フェニルトリエトキシシラン等のフルオロアルキルトリアルコキシシラン化合物類;
CFSiCl(OCH、CFCFSiCl(OCH、CFCFCFSiCl(OCH、CFSiBr(OCH、CFCFSiBr(OCH、CFCFCFSiBr(OCH
CFCFCFCFSiCl(OCH、CFCHCHSiCl(OCH、CFCFCFCFCHCHSiCl(OCH、CFCFCFCFCFCFCHCHSiCl(OCH、CFCFCFCFCFCFCFCFCHCHSiCl(OCH、CF(C)SiCl(OCH、4-(トリフルオロメチル)フェニルクロロジメトキシシラン、CFSiCl(OCHCH、CFCFSiCl(OCHCH、CFCFCFSiCl(OCHCH、CFCFCFCFSiCl(OCHCH、CFCHCHSiCl(OCHCH、CFCFCFCFCHCHSiCl(OCHCH、CFCFCFCFCFCFCHCHSiCl(OCHCH、CFCFCFCFCFCFCFCFCHCHSiCl(OCHCH、CF(C)SiCl(OCHCH、4-(トリフルオロメチル)フェニルクロロジエトキシシラン等のフルオロアルキルハロゲノジアルコキシシラン化合物類;
CFSiCl(OCH)、CFCFSiCl(OCH)、CFCFCFSiCl(OCH)、CFCFCFCFSiCl(OCH)、CFCHCHSiCl(OCH)、CFCFCFCFCHCHSiCl(OCH)、CFCFCFCFCFCFCHCHSiCl(OCH)、CFCFCFCFCFCFCFCFCHCHSiCl(OCH)、CF(C)SiCl(OCH)、4-(トリフルオロメチル)フェニルジクロロメトキシシラン、CFSiCl(OCHCH)、CFCFSiCl(OCHCH)、CFCFCFSiCl(OCHCH)、CFCFCFCFSiCl(OCHCH)、CFCHCHSiCl(OCHCH)、CFCFCFCFCHCHSiCl(OCHCH)、CFCFCFCFCFCFCHCHSiCl(OCHCH、CFCFCFCFCFCFCFCFCHCHSiCl(OCHCH)、CF(C)SiCl(OCHCH)、4-(トリフルオロメチル)フェニルジクロロエトキシシラン等のフルオロアルキルジハロゲノアルコキシシラン化合物類;
CFSiCl、CFCFSiCl、CFSiBr、CFCFSiBr、CFCFCFSiCl、CFCFCFCFSiCl、CFCHCHSiCl、CFCFCFCFCHCHSiCl、CFCFCFCFCFCFCHCHSiCl、CFCFCFCFCFCFCFCFCHCHSiCl、CF(C)SiCl、4-トリフルオロメチルフェニルトリクロロシシラン、CFSiCl、CFCFSiCl、CFCFCFSiCl、CFCFCFCFSiCl、CFCHCHSiCl、CFCFCFCFCHCHSiCl、CFCFCFCFCFCFCHCHSiCl、CFCFCFCFCFCFCFCFCHCHSiCl、CF(C)SiCl、4-(トリフルオロメチル)フェニルトリクロロシラン等のフルオロアルキルトリハロゲノシラン化合物類;が挙げられる。
 シラン化合物(1)は1種単独で、あるいは2種以上を組み合わせて用いることができる。
 これらの中でも、シラン化合物(1)としては、フルオロアルキルトリアルコキシシラン化合物類に含まれるものが好ましい。
Examples of the silane compound (1) include CF 3 Si (OCH 3 ) 3 , CF 3 CF 2 Si (OCH 3 ) 3 , CF 3 CF 2 CF 2 Si (OCH 3 ) 3 , CF 3 CF 2 CF 2 CF 2 Si (OCH 3) 3, CF 3 CH 2 CH 2 Si (OCH 3) 3, CF 3 CF 2 CF 2 CF 2 CH 2 CH 2 Si (OCH 3) 3, CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 CH 2 CH 2 Si (OCH 3 ) 3, CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CH 2 CH 2 Si (OCH 3) 3, CF 3 (C 6 H 4) Si (OCH 3 ) 3 (4- (trifluoromethyl) phenyl trimethoxy silane), CF 3 Si (OCH 2 CH 3) 3, CF 3 CF 2 Si (OCH 2 CH 3) 3, C 3 CF 2 CF 2 Si (OCH 2 CH 3) 3, CF 3 CF 2 CF 2 CF 2 Si (OCH 2 CH 3) 3, CF 3 CH 2 CH 2 Si (OCH 2 CH 3) 3, CF 3 CF 2 CF 2 CF 2 CH 2 CH 2 Si (OCH 2 CH 3) 3, CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 CH 2 CH 2 Si (OCH 2 CH 3) 3, CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CH 2 CH 2 Si (OCH 2 CH 3) 3, CF 3 (C 6 H 4) Si (OCH 2 CH 3) 3, 4- ( trifluoromethyl) phenyl triethoxysilane Fluoroalkyl trialkoxysilane compounds;
CF 3 SiCl (OCH 3) 2 , CF 3 CF 2 SiCl (OCH 3) 2, CF 3 CF 2 CF 2 SiCl (OCH 3) 2, CF 3 SiBr (OCH 3) 2, CF 3 CF 2 SiBr (OCH 3 ) 2 , CF 3 CF 2 CF 2 SiBr (OCH 3 ) 2 ,
CF 3 CF 2 CF 2 CF 2 SiCl (OCH 3) 2, CF 3 CH 2 CH 2 SiCl (OCH 3) 2, CF 3 CF 2 CF 2 CF 2 CH 2 CH 2 SiCl (OCH 3) 2, CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 CH 2 CH 2 SiCl (OCH 3) 2, CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CH 2 CH 2 SiCl (OCH 3) 2, CF 3 ( C 6 H 4 ) SiCl (OCH 3 ) 2 , 4- (trifluoromethyl) phenylchlorodimethoxysilane, CF 3 SiCl (OCH 2 CH 3 ) 2 , CF 3 CF 2 SiCl (OCH 2 CH 3 ) 2 , CF 3 CF 2 CF 2 SiCl (OCH 2 CH 3 ) 2 , CF 3 CF 2 CF 2 CF 2 SiCl (OCH 2 CH 3 ) 2 , CF 3 CH 2 CH 2 SiCl (OCH 2 CH 3 ) 2 , CF 3 CF 2 CF 2 CF 2 CH 2 CH 2 SiCl (OCH 2 CH 3 ) 2 , CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 CH 2 CH 2 SiCl ( OCH 2 CH 3) 2, CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CH 2 CH 2 SiCl (OCH 2 CH 3) 2, CF 3 (C 6 H 4 ) fluoroalkylhalogenodialkoxysilane compounds such as SiCl (OCH 2 CH 3 ) 2 , 4- (trifluoromethyl) phenylchlorodiethoxysilane;
CF 3 SiCl 2 (OCH 3) , CF 3 CF 2 SiCl 2 (OCH 3), CF 3 CF 2 CF 2 SiCl 2 (OCH 3), CF 3 CF 2 CF 2 CF 2 SiCl 2 (OCH 3), CF 3 CH 2 CH 2 SiCl 2 (OCH 3 ), CF 3 CF 2 CF 2 CF 2 CH 2 CH 2 SiCl 2 (OCH 3 ), CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 CH 2 CH 2 SiCl 2 (OCH 3 ), CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CH 2 CH 2 SiCl 2 (OCH 3 ), CF 3 (C 6 H 4 ) SiCl 2 (OCH 3 ), 4- (trifluoro) Methyl) phenyldichloromethoxysilane, CF 3 SiCl 2 (OCH 2 CH 3 ), CF 3 CF 2 SiCl 2 (OCH 2 CH 3 ), CF 3 CF 2 CF 2 SiCl 2 (OCH 2 CH 3 ), CF 3 CF 2 CF 2 CF 2 SiCl 2 (OCH 2 CH 3 ), CF 3 CH 2 CH 2 SiCl 2 (OCH 2 CH 3) ), CF 3 CF 2 CF 2 CF 2 CH 2 CH 2 SiCl 2 (OCH 2 CH 3 ), CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 CH 2 CH 2 SiCl 2 (OCH 2 CH 3 ) 2 , CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CH 2 CH 2 SiCl 2 (OCH 2 CH 3 ), CF 3 (C 6 H 4 ) SiCl 2 (OCH 2 CH 3 ), 4- (trifluoro Fluoroalkyldihalogenoalkoxysilane compounds such as methyl) phenyldichloroethoxysilane;
CF 3 SiCl 3, CF 3 CF 2 SiCl 3, CF 3 SiBr 3, CF 3 CF 2 SiBr 3, CF 3 CF 2 CF 2 SiCl 3, CF 3 CF 2 CF 2 CF 2 SiCl 3, CF 3 CH 2 CH 2 SiCl 3, CF 3 CF 2 CF 2 CF 2 CH 2 CH 2 SiCl 3, CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 CH 2 CH 2 SiCl 3, CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CH 2 CH 2 SiCl 3 , CF 3 (C 6 H 4 ) SiCl 3 , 4-trifluoromethylphenyltrichlorosilane, CF 3 SiCl 3 , CF 3 CF 2 SiCl 3 , CF 3 CF 2 CF 2 SiCl 3 , CF 3 CF 2 CF 2 CF 2 SiCl 3 , CF 3 CH 2 CH 2 SiC l 3, CF 3 CF 2 CF 2 CF 2 CH 2 CH 2 SiCl 3, CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 CH 2 CH 2 SiCl 3, CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CH 2 CH 2 SiCl 3, CF 3 (C 6 H 4) SiCl 3, 4- ( trifluoromethyl) fluoroalkyl trihalogenosilane compounds such as phenyltrichlorosilane; and the like.
The silane compound (1) can be used alone or in combination of two or more.
Among these, as the silane compound (1), those contained in fluoroalkyl trialkoxysilane compounds are preferable.
 シラン化合物(2)としては、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリプロポキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、n-プロピルトリプロポキシシラン、n-プロピルトリブトキシシラン、n-ブチルトリメトキシシラン、イソブチルトリメトキシシラン、n-ペンチルトリメトキシシラン、n-ヘキシルトリメトキシシラン、イソオクチルトリエトキシシラン等のアルキルトリアルコキシシラン化合物類; Examples of the silane compound (2) include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltripropoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, n-propyl Alkyl trialkoxysilane compounds such as tripropoxysilane, n-propyltributoxysilane, n-butyltrimethoxysilane, isobutyltrimethoxysilane, n-pentyltrimethoxysilane, n-hexyltrimethoxysilane, isooctyltriethoxysilane ;
 メチルクロロジメトキシシラン、メチルクロロジエトキシシラン、メチルジクロロメトキシシラン、メチルブロモジメトキシシラン、エチルクロロジメトキシシラン、エチルクロロジエトキシシラン、エチルジクロロメトキシシラン、エチルブロモジメトキシシラン、n-プロピルクロロジメトキシシラン、n-プロピルジクロロメトキシシラン、n-ブチルクロロジメトキシシラン、n-ブチルジクロロメトキシシラン等のアルキルハロゲノアルコキシシラン化合物類; Methylchlorodimethoxysilane, methylchlorodiethoxysilane, methyldichloromethoxysilane, methylbromodimethoxysilane, ethylchlorodimethoxysilane, ethylchlorodiethoxysilane, ethyldichloromethoxysilane, ethylbromodimethoxysilane, n-propylchlorodimethoxysilane, n Alkylhalogenoalkoxysilane compounds such as -propyldichloromethoxysilane, n-butylchlorodimethoxysilane, n-butyldichloromethoxysilane;
 メチルトリクロロシラン、メチルトリブロモシラン、エチルトリトリクロロシラン、エチルトリブロモシラン、n-プロピルトリクロロシラン、n-プロピルトリブロモシラン、n-ブチルトリクロロシラン、イソブチルトリクロロシラン、n-ペンチルトリクロロシラン、n-ヘキシルトリクロロシラン、イソオクチルトリクロロシラン等のアルキルトリハロゲノシラン化合物類;等が挙げられる。
 シラン化合物(2)は1種単独で、あるいは2種以上を組み合わせて用いることができる。
 これらの中でも、シラン化合物(2)としては、アルキルトリアルコキシシラン化合物類に含まれるものが好ましい。
Methyltrichlorosilane, methyltribromosilane, ethyltritrichlorosilane, ethyltribromosilane, n-propyltrichlorosilane, n-propyltribromosilane, n-butyltrichlorosilane, isobutyltrichlorosilane, n-pentyltrichlorosilane, n-hexyl Alkyltrihalogenosilane compounds such as trichlorosilane and isooctyltrichlorosilane; and the like.
The silane compound (2) can be used alone or in combination of two or more.
Among these, as the silane compound (2), those contained in alkyl trialkoxysilane compounds are preferable.
 上記シラン化合物を重縮合させる方法は特に限定されず、公知の方法を利用することができる。ただし、硬化性ポリシルセスキオキサン化合物(A)の製造においては以下に示す問題があるため、反応条件を特別に検討する必要がある。 方法 The method of polycondensing the silane compound is not particularly limited, and a known method can be used. However, in the production of the curable polysilsesquioxane compound (A), there are the following problems, so that the reaction conditions need to be specially studied.
 硬化性ポリシルセスキオキサン化合物(A)を製造する際の問題の一つは、上記特許文献4に示されている。すなわち、上記特許文献4の表1を見ると、フルオロアルキル基を有するシラン化合物の使用割合が増加するにしたがって、得られる重合体は低分子量化する傾向があることが分かる。
 このように、シラン化合物(1)の反応性とシラン化合物(2)の反応性は大きく異なるため、シラン化合物(2)の重縮合反応に関する従来の知見をそのまま利用して、要件1及び要件2を満たす硬化性ポリシルセスキオキサン化合物を得ることは困難である。
One of the problems in producing the curable polysilsesquioxane compound (A) is described in Patent Document 4 described above. That is, from Table 1 of Patent Document 4, it can be seen that as the use ratio of the silane compound having a fluoroalkyl group increases, the obtained polymer tends to have a lower molecular weight.
As described above, since the reactivity of the silane compound (1) and the reactivity of the silane compound (2) are greatly different, the conventional knowledge on the polycondensation reaction of the silane compound (2) is used as it is, and the requirements 1 and 2 are used. It is difficult to obtain a curable polysilsesquioxane compound satisfying the above.
 特許文献4の実施例においては、実際に、フルオロアルキル基を有するシラン化合物を用いて重縮合反応を行い、重合体を製造している。しかしながら、上記のように、この文献に記載の製造方法においては、反応に用いたシラン化合物の混合割合が反応に大きく影響するため、重合体の分子量を制御することはできていない。
 また、後述するように、特許文献4の実施例に記載の反応条件を用いることで、反応性に劣るシラン化合物(フルオロアルキル基を有するシラン化合物)を単量体として使用することはできるが、この反応条件を用いても、要件1及び要件2を満たす硬化性ポリシルセスキオキサン化合物を得ることは困難である(比較例1~3)。
In the example of Patent Document 4, a polymer is actually produced by performing a polycondensation reaction using a silane compound having a fluoroalkyl group. However, as described above, in the production method described in this document, the molecular weight of the polymer cannot be controlled because the mixing ratio of the silane compound used in the reaction greatly affects the reaction.
Further, as described later, by using the reaction conditions described in the examples of Patent Document 4, a silane compound having low reactivity (a silane compound having a fluoroalkyl group) can be used as a monomer. Even with these reaction conditions, it is difficult to obtain a curable polysilsesquioxane compound satisfying the requirements 1 and 2 (Comparative Examples 1 to 3).
 本発明者らは、シラン化合物(1)を用いる重縮合反応について検討した結果、比較的穏やかな条件で、時間をかけて重縮合反応を行うことで、要件1及び要件2を満たす硬化性ポリシルセスキオキサン化合物が得られることが分かった。
 具体的には、溶媒中、又は無溶媒で、適量の酸触媒を用いて、所定温度でシラン化合物の重縮合反応を行って製造中間体を含む反応液を得た後、塩基を加えて反応液を中和し、さらに重縮合反応を行うことで、硬化性ポリシルセスキオキサン化合物(A)を製造することができる。
The present inventors have studied the polycondensation reaction using the silane compound (1). As a result, the polycondensation reaction is carried out over a relatively long period of time under relatively mild conditions, whereby a curable policy satisfying the requirements 1 and 2 is satisfied. It was found that a sesquioxane compound was obtained.
Specifically, in a solvent or without solvent, using a suitable amount of an acid catalyst, a polycondensation reaction of a silane compound is performed at a predetermined temperature to obtain a reaction solution containing a production intermediate, and then a base is added to react. By neutralizing the liquid and further performing a polycondensation reaction, a curable polysilsesquioxane compound (A) can be produced.
 溶媒としては、水;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル等のエステル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、s-ブチルアルコール、t-ブチルアルコール等のアルコール類;等が挙げられる。これらの溶媒は1種単独で、あるいは2種以上を組み合わせて用いることができる。
 溶媒を使用する場合、その使用量は、シラン化合物の総mol量1mol当たり、通常0.001~10.000リットル、好ましくは0.010~0.9リットルである。
Examples of the solvent include water; aromatic hydrocarbons such as benzene, toluene, and xylene; esters such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate, and methyl propionate; acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. Ketones; alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, s-butyl alcohol, t-butyl alcohol; and the like. These solvents can be used alone or in combination of two or more.
When a solvent is used, it is used in an amount of usually 0.001 to 10.000 liter, preferably 0.010 to 0.9 liter, per 1 mol of the total mol of the silane compound.
 酸触媒としては、リン酸、塩酸、ホウ酸、硫酸、硝酸等の無機酸;クエン酸、酢酸、メタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸等の有機酸;等が挙げられる。これらの中でも、リン酸、塩酸、ホウ酸、硫酸、クエン酸、酢酸、及びメタンスルホン酸から選ばれる少なくとも1種が好ましい。
 酸触媒の使用量は、シラン化合物の総mol量に対して、通常0.01~2.00mol%、好ましくは0.05~1.00mol%、より好ましくは0.10~0.30の範囲である。
Examples of the acid catalyst include inorganic acids such as phosphoric acid, hydrochloric acid, boric acid, sulfuric acid and nitric acid; organic acids such as citric acid, acetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid and p-toluenesulfonic acid; Is mentioned. Among these, at least one selected from phosphoric acid, hydrochloric acid, boric acid, sulfuric acid, citric acid, acetic acid, and methanesulfonic acid is preferable.
The amount of the acid catalyst used is usually 0.01 to 2.00 mol%, preferably 0.05 to 1.00 mol%, more preferably 0.10 to 0.30, based on the total mol amount of the silane compound. It is.
 酸触媒存在下での反応の反応温度は、通常20~90℃、好ましくは25~80℃である。
 酸触媒存在下での反応の反応時間は、通常1~48時間、好ましくは3~24時間である。
The reaction temperature of the reaction in the presence of an acid catalyst is usually from 20 to 90 ° C, preferably from 25 to 80 ° C.
The reaction time of the reaction in the presence of the acid catalyst is usually 1 to 48 hours, preferably 3 to 24 hours.
 酸触媒存在下の反応により得られる製造中間体の質量平均分子量(Mw)は、通常800~5,000、好ましくは1,200~4,000である。 The weight average molecular weight (Mw) of the intermediate produced by the reaction in the presence of the acid catalyst is usually from 800 to 5,000, preferably from 1,200 to 4,000.
 反応液を中和する際に用いる塩基としては、アンモニア水;トリメチルアミン、トリエチルアミン、ピリジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、アニリン、ピコリン、1,4-ジアザビシクロ[2.2.2]オクタン、イミダゾール等の有機塩基;水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム等の有機塩水酸化物;ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムt-ブトキシド、カリウムt-ブトキシド等の金属アルコキシド;水素化ナトリウム、水素化カルシウム等の金属水素化物;水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等の金属水酸化物;炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム等の金属炭酸塩;炭酸水素ナトリウム、炭酸水素カリウム等の金属炭酸水素塩;等が挙げられる。 The base used for neutralizing the reaction solution is ammonia water; trimethylamine, triethylamine, pyridine, 1,8-diazabicyclo [5.4.0] -7-undecene, aniline, picoline, 1,4-diazabicyclo [2 2.2.2] Organic bases such as octane and imidazole; organic salt hydroxides such as tetramethylammonium hydroxide and tetraethylammonium hydroxide; metals such as sodium methoxide, sodium ethoxide, sodium t-butoxide and potassium t-butoxide Alkoxides; Metal hydrides such as sodium hydride and calcium hydride; Metal hydroxides such as sodium hydroxide, potassium hydroxide and calcium hydroxide; Metal carbonates such as sodium carbonate, potassium carbonate and magnesium carbonate; Sodium hydrogen carbonate , Potassium bicarbonate, etc. Genus bicarbonate; and the like.
 反応液の中和に用いる塩基の量は、シラン化合物の総mol量に対して、通常0.01~2.00mol%、好ましくは0.05~1.00mol%、より好ましくは0.10~0.70の範囲である。
 また反応液の中和に用いる塩基の量(mol)は、1工程前で用いた酸触媒の量(mol)の0.5~5.0倍が好ましく、より好ましくは0.8~3.0倍、より更に好ましくは1.0~2.0倍である。
 中和後の反応液のpHは、通常6.0~8.0、好ましくは6.2~7.0であり、より好ましくは6.4~6.9である。
The amount of the base used for neutralization of the reaction solution is usually 0.01 to 2.00 mol%, preferably 0.05 to 1.00 mol%, more preferably 0.10 to 1.00 mol%, based on the total mol amount of the silane compound. The range is 0.70.
The amount (mol) of the base used for neutralizing the reaction solution is preferably 0.5 to 5.0 times, more preferably 0.8 to 3.0 times the amount (mol) of the acid catalyst used one step before. It is 0 times, more preferably 1.0 to 2.0 times.
The pH of the reaction solution after neutralization is generally 6.0 to 8.0, preferably 6.2 to 7.0, and more preferably 6.4 to 6.9.
 中和後の反応の反応温度は、通常40~90℃、好ましくは50~80℃である。
 中和後の反応の反応時間は、通常20~200分間、好ましくは30~150分間である。
The reaction temperature of the reaction after the neutralization is usually 40 to 90 ° C, preferably 50 to 80 ° C.
The reaction time of the reaction after the neutralization is usually 20 to 200 minutes, preferably 30 to 150 minutes.
 上記の製造方法では、酸触媒存在下での反応においては、加水分解を主な目的とし、中和後の反応においては、脱水縮合を主な目的としている。
 このようにしてシラン化合物の重縮合反応を行うことで、目的とする硬化性ポリシルセスキオキサン化合物(A)を効率よく製造することができる。
In the above-mentioned production method, the main purpose is hydrolysis in the reaction in the presence of an acid catalyst, and the main purpose is dehydration condensation in the reaction after neutralization.
By performing the polycondensation reaction of the silane compound in this manner, the desired curable polysilsesquioxane compound (A) can be efficiently produced.
 反応終了後は、公知の精製処理を行い、硬化性ポリシルセスキオキサン化合物(A)を単離することができる。 後 After completion of the reaction, a known purification treatment can be performed to isolate the curable polysilsesquioxane compound (A).
 本発明の硬化性ポリシルセスキオキサン化合物は、フルオロアルキル基を有する繰り返し単位を有するものであって、十分な反応性を有し、かつ、比較的大きな分子量を有するものである。
 このような硬化性ポリシルセスキオキサン化合物は、硬化性に優れ、かつ、屈折率が低い硬化性組成物の硬化性成分として有用である。
The curable polysilsesquioxane compound of the present invention has a repeating unit having a fluoroalkyl group, has sufficient reactivity, and has a relatively large molecular weight.
Such a curable polysilsesquioxane compound has excellent curability and is useful as a curable component of a curable composition having a low refractive index.
2)硬化性組成物
 本発明の硬化性組成物は、下記(A)成分、及び、254℃以上の沸点を有する溶媒(以下、「溶媒(S1)」と記載することがある。)を含有することを特徴とする。
(A)成分:本発明の硬化性ポリシルセスキオキサン化合物(硬化性ポリシルセスキオキサン化合物(A))
2) Curable composition The curable composition of the present invention contains the following component (A) and a solvent having a boiling point of 254 ° C or higher (hereinafter sometimes referred to as “solvent (S1)”). It is characterized by doing.
Component (A): curable polysilsesquioxane compound of the present invention (curable polysilsesquioxane compound (A))
 本発明の硬化性組成物において、硬化性ポリシルセスキオキサン化合物(A)は1種単独で、あるいは2種以上を組み合わせて用いることができる。 に お い て In the curable composition of the present invention, the curable polysilsesquioxane compound (A) can be used alone or in combination of two or more.
 本発明の硬化性組成物中の硬化性ポリシルセスキオキサン化合物(A)の含有量は、硬化性組成物の固形分全体を基準として、通常40~80質量%、好ましくは50~70質量%である。 The content of the curable polysilsesquioxane compound (A) in the curable composition of the present invention is usually from 40 to 80% by mass, preferably from 50 to 70% by mass, based on the whole solid content of the curable composition. %.
 溶媒(S1)の沸点は、254℃以上であり、254~300℃が好ましい。
 ここで、沸点は、1013hPaにおける沸点をいう(本明細書において同じ。)
The boiling point of the solvent (S1) is 254 ° C. or higher, and preferably 254 to 300 ° C.
Here, the boiling point means a boiling point at 1013 hPa (the same applies in the present specification).
 溶媒(S1)としては、沸点が254℃以上であり、かつ、硬化性ポリシルセスキオキサン化合物(A)を溶解可能なものであれば特に制限されない。
 このような溶媒(S1)は、揮発速度が比較的遅い。したがって、溶媒(S1)を含有する硬化性組成物は、塗布後に長時間放置されても粘度変化が小さいため、塗布直後と同様に光素子等を良好にマウントすることが可能となる。
The solvent (S1) is not particularly limited as long as it has a boiling point of 254 ° C. or higher and can dissolve the curable polysilsesquioxane compound (A).
Such a solvent (S1) has a relatively slow volatilization rate. Therefore, the curable composition containing the solvent (S1) has a small change in viscosity even after being left for a long time after application, so that an optical element or the like can be mounted favorably similarly to immediately after application.
 溶媒(S1)としては、具体的には、トリプロピレングリコール-n-ブチルエーテル(沸点274℃)、1,6-へキサンジオールジアクリレート(沸点260℃)、ジエチレングリコールジブチルエーテル(沸点256℃)、トリエチレングリコールブチルメチルエーテル(沸点261℃)、ポリエチレングリコールジメチルエーテル(沸点264~294℃)、テトラエチレングリコールジメチルエーテル(沸点275℃)、ポリエチレングリコールモノメチルエーテル(沸点290~310℃)等が挙げられる。
 これらの中でも、溶媒(S1)としては、本発明の効果がより得られやすい観点から、トリプロピレングリコール-n-ブチルエーテル、1,6-ヘキサンジオールジアクリレートが好ましい。
 溶媒(S1)は1種単独で、あるいは2種以上を組み合わせて用いることができる。
Specific examples of the solvent (S1) include tripropylene glycol-n-butyl ether (boiling point: 274 ° C.), 1,6-hexanediol diacrylate (boiling point: 260 ° C.), diethylene glycol dibutyl ether (boiling point: 256 ° C.), Examples include ethylene glycol butyl methyl ether (boiling point 261 ° C.), polyethylene glycol dimethyl ether (boiling point 264 to 294 ° C.), tetraethylene glycol dimethyl ether (boiling point 275 ° C.), and polyethylene glycol monomethyl ether (boiling point 290 to 310 ° C.).
Among these, as the solvent (S1), tripropylene glycol-n-butyl ether and 1,6-hexanediol diacrylate are preferable from the viewpoint that the effects of the present invention can be more easily obtained.
The solvent (S1) can be used alone or in combination of two or more.
 本発明の硬化性組成物は、溶媒(S1)以外の溶媒を含有してもよい。
 溶媒(S1)以外の溶媒としては、沸点が200℃以上254℃未満の溶媒(以下、「溶媒(S2)」と記載することがある。)が好ましい。
 溶媒(S2)としては、沸点が200℃以上254℃未満であり、かつ、硬化性ポリシルセスキオキサン化合物(A)を溶解可能なものであれば特に制限されない。
 溶媒(S1)と溶媒(S2)を併用することで、硬化性組成物の硬化性が向上する。
The curable composition of the present invention may contain a solvent other than the solvent (S1).
As the solvent other than the solvent (S1), a solvent having a boiling point of 200 ° C. or more and less than 254 ° C. (hereinafter, sometimes referred to as “solvent (S2)”) is preferable.
The solvent (S2) is not particularly limited as long as it has a boiling point of 200 ° C. or more and less than 254 ° C. and can dissolve the curable polysilsesquioxane compound (A).
By using the solvent (S1) and the solvent (S2) in combination, the curability of the curable composition is improved.
 溶媒(S2)の具体例としては、ジエチレングリコールモノブチルエーテルアセテート(沸点247℃)、ジプロピレングリコール-n-ブチルエーテル(沸点229℃)、ベンジルアルコール(沸点204.9℃)、ジプロピレングリコールメチルエーテルアセテート(沸点209℃)、ジエチレングリコールブチルメチルエーテル(沸点212℃)、ジプロピレングリコール-n-プロピルエーテル(沸点212℃)、トリプロピレングリコールジメチルエーテル(沸点215℃)、トリエチレングリコールジメチルエーテル(沸点216℃)、ジエチレングリコールモノエチルエーテルアセテート(沸点217.4℃)、ジエチレングリコール-n-ブチルエーテル(沸点230℃)、エチレングリコールモノフェニルエーテル(沸点245℃)、トリプロピレングリコールメチルエーテル(沸点242℃)、プロピレングリコールフェニルエーテル(沸点243℃)、トリエチレングリコールモノメチルエーテル(沸点249℃)等が挙げられる。
 これらの中でも、溶媒(S2)としては、その効果が得られやすいことから、グリコール系溶媒が好ましく、ジエチレングリコールモノブチルエーテルアセテート、ジプロピレングリコール-n-ブチルエーテルが好ましく、ジエチレングリコールモノブチルエーテルアセテートがより好ましい。
Specific examples of the solvent (S2) include diethylene glycol monobutyl ether acetate (boiling point 247 ° C.), dipropylene glycol-n-butyl ether (boiling point 229 ° C.), benzyl alcohol (boiling point 204.9 ° C.), dipropylene glycol methyl ether acetate ( (Boiling point 209 ° C), diethylene glycol butyl methyl ether (boiling point 212 ° C), dipropylene glycol-n-propyl ether (boiling point 212 ° C), tripropylene glycol dimethyl ether (boiling point 215 ° C), triethylene glycol dimethyl ether (boiling point 216 ° C), diethylene glycol Monoethyl ether acetate (boiling point 217.4 ° C), diethylene glycol-n-butyl ether (boiling point 230 ° C), ethylene glycol monophenyl ether (boiling point 45 ° C.), tripropylene glycol methyl ether (boiling point 242 ° C.), propylene glycol phenyl ether (boiling point 243 ° C.), triethylene glycol monomethyl ether (boiling point 249 ° C.), and the like.
Among these, the solvent (S2) is preferably a glycol-based solvent, since its effects are easily obtained, diethylene glycol monobutyl ether acetate and dipropylene glycol-n-butyl ether are preferable, and diethylene glycol monobutyl ether acetate is more preferable.
 溶媒(S1)と溶媒(S2)を併用する場合、具体的には、トリプロピレングリコール-n-ブチルエーテル(溶媒(S1))とジエチレングリコールモノブチルエーテルアセテート(溶媒(S2))の組み合わせ、1,6-ヘキサンジオールジアクリレート(溶媒(S1))と、ジエチレングリコールモノブチルエーテルアセテート(溶媒(S2))の組み合わせ、トリプロピレングリコール-n-ブチルエーテル(溶媒(S1))とジプロピレングリコール-n-ブチルエーテル(溶媒(S2))の組み合わせ、1,6-ヘキサンジオールジアクリレート(溶媒(S1))とジプロピレングリコール-n-ブチルエーテル(有機溶媒(S2))の組み合わせが好ましい。 When the solvent (S1) and the solvent (S2) are used in combination, specifically, a combination of tripropylene glycol-n-butyl ether (solvent (S1)) and diethylene glycol monobutyl ether acetate (solvent (S2)), A combination of hexanediol diacrylate (solvent (S1)) and diethylene glycol monobutyl ether acetate (solvent (S2)), tripropylene glycol-n-butyl ether (solvent (S1)) and dipropylene glycol-n-butyl ether (solvent (S2) )), And a combination of 1,6-hexanediol diacrylate (solvent (S1)) and dipropylene glycol-n-butyl ether (organic solvent (S2)).
 本発明の硬化性組成物は、固形分濃度が、好ましくは50~95質量%、より好ましくは60~85質量%になる量の溶媒を含有する。固形分濃度がこの範囲内であることで、溶媒(S1)や溶媒(S2)の効果が十分に発揮される。 (4) The curable composition of the present invention contains a solvent in such an amount that the solid concentration is preferably 50 to 95% by mass, more preferably 60 to 85% by mass. When the solid content is within this range, the effects of the solvent (S1) and the solvent (S2) are sufficiently exhibited.
 本発明の硬化性組成物に含まれる溶媒(S1)と溶媒(S2)の合計量は、全溶媒に対して、通常50~100質量%、好ましくは70~100質量%、より好ましくは90~100質量%である。
 本発明の硬化性組成物に含まれる溶媒(S1)の含有量は、溶媒(S1)と溶媒(S2)の合計量に対して、通常20~100質量%、好ましくは30~85質量%、より好ましくは50~80質量%である。
 溶媒(S1)や溶媒(S2)をこのような割合で含有する硬化性組成物は、接着性、及び、濡れ広がり性(後述する、液滴の広がりに関する特性)が適度にバランスされたものとなる。
The total amount of the solvent (S1) and the solvent (S2) contained in the curable composition of the present invention is usually from 50 to 100% by mass, preferably from 70 to 100% by mass, more preferably from 90 to 100% by mass, based on all the solvents. 100% by mass.
The content of the solvent (S1) contained in the curable composition of the present invention is usually 20 to 100% by mass, preferably 30 to 85% by mass, based on the total amount of the solvent (S1) and the solvent (S2). More preferably, it is 50 to 80% by mass.
The curable composition containing the solvent (S1) or the solvent (S2) at such a ratio is such that the adhesiveness and the wet-spreading property (the property relating to the spread of the droplet described later) are appropriately balanced. Become.
 本発明の硬化性組成物は、(B)成分として、分子内に窒素原子を有するシランカップリング剤(以下、「シランカップリング剤(B)」と記載することがある。)を含有してもよい。 The curable composition of the present invention contains, as the component (B), a silane coupling agent having a nitrogen atom in the molecule (hereinafter, may be referred to as “silane coupling agent (B)”). Is also good.
 シランカップリング剤(B)を含有する硬化性組成物は、塗布工程における作業性に優れ、かつ、接着性、耐剥離性、及び耐熱性により優れる硬化物を与える。
 ここで、塗布工程における作業性に優れるとは、塗布工程において、硬化性組成物を吐出管から吐出し、次いで吐出管を引き上げる際、糸引き量が少ないか、又はすぐに途切れることをいう。この性質を有する硬化性組成物を用いることで、樹脂飛びや液滴の広がりによる周囲の汚染を防ぐことができる。
The curable composition containing the silane coupling agent (B) has excellent workability in the application step, and gives a cured product having more excellent adhesiveness, peel resistance, and heat resistance.
Here, "excellent in workability in the coating step" means that the curable composition is discharged from the discharge pipe in the coating step, and then, when the discharge pipe is pulled up, the amount of stringing is small or the fiber breaks immediately. By using the curable composition having this property, it is possible to prevent the surroundings from being contaminated due to the resin flying or the spread of the droplets.
 シランカップリング剤(B)としては、分子内に窒素原子を有するシランカップリング剤であれば特に制限はない。例えば、下記式(b-1)で表されるトリアルコキシシラン化合物、式(b-2)で表されるジアルコキシアルキルシラン化合物又はジアルコキシアリールシラン化合物等が挙げられる。 The silane coupling agent (B) is not particularly limited as long as it is a silane coupling agent having a nitrogen atom in the molecule. Examples include a trialkoxysilane compound represented by the following formula (b-1), a dialkoxyalkylsilane compound or a dialkoxyarylsilane compound represented by the formula (b-2).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 上記式中、Rは、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、t-ブトキシ基等の炭素数1~6のアルコキシ基を表す。複数のR同士は同一であっても相異なっていてもよい。
 Rは、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等の炭素数1~6のアルキル基;又は、フェニル基、4-クロロフェニル基、4-メチルフェニル基、1-ナフチル基等の、置換基を有する、又は置換基を有さないアリール基;を表す。
In the above formulas, R a represents a methoxy group, an ethoxy group, n- propoxy group, isopropoxy group, n- butoxy group, an alkoxy group having 1 to 6 carbon atoms such as t- butoxy. A plurality of R a each other may be different from each be the same.
R b is an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a t-butyl group; or a phenyl group, a 4-chlorophenyl group, An aryl group having a substituent or an unsubstituted group, such as a methylphenyl group and a 1-naphthyl group.
 Rは、窒素原子を有する、炭素数1~10の有機基を表す。また、Rは、さらに他のケイ素原子を含む基と結合していてもよい。
 Rの炭素数1~10の有機基の具体例としては、N-2-(アミノエチル)-3-アミノプロピル基、3-アミノプロピル基、N-(1,3-ジメチル-ブチリデン)アミノプロピル基、3-ウレイドプロピル基、N-フェニル-アミノプロピル基等が挙げられる。
R c represents an organic group having a nitrogen atom and having 1 to 10 carbon atoms. Further, R c may be further bonded to another group containing a silicon atom.
Specific examples of the organic group having 1 to 10 carbon atoms for R c include N-2- (aminoethyl) -3-aminopropyl group, 3-aminopropyl group, N- (1,3-dimethyl-butylidene) amino Propyl, 3-ureidopropyl, N-phenyl-aminopropyl and the like.
 上記式(b-1)又は(b-2)で表される化合物のうち、Rが、他のケイ素原子を含む基と結合した有機基である場合の化合物としては、イソシアヌレート骨格を介して他のケイ素原子と結合してイソシアヌレート系シランカップリング剤を構成するものや、ウレア骨格を介して他のケイ素原子と結合してウレア系シランカップリング剤を構成するものが挙げられる。 Among the compounds represented by the above formula (b-1) or (b-2), when R c is an organic group bonded to another group containing a silicon atom, a compound having an isocyanurate skeleton To form an isocyanurate-based silane coupling agent by bonding to another silicon atom, or to form a urea-based silane coupling agent by bonding to another silicon atom through a urea skeleton.
 これらの中でも、シランカップリング剤(B)としては、接着強度がより高い硬化物が得られ易いことから、イソシアヌレート系シランカップリング剤、及びウレア系シランカップリング剤が好ましく、さらに、分子内に、ケイ素原子に結合したアルコキシ基を4以上有するものが好ましい。
 ケイ素原子に結合したアルコキシ基を4以上有するとは、同一のケイ素原子に結合したアルコキシ基と、異なるケイ素原子に結合したアルコキシ基との総合計数が4以上という意味である。
Among these, as the silane coupling agent (B), an isocyanurate silane coupling agent and a urea silane coupling agent are preferable because a cured product having higher adhesive strength is easily obtained. And those having four or more alkoxy groups bonded to a silicon atom.
Having four or more alkoxy groups bonded to silicon atoms means that the total number of alkoxy groups bonded to the same silicon atom and alkoxy groups bonded to different silicon atoms is four or more.
 ケイ素原子に結合したアルコキシ基を4以上有するイソシアヌレート系シランカップリング剤としては、下記式(b-3)で表される化合物が、ケイ素原子に結合したアルコキシ基を4以上有するウレア系シランカップリング剤としては、下記式(b-4)で表される化合物が挙げられる。 As the isocyanurate-based silane coupling agent having four or more silicon-bonded alkoxy groups, a compound represented by the following formula (b-3) is a urea-based silane coupling agent having four or more silicon-bonded alkoxy groups. Examples of the ring agent include a compound represented by the following formula (b-4).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式中、Rは上記と同じ意味を表す。t1~t5はそれぞれ独立して、1~10の整数を表し、1~6の整数であるのが好ましく、3であるのが特に好ましい。 In the formula, Ra has the same meaning as described above. t1 to t5 each independently represent an integer of 1 to 10, preferably an integer of 1 to 6, and particularly preferably 3.
 式(b-3)で表される化合物の具体例としては、1,3,5-N-トリス(3-トリメトキシシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-トリエトキシシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-トリi-プロポキシシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-トリブトキシシリルプロピル)イソシアヌレート等の1,3,5-N-トリス〔(トリ(炭素数1~6)アルコキシ)シリル(炭素数1~10)アルキル〕イソシアヌレート;
1,3,5-N-トリス(3-ジトキシメチルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジメトキシエチルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジメトキシi-プロピルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジメトキシn-プロピルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジメトキシフェニルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジエトキシメチルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジエトキシエチルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジエトキシi-プロピルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジエトキシn-プロピルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジエトキシフェニルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジi-プロポキシメチルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジi-プロポキシエチルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジi-プロポキシi-プロピルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジi-プロポキシn-プロピルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジi-プロポキシフェニルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジブトキシメチルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジブトキシエチルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジブトキシi-プロピルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジブトキシn-プロピルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジブトキシフェニルシリルプロピル)イソシアヌレート等の1,3,5-N-トリス〔(ジ(炭素数1~6)アルコキシ)シリル(炭素数1~10)アルキル〕イソシアヌレート;等が挙げられる。
Specific examples of the compound represented by the formula (b-3) include 1,3,5-N-tris (3-trimethoxysilylpropyl) isocyanurate and 1,3,5-N-tris (3-tri Ethoxysilylpropyl) isocyanurate, 1,3,5-N-tris (3-trii-propoxysilylpropyl) isocyanurate, 1,3,5-N-tris (3-tributoxysilylpropyl) isocyanurate and the like 1,3,5-N-tris [(tri (1-6 carbon) alkoxy) silyl (1-10 carbon) alkyl] isocyanurate;
1,3,5-N-tris (3-dimethoxymethylsilylpropyl) isocyanurate, 1,3,5-N-tris (3-dimethoxyethylsilylpropyl) isocyanurate, 1,3,5-N-tris (3-dimethoxy i-propylsilylpropyl) isocyanurate, 1,3,5-N-tris (3-dimethoxyn-propylsilylpropyl) isocyanurate, 1,3,5-N-tris (3-dimethoxyphenylsilyl) Propyl) isocyanurate, 1,3,5-N-tris (3-diethoxymethylsilylpropyl) isocyanurate, 1,3,5-N-tris (3-diethoxyethylsilylpropyl) isocyanurate, 1,3 , 5-N-tris (3-diethoxyi-propylsilylpropyl) isocyanurate, 1,3,5-N-tris ( -Diethoxy n-propylsilylpropyl) isocyanurate, 1,3,5-N-tris (3-diethoxyphenylsilylpropyl) isocyanurate, 1,3,5-N-tris (3-dii-propoxymethylsilyl) Propyl) isocyanurate, 1,3,5-N-tris (3-dii-propoxyethylsilylpropyl) isocyanurate, 1,3,5-N-tris (3-dii-propoxyi-propylsilylpropyl) Isocyanurate, 1,3,5-N-tris (3-dii-propoxy n-propylsilylpropyl) isocyanurate, 1,3,5-N-tris (3-dii-propoxyphenylsilylpropyl) isocyanurate 1,3,5-N-tris (3-dibutoxymethylsilylpropyl) isocyanurate, 1,3,5-N Tris (3-dibutoxyethylsilylpropyl) isocyanurate, 1,3,5-N-tris (3-dibutoxyi-propylsilylpropyl) isocyanurate, 1,3,5-N-tris (3-dibutoxyn- 1,3,5-N-tris [(di (1-6 carbon) alkoxy) such as propylsilylpropyl) isocyanurate and 1,3,5-N-tris (3-dibutoxyphenylsilylpropyl) isocyanurate Silyl (C.sub.1-10) alkyl] isocyanurate; and the like.
 式(b-4)で表される化合物の具体例としては、N,N’-ビス(3-トリメトキシシリルプロピル)ウレア、N,N’-ビス(3-トリエトキシシリルプロピル)ウレア、N,N’-ビス(3-トリプロポキシシリルプロピル)ウレア、N,N’-ビス(3-トリブトキシシリルプロピル)ウレア、N,N’-ビス(2-トリメトキシシリルエチル)ウレア等のN,N’-ビス〔(トリ(炭素数1~6)アルコキシシリル)(炭素数1~10)アルキル〕ウレア;
N,N’-ビス(3-ジメトキシメチルシリルプロピル)ウレア、N,N’-ビス(3-ジメトキシエチルシリルプロピル)ウレア、N,N’-ビス(3-ジエトキシメチルシリルプロピル)ウレア等のN,N’-ビス〔(ジ(炭素数1~6)アルコキシ(炭素数1~6)アルキルシリル(炭素数1~10)アルキル)ウレア;
N,N’-ビス(3-ジメトキシフェニルシリルプロピル)ウレア、N,N’-ビス(3-ジエトキシフェニルシリルプロピル)ウレア等のN,N’-ビス〔(ジ(炭素数1~6)アルコキシ(炭素数6~20)アリールシリル(炭素数1~10)アルキル)ウレア;等が挙げられる。
 シランカップリング剤(B)は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
Specific examples of the compound represented by the formula (b-4) include N, N′-bis (3-trimethoxysilylpropyl) urea, N, N′-bis (3-triethoxysilylpropyl) urea, N N, such as N, N'-bis (3-tripropoxysilylpropyl) urea, N, N'-bis (3-tributoxysilylpropyl) urea, and N, N'-bis (2-trimethoxysilylethyl) urea N'-bis [(tri (C1-6) alkoxysilyl) (C1-10) alkyl] urea;
N, N'-bis (3-dimethoxymethylsilylpropyl) urea, N, N'-bis (3-dimethoxyethylsilylpropyl) urea, N, N'-bis (3-diethoxymethylsilylpropyl) urea and the like N, N'-bis [(di (C1-6) alkoxy (C1-6) alkylsilyl (C1-10) alkyl) urea;
N, N'-bis [(di (1-6 carbon atoms)) such as N, N'-bis (3-dimethoxyphenylsilylpropyl) urea and N, N'-bis (3-diethoxyphenylsilylpropyl) urea Alkoxy (C6-C20) arylsilyl (C1-C10 alkyl) urea;
The silane coupling agent (B) can be used alone or in combination of two or more.
 これらの中でも、シランカップリング剤(B)としては、1,3,5-N-トリス(3-トリメトキシシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-トリエトキシシリルプロピル)イソシアヌレート(以下、「イソシアヌレート化合物」という。)、N,N’-ビス(3-トリメトキシシリルプロピル)ウレア、N,N’-ビス(3-トリエトキシシリルプロピル)ウレア(以下、「ウレア化合物」という。)、及び、上記イソシアヌレート化合物とウレア化合物との組み合わせを用いるのが好ましい。 Among these, 1,3,5-N-tris (3-trimethoxysilylpropyl) isocyanurate and 1,3,5-N-tris (3-triethoxysilylpropyl) are examples of the silane coupling agent (B). ) Isocyanurate (hereinafter, referred to as “isocyanurate compound”), N, N′-bis (3-trimethoxysilylpropyl) urea, N, N′-bis (3-triethoxysilylpropyl) urea (hereinafter, “ It is preferable to use a urea compound) and a combination of the above isocyanurate compound and a urea compound.
 上記イソシアヌレート化合物とウレア化合物とを組み合わせて用いる場合、両者の使用割合は、(イソシアヌレート化合物)と(ウレア化合物)の質量比で、100:1~100:200であるのが好ましく、100:10~100:110がより好ましい。このような割合で、イソシアヌレート化合物とウレア化合物とを組み合わせて用いることにより、接着強度がより高く、耐熱性により優れる硬化物を与える硬化性組成物を得ることができる。 When the isocyanurate compound and the urea compound are used in combination, the use ratio of both is preferably from 100: 1 to 100: 200 by mass ratio of (isocyanurate compound) to (urea compound), and 10-100: 110 is more preferable. By using the isocyanurate compound and the urea compound in such a ratio in combination, a curable composition having a higher adhesive strength and providing a cured product having more excellent heat resistance can be obtained.
 本発明の硬化性組成物がシランカップリング剤(B)〔(B)成分〕を含有する場合、(B)成分の含有量は特に限定されないが、その量は、上記(A)成分と(B)成分の質量比〔(A)成分:(B)成分〕で、好ましくは100:0.1~100:90、より好ましくは100:0.3~100:60、より好ましくは100:1~100:50、さらに好ましくは100:3~100:40、特に好ましくは100:5~100:30となる量である。
 このような割合で(A)成分及び(B)成分を含有する硬化性組成物の硬化物は、接着強度がより高く、耐熱性により優れたものになる。
When the curable composition of the present invention contains the silane coupling agent (B) [component (B)], the content of the component (B) is not particularly limited. In a mass ratio of the component (B) [component (A): component (B)], it is preferably 100: 0.1 to 100: 90, more preferably 100: 0.3 to 100: 60, and more preferably 100: 1. The amount is from 100: 50, more preferably from 100: 3 to 100: 40, particularly preferably from 100: 5 to 100: 30.
The cured product of the curable composition containing the components (A) and (B) at such a ratio has higher adhesive strength and more excellent heat resistance.
 本発明の硬化性組成物は、(C)成分として、分子内に酸無水物構造を有するシランカップリング剤(以下、「シランカップリング剤(C)」と記載することがある。)を含有してもよい。
 シランカップリング剤(C)を含有する硬化性組成物は、塗布工程における作業性に優れ、かつ、接着強度がより高く、耐剥離性及び耐熱性により優れる硬化物を与える。
The curable composition of the present invention contains, as a component (C), a silane coupling agent having an acid anhydride structure in the molecule (hereinafter, may be referred to as “silane coupling agent (C)”). May be.
The curable composition containing the silane coupling agent (C) is excellent in workability in the application step, has higher adhesive strength, and gives a cured product having more excellent peel resistance and heat resistance.
 シランカップリング剤(C)としては、2-(トリメトキシシリル)エチル無水コハク酸、2-(トリエトキシシリル)エチル無水コハク酸、3-(トリメトキシシリル)プロピル無水コハク酸、3-(トリエトキシシリル)プロピル無水コハク酸等の、トリ(炭素数1~6)アルコキシシリル(炭素数2~8)アルキル無水コハク酸;
2-(ジメトキシメチルシリル)エチル無水コハク酸等の、ジ(炭素数1~6)アルコキシメチルシリル(炭素数2~8)アルキル無水コハク酸;
2-(メトキシジメチルシリル)エチル無水コハク酸等の、(炭素数1~6)アルコキシジメチルシリル(炭素数2~8)アルキル無水コハク酸;
Examples of the silane coupling agent (C) include 2- (trimethoxysilyl) ethyl succinic anhydride, 2- (triethoxysilyl) ethyl succinic anhydride, 3- (trimethoxysilyl) propyl succinic anhydride, and 3- (trimethoxysilyl) propyl succinic anhydride. Tri (1-6 carbon) alkoxysilyl (2-8 carbon) alkyl succinic anhydrides such as ethoxysilyl) propyl succinic anhydride;
Di (1-6 carbon) alkoxymethylsilyl (2-8 carbon) alkyl succinic anhydrides, such as 2- (dimethoxymethylsilyl) ethyl succinic anhydride;
(C1-6) alkoxydimethylsilyl (C2-8) alkyl succinic anhydrides, such as 2- (methoxydimethylsilyl) ethyl succinic anhydride;
2-(トリクロロシリル)エチル無水コハク酸、2-(トリブロモシリル)エチル無水コハク酸等の、トリハロゲノシリル(炭素数2~8)アルキル無水コハク酸;
2-(ジクロロメチルシリル)エチル無水コハク酸等の、ジハロゲノメチルシリル(炭素数2~8)アルキル無水コハク酸;
2-(クロロジメチルシリル)エチル無水コハク酸等の、ハロゲノジメチルシリル(炭素数2~8)アルキル無水コハク酸;等が挙げられる。
 シランカップリング剤(C)は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
Trihalogenosilyl (2-8 carbon atoms) alkyl succinic anhydrides such as 2- (trichlorosilyl) ethyl succinic anhydride and 2- (tribromosilyl) ethyl succinic anhydride;
Dihalogenomethylsilyl (C2-8) alkyl succinic anhydride, such as 2- (dichloromethylsilyl) ethyl succinic anhydride;
Halogenodimethylsilyl (2-8 carbon atoms) alkyl succinic anhydride, such as 2- (chlorodimethylsilyl) ethyl succinic anhydride;
The silane coupling agent (C) can be used alone or in combination of two or more.
 これらの中でも、シランカップリング剤(C)としては、トリ(炭素数1~6)アルコキシシリル(炭素数2~8)アルキル無水コハク酸が好ましく、3-(トリメトキシシリル)プロピル無水コハク酸又は3-(トリエトキシシリル)プロピル無水コハク酸が特に好ましい。 Among them, as the silane coupling agent (C), tri (1-6 carbon) alkoxysilyl (2-8 carbon) alkyl succinic anhydrides are preferable, and 3- (trimethoxysilyl) propyl succinic anhydride or 3- (Triethoxysilyl) propyl succinic anhydride is particularly preferred.
 本発明の硬化性組成物がシランカップリング剤(C)〔(C)成分〕を含有する場合、(C)成分の含有量は特に限定されないが、その量は、上記(A)成分と(C)成分の質量比〔(A)成分:(C)成分〕で、好ましくは100:0.1~100:30、より好ましくは100:0.3~100:20、より好ましくは100:0.5~100:15、さらに好ましくは100:1~100:10となる量である。
 このような割合で(C)成分を含有する硬化性組成物の硬化物は、接着強度がより高いものになる。
When the curable composition of the present invention contains the silane coupling agent (C) [component (C)], the content of the component (C) is not particularly limited, but the amount is the same as that of the component (A). In a mass ratio of the component (C) [component (A): component (C)], it is preferably 100: 0.1 to 100: 30, more preferably 100: 0.3 to 100: 20, and more preferably 100: 0. 0.5 to 100: 15, more preferably 100: 1 to 100: 10.
The cured product of the curable composition containing the component (C) at such a ratio has higher adhesive strength.
 本発明の硬化性組成物は、(D)成分として、平均一次粒子径が5~40nmの微粒子(以下、「微粒子(D)」と記載することがある。)を含有してもよい。
 微粒子(D)を含有する硬化性組成物は、塗布工程における作業性に優れる。
 この効果がより得られ易いことから、微粒子(D)の平均一次粒子径は、好ましくは5~30nm、より好ましくは5~20nmである。
The curable composition of the present invention may contain, as the component (D), fine particles having an average primary particle diameter of 5 to 40 nm (hereinafter sometimes referred to as “fine particles (D)”).
The curable composition containing the fine particles (D) has excellent workability in the application step.
Since this effect can be more easily obtained, the average primary particle diameter of the fine particles (D) is preferably 5 to 30 nm, more preferably 5 to 20 nm.
 微粒子(D)の平均一次粒子径は、透過型電子顕微鏡を用いて微粒子の形状を観察することにより求められる。 平均 The average primary particle diameter of the fine particles (D) can be determined by observing the shape of the fine particles using a transmission electron microscope.
 微粒子(D)の比表面積は、好ましくは10~500m/g、より好ましくは20~300m/gである。比表面積が上記範囲内であることで、塗布工程における作業性により優れる硬化性組成物が得られ易くなる。
 比表面積は、BET多点法により求めることができる。
The specific surface area of the fine particles (D) is preferably from 10 to 500 m 2 / g, more preferably from 20 to 300 m 2 / g. When the specific surface area is within the above range, a curable composition that is more excellent in workability in the application step is easily obtained.
The specific surface area can be determined by the BET multipoint method.
 微粒子(D)の形状は、球状、鎖状、針状、板状、片状、棒状、繊維状等のいずれであってもよいが、球状であるのが好ましい。ここで、球状とは、真球状の他、回転楕円体、卵形、金平糖状、まゆ状等球体に近似できる多面体形状を含む略球状を意味する。 The shape of the fine particles (D) may be spherical, chain-like, needle-like, plate-like, flake-like, rod-like, fibrous, or the like, but is preferably spherical. Here, the term “spherical” means a substantially spherical shape including a polyhedral shape that can be approximated to a sphere such as a spheroid, an ovoid, a spinous sugar, and a cocoon in addition to a true sphere.
 微粒子(D)の構成成分としては、特に制限はなく、金属;金属酸化物;鉱物;炭酸カルシウム、炭酸マグネシウム等の金属炭酸塩;硫酸カルシウム、硫酸バリウム等の金属硫酸塩;水酸化アルミニウム等の金属水酸化物;珪酸アルミニウム、珪酸カルシウム、珪酸マグネシウム等の金属珪酸塩;シリカ等の無機成分;シリコーン;アクリル系重合体等の有機成分;等が挙げられる。
 また、用いる微粒子(D)は表面が修飾されたものであってもよい。
The constituents of the fine particles (D) are not particularly limited, and include metals; metal oxides; minerals; metal carbonates such as calcium carbonate and magnesium carbonate; metal sulfates such as calcium sulfate and barium sulfate; Metal hydroxides; metal silicates such as aluminum silicate, calcium silicate and magnesium silicate; inorganic components such as silica; silicones; organic components such as acrylic polymers; and the like.
The fine particles (D) to be used may have a modified surface.
 金属とは、周期表における、1族(Hを除く)、2~11族、12族(Hgを除く)、13族(Bを除く)、14族(C及びSiを除く)、15族(N、P、As及びSbを除く)、又は16族(O、S、Se、Te及びPoを除く)に属する元素をいう。 Metals refer to Group 1 (excluding H), Groups 2 to 11, Group 12 (excluding Hg), Group 13 (excluding B), Group 14 (excluding C and Si), and group 15 (excluding C and Si) in the periodic table. N, P, As and Sb) or an element belonging to Group 16 (excluding O, S, Se, Te and Po).
 金属酸化物としては、例えば、酸化チタン、アルミナ、ベーマイト、酸化クロム、酸化ニッケル、酸化銅、酸化チタン、酸化ジルコニウム、酸化インジウム、酸化亜鉛、及びこれらの複合酸化物等が挙げられる。金属酸化物の微粒子には、これらの金属酸化物からなるゾル粒子も含まれる。 Examples of the metal oxide include titanium oxide, alumina, boehmite, chromium oxide, nickel oxide, copper oxide, titanium oxide, zirconium oxide, indium oxide, zinc oxide, and composite oxides thereof. The metal oxide fine particles also include sol particles made of these metal oxides.
 鉱物としては、スメクタイト、ベントナイト等が挙げられる。
 スメクタイトとしては、例えば、モンモリロナイト、バイデライト、ヘクトライト、サポナイト、スチブンサイト、ノントロナイト、ソーコナイト等が挙げられる。
 シリカとしては、乾式シリカ、湿式シリカ、表面修飾シリカ(表面が修飾されたシリカ)等が挙げられる。
Examples of the mineral include smectite and bentonite.
Examples of the smectite include montmorillonite, beidellite, hectorite, saponite, stevensite, nontronite, and sauconite.
Examples of the silica include dry silica, wet silica, and surface-modified silica (silica having a modified surface).
 微粒子(D)は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 これらの中でも、透明性に優れる硬化物が得られ易いことから、微粒子(D)としては、シリカ、金属酸化物、鉱物が好ましく、シリカがより好ましい。
The fine particles (D) can be used alone or in combination of two or more.
Among these, silica, a metal oxide, and a mineral are preferable as the fine particles (D), and silica is more preferable because a cured product having excellent transparency is easily obtained.
 シリカの中でも、塗布工程における作業性により優れる硬化性組成物が得られ易いことから、表面修飾シリカが好ましく、疎水性の表面修飾シリカがより好ましい。
 疎水性の表面修飾シリカとしては、表面に、トリメチルシリル基等のトリ炭素数1~20のトリアルキルシリル基;ジメチルシリル基等のジ炭素数1~20のアルキルシリル基;オクチルシリル基等の炭素数1~20のアルキルシリル基;を結合させたシリカ;シリコーンオイルで表面を処理したシリカ;等が挙げられる。
 疎水性の表面修飾シリカは、例えば、シリカ粒子に、トリ炭素数1~20のトリアルキルシリル基、ジ炭素数1~20のアルキルシリル基、炭素数1~20のアルキルシリル基等を有するシランカップリング剤を用いて表面修飾することにより、あるいは、シリカ粒子をシリコーンオイルで処理することにより得ることができる。また、表面修飾シリカとして市販されているものをそのまま用いることもできる。
Among silicas, a surface-modified silica is preferable, and a hydrophobic surface-modified silica is more preferable, since a curable composition having more excellent workability in an application step is easily obtained.
Examples of the hydrophobic surface-modified silica include a trialkylsilyl group having 1 to 20 carbon atoms such as a trimethylsilyl group; an alkylsilyl group having 1 to 20 carbon atoms such as a dimethylsilyl group; and a carbon such as an octylsilyl group. Silica to which alkylsilyl groups of the formulas 1 to 20 are bonded; silica whose surface is treated with silicone oil; and the like.
The hydrophobic surface-modified silica is, for example, a silane having a trialkylsilyl group having 1 to 20 carbon atoms, an alkylsilyl group having 1 to 20 carbon atoms, an alkylsilyl group having 1 to 20 carbon atoms, or the like in silica particles. It can be obtained by surface modification using a coupling agent or by treating silica particles with silicone oil. Also, commercially available surface-modified silica can be used as it is.
 本発明の硬化性組成物が微粒子(D)〔(D)成分〕を含有する場合、(D)成分の含有量は特に限定されないが、その量は、上記(A)成分と(D)成分の質量比〔(A)成分:(D)成分〕で、好ましくは100:0.1~100:90、より好ましくは100:0.2~100:60、より好ましくは100:0.3~100:50、より好ましくは100:0.5~100:40、より好ましくは100:0.8~100:30となる量である。(D)成分を上記範囲で用いることにより、(D)成分を加える効果をより発現することができる。 When the curable composition of the present invention contains the fine particles (D) [component (D)], the content of the component (D) is not particularly limited, but the amount is not limited to the components (A) and (D). With a mass ratio of [(A) component: (D) component], preferably from 100: 0.1 to 100: 90, more preferably from 100: 0.2 to 100: 60, and even more preferably from 100: 0.3. The amount is 100: 50, more preferably 100: 0.5 to 100: 40, and more preferably 100: 0.8 to 100: 30. By using the component (D) in the above range, the effect of adding the component (D) can be further exhibited.
 本発明の硬化性組成物は、(E)成分として、平均一次粒子径が0.04μm超、8μm以下の微粒子(以下、「微粒子(E)」と記載することがある。)を含有してもよい。
 微粒子(E)を含有する硬化性組成物を用いることで、耐剥離性に優れる硬化物を形成することができる。
 この効果がより得られ易いことから、微粒子(E)の平均一次粒子径は、好ましくは0.06~7μm、より好ましくは0.3~6μm、さらに好ましくは0.5~4μmである。
The curable composition of the present invention contains, as the component (E), fine particles having an average primary particle diameter of more than 0.04 μm and 8 μm or less (hereinafter sometimes referred to as “fine particles (E)”). Is also good.
By using the curable composition containing the fine particles (E), a cured product having excellent peel resistance can be formed.
Since this effect can be more easily obtained, the average primary particle diameter of the fine particles (E) is preferably 0.06 to 7 μm, more preferably 0.3 to 6 μm, and still more preferably 0.5 to 4 μm.
 微粒子(E)の平均一次粒子径は、レーザー回折・散乱式粒度分布測定装置(例えば、株式会社堀場製作所製、製品名「LA-920」)等を用いて、レーザー散乱法による粒度分布の測定を行うことにより求められる。 The average primary particle diameter of the fine particles (E) is determined by measuring the particle size distribution by a laser scattering method using a laser diffraction / scattering type particle size distribution analyzer (for example, product name “LA-920” manufactured by HORIBA, Ltd.). Required.
 微粒子(E)の形状は、球状、鎖状、針状、板状、片状、棒状、繊維状等のいずれであってもよいが、球状であるのが好ましい。ここで、球状とは、真球状の他、回転楕円体、卵形、金平糖状、まゆ状等球体に近似できる多面体形状を含む略球状を意味する。 The shape of the fine particles (E) may be any of a spherical shape, a chain shape, a needle shape, a plate shape, a flake shape, a rod shape, a fiber shape and the like, but is preferably a spherical shape. Here, the term “spherical” means a substantially spherical shape including a polyhedral shape that can be approximated to a sphere such as a spheroid, an ovoid, a spinous sugar, and a cocoon in addition to a true sphere.
 微粒子(E)の構成成分としては、微粒子(D)の構成成分として例示したものと同様のものが挙げられる。
 微粒子(E)は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 これらの中でも、上記効果が得られ易いことから、微粒子(E)としては、シリコーンで表面が被覆された金属酸化物、シリカ及びシリコーンからなる群から選ばれる少なくとも一種の微粒子が好ましく、シリカ、シリコーンがより好ましい。
As the constituent components of the fine particles (E), those similar to those exemplified as the constituent components of the fine particles (D) can be mentioned.
The fine particles (E) can be used alone or in combination of two or more.
Among these, the fine particles (E) are preferably at least one type of fine particles selected from the group consisting of metal oxides coated with silicone, silica, and silicone, because the above effects are easily obtained. Is more preferred.
 本発明の硬化性組成物が微粒子(E)〔(E)成分〕を含有する場合、(E)成分の含有量は特に限定されないが、その量は、(A)成分と(E)成分の質量比〔(A)成分:(E)成分〕で、好ましくは100:0.1~100:40、より好ましくは100:0.2~100:30、より好ましくは100:0.3~100:20、より好ましくは100:0.5~100:15、さらに好ましくは100:0.8~100:12となる量である。(E)成分を上記範囲で用いることにより、(E)成分を加える効果をより発現することができる。 When the curable composition of the present invention contains the fine particles (E) [component (E)], the content of the component (E) is not particularly limited, but the amount of the component (A) and the component (E) is not limited. The weight ratio [(A) component: (E) component] is preferably 100: 0.1 to 100: 40, more preferably 100: 0.2 to 100: 30, and more preferably 100: 0.3 to 100. : 20, more preferably 100: 0.5 to 100: 15, even more preferably 100: 0.8 to 100: 12. By using the component (E) in the above range, the effect of adding the component (E) can be further exhibited.
 本発明の硬化性組成物は、本発明の目的を阻害しない範囲で、上記(A)~(E)成分以外の他の成分((F)成分)を含有してもよい。
 (F)成分としては、酸化防止剤、紫外線吸収剤、光安定剤等が挙げられる。
The curable composition of the present invention may contain components (component (F)) other than the components (A) to (E) as long as the object of the present invention is not impaired.
Examples of the component (F) include an antioxidant, an ultraviolet absorber, and a light stabilizer.
 酸化防止剤は、加熱時の酸化劣化を防止するために添加される。酸化防止剤としては、リン系酸化防止剤、フェノール系酸化防止剤、硫黄系酸化防止剤等が挙げられる。 防止 Antioxidants are added to prevent oxidative degradation during heating. Examples of the antioxidant include a phosphorus-based antioxidant, a phenol-based antioxidant, and a sulfur-based antioxidant.
 リン系酸化防止剤としては、ホスファイト類、オキサホスファフェナントレンオキサイド類等が挙げられる。フェノール系酸化防止剤としては、モノフェノール類、ビスフェノール類、高分子型フェノール類等が挙げられる。硫黄系酸化防止剤としては、ジラウリル-3,3’-チオジプロピオネート、ジミリスチル-3,3’-チオジプロピオネート、ジステアリル-3,3’-チオジプロピオネート等が挙げられる。 Examples of the phosphorus-based antioxidants include phosphites and oxaphosphaphenanthrene oxides. Examples of the phenolic antioxidant include monophenols, bisphenols, and high-molecular phenols. Examples of the sulfur-based antioxidants include dilauryl-3,3'-thiodipropionate, dimyristyl-3,3'-thiodipropionate, distearyl-3,3'-thiodipropionate, and the like.
 これらの酸化防止剤は一種単独で、あるいは二種以上を組み合わせて用いることができる。酸化防止剤の使用量は、(A)成分に対して、通常10質量%以下である。 These antioxidants can be used alone or in combination of two or more. The amount of the antioxidant used is usually 10% by mass or less based on the component (A).
 紫外線吸収剤は、得られる硬化物の耐光性を向上させる目的で添加される。
 紫外線吸収剤としては、サリチル酸類、ベンゾフェノン類、ベンゾトリアゾール類、ヒンダードアミン類等が挙げられる。
 紫外線吸収剤は一種単独で、あるいは二種以上を組み合わせて用いることができる。
 紫外線吸収剤の使用量は、(A)成分に対して、通常10質量%以下である。
The ultraviolet absorber is added for the purpose of improving the light resistance of the obtained cured product.
Examples of the ultraviolet absorber include salicylic acids, benzophenones, benzotriazoles, hindered amines, and the like.
The ultraviolet absorbers can be used alone or in combination of two or more.
The amount of the ultraviolet absorber used is usually 10% by mass or less based on the component (A).
 光安定剤は、得られる硬化物の耐光性を向上させる目的で添加される。
 光安定剤としては、例えば、ポリ[{6-(1,1,3,3,-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジン)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジン)イミノ}]等のヒンダードアミン類等が挙げられる。
 これらの光安定剤は一種単独で、あるいは二種以上を組み合わせて用いることができる。
 (F)成分の総使用量は、(A)成分に対して、通常20質量%以下である。
The light stabilizer is added for the purpose of improving the light resistance of the obtained cured product.
Examples of the light stabilizer include poly [{6- (1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl} (2,2,6 , 6-tetramethyl-4-piperidine) imino {hexamethylene} (2,2,6,6-tetramethyl-4-piperidine) imino}] and the like.
These light stabilizers can be used alone or in combination of two or more.
The total amount of the component (F) is usually 20% by mass or less based on the component (A).
 本発明の硬化性組成物は、例えば、上記(A)成分と溶媒(S1)、及び、所望によりこれら以外の成分を所定割合で混合し、脱泡することにより調製することができる。
 混合方法、脱泡方法は特に限定されず、公知の方法を利用することができる。
The curable composition of the present invention can be prepared, for example, by mixing the above component (A) with the solvent (S1) and, if desired, components other than these at a predetermined ratio and defoaming.
The mixing method and the defoaming method are not particularly limited, and known methods can be used.
 本発明の硬化性組成物は、硬化性ポリシルセスキオキサン化合物(A)を含有する。したがって、本発明の硬化性組成物は硬化性に優れ、かつ、屈折率が低い。また、本発明の硬化性組成物は、接着強度が高い硬化物の形成材料として有用である。 硬化 The curable composition of the present invention contains a curable polysilsesquioxane compound (A). Therefore, the curable composition of the present invention is excellent in curability and has a low refractive index. Further, the curable composition of the present invention is useful as a material for forming a cured product having high adhesive strength.
 本発明の硬化性組成物の、25℃における屈折率(nD)は、通常1.380~1.434、好ましくは1.380~1.430、より好ましくは1.380~1.428、さらに好ましくは1.380~1.425である。
 硬化性組成物の屈折率(nD)は、実施例に記載の方法により測定することができる。
The refractive index (nD) at 25 ° C. of the curable composition of the present invention is usually from 1.380 to 1.434, preferably from 1.380 to 1.430, more preferably from 1.380 to 1.428, and furthermore Preferably it is 1.380-1.425.
The refractive index (nD) of the curable composition can be measured by the method described in Examples.
 さらに、本発明の硬化性組成物は、溶媒(S1)を含有する。したがって、本発明の硬化性組成物は、塗布後に長時間放置された後であっても、塗布直後と同様に光素子のマウント等の作業をすることができる。
 例えば、本発明の硬化性組成物においては、塗布後、通常20分以上、好ましくは30分以上、より好ましくは60分以上経過後においても、塗布直後と同様の作業を行うことができる。
Further, the curable composition of the present invention contains a solvent (S1). Therefore, even when the curable composition of the present invention has been left for a long time after the application, the work such as mounting of the optical element can be performed in the same manner as immediately after the application.
For example, in the curable composition of the present invention, the same operation as immediately after the application can be performed after the application, usually after 20 minutes or more, preferably 30 minutes or more, more preferably 60 minutes or more.
3)硬化物
 本発明の硬化物は、本発明の硬化性組成物を硬化して得られるものである。
 本発明の硬化性組成物を硬化させる方法としては加熱硬化が挙げられる。硬化させるときの加熱温度は、通常100~200℃であり、加熱時間は、通常10分から20時間、好ましくは30分から10時間である。
3) Cured product The cured product of the present invention is obtained by curing the curable composition of the present invention.
As a method for curing the curable composition of the present invention, heat curing can be mentioned. The heating temperature at the time of curing is usually 100 to 200 ° C., and the heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
 本発明の硬化物は、接着強度が高く、耐熱性に優れるものである。
 本発明の硬化物がこれらの特性を有することは、例えば、次のようにして確認することができる。すなわち、シリコンチップのミラー面に、本発明の硬化性組成物を所定量塗布し、塗布面を被着体の上に載せ、圧着し、加熱処理して硬化させる。これを、予め所定温度(例えば、23℃、100℃)に加熱したボンドテスターの測定ステージ上に30秒間放置し、被着体から50μmの高さの位置より、接着面に対し水平方向(せん断方向)に応力をかけ、試験片と被着体との接着力を測定する。
The cured product of the present invention has high adhesive strength and excellent heat resistance.
The fact that the cured product of the present invention has these properties can be confirmed, for example, as follows. That is, a predetermined amount of the curable composition of the present invention is applied to a mirror surface of a silicon chip, the applied surface is placed on an adherend, pressure-bonded, and cured by heat treatment. This is left for 30 seconds on a measurement stage of a bond tester heated to a predetermined temperature (for example, 23 ° C., 100 ° C.) in advance, and from a position 50 μm above the adherend in a horizontal direction (shear Direction), and the adhesive force between the test piece and the adherend is measured.
 本発明の硬化物の接着力は、23℃において60N/4mm以上であることが好ましく、80N/4mm以上であることがより好ましく、100N/4mm以上であることが特に好ましい。また硬化物の接着力は、100℃において30N/4mm以上であることが好ましく、40N/4mm以上であることがより好ましく、50N/4mm以上であることがさらに好ましく、60N/4mm以上であることが特に好ましい。
 本明細書において、「4mm」とは、2mm×2mm(1辺が2mmの正方形)を意味する。
The adhesive strength of the cured product of the present invention at 23 ° C. is preferably 60 N / 4 mm 2 or more, more preferably 80 N / 4 mm 2 or more, and particularly preferably 100 N / 4 mm 2 or more. The adhesive strength of the cured product is preferably at 100 ° C. is 30 N / 4 mm 2 or more, more preferably 40N / 4 mm 2 or more, still more preferably 50 N / 4 mm 2 or more, 60N / 4 mm 2 It is particularly preferable that the above is satisfied.
In this specification, “4 mm 2 ” means 2 mm × 2 mm (a square having a side of 2 mm).
 上記特性を有することから、本発明の硬化物は、光素子固定材として好ましく用いられる。 か ら Since it has the above properties, the cured product of the present invention is preferably used as an optical element fixing material.
4)硬化性組成物の使用方法
 本発明の方法は、本発明の硬化性組成物を、光素子固定材用接着剤又は光素子固定材用封止材として使用する方法である。
 光素子としては、LED、LD等の発光素子、受光素子、複合光素子、光集積回路等が挙げられる。
4) Method of Using Curable Composition The method of the present invention is a method of using the curable composition of the present invention as an adhesive for an optical element fixing material or a sealing material for an optical element fixing material.
Examples of the optical element include a light emitting element such as an LED and an LD, a light receiving element, a composite optical element, an optical integrated circuit, and the like.
〈光素子固定材用接着剤〉
 本発明の硬化性組成物は、光素子固定材用接着剤として好適に使用することができる。
 本発明の硬化性組成物を光素子固定材用接着剤として使用する方法としては、接着の対象とする材料(光素子とその基板等)の一方又は両方の接着面に該組成物を塗布し、圧着した後、加熱硬化させ、接着の対象とする材料同士を強固に接着させる方法が挙げられる。本発明の硬化性組成物の塗布量は、特に限定されず、硬化させることにより、接着の対象とする材料同士を強固に接着することができる量であればよい。通常、硬化性組成物の塗膜の厚みが0.5~5μm、好ましくは1~3μmとなる量である。
<Adhesive for optical element fixing material>
The curable composition of the present invention can be suitably used as an adhesive for an optical element fixing material.
As a method of using the curable composition of the present invention as an adhesive for an optical element fixing material, the composition is applied to one or both adhesive surfaces of a material (an optical element and a substrate thereof) to be bonded. Then, after pressure bonding, a method of heating and hardening to firmly bond the materials to be bonded to each other can be used. The coating amount of the curable composition of the present invention is not particularly limited, and may be any amount as long as the materials to be bonded can be firmly bonded to each other by curing. Usually, the amount is such that the thickness of the coating film of the curable composition is 0.5 to 5 μm, preferably 1 to 3 μm.
 光素子を接着するための基板材料としては、ソーダライムガラス、耐熱性硬質ガラス等のガラス類;セラミックス;サファイア;鉄、銅、アルミニウム、金、銀、白金、クロム、チタン及びこれらの金属の合金、ステンレス(SUS302、SUS304、SUS304L、SUS309等)等の金属類;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、エチレン-酢酸ビニル共重合体、ポリスチレン、ポリカーボネート、ポリメチルペンテン、ポリスルホン、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリイミド、ポリアミド、アクリル樹脂、ノルボルネン系樹脂、シクロオレフィン樹脂、ガラスエポキシ樹脂等の合成樹脂;等が挙げられる。 Glass materials such as soda lime glass, heat-resistant hard glass, etc .; ceramics; sapphire; iron, copper, aluminum, gold, silver, platinum, chromium, titanium, and alloys of these metals as substrate materials for bonding optical elements And metals such as stainless steel (SUS302, SUS304, SUS304L, SUS309, etc.); polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, ethylene-vinyl acetate copolymer, polystyrene, polycarbonate, polymethylpentene, polysulfone, polyetheretherketone , Polyether sulfone, polyphenylene sulfide, polyetherimide, polyimide, polyamide, acrylic resin, norbornene-based resin, cycloolefin resin, glass epoxy resin, and other synthetic resins; It is below.
 加熱硬化させる際の加熱温度は、用いる硬化性組成物等にもよるが、通常、100~200℃である。加熱時間は、通常10分から20時間、好ましくは30分から10時間である。 加熱 The heating temperature at the time of heating and curing depends on the curable composition to be used and the like, but is usually 100 to 200 ° C. The heating time is usually from 10 minutes to 20 hours, preferably from 30 minutes to 10 hours.
〈光素子固定材用封止材〉
 本発明の硬化性組成物は、光素子固定材用封止材として好適に用いることができる。
 本発明の硬化性組成物を光素子固定材用封止材として使用する方法としては、例えば、該組成物を所望の形状に成形して、光素子を内包した成形体を得た後、このものを加熱硬化させることにより、光素子封止体を製造する方法等が挙げられる。
 本発明の硬化性組成物を所望の形状に成形する方法としては、特に限定されるものではなく、通常のトランスファー成形法や、注型法等の公知のモールド法を採用できる。
<Sealing material for optical element fixing material>
The curable composition of the present invention can be suitably used as a sealing material for an optical element fixing material.
As a method of using the curable composition of the present invention as a sealing material for an optical element fixing material, for example, the composition is molded into a desired shape, and after obtaining a molded body including the optical element, A method of manufacturing a sealed optical element by heating and curing an object may be used.
The method for molding the curable composition of the present invention into a desired shape is not particularly limited, and a known transfer molding method or a known molding method such as a casting method can be employed.
 加熱硬化する際の加熱温度は、用いる硬化性組成物等にもよるが、通常、100~200℃である。加熱時間は、通常10分から20時間、好ましくは30分から10時間である。 加熱 The heating temperature at the time of heating and curing depends on the curable composition to be used and the like, but is usually 100 to 200 ° C. The heating time is usually from 10 minutes to 20 hours, preferably from 30 minutes to 10 hours.
 得られる光素子封止体は、本発明の硬化性組成物を用いているので、耐熱性に優れ、かつ、接着強度が高い。 光 Since the obtained optical element sealing body uses the curable composition of the present invention, it has excellent heat resistance and high adhesive strength.
 以下、実施例を挙げて本発明を更に詳細に説明する。但し、本発明は、以下の実施例になんら限定されるものではない。
 各例中の部及び%は、特に断りのない限り、質量基準である。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
Parts and% in each example are based on mass unless otherwise specified.
(実施例1)
 300mLのナス型フラスコに、3,3,3-トリフルオロプロピルトリメトキシシラン17.0g(77.7mmol)、及び、メチルトリエトキシシラン32.33g(181.3mmol)を仕込んだ後、これを撹拌しながら、蒸留水14.0gに35%塩酸0.0675g(HClの量が0.65mmol,シラン化合物の合計量に対して、0.25mol%)を溶解して得られた水溶液を加え、全容を30℃にて2時間、次いで70℃に昇温して20時間撹拌した。
 内容物の撹拌を継続しながら、そこに、28%アンモニア水0.0394g(NHの量が0.65mmol)と酢酸プロピル46.1gの混合溶液を加えて反応液のpHを6.9にし、そのまま70℃で60分間撹拌した。
 反応液を室温まで放冷した後、そこに、酢酸プロピル50g及び水100gを加えて分液処理を行い、反応生成物を含む有機層を得た。この有機層に硫酸マグネシウムを加えて乾燥処理を行った。硫酸マグネシウムを濾別除去した後、有機層をエバポレーターで濃縮し、次いで、得られた濃縮物を真空乾燥することにより、硬化性ポリシルセスキオキサン化合物(1)を得た。
(Example 1)
After charging 17.0 g (77.7 mmol) of 3,3,3-trifluoropropyltrimethoxysilane and 32.33 g (181.3 mmol) of methyltriethoxysilane in a 300 mL eggplant-shaped flask, the mixture was stirred. Meanwhile, an aqueous solution obtained by dissolving 0.0675 g of 35% hydrochloric acid (the amount of HCl was 0.65 mmol, 0.25 mol% based on the total amount of the silane compound) in 14.0 g of distilled water was added, and the total volume was increased. Was heated at 30 ° C. for 2 hours, then heated to 70 ° C. and stirred for 20 hours.
While stirring the contents, a mixed solution of 0.0394 g of 28% aqueous ammonia (the amount of NH 3 is 0.65 mmol) and 46.1 g of propyl acetate was added thereto to adjust the pH of the reaction solution to 6.9. The mixture was stirred at 70 ° C. for 60 minutes.
After allowing the reaction solution to cool to room temperature, 50 g of propyl acetate and 100 g of water were added thereto to carry out a liquid separation treatment to obtain an organic layer containing a reaction product. The organic layer was dried by adding magnesium sulfate. After magnesium sulfate was removed by filtration, the organic layer was concentrated by an evaporator, and the obtained concentrate was dried in vacuo to obtain a curable polysilsesquioxane compound (1).
 硬化性ポリシルセスキオキサン化合物(1)100部に、平均一次粒子径が7nmのシリカフィラー20部、平均一次粒子径が0.8μmのシリコーンフィラー10部を加えた。さらに、溶剤としてジエチレングリコールモノブチルエーテルアセテート:トリプロピレングリコール-n-ブチルエーテル=40:60(質量比)の混合溶剤を30部加えた後、全容を撹拌した。
 三本ロールミルによる分散処理を行った後、1,3,5-N-トリス〔3-(トリメトキシシリル)プロピル〕イソシアヌレート30部、3-(トリメトキシシリル)プロピルコハク酸無水物3部、さらに、溶剤としてジエチレングリコールモノブチルエーテルアセテート:トリプロピレングリコール-n-ブチルエーテル=40:60(質量比)の混合溶剤を加えて、全容を十分に混合、脱泡することにより、固形分濃度82%の硬化性組成物(1)を得た。
To 100 parts of the curable polysilsesquioxane compound (1), 20 parts of a silica filler having an average primary particle diameter of 7 nm and 10 parts of a silicone filler having an average primary particle diameter of 0.8 μm were added. Further, 30 parts of a mixed solvent of diethylene glycol monobutyl ether acetate: tripropylene glycol-n-butyl ether = 40: 60 (mass ratio) was added as a solvent, and the whole volume was stirred.
After a dispersion treatment with a three-roll mill, 30 parts of 1,3,5-N-tris [3- (trimethoxysilyl) propyl] isocyanurate, 3 parts of 3- (trimethoxysilyl) propyl succinic anhydride, Further, a mixed solvent of diethylene glycol monobutyl ether acetate: tripropylene glycol-n-butyl ether = 40: 60 (mass ratio) is added as a solvent, and the whole volume is sufficiently mixed and defoamed to obtain a solid content concentration of 82%. The composition (1) was obtained.
(実施例2)
 28%アンモニア水と酢酸プロピルの混合溶液を加えた後の撹拌時間を、120分間に変更したことを除き、実施例1と同様にして硬化性ポリシルセスキオキサン化合物(2)、及び硬化性組成物(2)を得た。
(Example 2)
Curable polysilsesquioxane compound (2) and curable polysilsesquioxane compound (2) in the same manner as in Example 1 except that the stirring time after adding the mixed solution of 28% aqueous ammonia and propyl acetate was changed to 120 minutes. Composition (2) was obtained.
(実施例3)
 28%アンモニア水と酢酸プロピルの混合溶液を加えた後の撹拌時間を、90分間に変更したことを除き、実施例1と同様にして硬化性ポリシルセスキオキサン化合物(3)、及び硬化性組成物(3)を得た。
(Example 3)
The curable polysilsesquioxane compound (3) and the curable compound were prepared in the same manner as in Example 1 except that the stirring time after adding the mixed solution of 28% ammonia water and propyl acetate was changed to 90 minutes. Composition (3) was obtained.
(実施例4)
 28%アンモニア水と酢酸プロピルの混合溶液を加えた後の撹拌時間を、50分間に変更したことを除き、実施例1と同様にして硬化性ポリシルセスキオキサン化合物(4)、及び硬化性組成物(4)を得た。
(Example 4)
The curable polysilsesquioxane compound (4) and the curable compound were prepared in the same manner as in Example 1 except that the stirring time after adding the mixed solution of 28% aqueous ammonia and propyl acetate was changed to 50 minutes. Composition (4) was obtained.
(実施例5)
 28%アンモニア水と酢酸プロピルの混合溶液を加えた後の撹拌時間を、40分間に変更したことを除き、実施例1と同様にして硬化性ポリシルセスキオキサン化合物(5)、及び硬化性組成物(5)を得た。
(Example 5)
The curable polysilsesquioxane compound (5) and the curable compound were prepared in the same manner as in Example 1 except that the stirring time after adding the mixed solution of 28% aqueous ammonia and propyl acetate was changed to 40 minutes. Composition (5) was obtained.
(比較例1)
 WO2017/110948号の実施例8の方法に従って、硬化性ポリシルセスキオキサン化合物(6)を得た。
 次いで、硬化性ポリシルセスキオキサン化合物(6)100部に、平均一次粒子径が7nmのシリカフィラー20部、平均一次粒子径が0.8μmのシリコーンフィラー10部を加えた。さらに、溶剤としてジエチレングリコールモノブチルエーテルアセテートを30部加えた後、全容を撹拌した。
 三本ロールミルによる分散処理を行った後、1,3,5-N-トリス〔3-(トリメトキシシリル)プロピル〕イソシアヌレート10部、3-(トリメトキシシリル)プロピルコハク酸無水物3部、さらに、E型粘度計を用いて25℃、200s-1の条件で測定したときの粘度が4.5Pa・sになるように、ジエチレングリコールモノブチルエーテルアセテートを添加し、全容を十分に混合、脱泡することにより、硬化性組成物(6)を得た。
 なお、WO2017/110948号の段落(0115)には、塩酸の使用量として「シラン化合物の合計量に対して0.25mol%」と記載されているが、仕込み量から計算すると、正しくは「シラン化合物の合計量に対して約1.6mol%」である。以下の比較例2、3においても同様である。
(Comparative Example 1)
According to the method of Example 8 of WO2017 / 110948, a curable polysilsesquioxane compound (6) was obtained.
Next, 20 parts of a silica filler having an average primary particle diameter of 7 nm and 10 parts of a silicone filler having an average primary particle diameter of 0.8 μm were added to 100 parts of the curable polysilsesquioxane compound (6). Further, after adding 30 parts of diethylene glycol monobutyl ether acetate as a solvent, the whole volume was stirred.
After performing a dispersion treatment with a three-roll mill, 10 parts of 1,3,5-N-tris [3- (trimethoxysilyl) propyl] isocyanurate, 3 parts of 3- (trimethoxysilyl) propyl succinic anhydride, Further, diethylene glycol monobutyl ether acetate was added so that the viscosity measured under conditions of 25 ° C. and 200 s −1 using an E-type viscometer was 4.5 Pa · s, and the entire volume was thoroughly mixed and defoamed. Thereby, a curable composition (6) was obtained.
In addition, in paragraph (0115) of WO2017 / 110948, the amount of hydrochloric acid used is described as “0.25 mol% with respect to the total amount of the silane compound”. About 1.6 mol% based on the total amount of the compounds ". The same applies to Comparative Examples 2 and 3 below.
(比較例2)
 WO2017/110948号の実施例9の方法に従って、硬化性ポリシルセスキオキサン化合物(7)を得た。
 次いで、比較例1と同様の方法により、硬化性組成物(7)を得た。
(Comparative Example 2)
According to the method of Example 9 of WO2017 / 110948, a curable polysilsesquioxane compound (7) was obtained.
Next, a curable composition (7) was obtained in the same manner as in Comparative Example 1.
(比較例3)
 WO2017/110948号の実施例10の方法に従って、硬化性ポリシルセスキオキサン化合物(8)を得た。
 次いで、比較例1と同様の方法により、硬化性組成物(8)を得た。
(Comparative Example 3)
According to the method of Example 10 of WO2017 / 110948, a curable polysilsesquioxane compound (8) was obtained.
Next, a curable composition (8) was obtained in the same manner as in Comparative Example 1.
(比較例4)
 300mLのナス型フラスコに、メチルトリエトキシシラン71.37g(400mmol)を仕込んだ後、これを撹拌しながら、蒸留水21.6gに35%塩酸0.1g(シラン化合物の合計量に対して、0.25mol%)を溶解した水溶液を加え、全容を30℃にて2時間、次いで70℃に昇温して5時間撹拌した。
 内容物の撹拌を継続しながら、そこに、酢酸プロピル140gと、28%アンモニア水0.12g(シラン化合物の合計量に対してNHが0.5mol%)を加え、70℃で3時間撹拌した。
 反応液を室温まで冷却した後、精製水を用いて、水層のpHが7になるまで有機層を洗浄した。
 有機層をエバポレーターで濃縮し、濃縮物を真空乾燥することにより、硬化性ポリシルセスキオキサン化合物(9)を得た。
 次いで、実施例1と同様の方法により、硬化性組成物(9)を得た。
(Comparative Example 4)
After charging methyltriethoxysilane 71.37 g (400 mmol) into a 300 mL eggplant-shaped flask, 0.1 g of 35% hydrochloric acid was added to 21.6 g of distilled water while stirring the mixture (based on the total amount of the silane compound, (0.25 mol%) was added, and the whole volume was stirred at 30 ° C for 2 hours, then heated to 70 ° C and stirred for 5 hours.
While stirring the contents, 140 g of propyl acetate and 0.12 g of 28% aqueous ammonia (0.5 mol% of NH 3 with respect to the total amount of the silane compound) were added thereto, followed by stirring at 70 ° C. for 3 hours. did.
After cooling the reaction solution to room temperature, the organic layer was washed with purified water until the pH of the aqueous layer reached 7.
The organic layer was concentrated with an evaporator, and the concentrate was dried under vacuum to obtain a curable polysilsesquioxane compound (9).
Next, a curable composition (9) was obtained in the same manner as in Example 1.
(比較例5)
 28%アンモニア水と酢酸プロピルの混合溶液を加えた後の撹拌時間を、240分間に変更したことを除き、実施例1と同様にして硬化性ポリシルセスキオキサン化合物(10)、及び硬化性組成物(10)を得た。
(Comparative Example 5)
Curable polysilsesquioxane compound (10) and curable polysilsesquioxane compound (10) in the same manner as in Example 1 except that the stirring time after adding the mixed solution of 28% aqueous ammonia and propyl acetate was changed to 240 minutes. Composition (10) was obtained.
 実施例、及び比較例で得られた硬化性ポリシルセスキオキサン化合物(1)~(10)、及び、硬化性組成物(1)~(10)を用いて、それぞれ以下の測定、試験を行った。結果を第1表に示す。 The following measurements and tests were performed using the curable polysilsesquioxane compounds (1) to (10) and the curable compositions (1) to (10) obtained in Examples and Comparative Examples, respectively. went. The results are shown in Table 1.
[質量平均分子量測定]
 硬化性ポリシルセスキオキサン化合物の質量平均分子量(Mw)は、以下の装置及び条件にて測定した。
 装置名:HLC-8220GPC、東ソー株式会社製
 カラム:TSKgelGMHXL、TSKgelGMHXL、及び、TSKgel2000HXLを順次連結したもの
 溶媒:テトラヒドロフラン
 標準物質:ポリスチレン
 注入量:20μl
 測定温度:40℃
 流速:0.6ml/分
 検出器:示差屈折計
[Mass average molecular weight measurement]
The mass average molecular weight (Mw) of the curable polysilsesquioxane compound was measured using the following apparatus and conditions.
Apparatus name: HLC-8220GPC, manufactured by Tosoh Corporation Column: TSKgelGMHXL, TSKgelGMHXL, and TSKgel2000HXL sequentially connected Solvent: Tetrahydrofuran Standard substance: Polystyrene Injection amount: 20 μl
Measurement temperature: 40 ° C
Flow rate: 0.6 ml / min Detector: differential refractometer
29Si-NMR測定]
装置:ブルカー・バイオスピン社製 AV-500
29Si-NMR共鳴周波数:99.352MHz
プローブ:5mmφ溶液プローブ
測定温度:室温(25℃)
試料回転数:20kHz
測定法:インバースゲートデカップリング法
29Si フリップ角:90°
29Si 90°パルス幅:8.0μs
繰り返し時間:5s
積算回数:9200回
観測幅:30kHz
[ 29 Si-NMR measurement]
Apparatus: Bruker BioSpin AV-500
29 Si-NMR resonance frequency: 99.352 MHz
Probe: 5mmφ solution probe Measurement temperature: room temperature (25 ° C)
Sample rotation speed: 20 kHz
Measurement method: inverse gate decoupling method
29 Si flip angle: 90 °
29 Si 90 ° pulse width: 8.0 μs
Repetition time: 5s
Number of integration: 9200 times Observation width: 30 kHz
29Si-NMR試料作製方法〉
 緩和時間短縮のため、緩和試薬としてFe(acac)を添加し測定した。
ポリシルセスキオキサン濃度:15%
Fe(acac)濃度:0.6%
測定溶媒:アセトン
内部標準:TMS
< 29 Si-NMR sample preparation method>
In order to shorten the relaxation time, Fe (acac) 3 was added as a relaxation reagent and measured.
Polysilsesquioxane concentration: 15%
Fe (acac) 3 concentration: 0.6%
Measurement solvent: acetone Internal standard: TMS
〈波形処理解析〉
 フーリエ変換後のスペクトルの各ピークについて、ピークトップの位置によりケミカルシフトを求め、積分を行った。
<Waveform processing analysis>
For each peak of the spectrum after the Fourier transform, a chemical shift was obtained from the position of the peak top, and integration was performed.
[屈折率測定]
 硬化性組成物を水平面上に吐出し、ペン屈折計(ATAGO社製、PEN-RI)の測定面を、25℃で圧着させることで屈折率(nD)を測定した。
[Refractive index measurement]
The curable composition was discharged onto a horizontal surface, and the measurement surface of a pen refractometer (manufactured by ATAGO, PEN-RI) was pressed at 25 ° C. to measure the refractive index (nD).
[硬化性評価]
 レオメーター(Anton Paar社製、MCR302)にて、20mmのパラレルプレートを用いて、試験開始温度80℃、昇温速度5℃/分、せん断ひずみ1%、周波数1Hzにてせん断応力を測定した。せん断応力が2000Paとなる温度を硬化温度とした。
[Curability evaluation]
Using a 20 mm parallel plate, the shear stress was measured at a test start temperature of 80 ° C., a temperature rising rate of 5 ° C./min, a shear strain of 1%, and a frequency of 1 Hz using a rheometer (MCR302, manufactured by Anton Paar). The temperature at which the shear stress was 2000 Pa was taken as the curing temperature.
[粘度評価]
 レオメーター(Anton Paar社製、MCR301)にて、半径50mm、コーン角度0.5°のコーンプレートを用い、25℃で、せん断速度が2s-1と、せん断速度が200s-1の粘度をそれぞれ測定した。得られた測定値からチキソ指数(せん断速度が2s-1の粘度/せん断速度が200s-1の粘度)を求めた。
[Viscosity evaluation]
Using a rheometer (manufactured by Anton Paar, MCR301), using a cone plate having a radius of 50 mm and a cone angle of 0.5 °, the viscosity at 25 ° C. was 2 s −1 and the shear rate was 200 s −1 , respectively. It was measured. From the obtained measured values, a thixotropic index (viscosity at a shear rate of 2 s −1 / viscosity at a shear rate of 200 s −1 ) was determined.
[接着強度測定]
 一辺が2mmの正方形(面積が4mm)のシリコンチップのミラー面に、硬化性組成物を、それぞれ、厚さが約2μmになるよう塗布し、塗布面を被着体(銀メッキ銅板)の上に載せ圧着した。その後、170℃で2時間加熱処理して硬化して試験片付被着体を得た。この試験片付被着体を、予め所定温度(23℃、100℃)に加熱したボンドテスター(デイジ社製、シリーズ4000)の測定ステージ上に30秒間放置し、被着体から100μmの高さの位置より、スピード200μm/sで接着面に対し水平方法(せん断方向)に応力をかけ、23℃及び100℃における、試験片と被着体との接着強度(N/4mm)を測定した。
[Adhesive strength measurement]
The curable composition is applied to a mirror surface of a silicon chip having a side of 2 mm (area of 4 mm 2 ) so as to have a thickness of about 2 μm, and the applied surface is applied to an adherend (silver-plated copper plate). It was placed on top and crimped. Then, it was heated and cured at 170 ° C. for 2 hours to obtain an adherend with a test piece. The adherend with the test piece was left for 30 seconds on a measurement stage of a bond tester (Series 4000, manufactured by Daige Co., Ltd.) preheated to a predetermined temperature (23 ° C., 100 ° C.), and a height of 100 μm from the adherend From the position, stress was applied to the bonding surface in a horizontal direction (shear direction) at a speed of 200 μm / s, and the bonding strength (N / 4 mm 2 ) between the test piece and the adherend at 23 ° C. and 100 ° C. was measured. .
[耐クラック性評価]
 一辺が0.5mmの正方形(面積が0.25mm)のガラスチップのミラー面に、硬化性組成物を厚さが約2μmになるよう塗布し、塗布面を被着体(銀メッキ銅板)の上に載せ圧着した。その後、170℃で2時間加熱処理して硬化させ、試験片付被着体を得た。デジタル顕微鏡(VHX-1000、キーエンス製)を用いガラスチップからはみ出している樹脂部(フィレット部)を観察し、クラックを有するサンプルの数を数え、クラック発生率が0%以上25%未満を「A」、25%以上50%未満を「B」、50%以上100%を「C」と評価した。
[Evaluation of crack resistance]
The curable composition is applied to a mirror surface of a square (area of 0.25 mm 2 ) glass chip having a side of 0.5 mm so as to have a thickness of about 2 μm, and the applied surface is an adherend (silver-plated copper plate) And crimped. Then, it was cured by heating at 170 ° C. for 2 hours to obtain an adherend with a test piece. Using a digital microscope (VHX-1000, manufactured by KEYENCE), the resin portion (fillet portion) protruding from the glass chip was observed, the number of samples having cracks was counted, and a crack occurrence rate of 0% or more and less than 25% was evaluated as "A ", 25% or more and less than 50% were evaluated as" B ", and 50% or more and 100% were evaluated as" C ".
[耐剥離性評価]
 LEDリードフレーム(エノモト社製、5050 D/G PKG LEADFRAME)に、硬化性組成物を0.4mmφ程度塗布した上に、一辺が0.5mmの正方形(面積が0.25mm)のサファイアチップを圧着した。その後、170℃で2時間加熱処理して硬化させた後、封止材(信越化学工業社製、LPS-3419)をカップ内に流し込み、120℃で1時間、加えて150℃で1時間加熱して試験片を得た。
 この試験片を85℃、85%RHの環境に168時間曝したのち、プレヒート160℃で、最高温度が260℃になる加熱時間1分間のIRリフロー(リフロー炉:相模理工社製、製品名「WL-15-20DNX型」)にて処理を行った。その後、熱サイクル試験機にて、-40℃及び+100℃で各30分放置する試験を1サイクルとして、500サイクル実施した。その後、封止材を除去する操作を行い、その際に素子が一緒に剥がれるか否かを調べた。この試験を、各硬化性組成物につきそれぞれ100回行った。
 素子が一緒に剥がれた回数を数え、剥離発生率が25%以下であれば「A」、25%より大きく50%以下であれば「B」、50%より大きければ「C」と評価した。
[Peeling resistance evaluation]
A curable composition is applied to an LED lead frame (5050 D / G PKG LEADFRAME, manufactured by Enomoto Co.) about 0.4 mmφ, and a 0.5 mm-square sapphire chip (area 0.25 mm 2 ) is applied. Crimped. Then, after heating and curing at 170 ° C. for 2 hours, a sealing material (LPS-3419, manufactured by Shin-Etsu Chemical Co., Ltd.) is poured into the cup, heated at 120 ° C. for 1 hour, and further heated at 150 ° C. for 1 hour. To obtain a test piece.
After exposing this test piece to an environment of 85 ° C. and 85% RH for 168 hours, IR reflow (reflow furnace: made by Sagami Riko Co., Ltd., product name “ WL-15-20DNX type "). Thereafter, 500 cycles were performed using a heat cycle tester, in which the test was left at −40 ° C. and + 100 ° C. for 30 minutes each as one cycle. Thereafter, an operation of removing the sealing material was performed, and at that time, it was examined whether or not the elements were peeled together. This test was performed 100 times for each curable composition.
The number of times the elements were peeled together was counted, and the evaluation was "A" if the rate of occurrence of peeling was 25% or less, "B" if it was greater than 25% and 50% or less, and "C" if it was greater than 50%.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 第1表から以下のことが分かる。
 実施例1~5で得られた硬化性ポリシルセスキオキサン化合物(1)~(5)は、29Si-NMR測定の結果、Z2の値が20~40%の範囲内にあることが分かった。また、硬化性ポリシルセスキオキサン化合物(1)~(5)の質量平均分子量は、いずれも4000~11000の範囲内にある。
 これらの硬化性ポリシルセスキオキサン化合物を含有する硬化性組成物(1)~(5)は、屈折率(nD)が低く、比較的低い温度で十分に硬化する。
 また、硬化性組成物(1)~(5)の硬化物は、接着強度が高い。
Table 1 shows the following.
The curable polysilsesquioxane compounds (1) to (5) obtained in Examples 1 to 5 showed that the value of Z2 was in the range of 20 to 40% as a result of 29 Si-NMR measurement. Was. The mass average molecular weights of the curable polysilsesquioxane compounds (1) to (5) are all in the range of 4000 to 11,000.
The curable compositions (1) to (5) containing these curable polysilsesquioxane compounds have a low refractive index (nD) and are sufficiently cured at a relatively low temperature.
The cured products of the curable compositions (1) to (5) have high adhesive strength.
 一方、比較例1~3は、それぞれ、特許文献4の実施例8~10の硬化性ポリシルセスキオキサン化合物〔硬化性ポリシルセスキオキサン化合物(6)~(8)〕を用いたものである。
 特許文献4の実施例においては、フルオロアルキル基を有するシラン化合物の反応性の低さを補うために、酸触媒の量を多く使用している。しかしながら、この方法では、Z2値が小さな硬化性ポリシルセスキオキサン化合物しか得ることはできなかった。また、3,3,3-トリフルオロプロピルトリメトキシシランの仕込み量が増えるにしたがって、硬化性ポリシルセスキオキサン化合物の質量平均分子量が低下している。
 これらのことが原因で、比較例1~3の硬化性組成物(6)~(8)は、硬化性や、硬化物の接着強度において、実施例1~5の硬化性組成物(1)~(5)よりも劣っている。
On the other hand, Comparative Examples 1 to 3 respectively use the curable polysilsesquioxane compounds [curable polysilsesquioxane compounds (6) to (8)] of Examples 8 to 10 of Patent Document 4. It is.
In Examples of Patent Document 4, a large amount of an acid catalyst is used in order to compensate for the low reactivity of a silane compound having a fluoroalkyl group. However, according to this method, only a curable polysilsesquioxane compound having a small Z2 value could be obtained. Further, as the charged amount of 3,3,3-trifluoropropyltrimethoxysilane increases, the mass average molecular weight of the curable polysilsesquioxane compound decreases.
Due to these reasons, the curable compositions (6) to (8) of Comparative Examples 1 to 3 are different from the curable compositions (1) of Examples 1 to 5 in the curability and the adhesive strength of the cured product. Inferior to (5).
 比較例4で得られた硬化性ポリシルセスキオキサン化合物(9)は、3,3,3-トリフルオロプロピルトリメトキシシラン由来の繰り返し単位を有しない。このため、硬化性組成物(9)の屈折率(nD)は大きな値になっている。
 また、硬化性ポリシルセスキオキサン化合物(9)は、Z2値が小さいため、硬化性組成物(9)の硬化性は十分ではない。
The curable polysilsesquioxane compound (9) obtained in Comparative Example 4 has no repeating unit derived from 3,3,3-trifluoropropyltrimethoxysilane. Therefore, the refractive index (nD) of the curable composition (9) has a large value.
Moreover, since the curable polysilsesquioxane compound (9) has a small Z2 value, the curability of the curable composition (9) is not sufficient.
 比較例5で得られた硬化性ポリシルセスキオキサン化合物(10)は、分子量が大き過ぎるものである。この結果、硬化性組成物(10)は、硬化性や、硬化物の接着強度において、実施例1~5の硬化性組成物(1)~(5)よりも劣っている。 硬化 The curable polysilsesquioxane compound (10) obtained in Comparative Example 5 has too large a molecular weight. As a result, the curable composition (10) is inferior to the curable compositions (1) to (5) of Examples 1 to 5 in curability and adhesive strength of the cured product.

Claims (13)

  1.  下記式(a-1)で示される繰り返し単位を有する硬化性ポリシルセスキオキサン化合物であって、下記要件1及び要件2を満たすことを特徴とする硬化性ポリシルセスキオキサン化合物。
    Figure JPOXMLDOC01-appb-C000001
    〔Rは、組成式:C(2m-n+1)で表されるフルオロアルキル基を表す。mは1~10の整数、nは2以上、(2m+1)以下の整数を表す。Dは、RとSiとを結合する連結基(ただし、アルキレン基を除く)又は単結合を表す。〕
    〔要件1〕
     硬化性ポリシルセスキオキサン化合物の29Si-NMRを測定したときに、-62ppm以上-52ppm未満の領域〔領域(2)〕に1又は2以上のピークが観測され、-52ppm以上-45ppm未満の領域〔領域(1)〕と-73ppm以上-62ppm未満の領域〔領域(3)〕の少なくとも一方の領域に1又は2以上のピークが観測され、かつ、下記式で導かれるZ2が、20~40%である。
    Figure JPOXMLDOC01-appb-M000002
    P1:領域(1)における積分値
    P2:領域(2)における積分値
    P3:領域(3)における積分値
    〔要件2〕
     硬化性ポリシルセスキオキサン化合物の質量平均分子量(Mw)が、4,000~11,000である。
    A curable polysilsesquioxane compound having a repeating unit represented by the following formula (a-1), characterized by satisfying the following requirements 1 and 2.
    Figure JPOXMLDOC01-appb-C000001
    [R 1 represents a fluoroalkyl group represented by a composition formula: C m H (2m−n + 1) F n . m represents an integer of 1 to 10, n represents an integer of 2 or more and (2m + 1) or less. D represents a linking group (excluding an alkylene group) or a single bond for bonding R 1 and Si. ]
    [Requirement 1]
    When 29 Si-NMR of the curable polysilsesquioxane compound was measured, one or more peaks were observed in the region [region (2)] of -62 ppm or more and less than -52 ppm, and -52 ppm or more and less than -45 ppm. At least one of the region [region (1)] and -73 ppm or more and less than -62 ppm [region (3)], and Z2 derived from the following formula is 20 or more. 4040%.
    Figure JPOXMLDOC01-appb-M000002
    P1: integral value in region (1) P2: integral value in region (2) P3: integral value in region (3) [requirement 2]
    The weight average molecular weight (Mw) of the curable polysilsesquioxane compound is from 4,000 to 11,000.
  2.  式(a-1)で示される繰り返し単位の割合が、全繰り返し単位に対して25mol%以上である、請求項1に記載の硬化性ポリシルセスキオキサン化合物。 (2) The curable polysilsesquioxane compound according to (1), wherein the proportion of the repeating unit represented by the formula (a-1) is 25 mol% or more based on all repeating units.
  3.  さらに、下記式(a-2)で示される繰り返し単位を有する、請求項1又は2に記載の硬化性ポリシルセスキオキサン化合物。
    Figure JPOXMLDOC01-appb-C000003
    〔Rは、無置換の炭素数1~10のアルキル基、又は、置換基を有する、若しくは無置換の炭素数6~12のアリール基を表す。〕
    3. The curable polysilsesquioxane compound according to claim 1, further comprising a repeating unit represented by the following formula (a-2).
    Figure JPOXMLDOC01-appb-C000003
    [R 2 represents an unsubstituted alkyl group having 1 to 10 carbon atoms or a substituted or unsubstituted aryl group having 6 to 12 carbon atoms. ]
  4.  式(a-2)で示される繰り返し単位の割合が、全繰り返し単位に対して0mol%超、75mol%以下である、請求項3に記載の硬化性ポリシルセスキオキサン化合物。 4. The curable polysilsesquioxane compound according to claim 3, wherein the proportion of the repeating unit represented by the formula (a-2) is more than 0 mol% and 75 mol% or less based on all repeating units.
  5.  29Si-NMRを測定したときに、領域(3)に1又は2以上のピークが観測され、かつ、下記式で導かれるZ3が、60~80%である、請求項1~4のいずれかに記載の硬化性ポリシルセスキオキサン化合物。
    Figure JPOXMLDOC01-appb-M000004
    5. The method according to claim 1, wherein when measuring 29 Si-NMR, one or more peaks are observed in the region (3), and Z3 derived from the following formula is 60 to 80%. 3. The curable polysilsesquioxane compound according to item 1.
    Figure JPOXMLDOC01-appb-M000004
  6.  下記(A)成分、及び、254℃以上の沸点を有する溶媒を含有することを特徴とする硬化性組成物。
    (A)成分:請求項1~5のいずれかに記載の硬化性ポリシルセスキオキサン化合物
    A curable composition comprising the following component (A) and a solvent having a boiling point of 254 ° C or higher.
    Component (A): The curable polysilsesquioxane compound according to any one of claims 1 to 5.
  7.  さらに、下記(B)成分を含有する、請求項6に記載の硬化性組成物。
    (B)成分:分子内に窒素原子を有するシランカップリング剤
    The curable composition according to claim 6, further comprising the following component (B).
    Component (B): a silane coupling agent having a nitrogen atom in the molecule
  8.  さらに、下記(C)成分を含有する、請求項6又は7に記載の硬化性組成物。
    (C)成分:分子内に酸無水物構造を有するシランカップリング剤
    The curable composition according to claim 6, further comprising the following component (C).
    Component (C): a silane coupling agent having an acid anhydride structure in the molecule
  9.  さらに、下記(D)成分を含有する、請求項6~8のいずれかに記載の硬化性組成物。
    (D)成分:平均一次粒子径が5~40nmの微粒子
    9. The curable composition according to claim 6, further comprising the following component (D).
    Component (D): fine particles having an average primary particle diameter of 5 to 40 nm
  10.  請求項6~9のいずれかに記載の硬化性組成物を硬化して得られる硬化物。 (10) A cured product obtained by curing the curable composition according to any one of (6) to (9).
  11.  光素子固定材である請求項10に記載の硬化物。 The cured product according to claim 10, which is an optical element fixing material.
  12.  請求項6~9のいずれかに記載の硬化性組成物を、光素子固定材用接着剤として使用する方法。 [10] A method of using the curable composition according to any one of claims 6 to 9 as an adhesive for an optical element fixing material.
  13.  請求項6~9のいずれかに記載の硬化性組成物を、光素子固定材用封止材として使用する方法。 方法 A method of using the curable composition according to any one of claims 6 to 9 as a sealing material for an optical element fixing material.
PCT/JP2019/038220 2018-09-28 2019-09-27 Curable polysilsesquioxane compound, curable composition, cured product, and, method for using curable composition WO2020067451A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980063631.9A CN112739748B (en) 2018-09-28 2019-09-27 Curable polysilsesquioxane compound, curable composition, cured product, and method for using curable composition
KR1020217006901A KR20210066800A (en) 2018-09-28 2019-09-27 Curable polysilsesquioxane compound, curable composition, cured product, and method of using curable composition
JP2020531676A JP6830563B2 (en) 2018-09-28 2019-09-27 Curable Polysilsesquioxane Compounds, Curable Compositions, Curables, and How to Use Curable Compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-183181 2018-09-28
JP2018183181 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020067451A1 true WO2020067451A1 (en) 2020-04-02

Family

ID=69952791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038220 WO2020067451A1 (en) 2018-09-28 2019-09-27 Curable polysilsesquioxane compound, curable composition, cured product, and, method for using curable composition

Country Status (5)

Country Link
JP (1) JP6830563B2 (en)
KR (1) KR20210066800A (en)
CN (1) CN112739748B (en)
TW (1) TWI831839B (en)
WO (1) WO2020067451A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004010849A (en) * 2002-06-11 2004-01-15 Asahi Denka Kogyo Kk Curing composition for optical material
WO2009101753A1 (en) * 2008-02-14 2009-08-20 Lintec Corporation Molding material composed of polyorganosiloxane compound, sealing material, and sealed optical device
CN102190956A (en) * 2010-03-11 2011-09-21 财团法人工业技术研究院 Antireflection coating material and antireflection film containing same
JP2012116990A (en) * 2010-12-02 2012-06-21 Seiko Instruments Inc Composition for sealant, and light-emitting device and solar cell module using the composition for sealant
WO2013141360A1 (en) * 2012-03-23 2013-09-26 リンテック株式会社 Curable composition, cured product, and method for using curable composition
WO2017110948A1 (en) * 2015-12-22 2017-06-29 リンテック株式会社 Curable composition, method for producing curable composition, cured product, use of curable composition, and optical device
JP2018178003A (en) * 2017-04-17 2018-11-15 株式会社ダイセル Fluorine-containing epoxy-modified silsesquioxane and curable composition containing the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5026813A (en) * 1989-12-27 1991-06-25 General Electric Company Polysilsequioxane and polymethyl-N-hexylsilsesquioxane coating compositions
CN100451070C (en) * 2003-04-07 2009-01-14 陶氏康宁公司 Curable organopolysiloxane resin composition for optical transmission components, optical transmission components, and fabrication process thereof
JP4734832B2 (en) 2003-05-14 2011-07-27 ナガセケムテックス株式会社 Encapsulant for optical element
JP2005263869A (en) 2004-03-16 2005-09-29 Nagase Chemtex Corp Resin composition for sealing optical semiconductor
JP2006328231A (en) * 2005-05-26 2006-12-07 Nagase Chemtex Corp Resin composition for encapsulating optical element
TWI700314B (en) * 2014-05-07 2020-08-01 日商琳得科股份有限公司 Curable polysilsesquioxane compound, its manufacturing method, curing composition, curing product, curing composition, etc. use method
JP6534034B2 (en) * 2014-05-14 2019-06-26 学校法人神奈川大学 Curable composition, method for producing cured product using the same and method for re-dissolving the same
US10308850B2 (en) * 2014-07-23 2019-06-04 Lintec Corporation Curable composition, method for manufacturing curable composition, cured product, method for using curable composition, and optical device
WO2018110550A1 (en) * 2016-12-15 2018-06-21 ナガセケムテックス株式会社 Thermosetting resin composition, photocurable resin composition, cured product and heat resistance improving agent

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004010849A (en) * 2002-06-11 2004-01-15 Asahi Denka Kogyo Kk Curing composition for optical material
WO2009101753A1 (en) * 2008-02-14 2009-08-20 Lintec Corporation Molding material composed of polyorganosiloxane compound, sealing material, and sealed optical device
CN102190956A (en) * 2010-03-11 2011-09-21 财团法人工业技术研究院 Antireflection coating material and antireflection film containing same
JP2012116990A (en) * 2010-12-02 2012-06-21 Seiko Instruments Inc Composition for sealant, and light-emitting device and solar cell module using the composition for sealant
WO2013141360A1 (en) * 2012-03-23 2013-09-26 リンテック株式会社 Curable composition, cured product, and method for using curable composition
WO2017110948A1 (en) * 2015-12-22 2017-06-29 リンテック株式会社 Curable composition, method for producing curable composition, cured product, use of curable composition, and optical device
JP2018178003A (en) * 2017-04-17 2018-11-15 株式会社ダイセル Fluorine-containing epoxy-modified silsesquioxane and curable composition containing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HYEON-LEE, J. ET AL.: "Synthesis of Poly (methyl- co-trifluoropropyl)-silsesquioxanes and Their Thin Films for Low Dielectric Application", MACROMOLECULAR MATERIALS AND ENGINEERING, vol. 288, no. 5, 2003, pages 455 - 461 *

Also Published As

Publication number Publication date
KR20210066800A (en) 2021-06-07
JPWO2020067451A1 (en) 2021-02-15
CN112739748A (en) 2021-04-30
TW202031739A (en) 2020-09-01
TWI831839B (en) 2024-02-11
JP6830563B2 (en) 2021-02-17
CN112739748B (en) 2022-07-12

Similar Documents

Publication Publication Date Title
WO2016031728A1 (en) Curable composition, method for producing curable composition, cured object, method for using curable composition, and optical device
JP2018168286A (en) Optical element adhesive and method for producing the same
WO2016031729A1 (en) Curable composition, method of producing curable composition, cured material, method of using curable composition, and optical device
JP6821600B2 (en) Curable composition, method for producing curable composition, cured product, and method for using curable composition
WO2016031730A1 (en) Curable composition, method of producing curable composition, cured material, method of using curable composition, and optical device
JP6840901B2 (en) Curable composition, cured product, and how to use the curable composition
JP7246238B2 (en) Die-bonding material, light-emitting device, and method for manufacturing light-emitting device
JP6830563B2 (en) Curable Polysilsesquioxane Compounds, Curable Compositions, Curables, and How to Use Curable Compositions
JP6840900B2 (en) Curable composition, cured product, and how to use the curable composition
JPWO2016031733A1 (en) Curable composition, cured product, method of using curable composition, and optical device
WO2022202845A1 (en) Adhesive paste, usage method for adhesive paste, and production method for semiconductor device
KR20220134436A (en) Adhesive paste, method of using adhesive paste and method of producing semiconductor device
WO2021060562A1 (en) Curable composition, cured product, and method for using curable composition
WO2022202846A1 (en) Adhesive paste, method for using adhesive paste, and method for manufacturing semiconductor device
WO2021060561A1 (en) Curable composition, cured product, and method for using curable composition
JP2023139659A (en) Adhesive paste, method for using adhesive paste, and method for manufacturing semiconductor device
WO2022209064A1 (en) Adhesive paste, method for using adhesive paste, and method for producing semiconductor device
JP2020158609A (en) Curable composition, cured product and method for using curable composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864042

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020531676

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864042

Country of ref document: EP

Kind code of ref document: A1