WO2022202845A1 - Adhesive paste, usage method for adhesive paste, and production method for semiconductor device - Google Patents

Adhesive paste, usage method for adhesive paste, and production method for semiconductor device Download PDF

Info

Publication number
WO2022202845A1
WO2022202845A1 PCT/JP2022/013289 JP2022013289W WO2022202845A1 WO 2022202845 A1 WO2022202845 A1 WO 2022202845A1 JP 2022013289 W JP2022013289 W JP 2022013289W WO 2022202845 A1 WO2022202845 A1 WO 2022202845A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive paste
group
adhesive
mass
cured product
Prior art date
Application number
PCT/JP2022/013289
Other languages
French (fr)
Japanese (ja)
Inventor
明来子 佐藤
学 宮脇
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2023509214A priority Critical patent/JPWO2022202845A1/ja
Publication of WO2022202845A1 publication Critical patent/WO2022202845A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers

Definitions

  • the present invention provides an adhesive paste that has a low storage elastic modulus at ⁇ 60° C. of a cured product obtained by heat curing, and a cured product obtained by heating at a high temperature has excellent adhesiveness, and the adhesive paste is used as a semiconductor element fixing material. and a method of manufacturing a semiconductor device using this adhesive paste as an adhesive for a semiconductor element fixing material.
  • Adhesive pastes have heretofore been improved in various ways according to their intended use, and have been widely used industrially as raw materials for optical parts and moldings, adhesives, coating agents, and the like. Adhesive pastes are also attracting attention as pastes for semiconductor element fixing materials such as adhesives for semiconductor element fixing materials.
  • Semiconductor elements include light-emitting elements such as lasers and light-emitting diodes (LEDs), optical semiconductor elements such as light-receiving elements such as solar cells, transistors, sensors such as temperature sensors and pressure sensors, and integrated circuits.
  • LEDs light-emitting elements
  • LEDs light-emitting diodes
  • optical semiconductor elements such as light-receiving elements such as solar cells
  • transistors transistors
  • sensors such as temperature sensors and pressure sensors, and integrated circuits.
  • a die bonding process including a process of fixing the semiconductor element to an adherend such as a lead frame with an adhesive paste and a process of curing the adhesive paste, and a semiconductor element and the lead frame. and a packaging step of covering the fixed semiconductor element with a sealing resin and thermally curing the sealing resin.
  • this method has the following problems. That is, when an LED element, which is a kind of semiconductor element, is used as an LED package, the stress (thermal expansion stress, contraction stress) generated by temperature changes (repeated process of high temperature and low temperature) in the usage environment of the LED package is alleviated.
  • the interface between the cured adhesive paste and the sealing resin may peel off. When peeling occurs at the interface, an air layer is formed between the two cured products, which may reduce the brightness of the LED.
  • the strain caused by peeling of the interface between the two cured products tends to cause peeling between the cured product of the adhesive paste and the LED chip and disconnection of the wire.
  • Patent Document 1 describes an insulating semiconductor die attach paste with excellent reliability. This document also describes that the storage elastic modulus at 25° C. of the cured product obtained by curing the paste is 3,000 to 3,500 MPa.
  • Patent Document 3 describes a condensation-curable resin composition capable of obtaining a molded article that is less likely to be brittle and colored even when exposed to high temperatures for a long period of time. This document also describes that a cured product obtained by curing the composition has a storage modulus of 37,000 to 59,000 Pa at 30°C.
  • Patent Document 4 describes an adhesive composition with improved durability (maintains optical transparency even after long-term use at high temperatures) and adhesiveness. This document also describes the minimum storage modulus of the adhesive composition in the B-stage state (different from the fully cured "C-stage" of the material).
  • Patent Documents 5 and 6 describe curable compositions and adhesives for optical elements whose cured products have excellent adhesiveness. However, these documents do not describe the adhesion reliability at the interface between the cured product of the curable composition or the adhesive for optical elements and the cured product of the sealing resin.
  • the cured product of the sealing resin occupies a large volume.
  • the degree of influence of the expansion and contraction behavior is very large compared to the cured product of the adhesive paste, and the cooling shrinkage behavior accompanied by the shrinkage stress of the cured product of the sealing resin that occurs during the cooling process of the semiconductor package from high temperature to low temperature,
  • the inventors have focused on the fact that if the cured adhesive paste can flexibly follow the adhesive paste, it is possible to reduce or prevent separation at the interface between the cured adhesive paste and the cured sealing resin.
  • Patent Documents 1 to 3 describe the storage elastic modulus at 25° C. to 50° C. of cured products obtained by curing pastes and compositions.
  • an adhesive paste that has a low elastic modulus at a lower temperature (for example, -60°C).
  • Patent Documents 5 and 6 describe a curable composition and an adhesive for optical elements, the cured product of which is excellent in adhesiveness.
  • the present invention has been made in view of such circumstances, (i) Adhesion reliability that can reduce or prevent peeling at the interface between the sealing resin and the cured product even after temperature changes (repeated process of high and low temperatures) in the environment in which the semiconductor package is used To provide an adhesive paste which has high properties and which can reduce or prevent peeling of a semiconductor element in a wire bonding process; (ii) To provide a method of using this adhesive paste as an adhesive for a semiconductor element fixing material, and a method of manufacturing a semiconductor device using this adhesive paste as an adhesive for a semiconductor element fixing material.
  • “high temperature” means "110.degree. C. to 190.degree. C.”
  • low temperature means "-65.degree. C. to -45.degree.
  • excellent adhesiveness means "high adhesive strength”.
  • the present inventors have found that if the cured product of the adhesive paste can flexibly follow the cooling shrinkage behavior accompanied by the shrinkage stress of the cured product of the sealing resin that occurs in the process of cooling the semiconductor package from high temperature to low temperature, the adhesive paste
  • the inventors focused on the ability to reduce or prevent peeling at the interface between the cured product of the sealing resin and the cured product of the encapsulating resin, and conducted extensive studies.
  • (I) A cured product with a low storage elastic modulus at -60 ° C. obtained by heating and curing an adhesive paste containing a curable organopolysiloxane compound is a sealing resin generated in the cooling process from high temperature to low temperature of the semiconductor package.
  • a cured product having a specific adhesive strength obtained by heating an adhesive paste containing a curable organopolysiloxane compound at a high temperature can reduce or prevent peeling of a semiconductor element in a wire bonding process. , and completed the present invention.
  • the following adhesive pastes [1] to [8], the method of using the adhesive paste of [9], and the method of manufacturing a semiconductor device using the adhesive paste of [10] are provided.
  • Adhesive paste that is.
  • Component (B) fine particles having an average primary particle size of 8 ⁇ m or less [5] Further, the following component (C) is contained in an amount of 2% by mass or more and less than 19% by mass, based on the total mass of the solid content of the adhesive paste.
  • the adhesive paste according to any one of [1] to [4].
  • a method of using the adhesive paste according to any one of [1] to [8] as an adhesive for a semiconductor element fixing material comprising the steps (BI) and (BII) below.
  • an adhesive paste that has high adhesion reliability and can reduce or prevent peeling of a semiconductor element in a wire bonding process. Further, according to the present invention, there are provided a method of using this adhesive paste as an adhesive for a semiconductor element fixing material, and a method of manufacturing a semiconductor device using this adhesive paste as an adhesive for a semiconductor element fixing material.
  • the present invention will be described in detail below by dividing it into 1) adhesive paste, 2) method of using the adhesive paste, and method of manufacturing a semiconductor device using the adhesive paste.
  • the adhesive paste of the present invention is an adhesive paste containing a curable organopolysiloxane compound (A), which is cured by heating at 80° C. for 20 hours and then heated at 100° C. for 20 hours.
  • the cured product obtained by curing has a storage modulus of less than 2900 MPa at ⁇ 60° C., and adhesion between the cured product obtained by heating and curing the adhesive paste at 170° C. for 2 hours and a silver-plated copper plate at 100° C. It has a strength of 5 N/mm square or more.
  • the "adhesive paste” means "a viscous liquid at room temperature (23°C) and in a fluid state”. Since the adhesive paste of the present invention has the properties described above, it is excellent in workability in the coating process.
  • excellent workability in the coating process means “in the coating process, when the adhesive paste is discharged from the discharge pipe and then the discharge pipe is pulled up, the amount of stringiness is small or is interrupted immediately, and the resin It must not contaminate the surroundings due to splashing or spread of droplets after application.”
  • the adhesive paste of the present invention is a cured product obtained by heating and curing the adhesive paste at 80 ° C. for 20 hours and then further heating and curing at 100 ° C. for 20 hours. 2800 MPa or more, more preferably 2200 MPa or more and less than 2700 MPa, particularly preferably 2300 MPa or more and less than 2600 MPa. Since the storage elastic modulus at ⁇ 60° C. is less than the above upper limit, the cured product obtained by heat curing is accompanied by shrinkage stress of the cured product of the sealing resin that occurs during the cooling process from high temperature to low temperature of the semiconductor package.
  • the storage elastic modulus at ⁇ 60° C. of the cured product obtained by heating and curing the adhesive paste of the present invention can be measured, for example, as follows. Specifically, the adhesive paste of the present invention is cured by heating at 80° C. for 20 hours and then cured by heating at 100° C. for 20 hours to prepare a test piece.
  • a test piece for dynamic viscoelasticity measurement can be more stably produced by suppressing chipping due to curing shrinkage or the like.
  • the storage elastic modulus of this is measured using a known dynamic viscoelasticity measuring device, and the value at -60°C is extracted. More specifically, it can be measured by the method described in Examples.
  • the adhesive paste of the present invention has an adhesive strength of 5 N/mm square or more, preferably 10 N/mm square or more, between a cured product obtained by heating and curing the adhesive paste at 170° C. for 2 hours and a silver-plated copper plate at 100° C. More preferably, it is 13 N/mm square or more.
  • the adhesive strength is equal to or higher than the above lower limit, the cured product obtained by heating and curing at a high temperature can reduce or prevent peeling of the semiconductor element in the wire bonding process.
  • the adhesive strength of the cured product obtained by heating and curing the adhesive paste of the present invention can be measured, for example, as follows.
  • the adhesive paste of the present invention is applied to the mirror surface of a square silicon chip with a side length of 1 mm (area is 1 mm 2 ), and the coated surface is placed on a silver-plated copper plate and crimped (adhesive paste after crimping). thickness: about 2 ⁇ m) and cured by heat treatment at 170° C. for 2 hours. This is left on the measurement stage of a bond tester at 100 ° C. for 30 seconds, and stress is applied in the horizontal direction (shear direction) to the adhesive surface at a speed of 200 ⁇ m / s from a position 100 ⁇ m above the adherend, The adhesive strength (N/mm ⁇ ) at 100° C. between the test piece and the adherend is measured.
  • “1 mm square” means “1 mm square", that is, "1 mm x 1 mm (square with a side length of 1 mm)". More specifically, it can be measured by the method described in Examples.
  • the adhesive paste of the present invention contains a curable organopolysiloxane compound (A) (hereinafter sometimes referred to as "component (A)"). Since the adhesive paste of the present invention contains the component (A), a cured product having excellent adhesiveness can be easily obtained by heating at a high temperature.
  • the curable organopolysiloxane compound (A) of the present invention is a compound having a carbon-silicon bond and a siloxane bond (--Si--O--Si--) in its molecule.
  • component (A) is a thermosetting compound, at least one functional group selected from the group consisting of functional groups capable of condensation reaction by heating and functional groups capable of condensation reaction through hydrolysis It is preferred to have a group.
  • a functional group is preferably at least one selected from the group consisting of a hydroxyl group and an alkoxy group, more preferably a hydroxyl group and an alkoxy group having 1 to 10 carbon atoms.
  • the main chain structure of the curable organopolysiloxane compound (A) is not particularly limited, and may be linear, ladder-like, or cage-like.
  • the structure represented by the following formula (a-1) is used as the linear main chain structure
  • the structure represented by the following formula (a-2) is used as the ladder-like main chain structure.
  • Examples of the main chain structure include structures represented by the following formula (a-3).
  • Rx, Ry, and Rz each independently represent a hydrogen atom or an organic group, and the organic group includes an unsubstituted or substituted alkyl group, an unsubstituted A substituted or substituted cycloalkyl group, an unsubstituted or substituted alkenyl group, an unsubstituted or substituted aryl group, or an alkylsilyl group is preferred.
  • the plurality of Rx in formula (a-1), the plurality of Ry in formula (a-2), and the plurality of Rz in formula (a-3) may be the same or different. However, both Rx in formula (a-1) are not hydrogen atoms.
  • alkyl group of the unsubstituted or substituted alkyl group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, t-butyl group, C1-C10 alkyl groups such as n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, n-heptyl group and n-octyl group can be mentioned.
  • cycloalkyl groups of unsubstituted or substituted cycloalkyl groups include cycloalkyl groups having 3 to 10 carbon atoms such as cyclobutyl group, cyclopentyl group, cyclohexyl group and cycloheptyl group.
  • Alkenyl groups of unsubstituted or substituted alkenyl groups include, for example, vinyl group, 1-propenyl group, 2-propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, and the like. Ten alkenyl groups are mentioned.
  • substituents of the alkyl group, cycloalkyl group and alkenyl group include halogen atoms such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom; a hydroxyl group; a thiol group; an epoxy group; a glycidoxy group; unsubstituted or substituted aryl groups such as phenyl group, 4-methylphenyl group and 4-chlorophenyl group; and the like.
  • aryl groups of unsubstituted or substituted aryl groups include aryl groups having 6 to 10 carbon atoms such as phenyl group, 1-naphthyl group and 2-naphthyl group.
  • the substituents of the aryl group include halogen atoms such as fluorine, chlorine, bromine and iodine atoms; alkyl groups having 1 to 6 carbon atoms such as methyl and ethyl groups; 1 to 6 alkoxy groups; nitro group; cyano group; hydroxyl group; thiol group; epoxy group; glycidoxy group; (meth) acryloyloxy group; an aryl group having a substituent; and the like.
  • the alkylsilyl group includes trimethylsilyl group, triethylsilyl group, triisopropylsilyl group, tri-t-butylsilyl group, methyldiethylsilyl group, dimethylsilyl group, diethylsilyl group, methylsilyl group, ethylsilyl group and the like.
  • Rx, Ry, and Rz are preferably a hydrogen atom, an unsubstituted or substituted C 1-6 alkyl group, or a phenyl group, and an unsubstituted or substituted C 1-6 Alkyl groups are particularly preferred.
  • the curable organopolysiloxane compound (A) can be obtained, for example, by a known production method of polycondensing a silane compound having a hydrolyzable functional group (alkoxy group, halogen atom, etc.).
  • the silane compound to be used may be appropriately selected according to the desired structure of the curable organopolysiloxane compound (A).
  • Preferred specific examples include bifunctional silane compounds such as dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, and diethyldiethoxysilane; methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-butyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyldiethoxymethoxysilane, etc.
  • a trifunctional silane compound of Tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetraisopropoxysilane, tetra-n-butoxysilane, tetra-t-butoxysilane, tetra-s-butoxysilane, methoxytriethoxysilane, dimethoxydiethoxysilane, trimethoxyethoxysilane tetrafunctional silane compounds such as silane; and the like.
  • the weight average molecular weight (Mw) of the curable organopolysiloxane compound (A) is usually 800 or more and less than 30,000, preferably 1,000 or more and less than 15,000, more preferably 1,200 or more and less than 10,000. Particularly preferably, it is 2,000 or more and less than 9,000.
  • Mw mass average molecular weight
  • the molecular weight distribution (Mw/Mn) of the curable organopolysiloxane compound (A) is not particularly limited, it is usually 1.0 or more and 10.0 or less, preferably 1.1 or more and 6.0 or less.
  • Mw/Mn molecular weight distribution
  • the mass average molecular weight (Mw) and number average molecular weight (Mn) of the curable organopolysiloxane compound (A) are, for example, standard polystyrene conversion values obtained by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as a solvent. can be obtained as
  • the curable organopolysiloxane compound (A) of the present invention is preferably a polysilsesquioxane compound obtained by polycondensation of a trifunctional organosilane compound. Since the adhesive paste of the present invention contains a polysilsesquioxane compound as the component (A), it becomes easier to obtain a cured product having excellent adhesiveness by heating at a high temperature. Therefore, the chip can be held more efficiently in the wire bonding process.
  • the polysilsesquioxane compound of the present invention is a compound having a repeating unit represented by the following formula (a-4).
  • the adhesive paste of the present invention contains, as the component (A), a polysilsesquioxane compound having a repeating unit represented by the following formula (a-4), whereby a cured product that is excellent in adhesiveness when heated at a high temperature becomes easier to obtain.
  • R 1 represents an organic group.
  • organic groups include unsubstituted alkyl groups, substituted alkyl groups, unsubstituted cycloalkyl groups, substituted cycloalkyl groups, unsubstituted alkenyl groups, substituted alkenyl groups, and unsubstituted aryl groups.
  • aryl groups having substituents and groups selected from the group consisting of alkylsilyl groups, unsubstituted alkyl groups having 1 to 10 carbon atoms, substituted alkyl groups having 1 to 10 carbon atoms, unsubstituted
  • a group selected from the group consisting of a substituted C6-C12 aryl group and a C6-C12 aryl group having a substituent is more preferred.
  • the "unsubstituted alkyl group having 1 to 10 carbon atoms” includes methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, n- pentyl group, n-hexyl group, n-octyl group, n-nonyl group, n-decyl group and the like.
  • the number of carbon atoms in the “unsubstituted alkyl group having 1 to 10 carbon atoms” represented by R 1 is preferably 1 to 6.
  • the number of carbon atoms in the “substituted alkyl group having 1 to 10 carbon atoms” represented by R 1 is preferably 1 to 6.
  • the number of carbon atoms means the number of carbon atoms in the portion (alkyl group portion) excluding the substituents. Therefore, when R 1 is a “substituted alkyl group having 1 to 10 carbon atoms”, the number of carbon atoms in R 1 may exceed 10 in some cases.
  • Examples of the alkyl group of the "substituted alkyl group having 1 to 10 carbon atoms" include the same groups as the "unsubstituted alkyl group having 1 to 10 carbon atoms".
  • substituents of the "substituted alkyl group having 1 to 10 carbon atoms” include halogen atoms such as fluorine, chlorine and bromine atoms; cyano groups; groups represented by the formula: OG;
  • the number of substituent atoms in the "substituted alkyl group having 1 to 10 carbon atoms" (excluding the number of hydrogen atoms) is generally 1 to 30, preferably 1 to 20.
  • G represents a hydroxyl-protecting group.
  • the hydroxyl-protecting group is not particularly limited, and includes known protecting groups known as hydroxyl-protecting groups.
  • acyl group silyl group such as trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, t-butyldiphenylsilyl group; methoxymethyl group, methoxyethoxymethyl group, 1-ethoxyethyl group, tetrahydropyran-2- acetal group such as yl group and tetrahydrofuran-2-yl group; alkoxycarbonyl group such as t-butoxycarbonyl group; methyl group, ethyl group, t-butyl group, octyl group, allyl group, triphenylmethyl group, benzyl group, ethers such as p-methoxybenzyl group, fluorenyl group, trityl group and benzhydryl group;
  • Examples of the “unsubstituted aryl group having 6 to 12 carbon atoms” include phenyl group, 1-naphthyl group, 2-naphthyl group and the like.
  • the "unsubstituted aryl group having 6 to 12 carbon atoms” represented by R 1 preferably has 6 carbon atoms.
  • the number of carbon atoms in the “substituted aryl group having 6 to 12 carbon atoms” represented by R 1 is preferably 6.
  • the number of carbon atoms means the number of carbon atoms in the portion (aryl group portion) excluding the substituents. Therefore, when R 1 is a “substituted aryl group having 6 to 12 carbon atoms”, the number of carbon atoms in R 1 may exceed 12 in some cases.
  • Examples of the aryl group of the "substituted aryl group having 6 to 12 carbon atoms” include the same aryl groups as the "unsubstituted aryl group having 6 to 12 carbon atoms".
  • substituents of the "substituted aryl group having 6 to 12 carbon atoms” include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group and t-butyl.
  • Alkyl groups such as group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group and isooctyl group; halogen atoms such as fluorine atom, chlorine atom and bromine atom; alkoxy such as methoxy group and ethoxy group group; and the like.
  • the number of substituent atoms (excluding the number of hydrogen atoms) of the "substituted C6-C12 aryl group” is usually 1-30, preferably 1-20.
  • R 1 is an unsubstituted alkyl group having 1 to 10 carbon atoms, or fluorine, from the viewpoint of easily obtaining a polysilsesquioxane compound with a stable structure and more stable performance as an adhesive paste.
  • An alkyl group having 1 to 10 carbon atoms having atoms is preferable, and an alkyl group having 1 to 10 carbon atoms having a fluorine atom is more preferable.
  • R 1 is more preferably an alkyl group having 1 to 10 carbon atoms and having a fluorine atom.
  • the alkyl group having 1 to 10 carbon atoms and having a fluorine atom is preferably a bulky alkyl group having a molecular weight of 26 or more from the viewpoint of easily obtaining a cured product having a lower storage modulus at -60°C.
  • the molecular weight is 40 or more.
  • the alkyl group having 1 to 10 carbon atoms and having a fluorine atom a group represented by the composition formula: C m H (2m ⁇ n+1) F n (m is an integer of 1 to 10, n is 1 or more, (2m+1) are the following integers).
  • a 3,3,3-trifluoropropyl group is preferred.
  • the content of the repeating unit represented by the formula (a-4) (that is, the T site described later) in the polysilsesquioxane compound is usually 50 to 100 mol% of the total repeating units, and 70 It is more preferably up to 100 mol %, still more preferably 90 to 100 mol %, and particularly preferably 100 mol %.
  • the content ratio of the repeating unit (T site) represented by the formula (a-4) in the polysilsesquioxane compound is, for example, 29 Si- when NMR peak assignment and area integration are possible. It can be determined by measuring NMR and 1 H-NMR.
  • Polysilsesquioxane compounds include ketone solvents such as acetone; aromatic hydrocarbon solvents such as benzene; sulfur-containing solvents such as dimethylsulfoxide; ether solvents such as tetrahydrofuran; ester solvents such as ethyl acetate; soluble in various organic solvents such as halogen-containing solvents such as; and mixed solvents comprising two or more of these. Therefore, these solvents can be used to measure the 29 Si-NMR of the polysilsesquioxane compound in solution.
  • the repeating unit represented by the formula (a-4) is preferably represented by the following formula (a-5).
  • the polysilsesquioxane compound has three oxygen atoms bonded to a silicon atom, generally collectively referred to as the T site, and one other group (R 1 ). It has a partial structure formed by bonding.
  • R 1 has the same meaning as R 1 in formula (a-4).
  • * represents a Si atom, a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and at least one of the three * is a Si atom.
  • the alkyl group having 1 to 10 carbon atoms of * include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group and t-butyl group.
  • a plurality of * may all be the same or different.
  • the polysilsesquioxane compound is a thermosetting compound, and is a compound capable of undergoing condensation reaction and/or hydrolysis by heating. Therefore, at least one of * in the above formula (a-5) of the plurality of repeating units (T sites) possessed by the polysilsesquioxane compound is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. is preferred, and a hydrogen atom is more preferred.
  • the hydrogen atom or the number of carbon atoms in * in the above formula (a-5) is 1 to 1 It is possible to confirm the presence of 10 alkyl groups and whether or not the three * in the above formula (a-5) are all Si atoms in the repeating unit. Furthermore, when assignment of 29 Si-NMR peaks and integration of areas are possible, with respect to the total number of repeating units (T sites) represented by the formula (a-4) in the polysilsesquioxane compound, The total number of repeating units in which all three * in the formula (a-5) are Si atoms can be roughly calculated.
  • the total number is preferably 30 to 95 mol %, more preferably 40 to 90 mol %, from the viewpoint of easily obtaining an adhesive paste that gives a cured product with excellent heat resistance.
  • the polysilsesquioxane compound may have one type of R 1 (homopolymer) or may have two or more types of R 1 (copolymer).
  • a copolymer is preferable from the viewpoint of achieving the desired mass average molecular weight of the oxane compound and the effect of imparting properties to the polysilsesquioxane compound by having each R1 .
  • the polysilsesquioxane compound when the polysilsesquioxane compound is a copolymer, the polysilsesquioxane compound may be any of random copolymers, block copolymers, graft copolymers, alternating copolymers, and the like. , random copolymers are preferred from the viewpoint of ease of production.
  • the structure of the polysilsesquioxane compound may be any one of a ladder structure, a double decker structure, a cage structure, a partially cleaved cage structure, a cyclic structure, and a random structure.
  • polysilsesquioxane compounds can be used singly or in combination of two or more.
  • the method for producing the polysilsesquioxane compound is not particularly limited.
  • the following formula (a-6) is not particularly limited.
  • the following formula (a-6) is not particularly limited.
  • the following formula (a-6) is not particularly limited.
  • R 1 has the same meaning as R 1 in the formula (a-4), R 2 represents an alkyl group having 1 to 10 carbon atoms, X 1 represents a halogen atom, p is 0 to represents an integer of 3. Multiple R 2 and multiple X 1 may be the same or different.
  • a polysilsesquioxane compound can be produced by polycondensing at least one of the silane compounds (1) represented by. Examples of the alkyl group having 1 to 10 carbon atoms for R 2 include the same groups as the alkyl group having 1 to 10 carbon atoms represented by * in the above formula (a-5). A chlorine atom, a bromine atom, etc. are mentioned as a halogen atom of X1.
  • silane compound (1) examples include alkyltrialkoxysilane compounds such as methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, and ethyltripropoxysilane; alkylhalogenoalkoxysilane compounds such as methylchlorodimethoxysilane, methylchlorodiethoxysilane, methyldichloromethoxysilane, methylbromodimethoxysilane, ethylchlorodimethoxysilane, ethylchlorodiethoxysilane, ethyldichloromethoxysilane, ethylbromodimethoxysilane; Alkyltrihalogenosilane compounds such as methyltrichlorosilane, methyltribromosilane, ethyltrichlorosilane, ethyltribromodime
  • substituted alkyltrialkoxysilane compounds such as 3,3,3-trifluoropropyltrimethoxysilane, 3,3,3-trifluoropropyltriethoxysilane, 2-cyanoethyltrimethoxysilane, 2-cyanoethyltriethoxysilane; 3,3,3-trifluoropropylchlorodimethoxysilane, 3,3,3-trifluoropropylchlorodiethoxysilane, 3,3,3-trifluoropropyldichloromethoxysilane, 3,3,3-trifluoropropyldichloro substituted alkylhalogenoalkoxysilane compounds such as ethoxysilane, 2-cyanoethylchlorodimethoxysilane, 2-cyanoethylchlorodiethoxysilane, 2-cyanoethyldichloromethoxysilane, 2-cyanoethyldichloroethoxys
  • Phenyltrialkoxysilane compounds with or without substituents such as phenyltrimethoxysilane, 4-methoxyphenyltrimethoxysilane; phenylhalogenoalkoxysilane compounds with or without substituents, such as phenylchlorodimethoxysilane, phenyldichloromethoxysilane, 4-methoxyphenylchlorodimethoxysilane, 4-methoxyphenyldichloromethoxysilane; phenyltrihalogenosilane compounds with or without substituents, such as phenyltrichlorosilane and 4-methoxyphenyltrichlorosilane; and the like.
  • These silane compounds (1) can be used singly or in combination of two or more.
  • the method of polycondensing the silane compound (1) is not particularly limited.
  • a method of adding a predetermined amount of a polycondensation catalyst to the silane compound (1) in a solvent or without a solvent and stirring the mixture at a predetermined temperature can be used. More specifically, (a) a method of adding a predetermined amount of acid catalyst to the silane compound (1) and stirring at a predetermined temperature, (b) adding a predetermined amount of a base catalyst to the silane compound (1). (c) adding a predetermined amount of an acid catalyst to the silane compound (1) and stirring at a predetermined temperature; and then adding an excess amount of a base catalyst to make the reaction system basic. , a method of stirring at a predetermined temperature, and the like.
  • the method (a) or (c) is preferable because the desired polysilsesquioxane compound can be obtained efficiently.
  • the polycondensation catalyst to be used may be either an acid catalyst or a base catalyst. Two or more polycondensation catalysts may be used in combination, but at least an acid catalyst is preferably used.
  • Acid catalysts include inorganic acids such as phosphoric acid, hydrochloric acid, boric acid, sulfuric acid and nitric acid; organic acids such as citric acid, acetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid and p-toluenesulfonic acid; are mentioned. Among these, at least one selected from phosphoric acid, hydrochloric acid, boric acid, sulfuric acid, citric acid, acetic acid, and methanesulfonic acid is preferred.
  • Base catalysts include aqueous ammonia; trimethylamine, triethylamine, lithium diisopropylamide, lithium bis(trimethylsilyl)amide, pyridine, 1,8-diazabicyclo[5.4.0]-7-undecene, aniline, picoline, 1,4- Organic bases such as diazabicyclo[2.2.2]octane and imidazole; Organic salt hydroxides such as tetramethylammonium hydroxide and tetraethylammonium hydroxide; sodium methoxide, sodium ethoxide, sodium t-butoxide, potassium t-butoxide Metal alkoxides such as; Metal hydrides such as sodium hydride and calcium hydride; Metal hydroxides such as sodium hydroxide, potassium hydroxide and calcium hydroxide; Metal carbonates such as sodium carbonate, potassium carbonate and magnesium carbonate; metal hydrogen carbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate;
  • the amount of the polycondensation catalyst used is usually in the range of 0.05 to 10 mol%, preferably 0.1 to 5 mol%, relative to the total mol amount of the silane compound (1).
  • the solvent to be used can be appropriately selected according to the type of silane compound (1).
  • the solvent to be used can be appropriately selected according to the type of silane compound (1).
  • water aromatic hydrocarbons such as benzene, toluene and xylene; esters such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate and methyl propionate; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone.
  • alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, s-butyl alcohol and t-butyl alcohol; These solvents can be used singly or in combination of two or more. Further, when the above method (c) is employed, after the polycondensation reaction is carried out in an aqueous system in the presence of an acid catalyst, an organic solvent and a base catalyst (ammonia water, etc.) are added to the reaction solution, and neutral conditions are obtained. Alternatively, a polycondensation reaction may be further performed under basic conditions.
  • the amount of the solvent used is usually 0.001 liters or more and 10 liters or less, preferably 0.01 liters or more and 0.9 liters or less per 1 mol of the total molar amount of the silane compound (1).
  • the temperature at which the silane compound (1) is polycondensed is usually in the temperature range from 0°C to the boiling point of the solvent used, preferably in the range of 20°C or higher and 100°C or lower. If the reaction temperature is too low, the polycondensation reaction may proceed insufficiently. On the other hand, if the reaction temperature is too high, it becomes difficult to suppress gelation. The reaction is usually completed in 30 minutes to 30 hours.
  • a monomer in which R 1 is an alkyl group having a fluorine atom tends to be less reactive than a monomer in which R 1 is a normal alkyl group.
  • a polysilsesquioxane compound having a desired molecular weight can be easily obtained by reducing the amount of catalyst and conducting the reaction under mild conditions for a long time.
  • an aqueous alkali solution such as sodium hydrogen carbonate is added to the reaction solution
  • an acid such as hydrochloric acid is added to the reaction solution.
  • the resulting salt is removed by filtration or washing with water to obtain the intended polysilsesquioxane compound.
  • the portion of OR 2 or X 1 of the silane compound (1) that did not undergo hydrolysis and the subsequent condensation reaction is the polysilsesquioxane compound remain inside.
  • the adhesive paste of the present invention is different from general heat-curable silicone adhesives that are cured by an addition reaction in the presence of a noble metal catalyst such as a platinum catalyst. Accordingly, the adhesive paste containing the polysilsesquioxane compound of the present invention contains substantially no noble metal catalyst or contains only a small amount of noble metal catalyst.
  • substantially contains no noble metal catalyst or has a low noble metal catalyst content means that "a component that can be interpreted as a noble metal catalyst is not intentionally added, and an effective It means that the content of the noble metal catalyst is, for example, less than 1 ppm by mass in terms of the mass of the catalytic metal element with respect to the amount of the components.
  • active ingredient refers to "a component excluding the solvent (S) contained in the adhesive paste”.
  • the adhesive paste does not substantially contain a noble metal catalyst, or contains a noble metal catalyst, from the viewpoint of stable production in consideration of formulation variations, etc., storage stability, and the viewpoint that noble metal catalysts are expensive. is preferably less.
  • the adhesive paste of the present invention contains the curable organopolysiloxane compound (A), and may contain the following components.
  • the adhesive paste of the present invention may contain a solvent (S).
  • the solvent (S) is not particularly limited as long as it can dissolve or disperse the components of the adhesive paste of the present invention.
  • the solvent (S) preferably contains an organic solvent having a boiling point of 254° C. or higher (hereinafter sometimes referred to as “organic solvent (SH)”).
  • organic solvent (SH) organic solvent having a boiling point of 254° C. or higher
  • boiling point refers to "boiling point at 1013 hPa” (same in this specification).
  • the boiling point of the organic solvent (SH) is preferably 254° C. or higher, more preferably 254° C. or higher and 300° C. or lower.
  • organic solvent examples include tripropylene glycol-n-butyl ether (boiling point 274° C.), 1,6-hexanediol diacrylate (boiling point 260° C.), diethylene glycol dibutyl ether (boiling point 256° C.), triethylene glycol butyl methyl ether (boiling point 261° C.), polyethylene glycol dimethyl ether (boiling point 264-294° C.), tetraethylene glycol dimethyl ether (boiling point 275° C.), polyethylene glycol monomethyl ether (boiling point 290-310° C.) and the like.
  • organic solvent (SH) tripropylene glycol-n-butyl ether and 1,6-hexanediol diacrylate are preferable as the organic solvent (SH) from the viewpoint of easy mixing of the active ingredient.
  • the organic solvent (SH) may be used singly or in combination of two or more.
  • the adhesive paste of the present invention may contain a solvent other than the organic solvent (SH).
  • a solvent other than the organic solvent (SH) a solvent having a boiling point of 100° C. or more and less than 254° C. (hereinafter sometimes referred to as “organic solvent (SL)”) is preferable.
  • the organic solvent (SL) is not particularly limited as long as it has a boiling point of 100° C. or more and less than 254° C. and can dissolve or disperse the components of the adhesive paste of the present invention.
  • the temperature range for heating the adhesive paste to obtain a cured product can be adjusted more precisely. It is possible to reduce the influence of heating on parts and sensor chips.
  • organic solvent examples include diethylene glycol monobutyl ether acetate (boiling point 247° C.), dipropylene glycol-n-butyl ether (boiling point 229° C.), dipropylene glycol methyl ether acetate (boiling point 209° C.), and diethylene glycol butyl methyl ether.
  • the organic solvent (SL) is preferably a glycol-based solvent, preferably diethylene glycol monobutyl ether acetate or dipropylene glycol-n-butyl ether, more preferably diethylene glycol monobutyl ether acetate, from the viewpoint of easily mixing the active ingredient. preferable.
  • an organic solvent (SH) and an organic solvent (SL) are used in combination, specifically, a combination of tripropylene glycol-n-butyl ether (solvent (SH)) and diethylene glycol monobutyl ether acetate (solvent (SL)), 1, A combination of 6-hexanediol diacrylate (solvent (SH)) and diethylene glycol monobutyl ether acetate (solvent (SL)), tripropylene glycol-n-butyl ether (solvent (SH)) and dipropylene glycol-n-butyl ether (solvent (SL)), a combination of 1,6-hexanediol diacrylate (solvent (SH)) and dipropylene glycol-n-butyl ether (solvent (SL)) is preferred.
  • the adhesive paste of the present invention preferably contains the solvent (S) in such an amount that the solid content concentration is preferably 70% by mass or more and less than 100% by mass, more preferably 75% by mass or more and less than 95% by mass.
  • the solid content concentration is within this range, it is easy to mix the active ingredient well, and the workability in the process of filling the syringe with the adhesive paste and the coating process is excellent.
  • excellent workability in the step of filling the syringe with the adhesive paste means “capable of filling an appropriate amount into the syringe without air bubbles".
  • the adhesive paste of the present invention may contain fine particles (B) having an average primary particle size of 8 ⁇ m or less as the component (B).
  • Component (B) includes fine particles (B1) having an average primary particle size of 5 nm or more and 40 nm or less (hereinafter sometimes referred to as "(B1) component”), and fine particles having an average primary particle size of more than 0.04 ⁇ m and not more than 8 ⁇ m. (B2) (hereinafter sometimes referred to as "(B2) component").
  • the average primary particle size of the fine particles (B1) is preferably 5 nm or more and 30 nm or less, more preferably 5 nm or more and 20 nm or less.
  • the average primary particle size of fine particles (B1) can be obtained by observing the shape of fine particles using a transmission electron microscope.
  • the specific surface area of the fine particles (B1) is preferably 10 m 2 /g or more and 500 m 2 /g or less, more preferably 20 m 2 /g or more and 300 m 2 /g or less. When the specific surface area is within the above range, it becomes easier to obtain an adhesive paste with better workability in the coating process.
  • the specific surface area can be determined by the BET multipoint method.
  • the shape of the fine particles (B1) may be spherical, chain-like, needle-like, plate-like, flake-like, rod-like, fiber-like, etc., but is preferably spherical.
  • spherical means “generally spherical, as well as nearly spherical, including polyhedral shapes that can be approximated to spheres such as spheroids, ovoids, confetti-like, and cocoon-like".
  • the components of the fine particles (B1) are not particularly limited, and include metals, metal oxides, minerals, metal carbonates, metal sulfates, metal hydroxides, metal silicates, inorganic components, organic components, silicones, and the like. mentioned. Further, the fine particles (B1) to be used may have a modified surface.
  • Metals are group 1 (excluding H), groups 2 to 11, group 12 (excluding Hg), group 13 (excluding B), group 14 (excluding C and Si), group 15 (excluding C and Si) in the periodic table.
  • metal oxides examples include titanium oxide, alumina, boehmite, chromium oxide, nickel oxide, copper oxide, zirconium oxide, indium oxide, zinc oxide, and composite oxides thereof.
  • the fine particles of metal oxides also include sol particles composed of these metal oxides.
  • Minerals include smectite, bentonite, and the like.
  • smectites include montmorillonite, beidellite, hectorite, saponite, stevensite, nontronite, and sauconite.
  • metal carbonates include calcium carbonate, magnesium carbonate, etc.
  • metal sulfates include calcium sulfate, barium sulfate, etc.
  • metal hydroxides include aluminum hydroxide, etc.
  • metal silicates include aluminum silicate, Examples include calcium silicate and magnesium silicate.
  • silica etc. are mentioned as an inorganic component. Examples of silica include dry silica, wet silica, surface-modified silica (surface-modified silica), and the like. Organic components include acrylic polymers and the like.
  • Silicone means an artificial polymer compound with a main skeleton made up of siloxane bonds. Examples include dimethylpolysiloxane, diphenylpolysiloxane, methylphenylpolysiloxane, and the like.
  • Fine particles (B1) can be used singly or in combination of two or more.
  • silica, metal oxides, and minerals are preferable, and silica is more preferable, because an adhesive paste having excellent transparency can be easily obtained.
  • hydrophobic surface-modified silica includes, on the surface, a trialkylsilyl group having 1 to 20 tricarbon atoms such as a trimethylsilyl group; an alkylsilyl group having 1 to 20 dicarbon atoms such as a dimethylsilyl group; Silica bound with alkylsilyl groups of number 1 to 20; Silica surface-treated with silicone oil; and the like.
  • Hydrophobic surface-modified silica is, for example, a silica particle having a trialkylsilyl group having 1 to 20 carbon atoms, an alkylsilyl group having 1 to 20 dicarbon atoms, an alkylsilyl group having 1 to 20 carbon atoms, or the like. It can be obtained by surface modification using a coupling agent, or by treating silica particles with silicone oil.
  • the content of component (B1) is not particularly limited, but the amount is preferably 1 % by mass or more and less than 10 mass %, more preferably 3 mass % or more and less than 8 mass %, still more preferably 4 mass % or more and less than 7 mass %.
  • the effect of adding the component (B1) can be further expressed.
  • the content of component (B1) is preferably 3% by mass or more and less than 15% by mass, more preferably 4% by mass or more and less than 12% by mass, still more preferably 6% by mass or more, relative to the total mass of the solid content of the adhesive paste. It is an amount that is equal to or more than 10% by mass and less than 10% by mass.
  • the content of component (B1) is equal to or higher than the above lower limit, the effect of adding component (B1) is more likely to be exhibited.
  • the content of component (B1) is less than the above upper limit, it becomes easier to obtain a cured product having a storage elastic modulus of less than 2900 MPa at -60°C.
  • the component (B1) within the above range it becomes easier to obtain an adhesive paste with high adhesion reliability that can reduce or prevent peeling of semiconductor elements by relieving stress generated during thermal shock.
  • the average primary particle size of the fine particles (B2) is preferably more than 0.06 ⁇ m and 7 ⁇ m or less, more preferably more than 0.3 ⁇ m and 6 ⁇ m or less, still more preferably more than 1 ⁇ m and 4 ⁇ m or less.
  • the average primary particle diameter of the fine particles (B2) is measured by a laser scattering method using a laser diffraction/scattering particle size distribution analyzer (for example, product name “LA-920” manufactured by Horiba, Ltd.). can be obtained by performing
  • the shape of the fine particles (B2) may be the same as those exemplified as the shape of the fine particles (B1), but a spherical shape is preferable. Further, as the component of the fine particles (B2), the same components as those exemplified as the components of the fine particles (B1) can be mentioned.
  • the fine particles (B2) can be used singly or in combination of two or more.
  • the fine particles (B2) from the viewpoint of being relatively easy to mix as an adhesive paste, and from the fact that a cured product having excellent adhesiveness and heat resistance can be easily obtained, a metal oxide whose surface is coated with silicone At least one kind of fine particles selected from the group consisting of silica, silica and silicone are preferred, and silica and silicone are more preferred.
  • the content of component (B2) is not particularly limited, but the amount is preferably 1 % by mass or more and less than 10 mass %, more preferably 3 mass % or more and less than 9 mass %, and still more preferably 4 mass % or more and less than 8 mass %.
  • the effect of adding the component (B2) can be further expressed.
  • the content of component (B2) is preferably 2% by mass or more and less than 15% by mass, more preferably 3% by mass or more and less than 12% by mass, still more preferably 4% by mass, based on the total mass of the solid content of the adhesive paste. It is an amount that is equal to or more than 10% by mass and less than 10% by mass.
  • the content of the component (B2) is equal to or higher than the above lower limit, the effect of adding the component (B2) is more readily manifested.
  • the content of component (B2) is less than the above upper limit, it becomes easier to obtain a cured product having a storage modulus of less than 2900 MPa at -60°C.
  • the component (B2) within the above range it becomes easy to obtain an adhesive paste with high adhesion reliability that can reduce or prevent peeling of semiconductor elements by relieving stress generated during thermal shock.
  • the content of component (B) is not particularly limited, but the amount is preferably 2% by mass or more and 20% by mass with respect to the total mass of the adhesive paste. less than, more preferably 6% by mass or more and less than 17% by mass, and still more preferably 8% by mass or more and less than 15% by mass.
  • the effect of adding the component (B) can be further expressed.
  • the content of component (B) is preferably 5% by mass or more and less than 30% by mass, more preferably 7% by mass or more and less than 24% by mass, still more preferably 10% by mass, relative to the total mass of the solid content of the adhesive paste. It is an amount that is not less than 20% by mass and less than 20% by mass.
  • the content ratio of the component (B) is equal to or higher than the above lower limit, the effect of adding the component (B) becomes more likely to manifest.
  • the content of component (B) is less than the above upper limit, it becomes easier to obtain a cured product having a storage elastic modulus of less than 2900 MPa at -60°C.
  • the adhesive paste is applied to the mirror surface of the silicon chip, pressed against an adherend (for example, an electroless silver-plated copper plate), and heat-treated to cure the adhesive paste.
  • an adherend for example, an electroless silver-plated copper plate
  • heat-treated to cure the adhesive paste.
  • a good (well-shaped) fillet portion portion protruding from the silicon chip
  • the ⁇ good fillet portion'' means ⁇ from the edge of the chip to a position of 5 to 35% of the length of one side of the chip (for example, a position of 50 to 350 ⁇ m when one side of the chip is 1 mm).
  • the protruding portions of are present on all four sides of the chip.
  • the adhesive paste of the present invention may contain a silane coupling agent as the (C) component.
  • a silane coupling agent (C1) having a nitrogen atom in the molecule (hereinafter sometimes referred to as “component (C1)”) or a silane coupling agent having an acid anhydride structure in the molecule. (C2) (hereinafter sometimes referred to as “component (C2)”), and preferably contains at least one of silane coupling agent (C1) and silane coupling agent (C2).
  • the silane coupling agent (C1) By containing the silane coupling agent (C1), excellent workability in the coating process, and excellent curability due to condensation reaction with the component (A) during heating, adhesion when heated at high temperature, It becomes easy to obtain an adhesive paste that gives an excellent cured product due to heat resistance and crack suppression of the cured product.
  • excellent crack suppression of the cured product means that "when the adhesive paste is heated to obtain a cured product, cracking does not occur in the cured product due to temperature changes".
  • the silane coupling agent (C1) is not particularly limited as long as it is a silane coupling agent having a nitrogen atom in its molecule.
  • Examples thereof include a trialkoxysilane compound represented by the following formula (c-1), and a dialkoxyalkylsilane compound or dialkoxyarylsilane compound represented by the formula (c-2).
  • R a represents an alkoxy group having 1 to 6 carbon atoms such as methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy and t-butoxy.
  • a plurality of R a may be the same or different.
  • R b is an alkyl group having 1 to 6 carbon atoms such as a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group; or a phenyl group, 4-chlorophenyl group, 4- An aryl group with or without a substituent such as a methylphenyl group and a 1-naphthyl group;
  • R c represents an organic group having 1 to 10 carbon atoms and having a nitrogen atom.
  • R c may be further bonded to another silicon atom-containing group.
  • Specific examples of the organic group having 1 to 10 carbon atoms for R c include N-2-(aminoethyl)-3-aminopropyl group, 3-aminopropyl group, N-(1,3-dimethyl-butylidene)amino propyl group, 3-ureidopropyl group, N-phenyl-aminopropyl group and the like.
  • the compound in which R c is an organic group bonded to another group containing a silicon atom includes an isocyanurate skeleton.
  • examples include those that form an isocyanurate-based silane coupling agent by bonding with other silicon atoms, and those that form a urea-based silane coupling agent by bonding with other silicon atoms via a urea skeleton.
  • the silane coupling agent (C1) is preferably an isocyanurate-based silane coupling agent and a urea-based silane coupling agent, since a cured product having higher adhesive strength can be easily obtained.
  • those having 4 or more silicon-bonded alkoxy groups are preferred. Having 4 or more silicon-bonded alkoxy groups means that the total number of alkoxy groups bonded to the same silicon atom and alkoxy groups bonded to different silicon atoms is 4 or more.
  • a compound represented by the following formula (c-3) is a urea-based silane cup having 4 or more silicon-bonded alkoxy groups.
  • Ring agents include compounds represented by the following formula (c-4).
  • R a has the same meaning as R a in the formulas (c-1) and (c-2).
  • Each of t1 to t5 independently represents an integer of 1 to 10, preferably an integer of 1 to 6, and particularly preferably 3.
  • Specific examples of the compound represented by formula (c-3) include 1,3,5-N-tris(3-trimethoxysilylpropyl) isocyanurate, 1,3,5-N-tris(3-tri ethoxysilylpropyl) isocyanurate, 1,3,5-N-tris(3-tri-i-propoxysilylpropyl) isocyanurate, 1,3,5-N-tris(3-tributoxysilylpropyl) isocyanurate, etc.
  • Specific examples of the compound represented by formula (c-4) include N,N'-bis(3-trimethoxysilylpropyl)urea, N,N'-bis(3-triethoxysilylpropyl)urea, N , N'-bis(3-tripropoxysilylpropyl)urea, N,N'-bis(3-tributoxysilylpropyl)urea, N,N'-bis(2-trimethoxysilylethyl)urea, etc.
  • N'-bis[(tri(C1-C6)alkoxysilyl)(C1-C10)alkyl]urea N,N'-bis(3-dimethoxymethylsilylpropyl)urea, N,N'-bis(3-dimethoxyethylsilylpropyl)urea, N,N'-bis(3-diethoxymethylsilylpropyl)urea, etc.
  • the silane coupling agents (C1) can be used singly or in combination of two or more.
  • the silane coupling agent (C1) includes 1,3,5-N-tris(3-trimethoxysilylpropyl) isocyanurate, 1,3,5-N-tris(3-triethoxysilylpropyl) ) isocyanurate (the above two are hereinafter referred to as “isocyanurate compounds”), N,N′-bis(3-trimethoxysilylpropyl)urea, N,N′-bis(3-triethoxysilylpropyl)urea (The above two are hereinafter referred to as "urea compounds”), and a combination of the isocyanurate compound and the urea compound is preferably used.
  • the ratio of the two to be used is preferably 100:1 to 100:200 in mass ratio of (isocyanurate compound) to (urea compound), and 100: 10 to 100:110 is more preferred.
  • the content of the (C1) component is not particularly limited, but the amount is based on the total mass of the solid content of the adhesive paste. On the other hand, the amount is preferably 2% by mass or more and less than 15% by mass, more preferably 2% by mass or more and less than 8% by mass, and still more preferably 2% by mass or more and less than 6% by mass.
  • the component (C1) within the above range, the effect of adding the component (C1) can be further exhibited, and a cured product having a storage elastic modulus at -60°C of less than 2900 MPa can be easily obtained.
  • silane coupling agent (C2) By containing the silane coupling agent (C2), it becomes easier to obtain an adhesive paste that has excellent workability in the coating process and gives a cured product with excellent adhesiveness and heat resistance when heated at a high temperature.
  • Silane coupling agents (C2) include 2-(trimethoxysilyl)ethyl succinic anhydride, 2-(triethoxysilyl)ethyl succinic anhydride, 3-(trimethoxysilyl)propyl succinic anhydride, 3-(tri tri(C1-6)alkoxysilyl(C2-8)alkyl succinic anhydrides such as ethoxysilyl)propyl succinic anhydride; di(C1-6)alkoxymethylsilyl(C2-8)alkyl succinic anhydrides such as 2-(dimethoxymethylsilyl)ethyl succinic anhydride; (1-6 carbon atoms) alkoxydimethylsilyl (2-8 carbon atoms) alkyl succinic anhydrides, such as 2-(methoxydimethylsilyl)ethyl succinic anhydride;
  • trihalogenosilyl (2-8 carbon atoms) alkyl succinic anhydrides such as 2-(trichlorosilyl)ethyl succinic anhydride and 2-(tribromosilyl)ethyl succinic anhydride; dihalogenomethylsilyl (2-8 carbon atoms) alkyl succinic anhydride such as 2-(dichloromethylsilyl)ethyl succinic anhydride; and halogenodimethylsilyl (2-8 carbon atoms) alkyl succinic anhydride such as 2-(chlorodimethylsilyl)ethyl succinic anhydride.
  • the silane coupling agents (C2) can be used singly or in combination of two or more.
  • the silane coupling agent (C2) is preferably tri(C 1-6) alkoxysilyl (C 2-8) alkyl succinic anhydride, 3-(trimethoxysilyl) propyl succinic anhydride or 3-(Triethoxysilyl)propyl succinic anhydride is particularly preferred.
  • the content of the (C2) component is not particularly limited, but the amount is based on the total mass of the solid content of the adhesive paste. On the other hand, the amount is preferably 0.1% by mass or more and less than 4% by mass, more preferably 0.2% by mass or more and less than 3% by mass, and still more preferably 0.3% by mass or more and less than 2% by mass.
  • the component (C2) within the above range, the effect of adding the component (C2) can be further exhibited, and a cured product having a storage elastic modulus at -60°C of less than 2900 MPa can be easily obtained.
  • the content of component (C) is not particularly limited. less than, more preferably 2% by mass or more and less than 13% by mass, still more preferably 3% by mass or more and less than 12% by mass.
  • the component (C) within the above range, the effect of adding the component (C) can be further exhibited, and a cured product having a storage elastic modulus of less than 2900 MPa at -60°C can be easily obtained.
  • the content of component (C) is preferably 2% by mass or more and less than 19% by mass, more preferably 2% by mass or more and less than 11% by mass, still more preferably 2% by mass or more, based on the total mass of the solid content of the adhesive paste. It is an amount that is not less than 8% by mass and less than 8% by mass.
  • the content of component (C) is at least the above lower limit, the effect of adding component (C) can be further expressed, and the maintenance rate of total light transmittance before and after heat history, which will be described later, is increased.
  • the optical semiconductor element is an LED element, and when used as an LED package, the light extraction efficiency of the LED element is improved. It is possible to suppress a decrease in luminous efficiency.
  • the adhesive paste of the present invention may contain other components [(D) component] other than the above components (A) to (C) within a range that does not impede the purpose of the present invention.
  • Component (D) includes antioxidants, ultraviolet absorbers, light stabilizers, and the like.
  • Antioxidants are added for the purpose of preventing oxidative deterioration during heating.
  • Antioxidants include phosphorus antioxidants, phenolic antioxidants, sulfur antioxidants, and the like.
  • Phosphorus antioxidants include phosphites, oxaphosphaphenanthrene oxides and the like.
  • Phenolic antioxidants include monophenols, bisphenols, polymeric phenols, and the like.
  • sulfur-based antioxidants include dilauryl-3,3'-thiodipropionate, dimyristyl-3,3'-thiodipropionate, distearyl-3,3'-thiodipropionate and the like.
  • antioxidants can be used singly or in combination of two or more.
  • the amount of antioxidant to be used is generally 10% by mass or less relative to the component (A).
  • a UV absorber is added for the purpose of improving the light resistance of the resulting adhesive paste.
  • UV absorbers include salicylic acids, benzophenones, benzotriazoles, hindered amines and the like. These ultraviolet absorbers can be used singly or in combination of two or more. The amount of the ultraviolet absorber to be used is generally 10% by mass or less relative to the component (A).
  • Light stabilizers include, for example, poly[ ⁇ 6-(1,1,3,3,-tetramethylbutyl)amino-1,3,5-triazine-2,4-diyl ⁇ (2,2,6 ,6-tetramethyl-4-piperidine)imino ⁇ hexamethylene ⁇ (2,2,6,6-tetramethyl-4-piperidine)imino ⁇ ] and other hindered amines. These light stabilizers can be used singly or in combination of two or more.
  • the total amount of component (D) used is generally 20% by mass or less relative to component (A).
  • the adhesive paste of the present invention can be produced, for example, by a production method comprising the following steps (AI) and (AII).
  • step (AII) As a method of obtaining a polysilsesquioxane compound by polycondensing at least one compound represented by the above formula (a-6) in the step (AI) in the presence of a polycondensation catalyst, 1) adhesive paste
  • the same methods as those exemplified in the section can be mentioned.
  • the solvent (S) used in step (AII) includes the same solvents as those exemplified as the solvent (S) in the section 1) Adhesive paste.
  • step (AII) as a method of dissolving the polysilsesquioxane compound in the solvent (S), for example, the polysilsesquioxane compound and optionally the components (B) to (D) are dissolved in the solvent (S ), defoaming, and dissolving.
  • a mixing method and a defoaming method are not particularly limited, and known methods can be used. The order of mixing is not particularly limited. According to the production method including the steps (AI) and (AII), the adhesive paste of the present invention can be produced efficiently and simply.
  • the refractive index (nD) of the adhesive paste of the present invention at 25° C. is preferably less than 1.420, more preferably less than 1.418, and preferably 1.405 or more and less than 1.416. Especially preferred.
  • the refractive index (nD) of the adhesive paste can be measured by the method described in Examples.
  • a cured product can be obtained by heating the adhesive paste to volatilize the solvent (S) and cure it.
  • the heating temperature for curing is usually 80 to 190°C, preferably 150 to 190°C.
  • the heating time for curing is usually 30 minutes to 40 hours, preferably 30 minutes to 10 hours, more preferably 30 minutes to 5 hours, particularly preferably 30 minutes to 3 hours.
  • the adhesive paste of the present invention is a cured product obtained by heating and curing the adhesive paste at 80 ° C. for 20 hours and then further heating and curing at 100 ° C. for 20 hours.
  • the loss tangent tan ⁇ at -60 ° C. is preferably 0.11. Above, more preferably 0.12 or more and 0.18 or less, particularly preferably 0.125 or more and 0.15 or less. Since the loss tangent tan ⁇ at ⁇ 60° C. is at least the above lower limit, the cured product obtained by heat curing is accompanied by contraction stress of the cured product of the sealing resin that occurs during the cooling process of the semiconductor package from high temperature to low temperature.
  • the loss tangent tan ⁇ at -60°C can be calculated as a value of (loss modulus/storage modulus) from the storage modulus and loss modulus at -60°C.
  • the storage modulus is as described in 1) Adhesive Paste.
  • the loss modulus can be measured by the storage modulus method using a known dynamic viscoelasticity measuring device, as described in the section 1) Adhesive Paste. Specifically, it can be measured and calculated by the method described in Examples.
  • a cured product obtained by heating and curing the adhesive paste at 150° C. for 3 hours, and a cured product obtained by further heating at 200° C. for 100 hours have a total light transmittance maintenance rate of preferably 70 before and after the heat history. % or more, more preferably 80% or more, and particularly preferably 90% or more.
  • the semiconductor element is an LED element
  • the LED package has high performance because the maintenance rate of the total light transmittance before and after the thermal history is equal to or higher than the lower limit value.
  • the maintenance rate of total light transmittance can be measured and calculated by the method described in Examples.
  • the adhesive paste of the present invention can be suitably used as an adhesive for semiconductor element fixing materials.
  • semiconductor elements include optical semiconductor elements such as light-emitting elements such as lasers and light-emitting diodes (LEDs) and light-receiving elements such as solar cells; transistors; sensors such as temperature sensors and pressure sensors; Among these, an optical semiconductor element is preferable from the viewpoint that the effect of using the adhesive paste of the present invention is likely to be exhibited more preferably.
  • optical semiconductor elements such as light-emitting elements such as lasers and light-emitting diodes (LEDs) and light-receiving elements such as solar cells; transistors; sensors such as temperature sensors and pressure sensors;
  • Materials for supporting substrates for bonding semiconductor elements include glasses such as soda lime glass and heat-resistant hard glass; ceramics; sapphire; iron, copper, aluminum, gold, silver, platinum, chromium, titanium and these metals. alloys, metals such as stainless steel (SUS302, SUS304, SUS304L, SUS309, etc.); polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, ethylene-vinyl acetate copolymer, polystyrene, polycarbonate, polymethylpentene, polysulfone, polyether Synthetic resins such as ether ketone, polyethersulfone, polyphenylene sulfide, polyetherimide, polyimide, polyamide, acrylic resin, norbornene resin, cycloolefin resin, and glass epoxy resin;
  • the adhesive paste of the present invention is preferably filled in a syringe. Since the syringe is filled with the adhesive paste, workability in the coating process is excellent.
  • the material of the syringe may be synthetic resin, metal, or glass, but preferably synthetic resin.
  • the capacity of the syringe is not particularly limited, and may be appropriately determined according to the amount of adhesive paste to be filled or applied.
  • a commercial item can also be used as a syringe.
  • Commercially available products include, for example, SS-01T series (manufactured by TERUMO), PSY series (manufactured by Musashi Engineering) and the like.
  • the syringe filled with the adhesive paste descends vertically to approach the support substrate, and after discharging a predetermined amount of the adhesive paste from the tip of the syringe, the syringe rises to support the support substrate. As the substrate is separated, the support substrate moves laterally. By repeating this operation, the adhesive paste is continuously applied to the support substrate. After that, a semiconductor element is mounted on the applied adhesive paste and pressure-bonded to the support substrate.
  • the amount of the adhesive paste to be applied is not particularly limited, and may be any amount that allows the semiconductor element to be adhered and the supporting substrate to be firmly adhered by curing. Usually, the amount is such that the thickness of the coating film of the adhesive paste is 0.5 ⁇ m or more and 5 ⁇ m or less, preferably 1 ⁇ m or more and 3 ⁇ m or less.
  • the semiconductor element is fixed to the support substrate by heating and curing the adhesive paste of the obtained press-fit.
  • the heating temperature and heating time are as described in the section 1) Adhesive paste.
  • the method of manufacturing the semiconductor device of the present invention may be a method further including the following step (BIII) and step (BIV).
  • the electrodes of the semiconductor element and the electrodes of the support substrate are connected by wires to electrically connect them.
  • Wires to be used include copper, aluminum, gold, alloys, and the like.
  • the method of covering the semiconductor element fixed to the support substrate with the sealing resin and heating and curing the sealing resin is not particularly limited.
  • a method of injecting a sealing resin having fluidity into a support substrate and curing the sealing resin by heating to form a sealing resin layer; and heat-curing the sealing resin to form a sealing resin layer is not particularly limited.
  • the heating temperature for curing the sealing resin is usually 80 to 190°C, preferably 100 to 170°C.
  • the heating time for curing is usually 30 minutes to 10 hours, preferably 30 minutes to 5 hours, more preferably 30 minutes to 3 hours.
  • the sealing resin to be used is not particularly limited as long as it can seal the semiconductor element.
  • examples thereof include silicone-based resins, rubber-based resins, (meth)acrylic-based resins, polyolefin-based resins, polyester-based resins, and styrene-based thermoplastic resins, with silicone-based resins being preferred.
  • the semiconductor device obtained by the semiconductor device manufacturing method of the present invention has high adhesion reliability in which peeling at the interface between the cured adhesive paste and the cured sealing resin is reduced or prevented, and Moreover, the semiconductor element is fixed with high adhesive strength.
  • the mixture was added with stirring, and the whole volume was stirred at 30° C. for 2 hours, then heated to 70° C. and stirred for 20 hours. While continuing to stir the content, a mixed solution of 0.1305 g of 28% aqueous ammonia (the amount of NH 3 is 2.146 mmol) and 59.4 g of propyl acetate was added, and the mixture was stirred at 70° C. for 1 hour. While continuing to stir the content, a mixed solution of 0.1305 g of 28% aqueous ammonia (the amount of NH 3 is 2.146 mmol) and 5 g of propyl acetate was added, and the mixture was stirred at 70° C. for 2 hours.
  • the curable organopolysiloxane compound (A1) had a mass average molecular weight (Mw) of 3,000 and a molecular weight distribution (Mw/Mn) of 1.52.
  • the curable organopolysiloxane compound (A2) had a mass average molecular weight (Mw) of 5,500 and a molecular weight distribution (Mw/Mn) of 3.40.
  • IR spectrum data of the curable organopolysiloxane compound (A2) are shown below. Si—CH 3 : 1272 cm ⁇ 1 , 1409 cm ⁇ 1 , Si—O: 1132 cm ⁇ 1 , CF: 1213 cm ⁇ 1
  • the curable organopolysiloxane compound (A3) had a mass average molecular weight (Mw) of 6,000 and a molecular weight distribution (Mw/Mn) of 3.80.
  • IR spectrum data of the curable organopolysiloxane compound (A3) are shown below. Si—CH 3 : 1272 cm ⁇ 1 , 1409 cm ⁇ 1 , Si—O: 1132 cm ⁇ 1 , CF: 1213 cm ⁇ 1
  • a curable organopolysiloxane compound (A4) had a mass average molecular weight (Mw) of 7,800 and a molecular weight distribution (Mw/Mn) of 4.52.
  • Mw mass average molecular weight
  • Mw/Mn molecular weight distribution
  • Curable organopolysiloxane compound (A1) Organopolysiloxane compound obtained in Production Example 1
  • Curable organopolysiloxane compound (A2) Organopolysiloxane compound obtained in Production Example 2
  • Curable organopolysiloxane compound (A3 ) Organopolysiloxane compound obtained in Production Example 3
  • Curable organopolysiloxane compound (A4) Organopolysiloxane compound obtained in Production Example 4
  • Curable organopolysiloxane compound (A1) 100 parts, fine particles (B1) 10 parts, fine particles (B2) 10 parts, solvent (S) 35.5 parts, silane coupling agent (C1) 5 parts, silane coupling agent (C2) 1 part was added, and the entire content was thoroughly mixed and defoamed to obtain an adhesive paste 1 having a solid concentration of 78%.
  • Adhesive pastes 2 to 9 and 1r to 7r were obtained in the same manner as in Example 1, except that the types and blending ratios of the compounds (each component) were changed to those shown in Table 1 below.
  • IR reflow reflow furnace: manufactured by Sagami Riko Co., Ltd., product Name: WL-15-20DNX type
  • 500 cycles were carried out using a thermal cycle tester, with one cycle being a test of leaving at -60°C and +125°C for 30 minutes each.
  • the hardened sealing resin adhering to the inner wall of the molding frame of the support substrate with molding frame is cut off with a cutter, and a needle (“silk needle 5 defined in JIS S 3008" is attached to the cut part that has been cut off). No.”) is inserted from the upper end toward the direction of the cured adhesive paste to a depth of 0.5 mm ⁇ 0.05 mm from the upper surface of the cured sealing resin, and the needle is rotated 80° (sealing resin The hardened product of (2) is caught and lifted) for 2 seconds to remove the hardened product of the encapsulating resin.
  • the adhesive pastes obtained in Examples and Comparative Examples were each applied to the mirror surface of a square silicon chip (#2000 grinding, 50 ⁇ m thick) having a side length of 1 mm (area of 1 mm 2 ), and the coated surface was covered.
  • the adhesive paste was press-bonded onto an object [electroless silver-plated copper plate (silver-plated surface average roughness Ra: 0.025 ⁇ m)] so that the thickness of the adhesive paste after press-bonding was about 2 ⁇ m. Then, it was cured by heat treatment at 170° C. for 2 hours to obtain an adherend with a test piece.
  • the adhesive pastes 1 to 9 of Examples 1 to 9 have a low storage elastic modulus of less than 2900 MPa at -60 ° C. of the cured product obtained by heat curing, and the cured product obtained by heating at a high temperature has adhesiveness. It is excellent. Therefore, even after the cured product obtained by heating the adhesive pastes 1 to 9 undergoes temperature changes (repeated process of high and low temperatures) in the usage environment of the semiconductor package, the interface with the cured product of the sealing resin It has high adhesion reliability capable of reducing or preventing peeling in the wire bonding process, and can prevent peeling of the semiconductor element in the wire bonding process.
  • the adhesive paste containing, as the component (A), a curable organopolysiloxane compound (A1) having a high proportion of repeating units having an alkyl group having a fluorine atom is a curable organopolysiloxane having a low proportion of the repeating units.
  • the cured product obtained by heat curing has a lower storage elastic modulus at ⁇ 60° C. and a cured product with a higher loss tangent tan ⁇ can be obtained (Example 1 and 2).
  • the proportion of the repeating units is higher than that of the curable organopolysiloxane compound (A2).
  • a cured product with a lower storage elastic modulus at -60 ° C. can be obtained, but the cured product obtained by heating at a high temperature The bond strength is lower (Example 6 and Comparative Example 5).
  • an optimal adhesive paste can be obtained.
  • An adhesive paste with a lower content of component (B) with respect to the total mass of the adhesive paste and the total mass of the solid content of the adhesive paste can provide a cured product with a lower storage elastic modulus at ⁇ 60° C. (Example 3-5).
  • An adhesive paste with a low content of component (C1) has a significantly lower storage modulus at ⁇ 60° C.
  • An adhesive paste with a lower content of component (C) relative to the total solid mass of the adhesive paste has a lower storage elastic modulus at ⁇ 60° C. and a cured product with a higher loss tangent tan ⁇ . (Examples 7-9).
  • the adhesive paste 1r of Comparative Example 1 contains a large amount of the component (C) relative to the total solid content of the adhesive paste, the cured product has a storage modulus of 2900 MPa or more at ⁇ 60° C., and the loss tangent tan ⁇ becomes less than 0.11. Therefore, when this cured product is used, peeling is often observed at the interface between the sealing resin and the cured product, resulting in poor adhesion reliability in the semiconductor package.
  • the adhesive paste 2r of Comparative Example 2 has a very large content ratio of the (B1) component and the (C) component with respect to the total mass of the solid content of the adhesive paste, the storage elastic modulus of the cured product at -60 ° C. is 2900 MPa.
  • the loss tangent tan ⁇ is less than 0.11. Therefore, when this cured product is used, peeling is often observed at the interface between the sealing resin and the cured product, resulting in poor adhesion reliability in the semiconductor package.
  • the adhesive paste 3r of Comparative Example 3 contains a large amount of the component (B1) with respect to the total mass of the adhesive paste and the total mass of the solid content of the adhesive paste, the cured product has a storage elastic modulus of 2900 MPa or more at ⁇ 60° C. . Therefore, when this cured product is used, peeling is often observed at the interface between the sealing resin and the cured product, resulting in poor adhesion reliability in the semiconductor package.
  • the adhesive paste 4r of Comparative Example 4 has a relatively large content ratio of the component (C) with respect to the total solid content of the adhesive paste, the storage elastic modulus of the cured product at -60 ° C. is 2900 MPa or more, and the loss tangent tan ⁇ becomes less than 0.11. Therefore, when this cured product is used, peeling is often observed at the interface between the sealing resin and the cured product, resulting in poor adhesion reliability in the semiconductor package.
  • the adhesive paste 6r of Comparative Example 6 did not contain the component (C), and was cured by heating at 80°C for 20 hours and then at 100°C for 20 hours. ° C.), it was not possible to prepare a test piece for storage modulus measurement because the hardness did not reach a level that could be handled without deformation. Moreover, since the components (B) and (C) were not contained, the cured product obtained by heating the adhesive paste at a high temperature does not exhibit sufficient adhesive strength. Therefore, when this cured product was used, peeling of the semiconductor element was observed in the wire bonding process, and peeling occurred at the interface between the cured adhesive paste and the bottom surface of the support substrate with the molding frame. I could't.
  • the adhesive paste 7r of Comparative Example 7 has a low content of the component (C), and after curing the adhesive paste by heating at 80° C. for 20 hours, the cured product obtained by further heating and curing at 100° C. for 20 hours is room temperature ( 23° C.), it was not possible to prepare a test piece for measuring the storage elastic modulus because the hardness was not such that it could be handled without deformation. Moreover, since the component (B) was not contained and the content of the component (C) was low, the cured product obtained by heating the adhesive paste at a high temperature did not exhibit sufficient adhesive strength. Therefore, when this cured product was used, peeling of the semiconductor element was observed in the wire bonding process, and peeling occurred at the interface between the cured adhesive paste and the bottom surface of the support substrate with the molding frame. I could't.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Die Bonding (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

The present invention is an adhesive paste that contains a curable organopolysiloxane compound. The storage elastic modulus at -60°C of a cured product obtained by heating and curing the adhesive paste for 20 hours at 80°C and then further heating and curing the adhesive paste for 20 hours at 100°C is less than 2900 MPa, and the adhesion strength at 100°C between a silver-plated copper sheet and a cured product obtained by heating and curing the adhesive paste for 2 hours at 170°C is at least 5 N/mm□. The present invention provides an adhesive paste that: has highly reliable adhesion that can reduce or prevent peeling at an interface with a cured product of a sealing resin, even after subjection to the temperature changes of the usage environment of a semiconductor package; and can reduce or prevent the peeling of a semiconductor element during a wire bonding step. The present invention also provides: a method for using the adhesive paste as a semiconductor element fixing material adhesive; and a production method for a semiconductor device that uses the adhesive paste as a semiconductor element fixing material adhesive.

Description

接着ペースト、接着ペーストの使用方法及び半導体装置の製造方法Adhesive paste, method for using adhesive paste, and method for manufacturing semiconductor device
 本発明は、加熱硬化して得られる硬化物の-60℃における貯蔵弾性率が低く、かつ、高温で加熱して得られる硬化物が接着性に優れる接着ペースト、この接着ペーストを半導体素子固定材用接着剤として使用する方法、及びこの接着ペーストを半導体素子固定材用接着剤として使用する半導体装置の製造方法に関する。 The present invention provides an adhesive paste that has a low storage elastic modulus at −60° C. of a cured product obtained by heat curing, and a cured product obtained by heating at a high temperature has excellent adhesiveness, and the adhesive paste is used as a semiconductor element fixing material. and a method of manufacturing a semiconductor device using this adhesive paste as an adhesive for a semiconductor element fixing material.
 従来、接着ペーストは用途に応じて様々な改良がなされ、光学部品や成形体の原料、接着剤、コーティング剤等として産業上広く利用されてきている。
 また、接着ペーストは、半導体素子固定材用接着剤等の半導体素子固定材用ペーストとしても注目を浴びてきている。
Adhesive pastes have heretofore been improved in various ways according to their intended use, and have been widely used industrially as raw materials for optical parts and moldings, adhesives, coating agents, and the like.
Adhesive pastes are also attracting attention as pastes for semiconductor element fixing materials such as adhesives for semiconductor element fixing materials.
 半導体素子には、レーザー、発光ダイオード(LED)等の発光素子や太陽電池等の受光素子等の光半導体素子、トランジスタ、温度センサや圧力センサ等のセンサ、集積回路等がある。 Semiconductor elements include light-emitting elements such as lasers and light-emitting diodes (LEDs), optical semiconductor elements such as light-receiving elements such as solar cells, transistors, sensors such as temperature sensors and pressure sensors, and integrated circuits.
 半導体素子を備える半導体装置の製造方法として、例えば、半導体素子を接着ペーストでリードフレームなどの被着体に固定する工程と接着ペーストを硬化させる工程とを有するダイボンディング工程と、半導体素子とリードフレームとの間をワイヤーで接続するワイヤーボンディング工程と、固定された半導体素子を封止樹脂で覆い、封止樹脂を熱硬化させるパッケージング工程とを含む方法が知られている。 As a method for manufacturing a semiconductor device having a semiconductor element, for example, a die bonding process including a process of fixing the semiconductor element to an adherend such as a lead frame with an adhesive paste and a process of curing the adhesive paste, and a semiconductor element and the lead frame. and a packaging step of covering the fixed semiconductor element with a sealing resin and thermally curing the sealing resin.
 しかしながら、この方法には次のような問題があった。
 すなわち、半導体素子の一種であるLED素子をLEDパッケージとして使用した場合において、LEDパッケージの使用環境における温度変化(高温及び低温の繰り返し過程)において生じる応力(熱膨張応力、収縮応力)を緩和することができずに、接着ペーストの硬化物と封止樹脂の硬化物との密着不良により、その両硬化物の界面が剥離してしまうことがあった。界面に剥離が生じた場合には、両硬化物の間に空気層が形成されることにより、LEDの輝度が減衰するおそれがある。
 また、両硬化物の界面の剥離により生じた歪みにより、接着ペーストの硬化物とLEDチップとの剥離や、ワイヤーの断線を起こしやすくなるという問題もあった。
However, this method has the following problems.
That is, when an LED element, which is a kind of semiconductor element, is used as an LED package, the stress (thermal expansion stress, contraction stress) generated by temperature changes (repeated process of high temperature and low temperature) in the usage environment of the LED package is alleviated. However, due to poor adhesion between the cured adhesive paste and the cured sealing resin, the interface between the cured adhesive paste and the sealing resin may peel off. When peeling occurs at the interface, an air layer is formed between the two cured products, which may reduce the brightness of the LED.
Moreover, there is also a problem that the strain caused by peeling of the interface between the two cured products tends to cause peeling between the cured product of the adhesive paste and the LED chip and disconnection of the wire.
 さらに、近年における半導体素子の小型化に伴い、ワイヤーボンディング装置から発生する超音波により、小型の半導体素子が振動し易くなっているため、ワイヤーボンディング工程において、半導体素子の剥がれが生じるという問題もあった。 Furthermore, with the recent miniaturization of semiconductor elements, ultrasonic waves generated from a wire bonding apparatus tend to vibrate the small semiconductor elements, which causes the problem of peeling of the semiconductor elements during the wire bonding process. rice field.
 したがって、半導体パッケージの使用環境における温度変化を経た後であっても、接着ペーストの硬化物と封止樹脂の硬化物との界面における密着信頼性が高く、かつ、半導体素子の剥がれを防止することができる接着性に優れる接着ペーストが要望されている。 Therefore, even after the temperature change in the usage environment of the semiconductor package, the adhesion reliability at the interface between the cured adhesive paste and the cured sealing resin is high, and the peeling of the semiconductor element is prevented. There is a demand for an adhesive paste with excellent adhesiveness that allows bonding.
 本発明に関連して、特許文献1には、信頼性に優れた絶縁性半導体用ダイアタッチペーストが記載されている。また、この文献には、該ペーストを硬化して得られた硬化物の25℃での貯蔵弾性率が、3,000~3,500MPaであることも記載されている。 In relation to the present invention, Patent Document 1 describes an insulating semiconductor die attach paste with excellent reliability. This document also describes that the storage elastic modulus at 25° C. of the cured product obtained by curing the paste is 3,000 to 3,500 MPa.
 特許文献2には、半導体の貼り合わせにおいて、基材同士を接着した後、基板が反るという問題を解決するべく、50℃での貯蔵弾性率を低弾性率化(10MPa以下)することにより、樹脂を硬化させたときの接着層に生じる内部応力を低下させることができる接着剤が記載されている。 In patent document 2, in order to solve the problem that the substrate warps after bonding the substrates in semiconductor bonding, the storage elastic modulus at 50 ° C. is reduced (10 MPa or less). , describes an adhesive capable of reducing the internal stress generated in the adhesive layer when the resin is cured.
 特許文献3には、長期間高温に曝されても脆化及び着色が生じ難い成形体を得ることができる縮合硬化型樹脂組成物が記載されている。また、この文献には、該組成物を硬化して得られた硬化物の30℃での貯蔵弾性率が37,000~59,000Paであることも記載されている。 Patent Document 3 describes a condensation-curable resin composition capable of obtaining a molded article that is less likely to be brittle and colored even when exposed to high temperatures for a long period of time. This document also describes that a cured product obtained by curing the composition has a storage modulus of 37,000 to 59,000 Pa at 30°C.
 特許文献4には、耐久性(高温で長期間使用後においても光学的透明度が維持される)や接着性等が改善された接着剤組成物が記載されている。また、この文献には、接着剤組成物のBステージ状態(材料が完全に硬化された「Cステージ」とは異なる段階)での最小貯蔵弾性率について記載されている。 Patent Document 4 describes an adhesive composition with improved durability (maintains optical transparency even after long-term use at high temperatures) and adhesiveness. This document also describes the minimum storage modulus of the adhesive composition in the B-stage state (different from the fully cured "C-stage" of the material).
 特許文献5及び6には、硬化物が接着性に優れる硬化性組成物、光素子用接着剤が記載されている。しかしながら、これらの文献には、硬化性組成物や光素子用接着剤の硬化物と、封止樹脂の硬化物との界面における密着信頼性については記載されていない。 Patent Documents 5 and 6 describe curable compositions and adhesives for optical elements whose cured products have excellent adhesiveness. However, these documents do not describe the adhesion reliability at the interface between the cured product of the curable composition or the adhesive for optical elements and the cured product of the sealing resin.
特開2003-347322号公報Japanese Patent Application Laid-Open No. 2003-347322 特開2013-82834号公報JP 2013-82834 A 特開2020-90572号公報(国際公開第2020/116199号)Japanese Patent Application Laid-Open No. 2020-90572 (International Publication No. 2020/116199) 特表2017-533337号公報(US2017/0306201 A1)Japanese Patent Publication No. 2017-533337 (US2017/0306201 A1) 国際公開第2020/067451号WO2020/067451 特開2018-168286号公報JP 2018-168286 A
 本発明者らは、半導体パッケージにおいて、封止樹脂の硬化物は大体積を占めているため、半導体パッケージの使用環境における温度変化(高温及び低温の繰り返し過程)に伴う封止樹脂の硬化物の伸縮挙動の影響度は、接着ペーストの硬化物に比べて非常に大きいこと、及び、半導体パッケージの高温から低温への冷却過程において生じる封止樹脂の硬化物の収縮応力を伴う冷却収縮挙動に、接着ペーストの硬化物が柔軟に追従することができれば、接着ペーストの硬化物と封止樹脂の硬化物との界面での剥離を低減ないし防止することができること、に着目した。 In the semiconductor package, the cured product of the sealing resin occupies a large volume. The degree of influence of the expansion and contraction behavior is very large compared to the cured product of the adhesive paste, and the cooling shrinkage behavior accompanied by the shrinkage stress of the cured product of the sealing resin that occurs during the cooling process of the semiconductor package from high temperature to low temperature, The inventors have focused on the fact that if the cured adhesive paste can flexibly follow the adhesive paste, it is possible to reduce or prevent separation at the interface between the cured adhesive paste and the cured sealing resin.
 上記のように、特許文献1~3には、ペーストや組成物を硬化して得られた硬化物の25℃~50℃における貯蔵弾性率が記載されている。
 しかしながら、半導体パッケージの高温から低温への冷却過程において生じる封止樹脂の硬化物の収縮応力を緩和するためには、より低温(例えば-60℃)において低弾性率化された接着ペーストが要望される。
 また、特許文献5及び6には、硬化物が接着性に優れる硬化性組成物、光素子用接着剤が記載されている。
 しかしながら、本発明者らの検討によれば、特許文献5及び6に記載された硬化性組成物や光素子用接着剤であっても、低温(例えば-60℃)において低弾性率化された硬化物を得るのは困難な場合があった。
As described above, Patent Documents 1 to 3 describe the storage elastic modulus at 25° C. to 50° C. of cured products obtained by curing pastes and compositions.
However, in order to alleviate the contraction stress of the cured product of the sealing resin that occurs in the process of cooling the semiconductor package from high temperature to low temperature, there is a demand for an adhesive paste that has a low elastic modulus at a lower temperature (for example, -60°C). be.
In addition, Patent Documents 5 and 6 describe a curable composition and an adhesive for optical elements, the cured product of which is excellent in adhesiveness.
However, according to the studies of the present inventors, even the curable compositions and optical element adhesives described in Patent Documents 5 and 6 have a low elastic modulus at low temperatures (eg, −60° C.). It was sometimes difficult to obtain a cured product.
 本発明は、かかる実情に鑑みてなされたものであり、
(i)半導体パッケージの使用環境における温度変化(高温及び低温の繰り返し過程)を経た後であっても、封止樹脂の硬化物との界面での剥がれを低減ないし防止することが可能な密着信頼性が高く、かつ、ワイヤーボンディング工程において、半導体素子の剥がれを低減ないし防止することができる接着ペーストを提供すること、及び、
(ii)この接着ペーストを半導体素子固定材用接着剤として使用する方法、及びこの接着ペーストを半導体素子固定材用接着剤として使用する半導体装置の製造方法を提供すること、を目的とする。
 なお、本発明において、「高温」とは、「110℃~190℃」をいい、「低温」とは、「-65℃~-45℃」をいう。
 また、「接着性に優れる」とは、「接着強度が高い」を意味する。
The present invention has been made in view of such circumstances,
(i) Adhesion reliability that can reduce or prevent peeling at the interface between the sealing resin and the cured product even after temperature changes (repeated process of high and low temperatures) in the environment in which the semiconductor package is used To provide an adhesive paste which has high properties and which can reduce or prevent peeling of a semiconductor element in a wire bonding process;
(ii) To provide a method of using this adhesive paste as an adhesive for a semiconductor element fixing material, and a method of manufacturing a semiconductor device using this adhesive paste as an adhesive for a semiconductor element fixing material.
In the present invention, "high temperature" means "110.degree. C. to 190.degree. C." and "low temperature" means "-65.degree. C. to -45.degree.
Moreover, "excellent adhesiveness" means "high adhesive strength".
 本発明者らは、半導体パッケージの高温から低温への冷却過程において生じる封止樹脂の硬化物の収縮応力を伴う冷却収縮挙動に、接着ペーストの硬化物が柔軟に追従することができれば、接着ペーストの硬化物と封止樹脂の硬化物との界面での剥離を低減ないし防止することができることに着目し、鋭意検討を重ねた。その結果、
(i)硬化性オルガノポリシロキサン化合物を含有する接着ペーストを加熱硬化して得られる、-60℃における貯蔵弾性率が低い硬化物は、半導体パッケージの高温から低温への冷却過程において生じる封止樹脂の硬化物の収縮応力を伴う冷却収縮挙動に柔軟に追従することができるため、半導体パッケージの使用環境における温度変化(高温及び低温の繰り返し過程)を経た後であっても、封止樹脂の硬化物との界面での剥がれを低減ないし防止することができること、及び、
(ii)硬化性オルガノポリシロキサン化合物を含有する接着ペーストを高温で加熱して得られる、特定の接着強度を有する硬化物は、ワイヤーボンディング工程において、半導体素子の剥がれを低減ないし防止することができること、を見出し、本発明を完成するに至った。
The present inventors have found that if the cured product of the adhesive paste can flexibly follow the cooling shrinkage behavior accompanied by the shrinkage stress of the cured product of the sealing resin that occurs in the process of cooling the semiconductor package from high temperature to low temperature, the adhesive paste The inventors focused on the ability to reduce or prevent peeling at the interface between the cured product of the sealing resin and the cured product of the encapsulating resin, and conducted extensive studies. as a result,
(I) A cured product with a low storage elastic modulus at -60 ° C. obtained by heating and curing an adhesive paste containing a curable organopolysiloxane compound is a sealing resin generated in the cooling process from high temperature to low temperature of the semiconductor package. Because it is possible to flexibly follow the cooling shrinkage behavior accompanied by the shrinkage stress of the cured product, even after the temperature change (repeated process of high and low temperatures) in the usage environment of the semiconductor package, the curing of the sealing resin It is possible to reduce or prevent peeling at the interface with an object, and
(ii) A cured product having a specific adhesive strength obtained by heating an adhesive paste containing a curable organopolysiloxane compound at a high temperature can reduce or prevent peeling of a semiconductor element in a wire bonding process. , and completed the present invention.
 かくして本発明によれば、下記〔1〕~〔8〕の接着ペースト、〔9〕の接着ペーストの使用方法、及び、〔10〕の接着ペーストを使用する半導体装置の製造方法が提供される。 Thus, according to the present invention, the following adhesive pastes [1] to [8], the method of using the adhesive paste of [9], and the method of manufacturing a semiconductor device using the adhesive paste of [10] are provided.
〔1〕硬化性オルガノポリシロキサン化合物(A)を含有する接着ペーストであって、前記接着ペーストを80℃で20時間加熱硬化した後、さらに100℃で20時間加熱硬化して得られる硬化物の、-60℃における貯蔵弾性率が2900MPa未満であり、前記接着ペーストを170℃で2時間加熱硬化して得られる硬化物と、銀メッキ銅板との100℃における接着強度が、5N/mm□以上である接着ペースト。 [1] An adhesive paste containing a curable organopolysiloxane compound (A), which is cured by heating at 80° C. for 20 hours and then cured by heating at 100° C. for 20 hours. , a storage modulus at −60° C. of less than 2900 MPa, and an adhesive strength at 100° C. of 5 N/mm□ or more between a cured product obtained by heating and curing the adhesive paste at 170° C. for 2 hours and a silver-plated copper plate. Adhesive paste that is.
〔2〕前記硬化性オルガノポリシロキサン化合物(A)が、ポリシルセスキオキサン化合物である、〔1〕に記載の接着ペースト。
〔3〕さらに溶媒(S)を含有し、固形分濃度が、70質量%以上100質量%未満のものである、〔1〕又は〔2〕に記載の接着ペースト。
〔4〕さらに、下記(B)成分を、接着ペーストの固形分の総質量に対して、5質量%以上30質量%未満含有する、〔1〕~〔3〕のいずれかに記載の接着ペースト。
(B)成分:平均一次粒子径が、8μm以下の微粒子
〔5〕さらに、下記(C)成分を、接着ペーストの固形分の総質量に対して、2質量%以上19質量%未満含有する、〔1〕~〔4〕のいずれかに記載の接着ペースト。
(C)成分:シランカップリング剤
[2] The adhesive paste according to [1], wherein the curable organopolysiloxane compound (A) is a polysilsesquioxane compound.
[3] The adhesive paste according to [1] or [2], which further contains a solvent (S) and has a solid content concentration of 70% by mass or more and less than 100% by mass.
[4] The adhesive paste according to any one of [1] to [3], further containing 5% by mass or more and less than 30% by mass of the following component (B) with respect to the total mass of the solid content of the adhesive paste. .
Component (B): fine particles having an average primary particle size of 8 μm or less [5] Further, the following component (C) is contained in an amount of 2% by mass or more and less than 19% by mass, based on the total mass of the solid content of the adhesive paste. The adhesive paste according to any one of [1] to [4].
(C) component: silane coupling agent
〔6〕貴金属触媒を実質的に含有しない、〔1〕~〔5〕のいずれかに記載の接着ペースト。
〔7〕接着ペーストを80℃で20時間加熱硬化した後、さらに100℃で20時間加熱硬化して得られる硬化物の、-60℃における損失正接tanδが、0.11以上である、〔1〕~〔6〕のいずれかに記載の接着ペースト。
〔8〕半導体素子固定材用接着剤である、〔1〕~〔7〕のいずれかに記載の接着ペースト。
[6] The adhesive paste according to any one of [1] to [5], which does not substantially contain a noble metal catalyst.
[7] The adhesive paste is cured by heating at 80° C. for 20 hours, and then cured by heating at 100° C. for 20 hours. ] to [6].
[8] The adhesive paste according to any one of [1] to [7], which is an adhesive for a semiconductor element fixing material.
〔9〕〔1〕~〔8〕のいずれかに記載の接着ペーストを、半導体素子固定材用接着剤として使用する方法。
〔10〕〔1〕~〔8〕のいずれかに記載の接着ペーストを、半導体素子固定材用接着剤として使用する半導体装置の製造方法であって、下記工程(BI)及び工程(BII)を有する半導体装置の製造方法。
工程(BI):半導体素子と支持基板の一方又は両方の接着面に前記接着ペーストを塗布し、圧着する工程
工程(BII):工程(BI)で得られた圧着物の前記接着ペーストを加熱硬化させ、前記半導体素子を前記支持基板に固定する工程
[9] A method of using the adhesive paste according to any one of [1] to [8] as an adhesive for a semiconductor element fixing material.
[10] A method for manufacturing a semiconductor device using the adhesive paste according to any one of [1] to [8] as an adhesive for a semiconductor element fixing material, comprising the steps (BI) and (BII) below. A method for manufacturing a semiconductor device having
Step (BI): Applying the adhesive paste to the bonding surface of one or both of the semiconductor element and the support substrate, and press-bonding Step (BII): Heating and curing the adhesive paste of the crimped product obtained in Step (BI) and fixing the semiconductor element to the support substrate
 本発明によれば、半導体パッケージの使用環境における温度変化(高温及び低温の繰り返し過程)を経た後であっても、封止樹脂の硬化物との界面での剥がれを低減ないし防止することが可能な密着信頼性が高く、かつ、ワイヤーボンディング工程において、半導体素子の剥がれを低減ないし防止することができる接着ペーストが提供される。
 また、本発明によれば、この接着ペーストを半導体素子固定材用接着剤として使用する方法、及びこの接着ペーストを半導体素子固定材用接着剤として使用する半導体装置の製造方法が提供される。
According to the present invention, it is possible to reduce or prevent peeling at the interface between the sealing resin and the cured product even after temperature changes (repeated process of high temperature and low temperature) in the usage environment of the semiconductor package. Provided is an adhesive paste that has high adhesion reliability and can reduce or prevent peeling of a semiconductor element in a wire bonding process.
Further, according to the present invention, there are provided a method of using this adhesive paste as an adhesive for a semiconductor element fixing material, and a method of manufacturing a semiconductor device using this adhesive paste as an adhesive for a semiconductor element fixing material.
 以下、本発明を、1)接着ペースト、2)接着ペーストの使用方法、及び、接着ペーストを使用する半導体装置の製造方法、に項分けして詳細に説明する。 The present invention will be described in detail below by dividing it into 1) adhesive paste, 2) method of using the adhesive paste, and method of manufacturing a semiconductor device using the adhesive paste.
1)接着ペースト
 本発明の接着ペーストは、硬化性オルガノポリシロキサン化合物(A)を含有する接着ペーストであって、前記接着ペーストを80℃で20時間加熱硬化した後、さらに100℃で20時間加熱硬化して得られる硬化物の、-60℃における貯蔵弾性率が2900MPa未満であり、前記接着ペーストを170℃で2時間加熱硬化して得られる硬化物と、銀メッキ銅板との100℃における接着強度が、5N/mm□以上のものである。
1) Adhesive Paste The adhesive paste of the present invention is an adhesive paste containing a curable organopolysiloxane compound (A), which is cured by heating at 80° C. for 20 hours and then heated at 100° C. for 20 hours. The cured product obtained by curing has a storage modulus of less than 2900 MPa at −60° C., and adhesion between the cured product obtained by heating and curing the adhesive paste at 170° C. for 2 hours and a silver-plated copper plate at 100° C. It has a strength of 5 N/mm square or more.
 なお、本発明において、「接着ペースト」とは、「室温(23℃)において、粘稠な液体であって、流動性を有する状態のもの」をいう。
 本発明の接着ペーストは、前記状態の性質を有しているため、塗布工程における作業性に優れる。
 ここで、「塗布工程における作業性に優れる」とは、「塗布工程において、接着ペーストを吐出管から吐出し、次いで吐出管を引き上げる際、糸引き量が少ないか、又はすぐに途切れて、樹脂飛びしたり、塗布後に液滴が広がることにより、周囲を汚染したりすることがないこと」をいう。
In the present invention, the "adhesive paste" means "a viscous liquid at room temperature (23°C) and in a fluid state".
Since the adhesive paste of the present invention has the properties described above, it is excellent in workability in the coating process.
Here, "excellent workability in the coating process" means "in the coating process, when the adhesive paste is discharged from the discharge pipe and then the discharge pipe is pulled up, the amount of stringiness is small or is interrupted immediately, and the resin It must not contaminate the surroundings due to splashing or spread of droplets after application.”
 本発明の接着ペーストは、接着ペーストを80℃で20時間加熱硬化した後、さらに100℃で20時間加熱硬化して得られる硬化物の、-60℃における貯蔵弾性率は2900MPa未満、好ましくは2000MPa以上2800MPa未満、より好ましくは2200MPa以上2700MPa未満、特に好ましくは2300MPa以上2600MPa未満のものである。
 -60℃における貯蔵弾性率が上記上限値未満であることにより、加熱硬化して得られる硬化物は、半導体パッケージの高温から低温への冷却過程において生じる封止樹脂の硬化物の収縮応力を伴う冷却収縮挙動に柔軟に追従することができるため、半導体パッケージの使用環境における温度変化(高温及び低温の繰り返し過程)を経た後であっても、封止樹脂の硬化物との界面での剥がれを低減ないし防止することが可能な高い密着信頼性を有するものとなる。また、上記下限値以上であることにより、接着性及び耐熱性により優れる硬化物が得られ易くなる。
 本発明の接着ペーストを加熱硬化して得られる硬化物の-60℃における貯蔵弾性率は、例えば、次のようにして測定することができる。すなわち、本発明の接着ペーストを80℃で20時間加熱硬化した後、さらに100℃で20時間加熱硬化し、試験片を作製する。上記条件で加熱硬化することで、動的粘弾性測定用の試験片を、硬化収縮等に伴う欠けが生じることを抑制してより安定して作製することができる。これを、公知の動的粘弾性測定装置を使用して貯蔵弾性率を測定し、-60℃における値を抽出する。
 より具体的には、実施例に記載の方法により測定することができる。
The adhesive paste of the present invention is a cured product obtained by heating and curing the adhesive paste at 80 ° C. for 20 hours and then further heating and curing at 100 ° C. for 20 hours. 2800 MPa or more, more preferably 2200 MPa or more and less than 2700 MPa, particularly preferably 2300 MPa or more and less than 2600 MPa.
Since the storage elastic modulus at −60° C. is less than the above upper limit, the cured product obtained by heat curing is accompanied by shrinkage stress of the cured product of the sealing resin that occurs during the cooling process from high temperature to low temperature of the semiconductor package. Because it can flexibly follow the cooling shrinkage behavior, peeling at the interface between the encapsulating resin and the cured product can be prevented even after temperature changes (repetition of high and low temperatures) in the environment where the semiconductor package is used. It has high adhesion reliability that can be reduced or prevented. Moreover, when it is at least the above lower limit, it becomes easier to obtain a cured product having excellent adhesiveness and heat resistance.
The storage elastic modulus at −60° C. of the cured product obtained by heating and curing the adhesive paste of the present invention can be measured, for example, as follows. Specifically, the adhesive paste of the present invention is cured by heating at 80° C. for 20 hours and then cured by heating at 100° C. for 20 hours to prepare a test piece. By heat-curing under the above conditions, a test piece for dynamic viscoelasticity measurement can be more stably produced by suppressing chipping due to curing shrinkage or the like. The storage elastic modulus of this is measured using a known dynamic viscoelasticity measuring device, and the value at -60°C is extracted.
More specifically, it can be measured by the method described in Examples.
 本発明の接着ペーストは、接着ペーストを170℃で2時間加熱硬化して得られる硬化物と、銀メッキ銅板との100℃における接着強度は5N/mm□以上、好ましくは10N/mm□以上、より好ましくは13N/mm□以上のものである。
 接着強度が上記下限値以上であることにより、高温で加熱硬化して得られる硬化物は、ワイヤーボンディング工程において、半導体素子の剥がれを低減ないし防止することができるものとなる。
 本発明の接着ペーストを加熱硬化して得られる硬化物の接着強度は、例えば、次のようにして測定することができる。すなわち、一辺の長さが1mmの正方形(面積が1mm)のシリコンチップのミラー面に、本発明の接着ペーストを塗布し、塗布面を銀メッキ銅板の上に載せ圧着(圧着後の接着ペーストの厚さ:約2μm)し、170℃で2時間加熱処理して硬化させる。これを、100℃のボンドテスターの測定ステージ上に30秒間放置し、被着体から100μmの高さの位置より、スピード200μm/sで接着面に対し水平方向(せん断方向)に応力をかけ、試験片と被着体との100℃における接着強度(N/mm□)を測定する。
 本明細書において、「1mm□」とは、「1mm square」、すなわち、「1mm×1mm(一辺の長さが1mmの正方形)」を意味する。
 より具体的には、実施例に記載の方法により測定することができる。
The adhesive paste of the present invention has an adhesive strength of 5 N/mm square or more, preferably 10 N/mm square or more, between a cured product obtained by heating and curing the adhesive paste at 170° C. for 2 hours and a silver-plated copper plate at 100° C. More preferably, it is 13 N/mm square or more.
When the adhesive strength is equal to or higher than the above lower limit, the cured product obtained by heating and curing at a high temperature can reduce or prevent peeling of the semiconductor element in the wire bonding process.
The adhesive strength of the cured product obtained by heating and curing the adhesive paste of the present invention can be measured, for example, as follows. That is, the adhesive paste of the present invention is applied to the mirror surface of a square silicon chip with a side length of 1 mm (area is 1 mm 2 ), and the coated surface is placed on a silver-plated copper plate and crimped (adhesive paste after crimping). thickness: about 2 μm) and cured by heat treatment at 170° C. for 2 hours. This is left on the measurement stage of a bond tester at 100 ° C. for 30 seconds, and stress is applied in the horizontal direction (shear direction) to the adhesive surface at a speed of 200 μm / s from a position 100 μm above the adherend, The adhesive strength (N/mm□) at 100° C. between the test piece and the adherend is measured.
In this specification, "1 mm square" means "1 mm square", that is, "1 mm x 1 mm (square with a side length of 1 mm)".
More specifically, it can be measured by the method described in Examples.
〔硬化性オルガノポリシロキサン化合物(A)〕
 本発明の接着ペーストは、硬化性オルガノポリシロキサン化合物(A)(以下、「(A)成分」ということがある。)を含有する。
 本発明の接着ペーストは、(A)成分を含有することにより、高温で加熱することにより接着性に優れる硬化物が得られ易くなる。
[Curable organopolysiloxane compound (A)]
The adhesive paste of the present invention contains a curable organopolysiloxane compound (A) (hereinafter sometimes referred to as "component (A)").
Since the adhesive paste of the present invention contains the component (A), a cured product having excellent adhesiveness can be easily obtained by heating at a high temperature.
 本発明の硬化性オルガノポリシロキサン化合物(A)は、分子内に、炭素-ケイ素結合とシロキサン結合(-Si-O-Si-)を有する化合物である。
 また、(A)成分は、熱硬化性の化合物であるため、加熱により、縮合反応が可能な官能基、及び加水分解を経て縮合反応が可能な官能基からなる群から選ばれる少なくとも一種の官能基を有することが好ましい。
 このような官能基としては、水酸基及びアルコキシ基からなる群から選ばれる少なくとも一種が好ましく、水酸基、炭素数1~10のアルコキシ基がより好ましい。
 硬化性オルガノポリシロキサン化合物(A)の主鎖構造に制限はなく、直鎖状、ラダー状、籠状のいずれであってもよい。
 例えば、直鎖状の主鎖構造としては下記式(a-1)で表される構造が、ラダー状の主鎖構造としては下記式(a-2)で表される構造が、籠状の主鎖構造としては下記式(a-3)で表される構造が、それぞれ挙げられる。
The curable organopolysiloxane compound (A) of the present invention is a compound having a carbon-silicon bond and a siloxane bond (--Si--O--Si--) in its molecule.
In addition, since component (A) is a thermosetting compound, at least one functional group selected from the group consisting of functional groups capable of condensation reaction by heating and functional groups capable of condensation reaction through hydrolysis It is preferred to have a group.
Such a functional group is preferably at least one selected from the group consisting of a hydroxyl group and an alkoxy group, more preferably a hydroxyl group and an alkoxy group having 1 to 10 carbon atoms.
The main chain structure of the curable organopolysiloxane compound (A) is not particularly limited, and may be linear, ladder-like, or cage-like.
For example, the structure represented by the following formula (a-1) is used as the linear main chain structure, and the structure represented by the following formula (a-2) is used as the ladder-like main chain structure. Examples of the main chain structure include structures represented by the following formula (a-3).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(a-1)~(a-3)中、Rx、Ry、Rzは、それぞれ独立して、水素原子又は有機基を表し、有機基としては、無置換若しくは置換基を有するアルキル基、無置換若しくは置換基を有するシクロアルキル基、無置換若しくは置換基を有するアルケニル基、無置換若しくは置換基を有するアリール基、又はアルキルシリル基が好ましい。式(a-1)の複数のRx、式(a-2)の複数のRy、及び式(a-3)の複数のRzは、それぞれ同一でも相異なっていてもよい。ただし、前記式(a-1)のRxが2つとも水素原子であることはない。 In formulas (a-1) to (a-3), Rx, Ry, and Rz each independently represent a hydrogen atom or an organic group, and the organic group includes an unsubstituted or substituted alkyl group, an unsubstituted A substituted or substituted cycloalkyl group, an unsubstituted or substituted alkenyl group, an unsubstituted or substituted aryl group, or an alkylsilyl group is preferred. The plurality of Rx in formula (a-1), the plurality of Ry in formula (a-2), and the plurality of Rz in formula (a-3) may be the same or different. However, both Rx in formula (a-1) are not hydrogen atoms.
 前記無置換若しくは置換基を有するアルキル基のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-へキシル基、n-ヘプチル基、n-オクチル基等の炭素数1~10のアルキル基が挙げられる。 Examples of the alkyl group of the unsubstituted or substituted alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, t-butyl group, C1-C10 alkyl groups such as n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, n-heptyl group and n-octyl group can be mentioned.
 無置換若しくは置換基を有するシクロアルキル基のシクロアルキル基としては、例えば、シクロブチル基、シクロペンチル基、シクロへキシル基、シクロへプチル基等の炭素数3~10のシクロアルキル基が挙げられる。 Examples of cycloalkyl groups of unsubstituted or substituted cycloalkyl groups include cycloalkyl groups having 3 to 10 carbon atoms such as cyclobutyl group, cyclopentyl group, cyclohexyl group and cycloheptyl group.
 無置換若しくは置換基を有するアルケニル基のアルケニル基としては、例えば、ビニル基、1-プロペニル基、2-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基等の炭素数2~10のアルケニル基が挙げられる。 Alkenyl groups of unsubstituted or substituted alkenyl groups include, for example, vinyl group, 1-propenyl group, 2-propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, and the like. Ten alkenyl groups are mentioned.
 前記アルキル基、シクロアルキル基及びアルケニル基の置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;ヒドロキシル基;チオール基;エポキシ基;グリシドキシ基;(メタ)アクリロイルオキシ基;フェニル基、4-メチルフェニル基、4-クロロフェニル基等の無置換若しくは置換基を有するアリール基;等が挙げられる。 Examples of substituents of the alkyl group, cycloalkyl group and alkenyl group include halogen atoms such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom; a hydroxyl group; a thiol group; an epoxy group; a glycidoxy group; unsubstituted or substituted aryl groups such as phenyl group, 4-methylphenyl group and 4-chlorophenyl group; and the like.
 無置換又は置換基を有するアリール基のアリール基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基等の炭素数6~10のアリール基が挙げられる。 Examples of aryl groups of unsubstituted or substituted aryl groups include aryl groups having 6 to 10 carbon atoms such as phenyl group, 1-naphthyl group and 2-naphthyl group.
 前記アリール基の置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;メチル基、エチル基等の炭素数1~6のアルキル基;メトキシ基、エトキシ基等の炭素数1~6のアルコキシ基;ニトロ基;シアノ基;ヒドロキシル基;チオール基;エポキシ基;グリシドキシ基;(メタ)アクリロイルオキシ基;フェニル基、4-メチルフェニル基、4-クロロフェニル基等の無置換若しくは置換基を有するアリール基;等が挙げられる。 The substituents of the aryl group include halogen atoms such as fluorine, chlorine, bromine and iodine atoms; alkyl groups having 1 to 6 carbon atoms such as methyl and ethyl groups; 1 to 6 alkoxy groups; nitro group; cyano group; hydroxyl group; thiol group; epoxy group; glycidoxy group; (meth) acryloyloxy group; an aryl group having a substituent; and the like.
 アルキルシリル基としては、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、トリt-ブチルシリル基、メチルジエチルシリル基、ジメチルシリル基、ジエチルシリル基、メチルシリル基、エチルシリル基等が挙げられる。 The alkylsilyl group includes trimethylsilyl group, triethylsilyl group, triisopropylsilyl group, tri-t-butylsilyl group, methyldiethylsilyl group, dimethylsilyl group, diethylsilyl group, methylsilyl group, ethylsilyl group and the like.
 これらの中でも、Rx、Ry、Rzとしては、水素原子、無置換若しくは置換基を有する炭素数1~6のアルキル基、又はフェニル基が好ましく、無置換若しくは置換基を有する炭素数1~6のアルキル基が特に好ましい。 Among these, Rx, Ry, and Rz are preferably a hydrogen atom, an unsubstituted or substituted C 1-6 alkyl group, or a phenyl group, and an unsubstituted or substituted C 1-6 Alkyl groups are particularly preferred.
 硬化性オルガノポリシロキサン化合物(A)は、例えば、加水分解性官能基(アルコキシ基、ハロゲン原子等)を有するシラン化合物を重縮合する、公知の製造方法により得ることができる。 The curable organopolysiloxane compound (A) can be obtained, for example, by a known production method of polycondensing a silane compound having a hydrolyzable functional group (alkoxy group, halogen atom, etc.).
 用いるシラン化合物は、目的とする硬化性オルガノポリシロキサン化合物(A)の構造に応じて適宜選択すればよい。好ましい具体例としては、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン等の2官能シラン化合物;
メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n-プロピルトリメトキシシラン、n-ブチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルジエトキシメトキシシラン等の3官能シラン化合物;
テトラメトキシシラン、テトラエトキシシラン、テトラn-プロポキシシラン、テトライソプロポキシシラン、テトラn-ブトキシシラン、テトラt-ブトキシシラン、テトラs-ブトキシシラン、メトキシトリエトキシシラン、ジメトキシジエトキシシラン、トリメトキシエトキシシラン等の4官能シラン化合物;等が挙げられる。
The silane compound to be used may be appropriately selected according to the desired structure of the curable organopolysiloxane compound (A). Preferred specific examples include bifunctional silane compounds such as dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, and diethyldiethoxysilane;
methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-butyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyldiethoxymethoxysilane, etc. a trifunctional silane compound of;
Tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetraisopropoxysilane, tetra-n-butoxysilane, tetra-t-butoxysilane, tetra-s-butoxysilane, methoxytriethoxysilane, dimethoxydiethoxysilane, trimethoxyethoxysilane tetrafunctional silane compounds such as silane; and the like.
 硬化性オルガノポリシロキサン化合物(A)の質量平均分子量(Mw)は、通常、800以上30,000未満、好ましくは1,000以上15,000未満、より好ましくは1,200以上10,000未満、特に好ましくは2,000以上9,000未満である。質量平均分子量(Mw)が上記範囲内にある硬化性オルガノポリシロキサン化合物(A)を用いることにより、耐熱性及び接着性により優れる硬化物を与える接着ペーストが得られ易くなる。また、質量平均分子量(Mw)が上記上限値未満であることにより、-60℃における貯蔵弾性率が2900MPa未満である硬化物が得られ易くなる。 The weight average molecular weight (Mw) of the curable organopolysiloxane compound (A) is usually 800 or more and less than 30,000, preferably 1,000 or more and less than 15,000, more preferably 1,200 or more and less than 10,000. Particularly preferably, it is 2,000 or more and less than 9,000. By using the curable organopolysiloxane compound (A) having a mass average molecular weight (Mw) within the above range, it becomes easier to obtain an adhesive paste that gives a cured product with superior heat resistance and adhesiveness. Further, when the weight average molecular weight (Mw) is less than the above upper limit, it becomes easier to obtain a cured product having a storage elastic modulus of less than 2900 MPa at -60°C.
 硬化性オルガノポリシロキサン化合物(A)の分子量分布(Mw/Mn)は特に制限されないが、通常1.0以上10.0以下、好ましくは1.1以上6.0以下である。分子量分布(Mw/Mn)が上記範囲内にある硬化性オルガノポリシロキサン化合物(A)を用いることにより、耐熱性及び接着性により優れる硬化物を与える接着ペーストが得られ易くなる。
 硬化性オルガノポリシロキサン化合物(A)の質量平均分子量(Mw)及び数平均分子量(Mn)は、例えば、テトラヒドロフラン(THF)を溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)による標準ポリスチレン換算値として求めることができる。
Although the molecular weight distribution (Mw/Mn) of the curable organopolysiloxane compound (A) is not particularly limited, it is usually 1.0 or more and 10.0 or less, preferably 1.1 or more and 6.0 or less. By using a curable organopolysiloxane compound (A) having a molecular weight distribution (Mw/Mn) within the above range, it becomes easier to obtain an adhesive paste that gives a cured product with superior heat resistance and adhesiveness.
The mass average molecular weight (Mw) and number average molecular weight (Mn) of the curable organopolysiloxane compound (A) are, for example, standard polystyrene conversion values obtained by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as a solvent. can be obtained as
 本発明の硬化性オルガノポリシロキサン化合物(A)は、3官能オルガノシラン化合物を重縮合して得られる、ポリシルセスキオキサン化合物であることが好ましい。
 本発明の接着ペーストは、(A)成分として、ポリシルセスキオキサン化合物を含有することにより、高温で加熱して接着性に優れる硬化物が得られ易くなる。そのため、ワイヤーボンディング工程において、より効率良くチップを保持することができる。
The curable organopolysiloxane compound (A) of the present invention is preferably a polysilsesquioxane compound obtained by polycondensation of a trifunctional organosilane compound.
Since the adhesive paste of the present invention contains a polysilsesquioxane compound as the component (A), it becomes easier to obtain a cured product having excellent adhesiveness by heating at a high temperature. Therefore, the chip can be held more efficiently in the wire bonding process.
 本発明のポリシルセスキオキサン化合物は、下記式(a-4)で示される繰り返し単位を有する化合物である。
 本発明の接着ペーストは、(A)成分として、下記式(a-4)で示される繰り返し単位を有するポリシルセスキオキサン化合物を含有することにより、高温で加熱して接着性により優れる硬化物が得られ易くなる。
The polysilsesquioxane compound of the present invention is a compound having a repeating unit represented by the following formula (a-4).
The adhesive paste of the present invention contains, as the component (A), a polysilsesquioxane compound having a repeating unit represented by the following formula (a-4), whereby a cured product that is excellent in adhesiveness when heated at a high temperature becomes easier to obtain.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(a-4)中、Rは有機基を表す。有機基としては、無置換のアルキル基、置換基を有するアルキル基、無置換のシクロアルキル基、置換基を有するシクロアルキル基、無置換のアルケニル基、置換基を有するアルケニル基、無置換のアリール基、置換基を有するアリール基、及び、アルキルシリル基からなる群から選ばれる基が好ましく、無置換の炭素数1~10のアルキル基、置換基を有する炭素数1~10のアルキル基、無置換の炭素数6~12のアリール基、及び、置換基を有する炭素数6~12のアリール基からなる群から選ばれる基がより好ましい。 In formula (a-4), R 1 represents an organic group. Examples of organic groups include unsubstituted alkyl groups, substituted alkyl groups, unsubstituted cycloalkyl groups, substituted cycloalkyl groups, unsubstituted alkenyl groups, substituted alkenyl groups, and unsubstituted aryl groups. aryl groups having substituents, and groups selected from the group consisting of alkylsilyl groups, unsubstituted alkyl groups having 1 to 10 carbon atoms, substituted alkyl groups having 1 to 10 carbon atoms, unsubstituted A group selected from the group consisting of a substituted C6-C12 aryl group and a C6-C12 aryl group having a substituent is more preferred.
 「無置換の炭素数1~10のアルキル基」としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、n-ノニル基、n-デシル基等が挙げられる。
 Rで表される「無置換の炭素数1~10のアルキル基」の炭素数は、1~6が好ましい。
The "unsubstituted alkyl group having 1 to 10 carbon atoms" includes methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, n- pentyl group, n-hexyl group, n-octyl group, n-nonyl group, n-decyl group and the like.
The number of carbon atoms in the “unsubstituted alkyl group having 1 to 10 carbon atoms” represented by R 1 is preferably 1 to 6.
 Rで表される「置換基を有する炭素数1~10のアルキル基」の炭素数は、1~6が好ましい。なお、この炭素数は、置換基を除いた部分(アルキル基の部分)の炭素数を意味するものである。したがって、Rが「置換基を有する炭素数1~10のアルキル基」である場合、Rの炭素数は10を超える場合もあり得る。
 「置換基を有する炭素数1~10のアルキル基」のアルキル基としては、「無置換の炭素数1~10のアルキル基」として示したものと同様のものが挙げられる。
The number of carbon atoms in the “substituted alkyl group having 1 to 10 carbon atoms” represented by R 1 is preferably 1 to 6. The number of carbon atoms means the number of carbon atoms in the portion (alkyl group portion) excluding the substituents. Therefore, when R 1 is a “substituted alkyl group having 1 to 10 carbon atoms”, the number of carbon atoms in R 1 may exceed 10 in some cases.
Examples of the alkyl group of the "substituted alkyl group having 1 to 10 carbon atoms" include the same groups as the "unsubstituted alkyl group having 1 to 10 carbon atoms".
 「置換基を有する炭素数1~10のアルキル基」の置換基としては、フッ素原子、塩素原子、臭素原子等のハロゲン原子;シアノ基;式:OGで表される基;等が挙げられる。
 「置換基を有する炭素数1~10のアルキル基」の置換基の原子の数(ただし水素原子の数を除く)は、通常1~30、好ましくは1~20である。
 ここで、Gは水酸基の保護基を表す。水酸基の保護基としては、特に制約はなく、水酸基の保護基として知られている公知の保護基が挙げられる。例えば、アシル系;トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、t-ブチルジフェニルシリル基等のシリル系;メトキシメチル基、メトキシエトキシメチル基、1-エトキシエチル基、テトラヒドロピラン-2-イル基、テトラヒドロフラン-2-イル基等のアセタール系;t-ブトキシカルボニル基等のアルコキシカルボニル系;メチル基、エチル基、t-ブチル基、オクチル基、アリル基、トリフェニルメチル基、ベンジル基、p-メトキシベンジル基、フルオレニル基、トリチル基、ベンズヒドリル基等のエーテル系;等が挙げられる。
Examples of substituents of the "substituted alkyl group having 1 to 10 carbon atoms" include halogen atoms such as fluorine, chlorine and bromine atoms; cyano groups; groups represented by the formula: OG;
The number of substituent atoms in the "substituted alkyl group having 1 to 10 carbon atoms" (excluding the number of hydrogen atoms) is generally 1 to 30, preferably 1 to 20.
Here, G represents a hydroxyl-protecting group. The hydroxyl-protecting group is not particularly limited, and includes known protecting groups known as hydroxyl-protecting groups. For example, acyl group; silyl group such as trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, t-butyldiphenylsilyl group; methoxymethyl group, methoxyethoxymethyl group, 1-ethoxyethyl group, tetrahydropyran-2- acetal group such as yl group and tetrahydrofuran-2-yl group; alkoxycarbonyl group such as t-butoxycarbonyl group; methyl group, ethyl group, t-butyl group, octyl group, allyl group, triphenylmethyl group, benzyl group, ethers such as p-methoxybenzyl group, fluorenyl group, trityl group and benzhydryl group;
 「無置換の炭素数6~12のアリール基」としては、フェニル基、1-ナフチル基、2-ナフチル基等が挙げられる。
 Rで表される「無置換の炭素数6~12のアリール基」の炭素数は6が好ましい。
Examples of the “unsubstituted aryl group having 6 to 12 carbon atoms” include phenyl group, 1-naphthyl group, 2-naphthyl group and the like.
The "unsubstituted aryl group having 6 to 12 carbon atoms" represented by R 1 preferably has 6 carbon atoms.
 Rで表される「置換基を有する炭素数6~12のアリール基」の炭素数は6が好ましい。なお、この炭素数は、置換基を除いた部分(アリール基の部分)の炭素数を意味するものである。したがって、Rが「置換基を有する炭素数6~12のアリール基」である場合、Rの炭素数は12を超える場合もあり得る。
 「置換基を有する炭素数6~12のアリール基」のアリール基としては、「無置換の炭素数6~12のアリール基」として示したものと同様のものが挙げられる。
The number of carbon atoms in the “substituted aryl group having 6 to 12 carbon atoms” represented by R 1 is preferably 6. The number of carbon atoms means the number of carbon atoms in the portion (aryl group portion) excluding the substituents. Therefore, when R 1 is a “substituted aryl group having 6 to 12 carbon atoms”, the number of carbon atoms in R 1 may exceed 12 in some cases.
Examples of the aryl group of the "substituted aryl group having 6 to 12 carbon atoms" include the same aryl groups as the "unsubstituted aryl group having 6 to 12 carbon atoms".
 「置換基を有する炭素数6~12のアリール基」の置換基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、イソオクチル基等のアルキル基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;等が挙げられる。
 「置換基を有する炭素数6~12のアリール基」の置換基の原子の数(ただし水素原子の数を除く)は、通常1~30、好ましくは1~20である。
Examples of the substituents of the "substituted aryl group having 6 to 12 carbon atoms" include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group and t-butyl. Alkyl groups such as group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group and isooctyl group; halogen atoms such as fluorine atom, chlorine atom and bromine atom; alkoxy such as methoxy group and ethoxy group group; and the like.
The number of substituent atoms (excluding the number of hydrogen atoms) of the "substituted C6-C12 aryl group" is usually 1-30, preferably 1-20.
 これらの中でも、Rとしては、構造の安定したポリシルセスキオキサン化合物が得られ易く、接着ペーストとしての性能がより安定する観点から、無置換の炭素数1~10のアルキル基、又はフッ素原子を有する炭素数1~10のアルキル基が好ましく、フッ素原子を有する炭素数1~10のアルキル基がより好ましい。
 Rが、無置換の炭素数1~10のアルキル基であるポリシルセスキオキサン化合物を用いることにより、耐熱性及び接着性により優れる硬化物を与える接着ペーストが得られ易くなる。
 Rが、フッ素原子を有する炭素数1~10のアルキル基であるポリシルセスキオキサン化合物を用いることにより、屈折率が低い接着ペーストや硬化物が得られ易くなり、屈折率が低いことが要望される光半導体素子に好適に用いられ易くなる。また、後述の熱履歴前後における全光線透過率の維持率を高くすることができる傾向にある。
Among these, R 1 is an unsubstituted alkyl group having 1 to 10 carbon atoms, or fluorine, from the viewpoint of easily obtaining a polysilsesquioxane compound with a stable structure and more stable performance as an adhesive paste. An alkyl group having 1 to 10 carbon atoms having atoms is preferable, and an alkyl group having 1 to 10 carbon atoms having a fluorine atom is more preferable.
By using a polysilsesquioxane compound in which R 1 is an unsubstituted alkyl group having 1 to 10 carbon atoms, it becomes easier to obtain an adhesive paste that gives a cured product with superior heat resistance and adhesiveness.
By using a polysilsesquioxane compound in which R 1 is an alkyl group having 1 to 10 carbon atoms and having a fluorine atom, it becomes easier to obtain an adhesive paste or a cured product having a low refractive index. It becomes easy to be suitably used for the desired optical semiconductor device. In addition, there is a tendency that the maintenance rate of the total light transmittance before and after thermal history, which will be described later, can be increased.
 また、-60℃における貯蔵弾性率が2900MPa未満である硬化物が得られ易く、かつ、半導体素子が光半導体素子である場合の、光半導体素子の光取り出し効率が向上し、発光効率の低下を抑制することができる観点から、Rとしては、フッ素原子を有する炭素数1~10のアルキル基がより好ましい。
 さらに、フッ素原子を有する炭素数1~10のアルキル基は、-60℃における貯蔵弾性率がより低い硬化物が得られ易い観点から、分子量が26以上の嵩高いアルキル基であることが好ましく、分子量が40以上であることがより好ましい。
 フッ素原子を有する炭素数1~10のアルキル基としては、組成式:C(2m-n+1)で表される基(mは1~10の整数、nは1以上、(2m+1)以下の整数である。)が挙げられる。これらの中でも、3,3,3-トリフルオロプロピル基が好ましい。
In addition, it is easy to obtain a cured product having a storage elastic modulus of less than 2900 MPa at -60 ° C., and when the semiconductor element is an optical semiconductor element, the light extraction efficiency of the optical semiconductor element is improved, and the luminous efficiency is prevented from decreasing. From the viewpoint of being able to suppress this, R 1 is more preferably an alkyl group having 1 to 10 carbon atoms and having a fluorine atom.
Furthermore, the alkyl group having 1 to 10 carbon atoms and having a fluorine atom is preferably a bulky alkyl group having a molecular weight of 26 or more from the viewpoint of easily obtaining a cured product having a lower storage modulus at -60°C. More preferably, the molecular weight is 40 or more.
As the alkyl group having 1 to 10 carbon atoms and having a fluorine atom, a group represented by the composition formula: C m H (2m−n+1) F n (m is an integer of 1 to 10, n is 1 or more, (2m+1) are the following integers). Among these, a 3,3,3-trifluoropropyl group is preferred.
 ポリシルセスキオキサン化合物中の前記式(a-4)で示される繰り返し単位(すなわち、後述のTサイト)の含有割合は、全繰り返し単位に対して、通常、50~100mol%であり、70~100mol%であることがより好ましく、90~100mol%であることがさらに好ましく、100mol%であることが特に好ましい。
 前記式(a-4)で示される繰り返し単位(Tサイト)の含有割合が、上記割合であるポリシルセスキオキサン化合物を用いることで、耐熱性、接着性及び屈折率の性能を発現し易い接着ペーストを得ることができる。
 ポリシルセスキオキサン化合物中の前記式(a-4)で示される繰り返し単位(Tサイト)の含有割合は、例えば、NMRピークの帰属及び面積の積分が可能である場合には、29Si-NMR及びH-NMRを測定することにより求めることができる。
The content of the repeating unit represented by the formula (a-4) (that is, the T site described later) in the polysilsesquioxane compound is usually 50 to 100 mol% of the total repeating units, and 70 It is more preferably up to 100 mol %, still more preferably 90 to 100 mol %, and particularly preferably 100 mol %.
By using a polysilsesquioxane compound in which the content ratio of the repeating unit (T site) represented by the formula (a-4) is the above ratio, heat resistance, adhesiveness, and refractive index performance are easily expressed. An adhesive paste can be obtained.
The content ratio of the repeating unit (T site) represented by the formula (a-4) in the polysilsesquioxane compound is, for example, 29 Si- when NMR peak assignment and area integration are possible. It can be determined by measuring NMR and 1 H-NMR.
 ポリシルセスキオキサン化合物は、アセトン等のケトン系溶媒;ベンゼン等の芳香族炭化水素系溶媒;ジメチルスルホキシド等の含硫黄系溶媒;テトラヒドロフラン等のエーテル系溶媒;酢酸エチル等のエステル系溶媒;クロロホルム等の含ハロゲン系溶媒;及びこれらの二種以上からなる混合溶媒;等の各種有機溶媒に可溶である。そのため、これらの溶媒を用いて、ポリシルセスキオキサン化合物の溶液状態での29Si-NMRを測定することができる。 Polysilsesquioxane compounds include ketone solvents such as acetone; aromatic hydrocarbon solvents such as benzene; sulfur-containing solvents such as dimethylsulfoxide; ether solvents such as tetrahydrofuran; ester solvents such as ethyl acetate; soluble in various organic solvents such as halogen-containing solvents such as; and mixed solvents comprising two or more of these. Therefore, these solvents can be used to measure the 29 Si-NMR of the polysilsesquioxane compound in solution.
 前記式(a-4)で示される繰り返し単位は、下記式(a-5)で示されるものであることが好ましい。 The repeating unit represented by the formula (a-4) is preferably represented by the following formula (a-5).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(a-5)で示されるように、ポリシルセスキオキサン化合物は、一般にTサイトと総称される、ケイ素原子に酸素原子が3つ結合し、それ以外の基(R)が1つ結合してなる部分構造を有する。 As shown in formula (a-5), the polysilsesquioxane compound has three oxygen atoms bonded to a silicon atom, generally collectively referred to as the T site, and one other group (R 1 ). It has a partial structure formed by bonding.
 式(a-5)中、Rは、前記式(a-4)におけるRと同じ意味を表す。*は、Si原子、水素原子又は炭素数1~10のアルキル基を表し、3つの*のうち少なくとも1つはSi原子である。*の炭素数1~10のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基等が挙げられる。複数の*同士は、すべて同一であっても相異なっていてもよい。 In formula (a-5), R 1 has the same meaning as R 1 in formula (a-4). * represents a Si atom, a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and at least one of the three * is a Si atom. Examples of the alkyl group having 1 to 10 carbon atoms of * include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group and t-butyl group. A plurality of * may all be the same or different.
 また、ポリシルセスキオキサン化合物は、熱硬化性の化合物であり、加熱により、縮合反応及び/又は加水分解を経て縮合反応が可能な化合物である。そのため、ポリシルセスキオキサン化合物が有する複数の繰り返し単位(Tサイト)の前記式(a-5)中の*のうち、少なくとも1つは、水素原子又は炭素数1~10のアルキル基であることが好ましく、水素原子であることがより好ましい。
 なお、ポリシルセスキオキサン化合物が測定用の溶媒に可溶である場合には、29Si-NMRを測定することにより、前記式(a-5)中の*における水素原子又は炭素数1~10のアルキル基の存在や、前記式(a-5)中の3つの*が全てSi原子である繰り返し単位であるかを確認することができる。
 さらに、29Si-NMRのピークの帰属及び面積の積分が可能である場合には、ポリシルセスキオキサン化合物中の前記式(a-4)で示される繰り返し単位(Tサイト)の総数に対する、前記式(a-5)中の3つの*が全てSi原子である繰り返し単位の総数を概算することができる。
 このポリシルセスキオキサン化合物中の前記式(a-4)で示される繰り返し単位(Tサイト)の総数に対する、前記式(a-5)中の3つの*が全てSi原子である繰り返し単位の総数は、耐熱性により優れる硬化物を与える接着ペーストが得られ易くなる観点から、30~95mol%であることが好ましく、40~90mol%であることがより好ましい。
In addition, the polysilsesquioxane compound is a thermosetting compound, and is a compound capable of undergoing condensation reaction and/or hydrolysis by heating. Therefore, at least one of * in the above formula (a-5) of the plurality of repeating units (T sites) possessed by the polysilsesquioxane compound is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. is preferred, and a hydrogen atom is more preferred.
In addition, when the polysilsesquioxane compound is soluble in the solvent for measurement, by measuring 29 Si-NMR, the hydrogen atom or the number of carbon atoms in * in the above formula (a-5) is 1 to 1 It is possible to confirm the presence of 10 alkyl groups and whether or not the three * in the above formula (a-5) are all Si atoms in the repeating unit.
Furthermore, when assignment of 29 Si-NMR peaks and integration of areas are possible, with respect to the total number of repeating units (T sites) represented by the formula (a-4) in the polysilsesquioxane compound, The total number of repeating units in which all three * in the formula (a-5) are Si atoms can be roughly calculated.
The total number of repeating units (T sites) represented by the formula (a-4) in the polysilsesquioxane compound, and the number of repeating units in which all three * in the formula (a-5) are Si atoms. The total number is preferably 30 to 95 mol %, more preferably 40 to 90 mol %, from the viewpoint of easily obtaining an adhesive paste that gives a cured product with excellent heat resistance.
 ポリシルセスキオキサン化合物は、一種のRを有するもの(単独重合体)であってもよく、二種以上のRを有するもの(共重合体)であってもよいが、ポリシルセスキオキサン化合物を目的の質量平均分子量にすること、及び各Rを有することによるポリシルセスキオキサン化合物への特性付与の効果との両立の観点から、共重合体であることが好ましい。 The polysilsesquioxane compound may have one type of R 1 (homopolymer) or may have two or more types of R 1 (copolymer). A copolymer is preferable from the viewpoint of achieving the desired mass average molecular weight of the oxane compound and the effect of imparting properties to the polysilsesquioxane compound by having each R1 .
 ポリシルセスキオキサン化合物が共重合体である場合、ポリシルセスキオキサン化合物は、ランダム共重合体、ブロック共重合体、グラフト共重合体、交互共重合体等のいずれであってもよいが、製造容易性等の観点からは、ランダム共重合体が好ましい。
 また、ポリシルセスキオキサン化合物の構造は、ラダー型構造、ダブルデッカー型構造、籠型構造、部分開裂籠型構造、環状型構造、ランダム型構造のいずれの構造であってもよい。
When the polysilsesquioxane compound is a copolymer, the polysilsesquioxane compound may be any of random copolymers, block copolymers, graft copolymers, alternating copolymers, and the like. , random copolymers are preferred from the viewpoint of ease of production.
Moreover, the structure of the polysilsesquioxane compound may be any one of a ladder structure, a double decker structure, a cage structure, a partially cleaved cage structure, a cyclic structure, and a random structure.
 本発明において、ポリシルセスキオキサン化合物は一種単独で、あるいは二種以上を組み合わせて用いることができる。 In the present invention, polysilsesquioxane compounds can be used singly or in combination of two or more.
 ポリシルセスキオキサン化合物の製造方法は特に限定されない。例えば、下記式(a-6) The method for producing the polysilsesquioxane compound is not particularly limited. For example, the following formula (a-6)
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式中、Rは、前記式(a-4)におけるRと同じ意味を表す。Rは炭素数1~10のアルキル基を表し、Xはハロゲン原子を表し、pは0~3の整数を表す。複数のR、及び複数のXは、それぞれ、互いに同一であっても、相異なっていてもよい。)
で示されるシラン化合物(1)の少なくとも一種を重縮合させることにより、ポリシルセスキオキサン化合物を製造することができる。
 Rの炭素数1~10のアルキル基としては、前記式(a-5)中の*の炭素数1~10のアルキル基として示したものと同様のものが挙げられる。
 Xのハロゲン原子としては、塩素原子、及び臭素原子等が挙げられる。
(In the formula, R 1 has the same meaning as R 1 in the formula (a-4), R 2 represents an alkyl group having 1 to 10 carbon atoms, X 1 represents a halogen atom, p is 0 to represents an integer of 3. Multiple R 2 and multiple X 1 may be the same or different.)
A polysilsesquioxane compound can be produced by polycondensing at least one of the silane compounds (1) represented by.
Examples of the alkyl group having 1 to 10 carbon atoms for R 2 include the same groups as the alkyl group having 1 to 10 carbon atoms represented by * in the above formula (a-5).
A chlorine atom, a bromine atom, etc. are mentioned as a halogen atom of X1.
 シラン化合物(1)の具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリプロポキシシラン等のアルキルトリアルコキシシラン化合物類;
 メチルクロロジメトキシシラン、メチルクロロジエトキシシラン、メチルジクロロメトキシシラン、メチルブロモジメトキシシラン、エチルクロロジメトキシシラン、エチルクロロジエトキシシラン、エチルジクロロメトキシシラン、エチルブロモジメトキシシラン等のアルキルハロゲノアルコキシシラン化合物類;
 メチルトリクロロシラン、メチルトリブロモシラン、エチルトリクロロシラン、エチルトリブロモシラン等のアルキルトリハロゲノシラン化合物類;
Specific examples of the silane compound (1) include alkyltrialkoxysilane compounds such as methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, and ethyltripropoxysilane;
alkylhalogenoalkoxysilane compounds such as methylchlorodimethoxysilane, methylchlorodiethoxysilane, methyldichloromethoxysilane, methylbromodimethoxysilane, ethylchlorodimethoxysilane, ethylchlorodiethoxysilane, ethyldichloromethoxysilane, ethylbromodimethoxysilane;
Alkyltrihalogenosilane compounds such as methyltrichlorosilane, methyltribromosilane, ethyltrichlorosilane, ethyltribromosilane;
 3,3,3-トリフルオロプロピルトリメトキシシラン、3,3,3-トリフルオロプロピルトリエトキシシラン、2-シアノエチルトリメトキシシラン、2-シアノエチルトリエトキシシラン等の置換アルキルトリアルコキシシラン化合物類;
 3,3,3-トリフルオロプロピルクロロジメトキシシラン、3,3,3-トリフルオロプロピルクロロジエトキシシラン、3,3,3-トリフルオロプロピルジクロロメトキシシラン、3,3,3-トリフルオロプロピルジクロロエトキシシラン、2-シアノエチルクロロジメトキシシラン、2-シアノエチルクロロジエトキシシラン、2-シアノエチルジクロロメトキシシラン、2-シアノエチルジクロロエトキシシラン等の置換アルキルハロゲノアルコキシシラン化合物類;
 3,3,3-トリフルオロプロピルトリクロロシラン、2-シアノエチルトリクロロシラン等の置換アルキルトリハロゲノシラン化合物類;
substituted alkyltrialkoxysilane compounds such as 3,3,3-trifluoropropyltrimethoxysilane, 3,3,3-trifluoropropyltriethoxysilane, 2-cyanoethyltrimethoxysilane, 2-cyanoethyltriethoxysilane;
3,3,3-trifluoropropylchlorodimethoxysilane, 3,3,3-trifluoropropylchlorodiethoxysilane, 3,3,3-trifluoropropyldichloromethoxysilane, 3,3,3-trifluoropropyldichloro substituted alkylhalogenoalkoxysilane compounds such as ethoxysilane, 2-cyanoethylchlorodimethoxysilane, 2-cyanoethylchlorodiethoxysilane, 2-cyanoethyldichloromethoxysilane, 2-cyanoethyldichloroethoxysilane;
substituted alkyltrihalogenosilane compounds such as 3,3,3-trifluoropropyltrichlorosilane, 2-cyanoethyltrichlorosilane;
 フェニルトリメトキシシラン、4-メトキシフェニルトリメトキシシラン等の、置換基を有する、又は置換基を有さないフェニルトリアルコキシシラン化合物類;
 フェニルクロロジメトキシシラン、フェニルジクロロメトキシシラン、4-メトキシフェニルクロロジメトキシシラン、4-メトキシフェニルジクロロメトキシシラン等の、置換基を有する、又は置換基を有さないフェニルハロゲノアルコキシシラン化合物類;
 フェニルトリクロロシラン、4-メトキシフェニルトリクロロシラン等の、置換基を有する、又は置換基を有さないフェニルトリハロゲノシラン化合物類;等が挙げられる。
 これらのシラン化合物(1)は、一種単独で、あるいは二種以上を組み合わせて用いることができる。
Phenyltrialkoxysilane compounds with or without substituents, such as phenyltrimethoxysilane, 4-methoxyphenyltrimethoxysilane;
phenylhalogenoalkoxysilane compounds with or without substituents, such as phenylchlorodimethoxysilane, phenyldichloromethoxysilane, 4-methoxyphenylchlorodimethoxysilane, 4-methoxyphenyldichloromethoxysilane;
phenyltrihalogenosilane compounds with or without substituents, such as phenyltrichlorosilane and 4-methoxyphenyltrichlorosilane; and the like.
These silane compounds (1) can be used singly or in combination of two or more.
 前記シラン化合物(1)を重縮合させる方法は特に限定されない。例えば、溶媒中、又は無溶媒で、シラン化合物(1)に、所定量の重縮合触媒を添加し、所定温度で撹拌する方法が挙げられる。より具体的には、(a)シラン化合物(1)に、所定量の酸触媒を添加し、所定温度で撹拌する方法、(b)シラン化合物(1)に、所定量の塩基触媒を添加し、所定温度で撹拌する方法、(c)シラン化合物(1)に、所定量の酸触媒を添加し、所定温度で撹拌した後、過剰量の塩基触媒を添加して、反応系を塩基性とし、所定温度で撹拌する方法等が挙げられる。これらの中でも、効率よく目的とするポリシルセスキオキサン化合物を得ることができることから、(a)又は(c)の方法が好ましい。 The method of polycondensing the silane compound (1) is not particularly limited. For example, a method of adding a predetermined amount of a polycondensation catalyst to the silane compound (1) in a solvent or without a solvent and stirring the mixture at a predetermined temperature can be used. More specifically, (a) a method of adding a predetermined amount of acid catalyst to the silane compound (1) and stirring at a predetermined temperature, (b) adding a predetermined amount of a base catalyst to the silane compound (1). (c) adding a predetermined amount of an acid catalyst to the silane compound (1) and stirring at a predetermined temperature; and then adding an excess amount of a base catalyst to make the reaction system basic. , a method of stirring at a predetermined temperature, and the like. Among these, the method (a) or (c) is preferable because the desired polysilsesquioxane compound can be obtained efficiently.
 用いる重縮合触媒は、酸触媒及び塩基触媒のいずれであってもよい。また、2以上の重縮合触媒を組み合わせて用いてもよいが、少なくとも酸触媒を用いることが好ましい。
 酸触媒としては、リン酸、塩酸、ホウ酸、硫酸、硝酸等の無機酸;クエン酸、酢酸、メタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸等の有機酸;等が挙げられる。これらの中でも、リン酸、塩酸、ホウ酸、硫酸、クエン酸、酢酸、及びメタンスルホン酸から選ばれる少なくとも一種が好ましい。
The polycondensation catalyst to be used may be either an acid catalyst or a base catalyst. Two or more polycondensation catalysts may be used in combination, but at least an acid catalyst is preferably used.
Acid catalysts include inorganic acids such as phosphoric acid, hydrochloric acid, boric acid, sulfuric acid and nitric acid; organic acids such as citric acid, acetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid and p-toluenesulfonic acid; are mentioned. Among these, at least one selected from phosphoric acid, hydrochloric acid, boric acid, sulfuric acid, citric acid, acetic acid, and methanesulfonic acid is preferred.
 塩基触媒としては、アンモニア水;トリメチルアミン、トリエチルアミン、リチウムジイソプロピルアミド、リチウムビス(トリメチルシリル)アミド、ピリジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、アニリン、ピコリン、1,4-ジアザビシクロ[2.2.2]オクタン、イミダゾール等の有機塩基;水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム等の有機塩水酸化物;ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムt-ブトキシド、カリウムt-ブトキシド等の金属アルコキシド;水素化ナトリウム、水素化カルシウム等の金属水素化物;水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等の金属水酸化物;炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム等の金属炭酸塩;炭酸水素ナトリウム、炭酸水素カリウム等の金属炭酸水素塩;等が挙げられる。 Base catalysts include aqueous ammonia; trimethylamine, triethylamine, lithium diisopropylamide, lithium bis(trimethylsilyl)amide, pyridine, 1,8-diazabicyclo[5.4.0]-7-undecene, aniline, picoline, 1,4- Organic bases such as diazabicyclo[2.2.2]octane and imidazole; Organic salt hydroxides such as tetramethylammonium hydroxide and tetraethylammonium hydroxide; sodium methoxide, sodium ethoxide, sodium t-butoxide, potassium t-butoxide Metal alkoxides such as; Metal hydrides such as sodium hydride and calcium hydride; Metal hydroxides such as sodium hydroxide, potassium hydroxide and calcium hydroxide; Metal carbonates such as sodium carbonate, potassium carbonate and magnesium carbonate; metal hydrogen carbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate;
 重縮合触媒の使用量は、シラン化合物(1)の総mol量に対して、通常、0.05~10mol%、好ましくは0.1~5mol%の範囲である。 The amount of the polycondensation catalyst used is usually in the range of 0.05 to 10 mol%, preferably 0.1 to 5 mol%, relative to the total mol amount of the silane compound (1).
 重縮合時に溶媒を用いる場合、用いる溶媒は、シラン化合物(1)の種類等に応じて、適宜選択することができる。例えば、水;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル等のエステル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、s-ブチルアルコール、t-ブチルアルコール等のアルコール類;等が挙げられる。これらの溶媒は一種単独で、あるいは二種以上を組み合わせて用いることができる。また、上記(c)の方法を採用する場合、酸触媒の存在下、水系で重縮合反応を行った後、反応液に、有機溶媒と塩基触媒(アンモニア水等)を添加し、中性条件又は塩基性条件下で、更に重縮合反応を行うようにしてもよい。 When a solvent is used during polycondensation, the solvent to be used can be appropriately selected according to the type of silane compound (1). For example, water; aromatic hydrocarbons such as benzene, toluene and xylene; esters such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate and methyl propionate; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone. alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, s-butyl alcohol and t-butyl alcohol; These solvents can be used singly or in combination of two or more. Further, when the above method (c) is employed, after the polycondensation reaction is carried out in an aqueous system in the presence of an acid catalyst, an organic solvent and a base catalyst (ammonia water, etc.) are added to the reaction solution, and neutral conditions are obtained. Alternatively, a polycondensation reaction may be further performed under basic conditions.
 溶媒の使用量は、シラン化合物(1)の総mol量1mol当たり、通常、0.001リットル以上10リットル以下、好ましくは0.01リットル以上0.9リットル以下である。 The amount of the solvent used is usually 0.001 liters or more and 10 liters or less, preferably 0.01 liters or more and 0.9 liters or less per 1 mol of the total molar amount of the silane compound (1).
 シラン化合物(1)を重縮合させるときの温度は、通常0℃から用いる溶媒の沸点までの温度範囲、好ましくは20℃以上100℃以下の範囲である。反応温度があまりに低いと重縮合反応の進行が不十分となる場合がある。一方、反応温度が高くなりすぎるとゲル化抑制が困難となる。反応は、通常30分から30時間で完結する。 The temperature at which the silane compound (1) is polycondensed is usually in the temperature range from 0°C to the boiling point of the solvent used, preferably in the range of 20°C or higher and 100°C or lower. If the reaction temperature is too low, the polycondensation reaction may proceed insufficiently. On the other hand, if the reaction temperature is too high, it becomes difficult to suppress gelation. The reaction is usually completed in 30 minutes to 30 hours.
 なお、用いるモノマーの種類によっては、高分子量化が困難な場合がある。例えば、Rがフッ素原子を有するアルキル基であるモノマーは、Rが通常のアルキル基であるモノマーよりも反応性に劣る傾向がある。このような場合、触媒量を減らし、かつ、穏やかな条件で長時間反応を行うことにより、目的の分子量のポリシルセスキオキサン化合物が得られ易くなる。 In addition, depending on the kind of monomer to be used, it may be difficult to increase the molecular weight. For example, a monomer in which R 1 is an alkyl group having a fluorine atom tends to be less reactive than a monomer in which R 1 is a normal alkyl group. In such a case, a polysilsesquioxane compound having a desired molecular weight can be easily obtained by reducing the amount of catalyst and conducting the reaction under mild conditions for a long time.
 反応終了後は、酸触媒を用いた場合は、反応溶液に炭酸水素ナトリウム等のアルカリ水溶液を添加することにより、塩基触媒を用いた場合は、反応溶液に塩酸等の酸を添加することにより中和を行い、その際に生じる塩をろ別又は水洗等により除去し、目的とするポリシルセスキオキサン化合物を得ることができる。 After the completion of the reaction, when an acid catalyst is used, an aqueous alkali solution such as sodium hydrogen carbonate is added to the reaction solution, and when a base catalyst is used, an acid such as hydrochloric acid is added to the reaction solution. The resulting salt is removed by filtration or washing with water to obtain the intended polysilsesquioxane compound.
 上記方法により、ポリシルセスキオキサン化合物を製造する際、シラン化合物(1)のOR又はXのうち、加水分解およびその後の縮合反応等が起こらなかった部分は、ポリシルセスキオキサン化合物中に残存する。 When the polysilsesquioxane compound is produced by the above method, the portion of OR 2 or X 1 of the silane compound (1) that did not undergo hydrolysis and the subsequent condensation reaction is the polysilsesquioxane compound remain inside.
 (A)成分が、例えば、シラン化合物(1)の重縮合反応により得られたポリシルセスキオキサン化合物である場合、後述のシランカップリング剤との反応を含め、硬化は縮合反応で進行するため、本発明の接着ペーストは、白金触媒等の貴金属触媒の存在下で付加反応が進行して硬化する一般的な加熱硬化型シリコーン接着剤とは異なるものである。
 したがって、本発明のポリシルセスキオキサン化合物を含有する接着ペーストは、貴金属触媒を実質的に含有しない、又は貴金属触媒の含有量が少ないものである。
 ここで、「貴金属触媒を実質的に含有しない、又は貴金属触媒の含有量が少ない」とは、「貴金属触媒と解釈され得る成分が意図的に添加されていないことのほか、接着ペースト中の有効成分の量に対して、貴金属触媒の含有量が触媒金属元素の質量換算で、例えば、1質量ppm未満であること」を意味する。
 なお、ここで、「有効成分」とは、「接着ペースト中に含まれる溶媒(S)を除いた成分」をいう。
 接着ペーストは、調合ばらつき等を考慮した安定的な製造の観点、貯蔵安定性の観点、貴金属触媒が高価なものである観点等から、貴金属触媒を実質的に含有しない、又は貴金属触媒の含有量が少ないものであることが好ましい。
When the component (A) is, for example, a polysilsesquioxane compound obtained by the polycondensation reaction of the silane compound (1), curing proceeds through a condensation reaction, including reaction with the silane coupling agent described below. Therefore, the adhesive paste of the present invention is different from general heat-curable silicone adhesives that are cured by an addition reaction in the presence of a noble metal catalyst such as a platinum catalyst.
Accordingly, the adhesive paste containing the polysilsesquioxane compound of the present invention contains substantially no noble metal catalyst or contains only a small amount of noble metal catalyst.
Here, "substantially contains no noble metal catalyst or has a low noble metal catalyst content" means that "a component that can be interpreted as a noble metal catalyst is not intentionally added, and an effective It means that the content of the noble metal catalyst is, for example, less than 1 ppm by mass in terms of the mass of the catalytic metal element with respect to the amount of the components.
Here, the term "active ingredient" refers to "a component excluding the solvent (S) contained in the adhesive paste".
The adhesive paste does not substantially contain a noble metal catalyst, or contains a noble metal catalyst, from the viewpoint of stable production in consideration of formulation variations, etc., storage stability, and the viewpoint that noble metal catalysts are expensive. is preferably less.
〔その他の成分〕
 本発明の接着ペーストは、硬化性オルガノポリシロキサン化合物(A)を含有するものであるが、以下に示す成分を含有していてもよい。
[Other ingredients]
The adhesive paste of the present invention contains the curable organopolysiloxane compound (A), and may contain the following components.
(1)溶媒(S)
 本発明の接着ペーストは、溶媒(S)を含有していてもよい。溶媒(S)は、本発明の接着ペーストの成分を溶解又は分散し得るものであれば特に限定されない。
 溶媒(S)としては、254℃以上の沸点を有する有機溶媒(以下、「有機溶媒(SH)」と記載することがある。)を含むものであることが好ましい。
 ここで、「沸点」は、「1013hPaにおける沸点」をいう(本明細書において同じ。)。
 有機溶媒(SH)の沸点は、254℃以上であることが好ましく、254℃以上300℃以下であることがより好ましい。
(1) Solvent (S)
The adhesive paste of the present invention may contain a solvent (S). The solvent (S) is not particularly limited as long as it can dissolve or disperse the components of the adhesive paste of the present invention.
The solvent (S) preferably contains an organic solvent having a boiling point of 254° C. or higher (hereinafter sometimes referred to as “organic solvent (SH)”).
Here, "boiling point" refers to "boiling point at 1013 hPa" (same in this specification).
The boiling point of the organic solvent (SH) is preferably 254° C. or higher, more preferably 254° C. or higher and 300° C. or lower.
 有機溶媒(SH)としては、具体的には、トリプロピレングリコール-n-ブチルエーテル(沸点274℃)、1,6-へキサンジオールジアクリレート(沸点260℃)、ジエチレングリコールジブチルエーテル(沸点256℃)、トリエチレングリコールブチルメチルエーテル(沸点261℃)、ポリエチレングリコールジメチルエーテル(沸点264~294℃)、テトラエチレングリコールジメチルエーテル(沸点275℃)、ポリエチレングリコールモノメチルエーテル(沸点290~310℃)等が挙げられる。
 これらの中でも、有機溶媒(SH)としては、有効成分を良好に混合し易い観点から、トリプロピレングリコール-n-ブチルエーテル、1,6-ヘキサンジオールジアクリレートが好ましい。
 有機溶媒(SH)は一種単独で、あるいは二種以上を組み合わせて用いてもよい。
Specific examples of the organic solvent (SH) include tripropylene glycol-n-butyl ether (boiling point 274° C.), 1,6-hexanediol diacrylate (boiling point 260° C.), diethylene glycol dibutyl ether (boiling point 256° C.), triethylene glycol butyl methyl ether (boiling point 261° C.), polyethylene glycol dimethyl ether (boiling point 264-294° C.), tetraethylene glycol dimethyl ether (boiling point 275° C.), polyethylene glycol monomethyl ether (boiling point 290-310° C.) and the like.
Among these, tripropylene glycol-n-butyl ether and 1,6-hexanediol diacrylate are preferable as the organic solvent (SH) from the viewpoint of easy mixing of the active ingredient.
The organic solvent (SH) may be used singly or in combination of two or more.
 本発明の接着ペーストは、有機溶媒(SH)以外の溶媒を含有してもよい。
 有機溶媒(SH)以外の溶媒としては、沸点が100℃以上254℃未満の溶媒(以下、「有機溶媒(SL)」と記載することがある。)が好ましい。
 有機溶媒(SL)としては、沸点が100℃以上254℃未満であり、かつ、本発明の接着ペーストの成分を溶解又は分散し得るものであれば特に制限されない。
 有機溶媒(SH)と有機溶媒(SH)以外の溶媒を併用することにより、接着ペーストを加熱して硬化物を得る温度範囲をより精密に調節することができるため、熱による影響を受けやすい光学部品やセンサチップに対する加熱の影響を小さくすることができる。
The adhesive paste of the present invention may contain a solvent other than the organic solvent (SH).
As a solvent other than the organic solvent (SH), a solvent having a boiling point of 100° C. or more and less than 254° C. (hereinafter sometimes referred to as “organic solvent (SL)”) is preferable.
The organic solvent (SL) is not particularly limited as long as it has a boiling point of 100° C. or more and less than 254° C. and can dissolve or disperse the components of the adhesive paste of the present invention.
By using an organic solvent (SH) together with a solvent other than the organic solvent (SH), the temperature range for heating the adhesive paste to obtain a cured product can be adjusted more precisely. It is possible to reduce the influence of heating on parts and sensor chips.
 有機溶媒(SL)の具体例としては、ジエチレングリコールモノブチルエーテルアセテート(沸点247℃)、ジプロピレングリコール-n-ブチルエーテル(沸点229℃)、ジプロピレングリコールメチルエーテルアセテート(沸点209℃)、ジエチレングリコールブチルメチルエーテル(沸点212℃)、ジプロピレングリコール-n-プロピルエーテル(沸点212℃)、トリプロピレングリコールジメチルエーテル(沸点215℃)、トリエチレングリコールジメチルエーテル(沸点216℃)、ジエチレングリコールモノエチルエーテルアセテート(沸点218℃)、ジエチレングリコール-n-ブチルエーテル(沸点230℃)、エチレングリコールモノフェニルエーテル(沸点245℃)、
トリプロピレングリコールメチルエーテル(沸点242℃)、プロピレングリコールフェニルエーテル(沸点243℃)、トリエチレングリコールモノメチルエーテル(沸点249℃)、ベンジルアルコール(沸点204.9℃)、フェネチルアルコール(沸点219~221℃)、エチレングリコールモノブチルエーテルアセテート(沸点192℃)、エチレングリコールモノエチルエーテル(沸点134.8℃)、エチレングリコールモノメチルエーテル(沸点124.5℃)、プロピレングリコールモノメチルエーテルアセテート(沸点146℃)、シクロペンタノン(沸点130℃)、シクロヘキサノン(沸点157℃)、シクロヘプタノン(沸点180℃)、シクロオクタノン(沸点195~197℃)、シクロヘキサノール(沸点161℃)、シクロヘキサジエノン(沸点104~104.5℃)等が挙げられる。
 これらの中でも、有機溶媒(SL)としては、有効成分を良好に混合し易い観点から、グリコール系溶媒が好ましく、ジエチレングリコールモノブチルエーテルアセテート、ジプロピレングリコール-n-ブチルエーテルが好ましく、ジエチレングリコールモノブチルエーテルアセテートがより好ましい。
Specific examples of the organic solvent (SL) include diethylene glycol monobutyl ether acetate (boiling point 247° C.), dipropylene glycol-n-butyl ether (boiling point 229° C.), dipropylene glycol methyl ether acetate (boiling point 209° C.), and diethylene glycol butyl methyl ether. (boiling point 212°C), dipropylene glycol-n-propyl ether (boiling point 212°C), tripropylene glycol dimethyl ether (boiling point 215°C), triethylene glycol dimethyl ether (boiling point 216°C), diethylene glycol monoethyl ether acetate (boiling point 218°C) , diethylene glycol-n-butyl ether (boiling point 230° C.), ethylene glycol monophenyl ether (boiling point 245° C.),
Tripropylene glycol methyl ether (boiling point 242°C), propylene glycol phenyl ether (boiling point 243°C), triethylene glycol monomethyl ether (boiling point 249°C), benzyl alcohol (boiling point 204.9°C), phenethyl alcohol (boiling point 219-221°C) ), ethylene glycol monobutyl ether acetate (boiling point 192°C), ethylene glycol monoethyl ether (boiling point 134.8°C), ethylene glycol monomethyl ether (boiling point 124.5°C), propylene glycol monomethyl ether acetate (boiling point 146°C), cyclo Pentanone (boiling point 130°C), cyclohexanone (boiling point 157°C), cycloheptanone (boiling point 180°C), cyclooctanone (boiling point 195-197°C), cyclohexanol (boiling point 161°C), cyclohexadienone (boiling point 104- 104.5°C) and the like.
Among them, the organic solvent (SL) is preferably a glycol-based solvent, preferably diethylene glycol monobutyl ether acetate or dipropylene glycol-n-butyl ether, more preferably diethylene glycol monobutyl ether acetate, from the viewpoint of easily mixing the active ingredient. preferable.
 有機溶媒(SH)と有機溶媒(SL)を併用する場合、具体的には、トリプロピレングリコール-n-ブチルエーテル(溶媒(SH))とジエチレングリコールモノブチルエーテルアセテート(溶媒(SL))の組み合わせ、1,6-ヘキサンジオールジアクリレート(溶媒(SH))と、ジエチレングリコールモノブチルエーテルアセテート(溶媒(SL))の組み合わせ、トリプロピレングリコール-n-ブチルエーテル(溶媒(SH))とジプロピレングリコール-n-ブチルエーテル(溶媒(SL))の組み合わせ、1,6-ヘキサンジオールジアクリレート(溶媒(SH))とジプロピレングリコール-n-ブチルエーテル(溶媒(SL))の組み合わせが好ましい。 When an organic solvent (SH) and an organic solvent (SL) are used in combination, specifically, a combination of tripropylene glycol-n-butyl ether (solvent (SH)) and diethylene glycol monobutyl ether acetate (solvent (SL)), 1, A combination of 6-hexanediol diacrylate (solvent (SH)) and diethylene glycol monobutyl ether acetate (solvent (SL)), tripropylene glycol-n-butyl ether (solvent (SH)) and dipropylene glycol-n-butyl ether (solvent (SL)), a combination of 1,6-hexanediol diacrylate (solvent (SH)) and dipropylene glycol-n-butyl ether (solvent (SL)) is preferred.
 本発明の接着ペーストは、固形分濃度が、好ましくは70質量%以上100質量%未満、より好ましくは75質量%以上95質量%未満になる量の溶媒(S)を含有することが好ましい。
 固形分濃度がこの範囲内であることで、有効成分を良好に混合し易く、接着ペーストをシリンジに充填する工程や塗布工程における作業性に優れる。
 ここで、「接着ペーストをシリンジに充填する工程における作業性に優れる」とは、「適量を気泡なくシリンジ内に充填できること」をいう。
 また、ダイボンディングを行なう際、接着ペーストとその接着対象である基板等との間に生じる空隙部(ボイド)の発生を抑制することができ、パッケージの信頼性が高くなる。
The adhesive paste of the present invention preferably contains the solvent (S) in such an amount that the solid content concentration is preferably 70% by mass or more and less than 100% by mass, more preferably 75% by mass or more and less than 95% by mass.
When the solid content concentration is within this range, it is easy to mix the active ingredient well, and the workability in the process of filling the syringe with the adhesive paste and the coating process is excellent.
Here, "excellent workability in the step of filling the syringe with the adhesive paste" means "capable of filling an appropriate amount into the syringe without air bubbles".
In addition, when performing die bonding, it is possible to suppress the formation of voids between the adhesive paste and the substrate or the like to which it is to be adhered, thereby increasing the reliability of the package.
(2)微粒子(B)
 本発明の接着ペーストは、(B)成分として、平均一次粒子径が8μm以下の微粒子(B)を含有していてもよい。
 (B)成分としては、平均一次粒子径が5nm以上40nm以下の微粒子(B1)(以下、「(B1)成分」ということがある。)、平均一次粒子径が0.04μm超8μm以下の微粒子(B2)(以下、「(B2)成分」ということがある。)が挙げられる。
(2) Microparticles (B)
The adhesive paste of the present invention may contain fine particles (B) having an average primary particle size of 8 μm or less as the component (B).
Component (B) includes fine particles (B1) having an average primary particle size of 5 nm or more and 40 nm or less (hereinafter sometimes referred to as "(B1) component"), and fine particles having an average primary particle size of more than 0.04 µm and not more than 8 µm. (B2) (hereinafter sometimes referred to as "(B2) component").
 微粒子(B1)を含有させることにより、塗布工程における作業性に優れ、かつ、高温で加熱した場合の接着性及び耐熱性により優れる硬化物を与える接着ペーストが得られ易くなる。
 この効果がより得られ易いことから、微粒子(B1)の平均一次粒子径は、好ましくは5nm以上30nm以下、より好ましくは5nm以上20nm以下である。
 微粒子(B1)の平均一次粒子径は、透過型電子顕微鏡を用いて微粒子の形状を観察することにより求めることができる。
By containing the fine particles (B1), it becomes easy to obtain an adhesive paste that is excellent in workability in the coating step and gives a cured product that is excellent in adhesiveness and heat resistance when heated at a high temperature.
Since this effect can be obtained more easily, the average primary particle size of the fine particles (B1) is preferably 5 nm or more and 30 nm or less, more preferably 5 nm or more and 20 nm or less.
The average primary particle size of fine particles (B1) can be obtained by observing the shape of fine particles using a transmission electron microscope.
 微粒子(B1)の比表面積は、好ましくは10m/g以上500m/g以下、より好ましくは20m/g以上300m/g以下である。比表面積が上記範囲内であることで、塗布工程における作業性により優れる接着ペーストが得られ易くなる。
 比表面積は、BET多点法により求めることができる。
The specific surface area of the fine particles (B1) is preferably 10 m 2 /g or more and 500 m 2 /g or less, more preferably 20 m 2 /g or more and 300 m 2 /g or less. When the specific surface area is within the above range, it becomes easier to obtain an adhesive paste with better workability in the coating process.
The specific surface area can be determined by the BET multipoint method.
 微粒子(B1)の形状は、球状、鎖状、針状、板状、片状、棒状、繊維状等のいずれであってもよいが、球状であるのが好ましい。ここで、「球状」とは、「真球状の他、回転楕円体、卵形、金平糖状、まゆ状等球体に近似できる多面体形状を含む略球状」を意味する。 The shape of the fine particles (B1) may be spherical, chain-like, needle-like, plate-like, flake-like, rod-like, fiber-like, etc., but is preferably spherical. Here, "spherical" means "generally spherical, as well as nearly spherical, including polyhedral shapes that can be approximated to spheres such as spheroids, ovoids, confetti-like, and cocoon-like".
 微粒子(B1)の構成成分としては、特に制限はなく、金属;金属酸化物;鉱物;金属炭酸塩;金属硫酸塩;金属水酸化物;金属珪酸塩;無機成分;有機成分;シリコーン;等が挙げられる。
 また、用いる微粒子(B1)は表面が修飾されたものであってもよい。
The components of the fine particles (B1) are not particularly limited, and include metals, metal oxides, minerals, metal carbonates, metal sulfates, metal hydroxides, metal silicates, inorganic components, organic components, silicones, and the like. mentioned.
Further, the fine particles (B1) to be used may have a modified surface.
 金属とは、周期表における、1族(Hを除く)、2~11族、12族(Hgを除く)、13族(Bを除く)、14族(C及びSiを除く)、15族(N、P、As及びSbを除く)、又は16族(O、S、Se、Te及びPoを除く)に属する元素をいう。 Metals are group 1 (excluding H), groups 2 to 11, group 12 (excluding Hg), group 13 (excluding B), group 14 (excluding C and Si), group 15 (excluding C and Si) in the periodic table. N, P, As and Sb) or Group 16 elements (excluding O, S, Se, Te and Po).
 金属酸化物としては、例えば、酸化チタン、アルミナ、ベーマイト、酸化クロム、酸化ニッケル、酸化銅、酸化ジルコニウム、酸化インジウム、酸化亜鉛、及びこれらの複合酸化物等が挙げられる。金属酸化物の微粒子には、これらの金属酸化物からなるゾル粒子も含まれる。 Examples of metal oxides include titanium oxide, alumina, boehmite, chromium oxide, nickel oxide, copper oxide, zirconium oxide, indium oxide, zinc oxide, and composite oxides thereof. The fine particles of metal oxides also include sol particles composed of these metal oxides.
 鉱物としては、スメクタイト、ベントナイト等が挙げられる。
 スメクタイトとしては、例えば、モンモリロナイト、バイデライト、ヘクトライト、サポナイト、スチブンサイト、ノントロナイト、ソーコナイト等が挙げられる。
Minerals include smectite, bentonite, and the like.
Examples of smectites include montmorillonite, beidellite, hectorite, saponite, stevensite, nontronite, and sauconite.
 金属炭酸塩としては、炭酸カルシウム、炭酸マグネシウム等が、金属硫酸塩としては、硫酸カルシウム、硫酸バリウム等が、金属水酸化物としては、水酸化アルミニウム等が、金属珪酸塩としては、珪酸アルミニウム、珪酸カルシウム、珪酸マグネシウム等が挙げられる。
 また、無機成分としては、シリカ等が挙げられる。シリカとしては、乾式シリカ、湿式シリカ、表面修飾シリカ(表面が修飾されたシリカ)等が挙げられる。
 有機成分としては、アクリル系重合体等が挙げられる。
Examples of metal carbonates include calcium carbonate, magnesium carbonate, etc. Examples of metal sulfates include calcium sulfate, barium sulfate, etc. Examples of metal hydroxides include aluminum hydroxide, etc. Examples of metal silicates include aluminum silicate, Examples include calcium silicate and magnesium silicate.
Moreover, silica etc. are mentioned as an inorganic component. Examples of silica include dry silica, wet silica, surface-modified silica (surface-modified silica), and the like.
Organic components include acrylic polymers and the like.
 シリコーンとは、シロキサン結合による主骨格を持つ、人工高分子化合物を意味する。例えば、ジメチルポリシロキサン、ジフェニルポリシロキサン、メチルフェニルポリシロキサン等が挙げられる。 "Silicone" means an artificial polymer compound with a main skeleton made up of siloxane bonds. Examples include dimethylpolysiloxane, diphenylpolysiloxane, methylphenylpolysiloxane, and the like.
 微粒子(B1)は、一種単独で、あるいは二種以上を組み合わせて用いることができる。
 これらの中でも、本発明においては、透明性に優れる接着ペーストが得られ易いことから、シリカ、金属酸化物、鉱物が好ましく、シリカがより好ましい。
Fine particles (B1) can be used singly or in combination of two or more.
Among these, in the present invention, silica, metal oxides, and minerals are preferable, and silica is more preferable, because an adhesive paste having excellent transparency can be easily obtained.
 シリカの中でも、接着ペーストとして混合が比較的容易である観点、及び塗布工程における作業性により優れる接着ペーストが得られ易いことから、表面修飾シリカが好ましく、疎水性の表面修飾シリカがより好ましい。
 疎水性の表面修飾シリカとしては、表面に、トリメチルシリル基等のトリ炭素数1~20のトリアルキルシリル基;ジメチルシリル基等のジ炭素数1~20のアルキルシリル基;オクチルシリル基等の炭素数1~20のアルキルシリル基;を結合させたシリカ;シリコーンオイルで表面を処理したシリカ;等が挙げられる。
 疎水性の表面修飾シリカは、例えば、シリカ粒子に、トリ炭素数1~20のトリアルキルシリル基、ジ炭素数1~20のアルキルシリル基、炭素数1~20のアルキルシリル基等を有するシランカップリング剤を用いて表面修飾することにより、あるいは、シリカ粒子をシリコーンオイルで処理することにより得ることができる。
Among silica, surface-modified silica is preferable, and hydrophobic surface-modified silica is more preferable, from the viewpoint that it is relatively easy to mix as an adhesive paste and that an adhesive paste having excellent workability in the coating process can be easily obtained.
Hydrophobic surface-modified silica includes, on the surface, a trialkylsilyl group having 1 to 20 tricarbon atoms such as a trimethylsilyl group; an alkylsilyl group having 1 to 20 dicarbon atoms such as a dimethylsilyl group; Silica bound with alkylsilyl groups of number 1 to 20; Silica surface-treated with silicone oil; and the like.
Hydrophobic surface-modified silica is, for example, a silica particle having a trialkylsilyl group having 1 to 20 carbon atoms, an alkylsilyl group having 1 to 20 dicarbon atoms, an alkylsilyl group having 1 to 20 carbon atoms, or the like. It can be obtained by surface modification using a coupling agent, or by treating silica particles with silicone oil.
 本発明の接着ペーストが微粒子(B1)〔(B1)成分〕を含有する場合、(B1)成分の含有量は特に限定されないが、その量は、接着ペーストの総質量に対して、好ましくは1質量%以上10質量%未満、より好ましくは3質量%以上8質量%未満、さらに好ましくは4質量%以上7質量%未満となる量である。
 (B1)成分を上記範囲で用いることにより、(B1)成分を加える効果をより発現させることができる。
When the adhesive paste of the present invention contains fine particles (B1) [component (B1)], the content of component (B1) is not particularly limited, but the amount is preferably 1 % by mass or more and less than 10 mass %, more preferably 3 mass % or more and less than 8 mass %, still more preferably 4 mass % or more and less than 7 mass %.
By using the component (B1) within the above range, the effect of adding the component (B1) can be further expressed.
 また、(B1)成分の含有割合は、接着ペーストの固形分の総質量に対して、好ましくは3質量%以上15質量%未満、より好ましくは4質量%以上12質量%未満、さらに好ましくは6質量%以上10質量%未満となる量である。
 (B1)成分の含有割合が上記下限値以上であることにより、(B1)成分を加える効果がより発現し易くなる。(B1)成分の含有割合が上記上限値未満であることにより、-60℃における貯蔵弾性率が2900MPa未満である硬化物が得られ易くなる。
 また、(B1)成分を上記範囲で用いることにより、冷熱衝撃時に生じる応力を緩和し、半導体素子の剥がれを低減ないし防止することが可能な接着信頼性の高い接着ペーストが得られ易くなる。
In addition, the content of component (B1) is preferably 3% by mass or more and less than 15% by mass, more preferably 4% by mass or more and less than 12% by mass, still more preferably 6% by mass or more, relative to the total mass of the solid content of the adhesive paste. It is an amount that is equal to or more than 10% by mass and less than 10% by mass.
When the content of component (B1) is equal to or higher than the above lower limit, the effect of adding component (B1) is more likely to be exhibited. When the content of component (B1) is less than the above upper limit, it becomes easier to obtain a cured product having a storage elastic modulus of less than 2900 MPa at -60°C.
In addition, by using the component (B1) within the above range, it becomes easier to obtain an adhesive paste with high adhesion reliability that can reduce or prevent peeling of semiconductor elements by relieving stress generated during thermal shock.
 微粒子(B2)を含有させることにより、高温で加熱した場合の接着性及び耐熱性により優れる硬化物を与える接着ペーストが得られ易くなる。
 この効果がより得られ易いことから、微粒子(B2)の平均一次粒子径は、好ましくは0.06μm超7μm以下、より好ましくは0.3μm超6μm以下、さらに好ましくは1μm超4μm以下である。
By containing the fine particles (B2), it becomes easier to obtain an adhesive paste that gives a cured product with excellent adhesiveness and heat resistance when heated at a high temperature.
Since this effect is more likely to be obtained, the average primary particle size of the fine particles (B2) is preferably more than 0.06 μm and 7 μm or less, more preferably more than 0.3 μm and 6 μm or less, still more preferably more than 1 μm and 4 μm or less.
 微粒子(B2)の平均一次粒子径は、レーザー回折・散乱式粒度分布測定装置(例えば、株式会社堀場製作所製、製品名「LA-920」)等を用いて、レーザー散乱法による粒度分布の測定を行うことにより求めることができる。 The average primary particle diameter of the fine particles (B2) is measured by a laser scattering method using a laser diffraction/scattering particle size distribution analyzer (for example, product name “LA-920” manufactured by Horiba, Ltd.). can be obtained by performing
 微粒子(B2)の形状は、微粒子(B1)の形状として例示したものと同様のものが挙げられるが、球状であるのが好ましい。
 また、微粒子(B2)の構成成分としては、微粒子(B1)の構成成分として例示したものと同様のものが挙げられる。
 微粒子(B2)は、一種単独で、あるいは二種以上を組み合わせて用いることができる。
The shape of the fine particles (B2) may be the same as those exemplified as the shape of the fine particles (B1), but a spherical shape is preferable.
Further, as the component of the fine particles (B2), the same components as those exemplified as the components of the fine particles (B1) can be mentioned.
The fine particles (B2) can be used singly or in combination of two or more.
 これらの中でも、微粒子(B2)としては、接着ペーストとして混合が比較的容易である観点、並びに、接着性及び耐熱性に優れる硬化物が得られ易いことから、シリコーンで表面が被覆された金属酸化物、シリカ及びシリコーンからなる群から選ばれる少なくとも一種の微粒子が好ましく、シリカ、シリコーンがより好ましい。 Among these, as the fine particles (B2), from the viewpoint of being relatively easy to mix as an adhesive paste, and from the fact that a cured product having excellent adhesiveness and heat resistance can be easily obtained, a metal oxide whose surface is coated with silicone At least one kind of fine particles selected from the group consisting of silica, silica and silicone are preferred, and silica and silicone are more preferred.
 本発明の接着ペーストが微粒子(B2)〔(B2)成分〕を含有する場合、(B2)成分の含有量は特に限定されないが、その量は、接着ペーストの総質量に対して、好ましくは1質量%以上10質量%未満、より好ましくは3質量%以上9質量%未満、さらに好ましくは4質量%以上8質量%未満となる量である。
 (B2)成分を上記範囲で用いることにより、(B2)成分を加える効果をより発現させることができる。
When the adhesive paste of the present invention contains fine particles (B2) [component (B2)], the content of component (B2) is not particularly limited, but the amount is preferably 1 % by mass or more and less than 10 mass %, more preferably 3 mass % or more and less than 9 mass %, and still more preferably 4 mass % or more and less than 8 mass %.
By using the component (B2) within the above range, the effect of adding the component (B2) can be further expressed.
 また、(B2)成分の含有割合は、接着ペーストの固形分の総質量に対して、好ましくは2質量%以上15質量%未満、より好ましくは3質量%以上12質量%未満、さらに好ましくは4質量%以上10質量%未満となる量である。
 (B2)成分の含有割合が上記下限値以上であることにより、(B2)成分を加える効果がより発現し易くなる。(B2)成分の含有割合が上記上限値未満であることにより、-60℃における貯蔵弾性率が2900MPa未満である硬化物が得られ易くなる。
 また、(B2)成分を上記範囲で用いることにより、冷熱衝撃時に生じる応力を緩和し、半導体素子の剥がれを低減ないし防止することが可能な密着信頼性の高い接着ペーストが得られ易くなる。
In addition, the content of component (B2) is preferably 2% by mass or more and less than 15% by mass, more preferably 3% by mass or more and less than 12% by mass, still more preferably 4% by mass, based on the total mass of the solid content of the adhesive paste. It is an amount that is equal to or more than 10% by mass and less than 10% by mass.
When the content of the component (B2) is equal to or higher than the above lower limit, the effect of adding the component (B2) is more readily manifested. When the content of component (B2) is less than the above upper limit, it becomes easier to obtain a cured product having a storage modulus of less than 2900 MPa at -60°C.
In addition, by using the component (B2) within the above range, it becomes easy to obtain an adhesive paste with high adhesion reliability that can reduce or prevent peeling of semiconductor elements by relieving stress generated during thermal shock.
 本発明の接着ペーストが(B)成分を含有する場合、(B)成分の含有量は特に限定されないが、その量は、接着ペーストの総質量に対して、好ましくは2質量%以上20質量%未満、より好ましくは6質量%以上17質量%未満、さらに好ましくは8質量%以上15質量%未満となる量である。
 (B)成分を上記範囲で用いることにより、(B)成分を加える効果をより発現させることができる。
When the adhesive paste of the present invention contains component (B), the content of component (B) is not particularly limited, but the amount is preferably 2% by mass or more and 20% by mass with respect to the total mass of the adhesive paste. less than, more preferably 6% by mass or more and less than 17% by mass, and still more preferably 8% by mass or more and less than 15% by mass.
By using the component (B) within the above range, the effect of adding the component (B) can be further expressed.
 また、(B)成分の含有割合は、接着ペーストの固形分の総質量に対して、好ましくは5質量%以上30質量%未満、より好ましくは7質量%以上24質量%未満、さらに好ましくは10質量%以上20質量%未満となる量である。
 (B)成分の含有割合が上記下限値以上であることにより、(B)成分を加える効果がより発現し易くなる。(B)成分の含有割合が上記上限値未満であることにより、-60℃における貯蔵弾性率が2900MPa未満である硬化物が得られ易くなる。
 また、(B)成分を上記範囲で用いることにより、シリコンチップのミラー面に接着ペーストを塗布し、被着体(例えば、無電解銀メッキ銅板)と圧着させ、加熱処理して接着ペーストを硬化させた際に、良好な(形の良い)フィレット部(シリコンチップからはみ出している部分)が形成され易くなるため、接着強度がより高い硬化物を与える接着ペーストが得られ易くなる傾向がある。
 ここで、「良好なフィレット部」とは、「チップの端部から、チップ1辺の長さの5~35%の位置(例えば、チップ1辺が1mmの場合は50~350μmの位置)までの上記はみ出している部分が、チップ4辺の周縁部すべてに存在すること」をいう。
The content of component (B) is preferably 5% by mass or more and less than 30% by mass, more preferably 7% by mass or more and less than 24% by mass, still more preferably 10% by mass, relative to the total mass of the solid content of the adhesive paste. It is an amount that is not less than 20% by mass and less than 20% by mass.
When the content ratio of the component (B) is equal to or higher than the above lower limit, the effect of adding the component (B) becomes more likely to manifest. When the content of component (B) is less than the above upper limit, it becomes easier to obtain a cured product having a storage elastic modulus of less than 2900 MPa at -60°C.
Further, by using the component (B) within the above range, the adhesive paste is applied to the mirror surface of the silicon chip, pressed against an adherend (for example, an electroless silver-plated copper plate), and heat-treated to cure the adhesive paste. When pressed, a good (well-shaped) fillet portion (portion protruding from the silicon chip) is easily formed, so it tends to be easier to obtain an adhesive paste that gives a cured product with higher adhesive strength.
Here, the ``good fillet portion'' means ``from the edge of the chip to a position of 5 to 35% of the length of one side of the chip (for example, a position of 50 to 350 μm when one side of the chip is 1 mm). The protruding portions of are present on all four sides of the chip.
(3)シランカップリング剤(C)
 本発明の接着ペーストは、(C)成分として、シランカップリング剤を含有していてもよい。
 シランカップリング剤としては、分子内に窒素原子を有するシランカップリング剤(C1)(以下、「(C1)成分」ということがある。)や分子内に酸無水物構造を有するシランカップリング剤(C2)(以下、「(C2)成分」ということがある。)が挙げられ、シランカップリング剤(C1)及びシランカップリング剤(C2)の少なくとも一種を含有していることが好ましい。
(3) Silane coupling agent (C)
The adhesive paste of the present invention may contain a silane coupling agent as the (C) component.
As the silane coupling agent, a silane coupling agent (C1) having a nitrogen atom in the molecule (hereinafter sometimes referred to as "component (C1)") or a silane coupling agent having an acid anhydride structure in the molecule. (C2) (hereinafter sometimes referred to as "component (C2)"), and preferably contains at least one of silane coupling agent (C1) and silane coupling agent (C2).
 シランカップリング剤(C1)を含有させることにより、塗布工程における作業性に優れ、かつ、加熱時に、(A)成分と共に縮合反応することによる硬化性に優れ、高温で加熱した場合の接着性、耐熱性及び硬化物の割れ抑制性により優れる硬化物を与える接着ペーストが得られ易くなる。
 ここで、「硬化物の割れ抑制性により優れる」とは、「接着ペーストを加熱して硬化物を得る際に、温度変化に伴う硬化物の割れが発生しないこと」をいう。
By containing the silane coupling agent (C1), excellent workability in the coating process, and excellent curability due to condensation reaction with the component (A) during heating, adhesion when heated at high temperature, It becomes easy to obtain an adhesive paste that gives an excellent cured product due to heat resistance and crack suppression of the cured product.
Here, the phrase "excellent crack suppression of the cured product" means that "when the adhesive paste is heated to obtain a cured product, cracking does not occur in the cured product due to temperature changes".
 シランカップリング剤(C1)としては、分子内に窒素原子を有するシランカップリング剤であれば特に制限はない。例えば、下記式(c-1)で表されるトリアルコキシシラン化合物、式(c-2)で表されるジアルコキシアルキルシラン化合物又はジアルコキシアリールシラン化合物等が挙げられる。 The silane coupling agent (C1) is not particularly limited as long as it is a silane coupling agent having a nitrogen atom in its molecule. Examples thereof include a trialkoxysilane compound represented by the following formula (c-1), and a dialkoxyalkylsilane compound or dialkoxyarylsilane compound represented by the formula (c-2).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記式中、Rは、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、t-ブトキシ基等の炭素数1~6のアルコキシ基を表す。複数のR同士は同一であっても相異なっていてもよい。
 Rは、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等の炭素数1~6のアルキル基;又は、フェニル基、4-クロロフェニル基、4-メチルフェニル基、1-ナフチル基等の、置換基を有する、又は置換基を有さないアリール基;を表す。
In the above formula, R a represents an alkoxy group having 1 to 6 carbon atoms such as methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy and t-butoxy. A plurality of R a may be the same or different.
R b is an alkyl group having 1 to 6 carbon atoms such as a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group; or a phenyl group, 4-chlorophenyl group, 4- An aryl group with or without a substituent such as a methylphenyl group and a 1-naphthyl group;
 Rは、窒素原子を有する、炭素数1~10の有機基を表す。また、Rは、さらに他のケイ素原子を含む基と結合していてもよい。
 Rの炭素数1~10の有機基の具体例としては、N-2-(アミノエチル)-3-アミノプロピル基、3-アミノプロピル基、N-(1,3-ジメチル-ブチリデン)アミノプロピル基、3-ウレイドプロピル基、N-フェニル-アミノプロピル基等が挙げられる。
R c represents an organic group having 1 to 10 carbon atoms and having a nitrogen atom. In addition, R c may be further bonded to another silicon atom-containing group.
Specific examples of the organic group having 1 to 10 carbon atoms for R c include N-2-(aminoethyl)-3-aminopropyl group, 3-aminopropyl group, N-(1,3-dimethyl-butylidene)amino propyl group, 3-ureidopropyl group, N-phenyl-aminopropyl group and the like.
 上記式(c-1)又は(c-2)で表される化合物のうち、Rが、他のケイ素原子を含む基と結合した有機基である場合の化合物としては、イソシアヌレート骨格を介して他のケイ素原子と結合してイソシアヌレート系シランカップリング剤を構成するものや、ウレア骨格を介して他のケイ素原子と結合してウレア系シランカップリング剤を構成するものが挙げられる。 Among the compounds represented by the above formula (c-1) or (c-2), the compound in which R c is an organic group bonded to another group containing a silicon atom includes an isocyanurate skeleton. Examples include those that form an isocyanurate-based silane coupling agent by bonding with other silicon atoms, and those that form a urea-based silane coupling agent by bonding with other silicon atoms via a urea skeleton.
 これらの中でも、シランカップリング剤(C1)としては、接着強度がより高い硬化物が得られ易いことから、イソシアヌレート系シランカップリング剤、及びウレア系シランカップリング剤が好ましく、さらに、分子内に、ケイ素原子に結合したアルコキシ基を4以上有するものが好ましい。
 ケイ素原子に結合したアルコキシ基を4以上有するとは、同一のケイ素原子に結合したアルコキシ基と、異なるケイ素原子に結合したアルコキシ基との総合計数が4以上という意味である。
Among these, the silane coupling agent (C1) is preferably an isocyanurate-based silane coupling agent and a urea-based silane coupling agent, since a cured product having higher adhesive strength can be easily obtained. In addition, those having 4 or more silicon-bonded alkoxy groups are preferred.
Having 4 or more silicon-bonded alkoxy groups means that the total number of alkoxy groups bonded to the same silicon atom and alkoxy groups bonded to different silicon atoms is 4 or more.
 ケイ素原子に結合したアルコキシ基を4以上有するイソシアヌレート系シランカップリング剤としては、下記式(c-3)で表される化合物が、ケイ素原子に結合したアルコキシ基を4以上有するウレア系シランカップリング剤としては、下記式(c-4)で表される化合物が挙げられる。 As the isocyanurate-based silane coupling agent having 4 or more silicon-bonded alkoxy groups, a compound represented by the following formula (c-3) is a urea-based silane cup having 4 or more silicon-bonded alkoxy groups. Ring agents include compounds represented by the following formula (c-4).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式中、Rは、前記式(c-1)及び(c-2)におけるRと同じ意味を表す。t1~t5はそれぞれ独立して、1~10の整数を表し、1~6の整数が好ましく、3が特に好ましい。 In the formula, R a has the same meaning as R a in the formulas (c-1) and (c-2). Each of t1 to t5 independently represents an integer of 1 to 10, preferably an integer of 1 to 6, and particularly preferably 3.
 式(c-3)で表される化合物の具体例としては、1,3,5-N-トリス(3-トリメトキシシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-トリエトキシシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-トリi-プロポキシシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-トリブトキシシリルプロピル)イソシアヌレート等の1,3,5-N-トリス〔(トリ(炭素数1~6)アルコキシ)シリル(炭素数1~10)アルキル〕イソシアヌレート;
1,3,5-N-トリス(3-ジメトキシメチルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジメトキシエチルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジメトキシi-プロピルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジメトキシn-プロピルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジメトキシフェニルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジエトキシメチルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジエトキシエチルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジエトキシi-プロピルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジエトキシn-プロピルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジエトキシフェニルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジi-プロポキシメチルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジi-プロポキシエチルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジi-プロポキシi-プロピルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジi-プロポキシn-プロピルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジi-プロポキシフェニルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジブトキシメチルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジブトキシエチルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジブトキシi-プロピルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジブトキシn-プロピルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジブトキシフェニルシリルプロピル)イソシアヌレート等の1,3,5-N-トリス〔(ジ(炭素数1~6)アルコキシ)シリル(炭素数1~10)アルキル〕イソシアヌレート;等が挙げられる。
Specific examples of the compound represented by formula (c-3) include 1,3,5-N-tris(3-trimethoxysilylpropyl) isocyanurate, 1,3,5-N-tris(3-tri ethoxysilylpropyl) isocyanurate, 1,3,5-N-tris(3-tri-i-propoxysilylpropyl) isocyanurate, 1,3,5-N-tris(3-tributoxysilylpropyl) isocyanurate, etc. 1,3,5-N-tris[(tri(C1-C6)alkoxy)silyl(C1-C10)alkyl]isocyanurate;
1,3,5-N-tris (3-dimethoxymethylsilylpropyl) isocyanurate, 1,3,5-N-tris (3-dimethoxyethylsilylpropyl) isocyanurate, 1,3,5-N-tris ( 3-dimethoxy i-propylsilylpropyl) isocyanurate, 1,3,5-N-tris(3-dimethoxy n-propylsilylpropyl) isocyanurate, 1,3,5-N-tris(3-dimethoxyphenylsilylpropyl) ) isocyanurate, 1,3,5-N-tris(3-diethoxymethylsilylpropyl) isocyanurate, 1,3,5-N-tris(3-diethoxyethylsilylpropyl) isocyanurate, 1,3, 5-N-tris (3-diethoxy i-propylsilylpropyl) isocyanurate, 1,3,5-N-tris (3-diethoxy n-propylsilylpropyl) isocyanurate, 1,3,5-N-tris ( 3-diethoxyphenylsilylpropyl) isocyanurate, 1,3,5-N-tris(3-di i-propoxymethylsilylpropyl) isocyanurate, 1,3,5-N-tris(3-di i-propoxy ethylsilylpropyl) isocyanurate, 1,3,5-N-tris(3-di-i-propoxy i-propylsilylpropyl) isocyanurate, 1,3,5-N-tris(3-di-i-propoxy n- propylsilylpropyl)isocyanurate, 1,3,5-N-tris(3-di-i-propoxyphenylsilylpropyl)isocyanurate, 1,3,5-N-tris(3-dibutoxymethylsilylpropyl)isocyanurate , 1,3,5-N-tris(3-dibutoxyethylsilylpropyl) isocyanurate, 1,3,5-N-tris(3-dibutoxy i-propylsilylpropyl) isocyanurate, 1,3,5- 1,3,5-N-tris [(di (C1-6)alkoxy)silyl(C1-10)alkyl]isocyanurate; and the like.
 式(c-4)で表される化合物の具体例としては、N,N’-ビス(3-トリメトキシシリルプロピル)ウレア、N,N’-ビス(3-トリエトキシシリルプロピル)ウレア、N,N’-ビス(3-トリプロポキシシリルプロピル)ウレア、N,N’-ビス(3-トリブトキシシリルプロピル)ウレア、N,N’-ビス(2-トリメトキシシリルエチル)ウレア等のN,N’-ビス〔(トリ(炭素数1~6)アルコキシシリル)(炭素数1~10)アルキル〕ウレア;
N,N’-ビス(3-ジメトキシメチルシリルプロピル)ウレア、N,N’-ビス(3-ジメトキシエチルシリルプロピル)ウレア、N,N’-ビス(3-ジエトキシメチルシリルプロピル)ウレア等のN,N’-ビス〔(ジ(炭素数1~6)アルコキシ(炭素数1~6)アルキルシリル(炭素数1~10)アルキル)ウレア;
N,N’-ビス(3-ジメトキシフェニルシリルプロピル)ウレア、N,N’-ビス(3-ジエトキシフェニルシリルプロピル)ウレア等のN,N’-ビス〔(ジ(炭素数1~6)アルコキシ(炭素数6~20)アリールシリル(炭素数1~10)アルキル)ウレア;等が挙げられる。
 シランカップリング剤(C1)は、一種単独で、あるいは二種以上を組み合わせて用いることができる。
Specific examples of the compound represented by formula (c-4) include N,N'-bis(3-trimethoxysilylpropyl)urea, N,N'-bis(3-triethoxysilylpropyl)urea, N , N'-bis(3-tripropoxysilylpropyl)urea, N,N'-bis(3-tributoxysilylpropyl)urea, N,N'-bis(2-trimethoxysilylethyl)urea, etc. N'-bis[(tri(C1-C6)alkoxysilyl)(C1-C10)alkyl]urea;
N,N'-bis(3-dimethoxymethylsilylpropyl)urea, N,N'-bis(3-dimethoxyethylsilylpropyl)urea, N,N'-bis(3-diethoxymethylsilylpropyl)urea, etc. N,N'-bis[(di(C1-C6)alkoxy(C1-C6)alkylsilyl(C1-C10)alkyl)urea;
N,N'-bis[(di(C1-6) such as N,N'-bis(3-dimethoxyphenylsilylpropyl)urea, N,N'-bis(3-diethoxyphenylsilylpropyl)urea alkoxy (6 to 20 carbon atoms) arylsilyl (1 to 10 carbon atoms) alkyl) urea;
The silane coupling agents (C1) can be used singly or in combination of two or more.
 これらの中でも、シランカップリング剤(C1)としては、1,3,5-N-トリス(3-トリメトキシシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-トリエトキシシリルプロピル)イソシアヌレート(以下、前記2つを「イソシアヌレート化合物」という。)、N,N’-ビス(3-トリメトキシシリルプロピル)ウレア、N,N’-ビス(3-トリエトキシシリルプロピル)ウレア(以下、前記2つを「ウレア化合物」という。)、及び、上記イソシアヌレート化合物とウレア化合物との組み合わせを用いるのが好ましい。 Among these, the silane coupling agent (C1) includes 1,3,5-N-tris(3-trimethoxysilylpropyl) isocyanurate, 1,3,5-N-tris(3-triethoxysilylpropyl) ) isocyanurate (the above two are hereinafter referred to as “isocyanurate compounds”), N,N′-bis(3-trimethoxysilylpropyl)urea, N,N′-bis(3-triethoxysilylpropyl)urea (The above two are hereinafter referred to as "urea compounds"), and a combination of the isocyanurate compound and the urea compound is preferably used.
 上記イソシアヌレート化合物とウレア化合物とを組み合わせて用いる場合、両者の使用割合は、(イソシアヌレート化合物)と(ウレア化合物)の質量比で、100:1~100:200であるのが好ましく、100:10~100:110がより好ましい。このような割合で、イソシアヌレート化合物とウレア化合物とを組み合わせて用いることにより、接着強度がより高く、耐熱性により優れる硬化物を与える接着ペーストを得ることができる。 When the isocyanurate compound and the urea compound are used in combination, the ratio of the two to be used is preferably 100:1 to 100:200 in mass ratio of (isocyanurate compound) to (urea compound), and 100: 10 to 100:110 is more preferred. By using the isocyanurate compound and the urea compound in combination in such a ratio, it is possible to obtain an adhesive paste that gives a cured product having higher adhesive strength and superior heat resistance.
 本発明の接着ペーストがシランカップリング剤(C1)〔(C1)成分〕を含有する場合、(C1)成分の含有量は特に限定されないが、その量は、接着ペーストの固形分の総質量に対して、好ましくは2質量%以上15質量%未満、より好ましくは2質量%以上8質量%未満、さらに好ましくは2質量%以上6質量%未満となる量である。
 (C1)成分を上記範囲で用いることにより、(C1)成分を加える効果をより発現させることができ、かつ、-60℃における貯蔵弾性率が2900MPa未満である硬化物が得られ易くなる。
When the adhesive paste of the present invention contains a silane coupling agent (C1) [(C1) component], the content of the (C1) component is not particularly limited, but the amount is based on the total mass of the solid content of the adhesive paste. On the other hand, the amount is preferably 2% by mass or more and less than 15% by mass, more preferably 2% by mass or more and less than 8% by mass, and still more preferably 2% by mass or more and less than 6% by mass.
By using the component (C1) within the above range, the effect of adding the component (C1) can be further exhibited, and a cured product having a storage elastic modulus at -60°C of less than 2900 MPa can be easily obtained.
 シランカップリング剤(C2)を含有させることにより、塗布工程における作業性に優れ、かつ、高温で加熱した場合の接着性及び耐熱性により優れる硬化物を与える接着ペーストが得られ易くなる。 By containing the silane coupling agent (C2), it becomes easier to obtain an adhesive paste that has excellent workability in the coating process and gives a cured product with excellent adhesiveness and heat resistance when heated at a high temperature.
 シランカップリング剤(C2)としては、2-(トリメトキシシリル)エチル無水コハク酸、2-(トリエトキシシリル)エチル無水コハク酸、3-(トリメトキシシリル)プロピル無水コハク酸、3-(トリエトキシシリル)プロピル無水コハク酸等の、トリ(炭素数1~6)アルコキシシリル(炭素数2~8)アルキル無水コハク酸;
2-(ジメトキシメチルシリル)エチル無水コハク酸等の、ジ(炭素数1~6)アルコキシメチルシリル(炭素数2~8)アルキル無水コハク酸;
2-(メトキシジメチルシリル)エチル無水コハク酸等の、(炭素数1~6)アルコキシジメチルシリル(炭素数2~8)アルキル無水コハク酸;
Silane coupling agents (C2) include 2-(trimethoxysilyl)ethyl succinic anhydride, 2-(triethoxysilyl)ethyl succinic anhydride, 3-(trimethoxysilyl)propyl succinic anhydride, 3-(tri tri(C1-6)alkoxysilyl(C2-8)alkyl succinic anhydrides such as ethoxysilyl)propyl succinic anhydride;
di(C1-6)alkoxymethylsilyl(C2-8)alkyl succinic anhydrides such as 2-(dimethoxymethylsilyl)ethyl succinic anhydride;
(1-6 carbon atoms) alkoxydimethylsilyl (2-8 carbon atoms) alkyl succinic anhydrides, such as 2-(methoxydimethylsilyl)ethyl succinic anhydride;
2-(トリクロロシリル)エチル無水コハク酸、2-(トリブロモシリル)エチル無水コハク酸等の、トリハロゲノシリル(炭素数2~8)アルキル無水コハク酸;
2-(ジクロロメチルシリル)エチル無水コハク酸等の、ジハロゲノメチルシリル(炭素数2~8)アルキル無水コハク酸;
2-(クロロジメチルシリル)エチル無水コハク酸等の、ハロゲノジメチルシリル(炭素数2~8)アルキル無水コハク酸;等が挙げられる。
 シランカップリング剤(C2)は、一種単独で、あるいは二種以上を組み合わせて用いることができる。
trihalogenosilyl (2-8 carbon atoms) alkyl succinic anhydrides such as 2-(trichlorosilyl)ethyl succinic anhydride and 2-(tribromosilyl)ethyl succinic anhydride;
dihalogenomethylsilyl (2-8 carbon atoms) alkyl succinic anhydride such as 2-(dichloromethylsilyl)ethyl succinic anhydride;
and halogenodimethylsilyl (2-8 carbon atoms) alkyl succinic anhydride such as 2-(chlorodimethylsilyl)ethyl succinic anhydride.
The silane coupling agents (C2) can be used singly or in combination of two or more.
 これらの中でも、シランカップリング剤(C2)としては、トリ(炭素数1~6)アルコキシシリル(炭素数2~8)アルキル無水コハク酸が好ましく、3-(トリメトキシシリル)プロピル無水コハク酸又は3-(トリエトキシシリル)プロピル無水コハク酸が特に好ましい。 Among them, the silane coupling agent (C2) is preferably tri(C 1-6) alkoxysilyl (C 2-8) alkyl succinic anhydride, 3-(trimethoxysilyl) propyl succinic anhydride or 3-(Triethoxysilyl)propyl succinic anhydride is particularly preferred.
 本発明の接着ペーストがシランカップリング剤(C2)〔(C2)成分〕を含有する場合、(C2)成分の含有量は特に限定されないが、その量は、接着ペーストの固形分の総質量に対して、好ましくは0.1質量%以上4質量%未満、より好ましくは0.2質量%以上3質量%未満、さらに好ましくは0.3質量%以上2質量%未満となる量である。
 (C2)成分を上記範囲で用いることにより、(C2)成分を加える効果をより発現させることができ、かつ、-60℃における貯蔵弾性率が2900MPa未満である硬化物が得られ易くなる。
When the adhesive paste of the present invention contains a silane coupling agent (C2) [(C2) component], the content of the (C2) component is not particularly limited, but the amount is based on the total mass of the solid content of the adhesive paste. On the other hand, the amount is preferably 0.1% by mass or more and less than 4% by mass, more preferably 0.2% by mass or more and less than 3% by mass, and still more preferably 0.3% by mass or more and less than 2% by mass.
By using the component (C2) within the above range, the effect of adding the component (C2) can be further exhibited, and a cured product having a storage elastic modulus at -60°C of less than 2900 MPa can be easily obtained.
 本発明の接着ペーストが(C)成分を含有する場合、(C)成分の含有量は特に限定されないが、その量は、接着ペーストの総質量に対して、好ましくは1質量%以上15質量%未満、より好ましくは2質量%以上13質量%未満、さらに好ましくは3質量%以上12質量%未満となる量である。
 (C)成分を上記範囲で用いることにより、(C)成分を加える効果をより発現させることができ、かつ、-60℃における貯蔵弾性率が2900MPa未満である硬化物が得られ易くなる。
When the adhesive paste of the present invention contains component (C), the content of component (C) is not particularly limited. less than, more preferably 2% by mass or more and less than 13% by mass, still more preferably 3% by mass or more and less than 12% by mass.
By using the component (C) within the above range, the effect of adding the component (C) can be further exhibited, and a cured product having a storage elastic modulus of less than 2900 MPa at -60°C can be easily obtained.
 また、(C)成分の含有割合は、接着ペーストの固形分の総質量に対して、好ましくは2質量%以上19質量%未満、より好ましくは2質量%以上11質量%未満、さらに好ましくは2質量%以上8質量%未満となる量である。
 (C)成分の含有割合が上記下限値以上であることにより、(C)成分を加える効果をより発現させることができ、また、後述の熱履歴前後における全光線透過率の維持率を高くすることができる傾向にある。(C)成分の含有割合が上記上限値未満であることにより、-60℃における貯蔵弾性率が2900MPa未満である硬化物が得られ易くなり、また、屈折率が低い接着ペーストや硬化物が得られ易く、屈折率が低いことが要望される光半導体素子に好適に用いられ易くなるとともに、光半導体素子がLED素子であり、LEDパッケージとして使用した場合には、LED素子の光取り出し効率が向上し、発光効率の低下を抑制することができる。
In addition, the content of component (C) is preferably 2% by mass or more and less than 19% by mass, more preferably 2% by mass or more and less than 11% by mass, still more preferably 2% by mass or more, based on the total mass of the solid content of the adhesive paste. It is an amount that is not less than 8% by mass and less than 8% by mass.
When the content of component (C) is at least the above lower limit, the effect of adding component (C) can be further expressed, and the maintenance rate of total light transmittance before and after heat history, which will be described later, is increased. tend to be able to When the content of component (C) is less than the above upper limit, it becomes easier to obtain a cured product having a storage elastic modulus of less than 2900 MPa at −60° C., and an adhesive paste or cured product having a low refractive index is obtained. The optical semiconductor element is an LED element, and when used as an LED package, the light extraction efficiency of the LED element is improved. It is possible to suppress a decrease in luminous efficiency.
(4)その他の添加成分
 本発明の接着ペーストは、本発明の目的を阻害しない範囲で、上記(A)~(C)成分以外の他の成分〔(D)成分〕を含有してもよい。
 (D)成分としては、酸化防止剤、紫外線吸収剤、光安定剤等が挙げられる。
(4) Other additive components The adhesive paste of the present invention may contain other components [(D) component] other than the above components (A) to (C) within a range that does not impede the purpose of the present invention. .
Component (D) includes antioxidants, ultraviolet absorbers, light stabilizers, and the like.
 酸化防止剤は、加熱時の酸化劣化を防止する目的で添加される。
 酸化防止剤としては、リン系酸化防止剤、フェノール系酸化防止剤、硫黄系酸化防止剤等が挙げられる。
Antioxidants are added for the purpose of preventing oxidative deterioration during heating.
Antioxidants include phosphorus antioxidants, phenolic antioxidants, sulfur antioxidants, and the like.
 リン系酸化防止剤としては、ホスファイト類、オキサホスファフェナントレンオキサイド類等が挙げられる。
 フェノール系酸化防止剤としては、モノフェノール類、ビスフェノール類、高分子型フェノール類等が挙げられる。
 硫黄系酸化防止剤としては、ジラウリル-3,3’-チオジプロピオネート、ジミリスチル-3,3’-チオジプロピオネート、ジステアリル-3,3’-チオジプロピオネート等が挙げられる。
Phosphorus antioxidants include phosphites, oxaphosphaphenanthrene oxides and the like.
Phenolic antioxidants include monophenols, bisphenols, polymeric phenols, and the like.
Examples of sulfur-based antioxidants include dilauryl-3,3'-thiodipropionate, dimyristyl-3,3'-thiodipropionate, distearyl-3,3'-thiodipropionate and the like.
 これらの酸化防止剤は、一種単独で、あるいは二種以上を組み合わせて用いることができる。酸化防止剤の使用量は、(A)成分に対して、通常、10質量%以下である。 These antioxidants can be used singly or in combination of two or more. The amount of antioxidant to be used is generally 10% by mass or less relative to the component (A).
 紫外線吸収剤は、得られる接着ペーストの耐光性を向上させる目的で添加される。
 紫外線吸収剤としては、サリチル酸類、ベンゾフェノン類、ベンゾトリアゾール類、ヒンダードアミン類等が挙げられる。
 これらの紫外線吸収剤は、一種単独で、あるいは二種以上を組み合わせて用いることができる。
 紫外線吸収剤の使用量は、(A)成分に対して、通常、10質量%以下である。
A UV absorber is added for the purpose of improving the light resistance of the resulting adhesive paste.
Examples of UV absorbers include salicylic acids, benzophenones, benzotriazoles, hindered amines and the like.
These ultraviolet absorbers can be used singly or in combination of two or more.
The amount of the ultraviolet absorber to be used is generally 10% by mass or less relative to the component (A).
 光安定剤は、得られる接着ペーストの耐光性を向上させる目的で添加される。
 光安定剤としては、例えば、ポリ[{6-(1,1,3,3,-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジン)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジン)イミノ}]等のヒンダードアミン類等が挙げられる。
 これらの光安定剤は、一種単独で、あるいは二種以上を組み合わせて用いることができる。
 (D)成分の総使用量は、(A)成分に対して、通常、20質量%以下である。
A light stabilizer is added for the purpose of improving the light resistance of the resulting adhesive paste.
Light stabilizers include, for example, poly[{6-(1,1,3,3,-tetramethylbutyl)amino-1,3,5-triazine-2,4-diyl}{(2,2,6 ,6-tetramethyl-4-piperidine)imino}hexamethylene {(2,2,6,6-tetramethyl-4-piperidine)imino}] and other hindered amines.
These light stabilizers can be used singly or in combination of two or more.
The total amount of component (D) used is generally 20% by mass or less relative to component (A).
 本発明の接着ペーストは、例えば、下記工程(AI)及び工程(AII)を有する製造方法により製造することができる。
工程(AI):上記式(a-6)で示される化合物の少なくとも一種を、重縮合触媒の存在下に重縮合させて、ポリシルセスキオキサン化合物を得る工程
工程(AII):工程(AI)で得られたポリシルセスキオキサン化合物を、溶媒(S)に溶解させ、ポリシルセスキオキサン化合物を含有する溶液を得る工程
The adhesive paste of the present invention can be produced, for example, by a production method comprising the following steps (AI) and (AII).
Step (AI): Polycondensation of at least one compound represented by the above formula (a-6) in the presence of a polycondensation catalyst to obtain a polysilsesquioxane compound Step (AII): Step (AI) ), dissolving the polysilsesquioxane compound obtained in step (S) in the solvent (S) to obtain a solution containing the polysilsesquioxane compound
 工程(AI)の上記式(a-6)で示される化合物の少なくとも一種を、重縮合触媒の存在下に重縮合させて、ポリシルセスキオキサン化合物を得る方法としては、1)接着ペーストの項で例示したものと同様の方法が挙げられる。また、工程(AII)で用いる溶媒(S)は、1)接着ペーストの項で溶媒(S)として例示したものと同様のものが挙げられる。 As a method of obtaining a polysilsesquioxane compound by polycondensing at least one compound represented by the above formula (a-6) in the step (AI) in the presence of a polycondensation catalyst, 1) adhesive paste The same methods as those exemplified in the section can be mentioned. The solvent (S) used in step (AII) includes the same solvents as those exemplified as the solvent (S) in the section 1) Adhesive paste.
 工程(AII)において、ポリシルセスキオキサン化合物を溶媒(S)に溶解する方法としては、例えば、ポリシルセスキオキサン化合物、所望により前記(B)成分~(D)成分を、溶媒(S)と混合、脱泡し、溶解する方法が挙げられる。
 混合方法、脱泡方法は特に限定されず、公知の方法を利用することができる。
 混合する順番は特に限定されない。
 上記工程(AI)及び工程(AII)を有する製造方法によれば、本発明の接着ペーストを、効率よく簡便に製造することができる。
In the step (AII), as a method of dissolving the polysilsesquioxane compound in the solvent (S), for example, the polysilsesquioxane compound and optionally the components (B) to (D) are dissolved in the solvent (S ), defoaming, and dissolving.
A mixing method and a defoaming method are not particularly limited, and known methods can be used.
The order of mixing is not particularly limited.
According to the production method including the steps (AI) and (AII), the adhesive paste of the present invention can be produced efficiently and simply.
 本発明の接着ペーストは、ポリシルセスキオキサン化合物を含有することで、屈折率を低くすることがより容易となる。
 本発明の接着ペーストの、25℃における屈折率(nD)は、1.420未満であることが好ましく、1.418未満であることがより好ましく、1.405以上1.416未満であることが特に好ましい。
 25℃における屈折率(nD)が上記範囲内である接着ペーストを用いることにより、接着ペーストの硬化後においても、屈折率を低くすることができ、屈折率が低いことが要望される光半導体素子に好適に用いられ易くなるとともに、半導体装置の光取り出し効率が向上し、発光効率の低下を抑制することができる。
 接着ペーストの屈折率(nD)は、実施例に記載の方法により測定することができる。
Since the adhesive paste of the present invention contains a polysilsesquioxane compound, it becomes easier to lower the refractive index.
The refractive index (nD) of the adhesive paste of the present invention at 25° C. is preferably less than 1.420, more preferably less than 1.418, and preferably 1.405 or more and less than 1.416. Especially preferred.
By using an adhesive paste having a refractive index (nD) within the above range at 25° C., the refractive index can be lowered even after curing of the adhesive paste. In addition, the light extraction efficiency of the semiconductor device can be improved, and a decrease in luminous efficiency can be suppressed.
The refractive index (nD) of the adhesive paste can be measured by the method described in Examples.
 接着ペーストを加熱して溶媒(S)を揮発させ、硬化させることにより、硬化物を得ることができる。
 硬化させるときの加熱温度は、通常80~190℃であり、好ましくは150~190℃である。また、硬化させるときの加熱時間は、通常30分から40時間、好ましくは30分から10時間、より好ましくは30分から5時間、特に好ましくは30分から3時間である。
A cured product can be obtained by heating the adhesive paste to volatilize the solvent (S) and cure it.
The heating temperature for curing is usually 80 to 190°C, preferably 150 to 190°C. The heating time for curing is usually 30 minutes to 40 hours, preferably 30 minutes to 10 hours, more preferably 30 minutes to 5 hours, particularly preferably 30 minutes to 3 hours.
 本発明の接着ペーストは、接着ペーストを80℃で20時間加熱硬化した後、さらに100℃で20時間加熱硬化して得られる硬化物の、-60℃における損失正接tanδは、好ましくは0.11以上、より好ましくは0.12以上0.18以下、特に好ましくは0.125以上0.15以下のものである。
 -60℃における損失正接tanδが上記下限値以上であることにより、加熱硬化して得られる硬化物は、半導体パッケージの高温から低温への冷却過程において生じる封止樹脂の硬化物の収縮応力を伴う冷却収縮挙動に柔軟に追従することができるため、半導体パッケージの使用環境における温度変化(高温及び低温の繰り返し過程)を経た後であっても、封止樹脂の硬化物との界面での剥がれをより低減ないし防止することが可能な、より高い密着信頼性を有するものとなる。
 -60℃における損失正接tanδは、-60℃における貯蔵弾性率及び損失弾性率より、(損失弾性率/貯蔵弾性率)の値として算出することができる。
 貯蔵弾性率は、1)接着ペーストの項で説明した通りである。また、損失弾性率は、1)接着ペーストの項で説明した、公知の動的粘弾性測定装置を使用した貯蔵弾性率の方法により測定することができる。
 具体的には、実施例に記載の方法により測定及び算出することができる。
The adhesive paste of the present invention is a cured product obtained by heating and curing the adhesive paste at 80 ° C. for 20 hours and then further heating and curing at 100 ° C. for 20 hours. The loss tangent tan δ at -60 ° C. is preferably 0.11. Above, more preferably 0.12 or more and 0.18 or less, particularly preferably 0.125 or more and 0.15 or less.
Since the loss tangent tan δ at −60° C. is at least the above lower limit, the cured product obtained by heat curing is accompanied by contraction stress of the cured product of the sealing resin that occurs during the cooling process of the semiconductor package from high temperature to low temperature. Because it can flexibly follow the cooling shrinkage behavior, peeling at the interface between the encapsulating resin and the cured product can be prevented even after temperature changes (repetition of high and low temperatures) in the environment where the semiconductor package is used. It has higher adhesion reliability that can be further reduced or prevented.
The loss tangent tan δ at -60°C can be calculated as a value of (loss modulus/storage modulus) from the storage modulus and loss modulus at -60°C.
The storage modulus is as described in 1) Adhesive Paste. Also, the loss modulus can be measured by the storage modulus method using a known dynamic viscoelasticity measuring device, as described in the section 1) Adhesive Paste.
Specifically, it can be measured and calculated by the method described in Examples.
 接着ペーストを150℃で3時間加熱硬化して得られる硬化物を、さらに200℃100時間の熱履歴を経て得られる硬化物の、熱履歴前後における全光線透過率の維持率は、好ましくは70%以上、より好ましくは80%以上、特に好ましくは90%以上である。
 熱履歴前後における全光線透過率の維持率が下限値以上であることにより、半導体素子がLED素子である場合、LEDパッケージが高性能となる。
 全光線透過率の維持率は、実施例に記載の方法により、測定及び算出することができる。
A cured product obtained by heating and curing the adhesive paste at 150° C. for 3 hours, and a cured product obtained by further heating at 200° C. for 100 hours have a total light transmittance maintenance rate of preferably 70 before and after the heat history. % or more, more preferably 80% or more, and particularly preferably 90% or more.
When the semiconductor element is an LED element, the LED package has high performance because the maintenance rate of the total light transmittance before and after the thermal history is equal to or higher than the lower limit value.
The maintenance rate of total light transmittance can be measured and calculated by the method described in Examples.
 上記特性を有することから、本発明の接着ペーストは、半導体素子固定材用接着剤として好適に使用することができる。 Due to the above properties, the adhesive paste of the present invention can be suitably used as an adhesive for semiconductor element fixing materials.
2)接着ペーストの使用方法及び接着ペーストを使用する半導体装置の製造方法
 本発明の接着ペーストを光素子固定材用接着剤として使用する半導体装置を製造する方法は、下記工程(BI)及び工程(BII)を有する。
工程(BI):半導体素子と支持基板の一方又は両方の接着面に接着ペーストを塗布し、圧着する工程
工程(BII):工程(BI)で得られた圧着物の前記接着ペーストを加熱硬化させ、前記半導体素子を前記支持基板に固定する工程
2) Method of using the adhesive paste and method of manufacturing a semiconductor device using the adhesive paste The method of manufacturing a semiconductor device using the adhesive paste of the present invention as an adhesive for optical element fixing material includes the following steps (BI) and ( BII).
Step (BI): Applying an adhesive paste to the bonding surface of one or both of the semiconductor element and the support substrate and press-bonding Step (BII): Heating and curing the adhesive paste of the pressure-bonded product obtained in Step (BI) and fixing the semiconductor element to the support substrate.
 半導体素子としては、レーザー、発光ダイオード(LED)等の発光素子や太陽電池等の受光素子等の光半導体素子;トランジスタ;温度センサや圧力センサ等のセンサ、集積回路等が挙げられる。これらの中でも、本発明の接着ペーストを用いることによる効果がより好適に発揮され易い観点から、光半導体素子が好ましい。 Examples of semiconductor elements include optical semiconductor elements such as light-emitting elements such as lasers and light-emitting diodes (LEDs) and light-receiving elements such as solar cells; transistors; sensors such as temperature sensors and pressure sensors; Among these, an optical semiconductor element is preferable from the viewpoint that the effect of using the adhesive paste of the present invention is likely to be exhibited more preferably.
 半導体素子を接着するための支持基板の材料としては、ソーダライムガラス、耐熱性硬質ガラス等のガラス類;セラミックス;サファイア;鉄、銅、アルミニウム、金、銀、白金、クロム、チタン及びこれらの金属の合金、ステンレス(SUS302、SUS304、SUS304L、SUS309等)等の金属類;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、エチレン-酢酸ビニル共重合体、ポリスチレン、ポリカーボネート、ポリメチルペンテン、ポリスルホン、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリイミド、ポリアミド、アクリル樹脂、ノルボルネン系樹脂、シクロオレフィン樹脂、ガラスエポキシ樹脂等の合成樹脂;等が挙げられる。 Materials for supporting substrates for bonding semiconductor elements include glasses such as soda lime glass and heat-resistant hard glass; ceramics; sapphire; iron, copper, aluminum, gold, silver, platinum, chromium, titanium and these metals. alloys, metals such as stainless steel (SUS302, SUS304, SUS304L, SUS309, etc.); polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, ethylene-vinyl acetate copolymer, polystyrene, polycarbonate, polymethylpentene, polysulfone, polyether Synthetic resins such as ether ketone, polyethersulfone, polyphenylene sulfide, polyetherimide, polyimide, polyamide, acrylic resin, norbornene resin, cycloolefin resin, and glass epoxy resin;
 本発明の接着ペーストは、シリンジに充填されていることが好ましい。
 接着ペーストがシリンジに充填されていることにより、塗布工程における作業性に優れる。
 シリンジの材料は、合成樹脂、金属、ガラスのいずれであってもよいが、合成樹脂であるのが好ましい。
 シリンジの容量としては、特に制限はなく、充填する又は塗布する接着ペーストの量に合わせ、適宜決定すればよい。
 また、シリンジとしては、市販品を用いることもできる。市販品としては、例えば、SS-01Tシリーズ(TERUMO社製)、PSYシリーズ(武蔵エンジニアリング社製)等が挙げられる。
The adhesive paste of the present invention is preferably filled in a syringe.
Since the syringe is filled with the adhesive paste, workability in the coating process is excellent.
The material of the syringe may be synthetic resin, metal, or glass, but preferably synthetic resin.
The capacity of the syringe is not particularly limited, and may be appropriately determined according to the amount of adhesive paste to be filled or applied.
Moreover, a commercial item can also be used as a syringe. Commercially available products include, for example, SS-01T series (manufactured by TERUMO), PSY series (manufactured by Musashi Engineering) and the like.
 本発明の半導体装置の製造方法においては、接着ペーストが充填されたシリンジが垂直に下降して支持基板に近づき、シリンジの先端部から所定量の接着ペーストを吐出した後、シリンジが上昇して支持基板から離れるとともに、支持基板が横に移動する。そして、この操作を繰り返すことで、連続的に接着ペーストが支持基板に塗布される。その後、塗布された接着ペースト上に、半導体素子をマウントし、支持基板に圧着される。 In the manufacturing method of the semiconductor device of the present invention, the syringe filled with the adhesive paste descends vertically to approach the support substrate, and after discharging a predetermined amount of the adhesive paste from the tip of the syringe, the syringe rises to support the support substrate. As the substrate is separated, the support substrate moves laterally. By repeating this operation, the adhesive paste is continuously applied to the support substrate. After that, a semiconductor element is mounted on the applied adhesive paste and pressure-bonded to the support substrate.
 接着ペーストの塗布量は、特に限定されず、硬化させることにより、接着の対象とする半導体素子と支持基板を強固に接着することができる量であればよい。通常、接着ペーストの塗膜の厚みが0.5μm以上5μm以下、好ましくは1μm以上3μm以下となる量である。 The amount of the adhesive paste to be applied is not particularly limited, and may be any amount that allows the semiconductor element to be adhered and the supporting substrate to be firmly adhered by curing. Usually, the amount is such that the thickness of the coating film of the adhesive paste is 0.5 μm or more and 5 μm or less, preferably 1 μm or more and 3 μm or less.
 次いで、得られた圧着物の接着ペーストを加熱硬化させることにより、半導体素子は支持基板に固定される。
 加熱温度及び加熱時間は、1)接着ペーストの項で説明した通りである。
Then, the semiconductor element is fixed to the support substrate by heating and curing the adhesive paste of the obtained press-fit.
The heating temperature and heating time are as described in the section 1) Adhesive paste.
 また、本発明の半導体装置を製造する方法は、下記工程(BIII)及び工程(BIV)をさらに有する方法であってもよい。
工程(BIII):工程(BII)にて得られた半導体素子と、前記支持基板が有する電極部との間をワイヤーで接続する工程
工程(BIV):工程(BII)にて、前記支持基板に固定された半導体素子を、封止樹脂で覆い、前記封止樹脂を加熱硬化させる工程
Moreover, the method of manufacturing the semiconductor device of the present invention may be a method further including the following step (BIII) and step (BIV).
Step (BIII): Connecting wires between the semiconductor element obtained in Step (BII) and the electrodes of the support substrate Step (BIV): In Step (BII), the support substrate is provided with A step of covering the fixed semiconductor element with a sealing resin and heating and curing the sealing resin.
 上記工程(BIII)では、半導体素子の電極部と支持基板が有する電極部との間をワイヤーで接続し、これらを電気的に接続する。
 用いるワイヤーとしては、銅、アルミニウム、金、合金等が挙げられる。
In the step (BIII), the electrodes of the semiconductor element and the electrodes of the support substrate are connected by wires to electrically connect them.
Wires to be used include copper, aluminum, gold, alloys, and the like.
 上記工程(BIV)において、支持基板に固定された半導体素子を封止樹脂で覆い、封止樹脂を加熱硬化させる方法は特に限定されない。例えば、支持基板に流動性を有する封止樹脂を注入し、封止樹脂を加熱硬化させて、封止樹脂層を形成する方法や、シート状に形成した封止樹脂を、半導体素子を覆うように載置し、封止樹脂を加熱硬化させて、封止樹脂層を形成する方法等が挙げられる。 In the above step (BIV), the method of covering the semiconductor element fixed to the support substrate with the sealing resin and heating and curing the sealing resin is not particularly limited. For example, a method of injecting a sealing resin having fluidity into a support substrate and curing the sealing resin by heating to form a sealing resin layer; and heat-curing the sealing resin to form a sealing resin layer.
 封止樹脂を硬化させるときの加熱温度は、通常80~190℃であり、好ましくは100~170℃である。また、硬化させるときの加熱時間は、通常30分から10時間、好ましくは30分から5時間、より好ましくは30分から3時間である。 The heating temperature for curing the sealing resin is usually 80 to 190°C, preferably 100 to 170°C. The heating time for curing is usually 30 minutes to 10 hours, preferably 30 minutes to 5 hours, more preferably 30 minutes to 3 hours.
 用いる封止樹脂としては、半導体素子を封止することができるものであれば、特に限定されない。例えば、シリコーン系樹脂、ゴム系樹脂、(メタ)アクリル系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂、スチレン系熱可塑性樹脂等が挙げられ、シリコーン系樹脂が好ましい。 The sealing resin to be used is not particularly limited as long as it can seal the semiconductor element. Examples thereof include silicone-based resins, rubber-based resins, (meth)acrylic-based resins, polyolefin-based resins, polyester-based resins, and styrene-based thermoplastic resins, with silicone-based resins being preferred.
 本発明の半導体装置の製造方法により得られる半導体装置は、接着ペーストの硬化物と封止樹脂の硬化物との界面での剥がれが低減ないし防止された、高い密着信頼性を有するものであり、かつ、半導体素子が高い接着強度で固定されたものとなる。 The semiconductor device obtained by the semiconductor device manufacturing method of the present invention has high adhesion reliability in which peeling at the interface between the cured adhesive paste and the cured sealing resin is reduced or prevented, and Moreover, the semiconductor element is fixed with high adhesive strength.
 以下、実施例を挙げて本発明を更に詳細に説明する。但し、本発明は、以下の実施例になんら限定されるものではない。
 各例中の部及び%は、特に断りのない限り、質量基準である。
EXAMPLES The present invention will be described in more detail below with reference to examples. However, the present invention is by no means limited to the following examples.
Parts and % in each example are based on mass unless otherwise specified.
〔平均分子量測定〕
 製造例で得た硬化性オルガノポリシロキサン化合物(A)の質量平均分子量(Mw)及び数平均分子量(Mn)は、標準ポリスチレン換算値とし、以下の装置及び条件にて測定した。
 装置名:HLC-8220GPC、東ソー株式会社製
 カラム:TSKgelGMHXL、TSKgelGMHXL、及び、TSKgel2000HXLを順次連結したもの
 溶媒:テトラヒドロフラン
 注入量:20μl
 測定温度:40℃
 流速:1ml/分
 検出器:示差屈折計
[Average molecular weight measurement]
The mass-average molecular weight (Mw) and number-average molecular weight (Mn) of the curable organopolysiloxane compound (A) obtained in Production Examples were converted to standard polystyrene values and measured using the following equipment and conditions.
Apparatus name: HLC-8220GPC, manufactured by Tosoh Corporation Column: TSKgelGMHXL, TSKgelGMHXL, and TSKgel2000HXL sequentially connected Solvent: Tetrahydrofuran Injection volume: 20 μl
Measurement temperature: 40°C
Flow rate: 1 ml/min Detector: Differential refractometer
〔IRスペクトルの測定〕
 製造例で得た硬化性オルガノポリシロキサン化合物(A)のIRスペクトルは、フーリエ変換赤外分光光度計(パーキンエルマー社製、Spectrum100)を使用して測定した。
[Measurement of IR spectrum]
The IR spectrum of the curable organopolysiloxane compound (A) obtained in Production Example was measured using a Fourier transform infrared spectrophotometer (Spectrum 100, manufactured by PerkinElmer).
(製造例1)
 300mLのナス型フラスコに、3,3,3-トリフルオロプロピルトリメトキシシラン(信越化学工業社製)56.2g(257.5mmol)、及び、メチルトリエトキシシラン(信越化学工業社製)30.6g(171.7mmol)を仕込んだ後、蒸留水46.35mlに35%塩酸0.2236g(HClの量が2.146mmol,シラン化合物の合計量に対して0.5mol%)を溶解した水溶液を撹拌しながら加え、全容を30℃にて2時間、次いで70℃に昇温して20時間撹拌した。
 内容物の撹拌を継続しながら、そこに、28%アンモニア水0.1305g(NHの量が2.146mmol)と酢酸プロピル59.4gの混合溶液を加え、そのまま70℃で1時間撹拌した。
 内容物の撹拌を継続しながら、さらに、28%アンモニア水0.1305g(NHの量が2.146mmol)と酢酸プロピル5gの混合溶液を加え、そのまま70℃で2時間撹拌した。
 反応液を室温(23℃)まで放冷した後、そこに、酢酸プロピル80g及び水100gを加えて分液処理を行い、反応生成物を含む有機層を得た。この有機層に硫酸マグネシウムを加えて乾燥処理を行った。
 硫酸マグネシウムを濾別除去した後、有機層をエバポレーターで濃縮し、濃縮物を真空乾燥することにより、硬化性オルガノポリシロキサン化合物(A1)を60.0g得た。
 硬化性オルガノポリシロキサン化合物(A1)の質量平均分子量(Mw)は3,000、分子量分布(Mw/Mn)は1.52であった。
 また、硬化性オルガノポリシロキサン化合物(A1)のIRスペクトルデータを以下に示す。
Si-CH:1272cm-1,1409cm-1,Si-O:1132cm-1,C-F:1213cm-1
(Production example 1)
In a 300 mL eggplant-shaped flask, 56.2 g (257.5 mmol) of 3,3,3-trifluoropropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.) and methyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.) 30. After charging 6 g (171.7 mmol), an aqueous solution of 0.2236 g of 35% hydrochloric acid (the amount of HCl is 2.146 mmol, 0.5 mol % with respect to the total amount of silane compounds) dissolved in 46.35 ml of distilled water was added. The mixture was added with stirring, and the whole volume was stirred at 30° C. for 2 hours, then heated to 70° C. and stirred for 20 hours.
While continuing to stir the content, a mixed solution of 0.1305 g of 28% aqueous ammonia (the amount of NH 3 is 2.146 mmol) and 59.4 g of propyl acetate was added, and the mixture was stirred at 70° C. for 1 hour.
While continuing to stir the content, a mixed solution of 0.1305 g of 28% aqueous ammonia (the amount of NH 3 is 2.146 mmol) and 5 g of propyl acetate was added, and the mixture was stirred at 70° C. for 2 hours.
After allowing the reaction solution to cool to room temperature (23° C.), 80 g of propyl acetate and 100 g of water were added to the solution for liquid separation to obtain an organic layer containing a reaction product. Drying treatment was performed by adding magnesium sulfate to the organic layer.
After the magnesium sulfate was removed by filtration, the organic layer was concentrated by an evaporator and the concentrate was vacuum-dried to obtain 60.0 g of curable organopolysiloxane compound (A1).
The curable organopolysiloxane compound (A1) had a mass average molecular weight (Mw) of 3,000 and a molecular weight distribution (Mw/Mn) of 1.52.
IR spectrum data of the curable organopolysiloxane compound (A1) are shown below.
Si—CH 3 : 1272 cm −1 , 1409 cm −1 , Si—O: 1132 cm −1 , CF: 1213 cm −1
(製造例2)
 300mLのナス型フラスコに、3,3,3-トリフルオロプロピルトリメトキシシラン17.0g(77.7mmol)、及び、メチルトリエトキシシラン32.33g(181.3mmol)を仕込んだ後、蒸留水14.0mlに35%塩酸0.0675g(HClの量が0.65mmol,シラン化合物の合計量に対して0.25mol%)を溶解した水溶液を撹拌しながら加え、全容を30℃にて2時間、次いで70℃に昇温して20時間撹拌した。
 内容物の撹拌を継続しながら、そこに、28%アンモニア水0.0394g(NHの量が0.65mmol)と酢酸プロピル46.1gの混合溶液を加えて反応液のpHを6.9にし、そのまま70℃で40分間撹拌した。
 反応液を室温(23℃)まで放冷した後、そこに、酢酸プロピル50g及び水100gを加えて分液処理を行い、反応生成物を含む有機層を得た。この有機層に硫酸マグネシウムを加えて乾燥処理を行った。
 硫酸マグネシウムを濾別除去した後、有機層をエバポレーターで濃縮し、濃縮物を真空乾燥することにより、硬化性オルガノポリシロキサン化合物(A2)を22.3g得た。
 硬化性オルガノポリシロキサン化合物(A2)の質量平均分子量(Mw)は5,500、分子量分布(Mw/Mn)は3.40であった。
 また、硬化性オルガノポリシロキサン化合物(A2)のIRスペクトルデータを以下に示す。
Si-CH:1272cm-1,1409cm-1,Si-O:1132cm-1,C-F:1213cm-1
(Production example 2)
A 300 mL eggplant-shaped flask was charged with 17.0 g (77.7 mmol) of 3,3,3-trifluoropropyltrimethoxysilane and 32.33 g (181.3 mmol) of methyltriethoxysilane, followed by adding 14 parts of distilled water. An aqueous solution prepared by dissolving 0.0675 g of 35% hydrochloric acid (0.65 mmol of HCl, 0.25 mol % with respect to the total amount of silane compounds) in 0.0 ml was added with stirring, and the total volume was heated at 30° C. for 2 hours. Then, the temperature was raised to 70° C. and the mixture was stirred for 20 hours.
While continuing to stir the contents, a mixed solution of 0.0394 g of 28% aqueous ammonia (the amount of NH3 is 0.65 mmol) and 46.1 g of propyl acetate was added to adjust the pH of the reaction solution to 6.9. , and stirred at 70° C. for 40 minutes.
After the reaction solution was allowed to cool to room temperature (23° C.), 50 g of propyl acetate and 100 g of water were added thereto for liquid separation treatment to obtain an organic layer containing a reaction product. Drying treatment was performed by adding magnesium sulfate to the organic layer.
After removing magnesium sulfate by filtration, the organic layer was concentrated with an evaporator and the concentrate was dried in vacuo to obtain 22.3 g of a curable organopolysiloxane compound (A2).
The curable organopolysiloxane compound (A2) had a mass average molecular weight (Mw) of 5,500 and a molecular weight distribution (Mw/Mn) of 3.40.
IR spectrum data of the curable organopolysiloxane compound (A2) are shown below.
Si—CH 3 : 1272 cm −1 , 1409 cm −1 , Si—O: 1132 cm −1 , CF: 1213 cm −1
(製造例3)
 300mLのナス型フラスコに、3,3,3-トリフルオロプロピルトリメトキシシラン5.24g(24.0mmol)、及び、メチルトリエトキシシラン38.5g(216.0mmol)を仕込んだ後、蒸留水12.96mlに35%塩酸0.0625g(HClの量が0.6mmol,シラン化合物の合計量に対して0.25mol%)を溶解した水溶液を撹拌しながら加え、全容を30℃にて2時間、次いで70℃に昇温して20時間撹拌した。
 内容物の撹拌を継続しながら、そこに、28%アンモニア水0.073g(NHの量が1.2mmol)と酢酸プロピル40.4gの混合溶液を加えて、そのまま70℃で40分間撹拌した。
 反応液を室温(23℃)まで放冷した後、そこに、酢酸プロピル50g及び水100gを加えて分液処理を行い、反応生成物を含む有機層を得た。この有機層に硫酸マグネシウムを加えて乾燥処理を行った。
 硫酸マグネシウムを濾別除去した後、有機層をエバポレーターで濃縮し、濃縮物を真空乾燥することにより、硬化性オルガノポリシロキサン化合物(A3)を23.4g得た。
 硬化性オルガノポリシロキサン化合物(A3)の質量平均分子量(Mw)は6,000、分子量分布(Mw/Mn)は3.80であった。
 また、硬化性オルガノポリシロキサン化合物(A3)のIRスペクトルデータを以下に示す。
Si-CH:1272cm-1,1409cm-1,Si-O:1132cm-1,C-F:1213cm-1
(Production example 3)
A 300 mL eggplant-shaped flask was charged with 5.24 g (24.0 mmol) of 3,3,3-trifluoropropyltrimethoxysilane and 38.5 g (216.0 mmol) of methyltriethoxysilane, followed by adding 12 parts of distilled water. An aqueous solution prepared by dissolving 0.0625 g of 35% hydrochloric acid (0.6 mmol of HCl, 0.25 mol % with respect to the total amount of silane compounds) in 96 ml was added with stirring, and the total volume was heated at 30°C for 2 hours. Then, the temperature was raised to 70° C. and the mixture was stirred for 20 hours.
While continuing to stir the content, a mixed solution of 0.073 g of 28% aqueous ammonia (the amount of NH 3 is 1.2 mmol) and 40.4 g of propyl acetate was added, and the mixture was stirred at 70° C. for 40 minutes. .
After the reaction solution was allowed to cool to room temperature (23° C.), 50 g of propyl acetate and 100 g of water were added thereto for liquid separation treatment to obtain an organic layer containing a reaction product. Drying treatment was performed by adding magnesium sulfate to the organic layer.
After the magnesium sulfate was removed by filtration, the organic layer was concentrated by an evaporator and the concentrate was vacuum-dried to obtain 23.4 g of a curable organopolysiloxane compound (A3).
The curable organopolysiloxane compound (A3) had a mass average molecular weight (Mw) of 6,000 and a molecular weight distribution (Mw/Mn) of 3.80.
IR spectrum data of the curable organopolysiloxane compound (A3) are shown below.
Si—CH 3 : 1272 cm −1 , 1409 cm −1 , Si—O: 1132 cm −1 , CF: 1213 cm −1
(製造例4)
 300mlのナス型フラスコに、メチルトリエトキシシラン71.37g(400mmol)を仕込んだ後、蒸留水21.6mlに35%塩酸0.10g(シラン化合物の合計量に対して0.25mol%)を溶解した水溶液を撹拌しながら加え、全容を30℃にて2時間、次いで70℃に昇温して5時間撹拌したのち、反応液を室温(23℃)まで戻し、酢酸プロピルを140g加えた。
 ここに、28%アンモニア水0.12g(シラン化合物の合計量に対して0.5mol%)を、全容を撹拌しながら加え、70℃に昇温して3時間さらに撹拌した。
 反応液に精製水を加え、分液し、水層のpHが7.0になるまでこの操作を繰り返した。
 有機層をエバポレーターで濃縮し、濃縮物を真空乾燥することにより、硬化性オルガノポリシロキサン化合物(A4)を55.7g得た。
 硬化性オルガノポリシロキサン化合物(A4)の質量平均分子量(Mw)は7,800、分子量分布(Mw/Mn)は4.52であった。
 また、硬化性オルガノポリシロキサン化合物(A4)のIRスペクトルデータを以下に示す。
Si-CH:1272cm-1,1409cm-1,Si-O:1132cm-1
(Production example 4)
After charging 71.37 g (400 mmol) of methyltriethoxysilane into a 300 ml eggplant-shaped flask, dissolve 0.10 g of 35% hydrochloric acid (0.25 mol % with respect to the total amount of silane compounds) in 21.6 ml of distilled water. The resulting aqueous solution was added with stirring, and the total volume was stirred at 30° C. for 2 hours, then heated to 70° C. and stirred for 5 hours.
0.12 g of 28% aqueous ammonia (0.5 mol % with respect to the total amount of the silane compound) was added thereto while stirring the entire volume, the temperature was raised to 70° C., and the mixture was further stirred for 3 hours.
Purified water was added to the reaction solution, the phases were separated, and this operation was repeated until the pH of the aqueous layer reached 7.0.
The organic layer was concentrated with an evaporator, and the concentrate was vacuum-dried to obtain 55.7 g of a curable organopolysiloxane compound (A4).
The curable organopolysiloxane compound (A4) had a mass average molecular weight (Mw) of 7,800 and a molecular weight distribution (Mw/Mn) of 4.52.
IR spectrum data of the curable organopolysiloxane compound (A4) are shown below.
Si—CH 3 : 1272 cm −1 , 1409 cm −1 , Si—O: 1132 cm −1
 実施例及び比較例で用いた化合物を以下に示す。
〔(A)成分〕
硬化性オルガノポリシロキサン化合物(A1):製造例1で得られたオルガノポリシロキサン化合物
硬化性オルガノポリシロキサン化合物(A2):製造例2で得られたオルガノポリシロキサン化合物
硬化性オルガノポリシロキサン化合物(A3):製造例3で得られたオルガノポリシロキサン化合物
硬化性オルガノポリシロキサン化合物(A4):製造例4で得られたオルガノポリシロキサン化合物
The compounds used in Examples and Comparative Examples are shown below.
[(A) component]
Curable organopolysiloxane compound (A1): Organopolysiloxane compound obtained in Production Example 1 Curable organopolysiloxane compound (A2): Organopolysiloxane compound obtained in Production Example 2 Curable organopolysiloxane compound (A3 ): Organopolysiloxane compound obtained in Production Example 3 Curable organopolysiloxane compound (A4): Organopolysiloxane compound obtained in Production Example 4
〔溶媒(S)〕
ジエチレングリコールモノブチルエーテルアセテート(BDGAC)(SL)(東京化成工業社製、沸点:247℃)とトリプロピレングリコール-n-ブチルエーテル(TPnB)(SH)(ダウ・ケミカル社製、沸点:274℃)との混合溶媒〔BDGAC:TPnB=40:60(質量比)〕
[Solvent (S)]
Diethylene glycol monobutyl ether acetate (BDGAC) (SL) (manufactured by Tokyo Chemical Industry Co., boiling point: 247 ° C.) and tripropylene glycol-n-butyl ether (TPnB) (SH) (manufactured by Dow Chemical Company, boiling point: 274 ° C.) Mixed solvent [BDGAC:TPnB=40:60 (mass ratio)]
〔(B)成分〕
微粒子(B1):シリカ微粒子(日本アエロジル社製、製品名「AEROSIL RX300」、平均一次粒子径:7nm、比表面積:210m/g)
微粒子(B2):シリコーン微粒子(日興リカ社製、製品名「MSP-SN08」、平均一次粒子径:0.8μm、形状:球状)
〔(C)成分〕
シランカップリング剤(C1):1,3,5-N-トリス〔3-(トリメトキシシリル)プロピル〕イソシアヌレート(信越化学工業社製、製品名「KBM-9659」)
シランカップリング剤(C2):3-(トリメトキシシリル)プロピルコハク酸無水物(信越化学工業社製、製品名「X-12-967C」)
[(B) Component]
Fine particles (B1): silica fine particles (manufactured by Nippon Aerosil Co., Ltd., product name “AEROSIL RX300”, average primary particle size: 7 nm, specific surface area: 210 m 2 /g)
Microparticles (B2): Silicone microparticles (manufactured by Nikko Rica, product name “MSP-SN08”, average primary particle size: 0.8 μm, shape: spherical)
[(C) component]
Silane coupling agent (C1): 1,3,5-N-tris[3-(trimethoxysilyl)propyl]isocyanurate (manufactured by Shin-Etsu Chemical Co., Ltd., product name “KBM-9659”)
Silane coupling agent (C2): 3-(trimethoxysilyl)propylsuccinic anhydride (manufactured by Shin-Etsu Chemical Co., Ltd., product name “X-12-967C”)
(実施例1)
 硬化性オルガノポリシロキサン化合物(A1)100部に、微粒子(B1)10部、微粒子(B2)10部、溶媒(S)35.5部、シランカップリング剤(C1)5部、シランカップリング剤(C2)1部を加えて、全容を十分に混合、脱泡することにより、固形分濃度78%の接着ペースト1を得た。
(Example 1)
Curable organopolysiloxane compound (A1) 100 parts, fine particles (B1) 10 parts, fine particles (B2) 10 parts, solvent (S) 35.5 parts, silane coupling agent (C1) 5 parts, silane coupling agent (C2) 1 part was added, and the entire content was thoroughly mixed and defoamed to obtain an adhesive paste 1 having a solid concentration of 78%.
(実施例2~9、比較例1~7)
 化合物(各成分)の種類及び配合割合を、下記表1に示すものに変更した以外は、実施例1と同様にして接着ペースト2~9及び1r~7rを得た。
(Examples 2 to 9, Comparative Examples 1 to 7)
Adhesive pastes 2 to 9 and 1r to 7r were obtained in the same manner as in Example 1, except that the types and blending ratios of the compounds (each component) were changed to those shown in Table 1 below.
 実施例及び比較例で得られた接着ペースト1~9及び1r~7rを用いて、それぞれ以下の試験を行った。結果を下記表2に示す。 The following tests were performed using the adhesive pastes 1 to 9 and 1r to 7r obtained in Examples and Comparative Examples. The results are shown in Table 2 below.
〔接着ペーストの屈折率測定〕
 実施例及び比較例で得た接着ペーストを水平面上に吐出し、ペン屈折計(ATAGO社製、PEN-RI)の測定面を、25℃で圧着させることで屈折率(nD)を測定した。
[Measurement of refractive index of adhesive paste]
The adhesive pastes obtained in Examples and Comparative Examples were discharged onto a horizontal surface, and the measurement surface of a pen refractometer (manufactured by ATAGO, PEN-RI) was pressed at 25° C. to measure the refractive index (nD).
〔貯蔵弾性率及び損失正接〕
 実施例及び比較例で得た接着ペーストを80℃で20時間加熱硬化した後、さらに100℃で20時間加熱硬化し、長さ20mm×幅5mm×厚さ1mmの試験片を作製した。次いで、動的粘弾性測定装置(ネッチ・ジャパン社製、製品名:DMA 242E Artemis)に試験片を載置(チャック間距離10mm)し、引張モード、周波数10Hz、振幅5μm、昇温速度5℃/分の条件で、-65~30℃の温度範囲における貯蔵弾性率を測定し、-60℃における貯蔵弾性率及び損失弾性率を抽出した。
 また、前記-60℃における貯蔵弾性率及び損失弾性率より、損失正接tanδ(損失弾性率/貯蔵弾性率)を算出した。
[Storage modulus and loss tangent]
The adhesive pastes obtained in Examples and Comparative Examples were cured by heating at 80° C. for 20 hours and then cured by heating at 100° C. for 20 hours to prepare test pieces of length 20 mm×width 5 mm×thickness 1 mm. Next, the test piece was placed on a dynamic viscoelasticity measuring device (manufactured by Netsch Japan, product name: DMA 242E Artemis) (distance between chucks 10 mm), tensile mode, frequency 10 Hz, amplitude 5 μm, temperature increase rate 5 ° C. /min, the storage modulus in the temperature range of -65 to 30°C was measured, and the storage modulus and loss modulus at -60°C were extracted.
Also, the loss tangent tan δ (loss elastic modulus/storage elastic modulus) was calculated from the storage elastic modulus and the loss elastic modulus at -60°C.
〔接着強度評価〕
 一辺の長さが1mmの正方形(面積が1mm)のシリコンチップのミラー面に、実施例及び比較例で得た接着ペーストを塗布し、塗布面を被着体〔無電解銀メッキ銅板(銀メッキ表面の平均粗さRa:0.025μm)〕の上に載せ、圧着後の接着ペーストの厚さが約2μmになるように圧着した。その後、170℃で2時間加熱処理して硬化させて試験片付被着体を得た。この試験片付被着体を、100℃のボンドテスター(デイジ社製、シリーズ4000)の測定ステージ上に30秒間放置し、被着体から100μmの高さの位置より、スピード200μm/sで接着面に対し水平方向(せん断方向)に応力をかけ、100℃における、試験片と被着体との接着強度(N/mm□)を測定した。
[Adhesion strength evaluation]
The adhesive paste obtained in Examples and Comparative Examples was applied to the mirror surface of a square silicon chip with a side length of 1 mm (area of 1 mm 2 ), and the coated surface was an adherend [electroless silver-plated copper plate (silver The average roughness of the plated surface Ra: 0.025 μm)], and the pressure bonding was performed so that the thickness of the adhesive paste after pressure bonding was about 2 μm. After that, it was cured by heat treatment at 170° C. for 2 hours to obtain an adherend with a test piece. This adherend with the test piece is left on the measurement stage of a bond tester (Daige, series 4000) at 100 ° C. for 30 seconds, and is adhered at a speed of 200 μm / s from a position 100 μm above the adherend. Stress was applied in the horizontal direction (shearing direction) to the surface, and the adhesive strength (N/mm□) between the test piece and the adherend was measured at 100°C.
〔全光線透過率の維持率〕
 実施例及び比較例で得た接着ペーストを150℃で3時間加熱硬化し、厚さ1mmの試験片を作製した。
 前記試験片について、分光光度計(SHIMADZU社製、製品名:UV-VIS-NIR SPECTROPHOTOMETER UV-3600、積分球使用)を用いて、波長450nmの全光線透過率T(%)を測定した。さらに、前記試験片を200℃で100時間加熱して得られた試験片について、波長450nmの全光線透過率T(%)を測定した。
 測定した全光線透過率T及び全光線透過率Tより、熱履歴前後における硬化物の全光線透過率維持率(%)[(T(%)/T(%))×100]を算出した。
[Maintenance rate of total light transmittance]
The adhesive pastes obtained in Examples and Comparative Examples were cured by heating at 150° C. for 3 hours to prepare test pieces having a thickness of 1 mm.
Using a spectrophotometer (manufactured by SHIMADZU, product name: UV-VIS-NIR SPECTROPHOTOMETER UV-3600, using an integrating sphere), the total light transmittance T 0 (%) at a wavelength of 450 nm was measured for the test piece. Furthermore, the test piece obtained by heating the test piece at 200° C. for 100 hours was measured for total light transmittance T 1 (%) at a wavelength of 450 nm.
From the measured total light transmittance T 0 and total light transmittance T 1 , the total light transmittance maintenance rate of the cured product before and after the heat history (%) [(T 1 (%) / T 0 (%)) × 100] was calculated.
〔接着ペーストの硬化物と封止樹脂の硬化物との耐剥離性評価〕
 LEDパッケージ用の成形枠(リフレクタ)付き支持基板〔エノモト社製、製品名:5050 D/G PKG LEADFRAME、成型枠の内側深さ(すなわち内壁高さ):0.85mm〕に、実施例及び比較例で得た接着ペーストを1.8mmφ塗布した。その後、150℃で3時間加熱処理して硬化させた後、シリコーン系封止樹脂(信越化学工業社製、製品名「LPS-3419」)を成形枠付き支持基板の成形枠内に流し込み、成形枠上端面まで満たした。これを、120℃で1時間、加えて150℃で1時間加熱して試験片を得た。
 次いで、この試験片を85℃、85%RHの環境に168時間曝した後、プレヒート160℃で、最高温度が260℃になる加熱時間1分間のIRリフロー(リフロー炉:相模理工社製、製品名:WL-15-20DNX型)にてリフロー処理を行なった。その後、熱サイクル試験機にて、-60℃及び+125℃で各30分放置する試験を1サイクルとして、500サイクル実施した。その後、成形枠付き支持基板の成形枠の内壁に付着している封止樹脂の硬化物を、カッターにて切り離し、この切り離した切り込み部分に、ニードル(JIS S 3008に規定された「絹針5号」)を、上端から接着ペーストの硬化物の方向に向かって、封止樹脂の硬化物の上面から0.5mm±0.05mmの深さまで挿入し、ニードルを80°回転させる(封止樹脂の硬化物をひっかけて持ち上げる)動作を2秒間で行ない、封止樹脂の硬化物を除去する操作を行なった。
 封止樹脂の硬化物を除去する操作の際に、封止樹脂の硬化物内部で凝集破壊する(OK試験片)か、又は、接着ペーストの硬化物と封止樹脂の硬化物との界面で剥がれる(NG試験片)かを試験した。同試験を、実施例及び比較例で得た接着ペースト各々に対して100回行なった。
 100個の試験片のうち、OK試験片の数及びNG試験片の数より、剥離発生率(%)[(NG試験片の数/試験片の総数)×100]を算出し、以下の基準で評価した。
A:剥離発生率が15%以下であった。
B:剥離発生率が15%より大きく、25%以下であった。
C:剥離発生率が25%より大きいであった。
[Evaluation of peel resistance between cured product of adhesive paste and cured product of sealing resin]
Support substrate with molding frame (reflector) for LED package [manufactured by Enomoto, product name: 5050 D / G PKG LEADFRAME, inner depth of molding frame (that is, inner wall height): 0.85 mm], Examples and comparison The adhesive paste obtained in Example was applied in a diameter of 1.8 mm. Then, after curing by heat treatment at 150 ° C. for 3 hours, a silicone-based sealing resin (manufactured by Shin-Etsu Chemical Co., Ltd., product name "LPS-3419") is poured into the molding frame of the support substrate with a molding frame and molded. Filled up to the upper end face of the frame. This was heated at 120° C. for 1 hour and then at 150° C. for 1 hour to obtain a test piece.
Next, after exposing this test piece to an environment of 85 ° C. and 85% RH for 168 hours, IR reflow (reflow furnace: manufactured by Sagami Riko Co., Ltd., product Name: WL-15-20DNX type) was subjected to reflow treatment. After that, 500 cycles were carried out using a thermal cycle tester, with one cycle being a test of leaving at -60°C and +125°C for 30 minutes each. After that, the hardened sealing resin adhering to the inner wall of the molding frame of the support substrate with molding frame is cut off with a cutter, and a needle ("silk needle 5 defined in JIS S 3008" is attached to the cut part that has been cut off). No.”) is inserted from the upper end toward the direction of the cured adhesive paste to a depth of 0.5 mm ± 0.05 mm from the upper surface of the cured sealing resin, and the needle is rotated 80° (sealing resin The hardened product of (2) is caught and lifted) for 2 seconds to remove the hardened product of the encapsulating resin.
During the operation to remove the cured product of the sealing resin, cohesive failure occurs inside the cured product of the sealing resin (OK test piece), or at the interface between the cured product of the adhesive paste and the cured product of the sealing resin. It was tested whether it was peeled off (NG test piece). The same test was performed 100 times for each of the adhesive pastes obtained in Examples and Comparative Examples.
Of the 100 test pieces, the number of OK test pieces and the number of NG test pieces are used to calculate the rate of peeling (%) [(number of NG test pieces / total number of test pieces) × 100], and the following criteria evaluated with
A: The peeling occurrence rate was 15% or less.
B: The peeling occurrence rate was greater than 15% and 25% or less.
C: The rate of occurrence of peeling was greater than 25%.
〔ワイヤーボンディング評価〕
 一辺の長さが1mmの正方形(面積が1mm)のシリコンチップ(#2000研削、50μm厚)のミラー面に、実施例及び比較例で得た接着ペーストを、それぞれ塗布し、塗布面を被着体〔無電解銀メッキ銅板(銀メッキ表面の平均粗さRa:0.025μm)〕の上に圧着後の接着ペーストの厚さが約2μmになるように圧着した。その後、170℃で2時間加熱処理して硬化させて試験片付被着体を得た。その後、ワイヤーボンダ〔新川社製;UTC-2000Super(φ25μm、Cu線ワイヤー)〕を用いて150℃、0.01秒間、荷重25gf、超音波出力30PLSでシリコンチップと銅板間を4本のワイヤーでボンディングし、「無電解銀メッキ銅板からの試験片(接着ペーストの硬化物)の剥がれの有無」を観察した。同観察を、実施例及び比較例で得た接着ペースト各々に対して、繰り返しチップ20個に対して行った。
 チップ20個のうち、剥がれが発生したチップが0個であった場合を剥がれ「無」、それ以外を剥がれ「有」と評価した。
[Wire bonding evaluation]
The adhesive pastes obtained in Examples and Comparative Examples were each applied to the mirror surface of a square silicon chip (#2000 grinding, 50 μm thick) having a side length of 1 mm (area of 1 mm 2 ), and the coated surface was covered. The adhesive paste was press-bonded onto an object [electroless silver-plated copper plate (silver-plated surface average roughness Ra: 0.025 µm)] so that the thickness of the adhesive paste after press-bonding was about 2 µm. Then, it was cured by heat treatment at 170° C. for 2 hours to obtain an adherend with a test piece. After that, using a wire bonder [manufactured by Shinkawa; UTC-2000 Super (φ25 μm, Cu wire)] at 150° C. for 0.01 second, a load of 25 gf, an ultrasonic output of 30 PLS, and four wires between the silicon chip and the copper plate. After bonding, "presence or absence of peeling of the test piece (hardened adhesive paste) from the electroless silver-plated copper plate" was observed. The same observation was repeated for 20 chips for each of the adhesive pastes obtained in Examples and Comparative Examples.
When 0 chips out of 20 chips were peeled off, the peeling was evaluated as "absent", and in other cases, the peeling was evaluated as "yes".
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表1及び2から以下のことが分かる。
 実施例1~9の接着ペースト1~9は、加熱硬化して得られる硬化物の-60℃における貯蔵弾性率が2900MPa未満と低く、かつ、高温で加熱して得られる硬化物が接着性に優れるものである。そのため、接着ペースト1~9を加熱して得られる硬化物は、半導体パッケージの使用環境における温度変化(高温及び低温の繰り返し過程)を経た後であっても、封止樹脂の硬化物との界面での剥がれを低減ないし防止することが可能な高い密着信頼性を有するものであり、かつ、ワイヤーボンディング工程において、半導体素子の剥がれを防止することができるものである。
 また、(A)成分として、フッ素原子を有するアルキル基を有する繰り返し単位の割合が多い硬化性オルガノポリシロキサン化合物(A1)を含有する接着ペーストは、該繰り返し単位の割合が少ない硬化性オルガノポリシロキサン化合物(A2)を含有する接着ペーストと比較して、加熱硬化して得られる硬化物の-60℃における貯蔵弾性率が低く、損失正接tanδがより高い硬化物を得ることができる(実施例1及び2)。他方、フッ素原子を有するアルキル基を有する繰り返し単位の割合が多い硬化性オルガノポリシロキサン化合物(A1)を含有する接着ペーストは、該繰り返し単位の割合が、硬化性オルガノポリシロキサン化合物(A2)よりもさらに少ない硬化性オルガノポリシロキサン化合物(A3)を含有する接着ペーストと比較して、-60℃における貯蔵弾性率がより低い硬化物を得ることができるが、高温で加熱して得られる硬化物の接着強度は低くなる(実施例6及び比較例5)。
 すなわち、(A)成分として、フッ素原子を有するアルキル基を有する繰り返し単位の割合や該フッ素原子を有するアルキル基の分子量を調整することにより、-60℃における貯蔵弾性率と接着強度とを勘案し、最適な接着ペーストを得ることができる。
 接着ペーストの総質量及び接着ペーストの固形分の総質量に対する(B)成分の含有割合が少ない接着ペーストの方が、-60℃における貯蔵弾性率がより低い硬化物を得ることができる(実施例3~5)。
 (C1)成分の含有量が少ない接着ペーストは、(C1)成分の含有量が多い接着ペーストと比較して、加熱硬化して得られる硬化物の-60℃における貯蔵弾性率を大幅に低くすることができ、かつ、損失正接tanδを大幅に高くすることができる(実施例1及び6)。
 接着ペーストの固形分の総質量に対する(C)成分の含有割合が少ない接着ペーストの方が、-60℃における貯蔵弾性率がより低く、かつ、損失正接tanδがより高い硬化物を得ることができる(実施例7~9)。
Tables 1 and 2 reveal the following.
The adhesive pastes 1 to 9 of Examples 1 to 9 have a low storage elastic modulus of less than 2900 MPa at -60 ° C. of the cured product obtained by heat curing, and the cured product obtained by heating at a high temperature has adhesiveness. It is excellent. Therefore, even after the cured product obtained by heating the adhesive pastes 1 to 9 undergoes temperature changes (repeated process of high and low temperatures) in the usage environment of the semiconductor package, the interface with the cured product of the sealing resin It has high adhesion reliability capable of reducing or preventing peeling in the wire bonding process, and can prevent peeling of the semiconductor element in the wire bonding process.
Further, the adhesive paste containing, as the component (A), a curable organopolysiloxane compound (A1) having a high proportion of repeating units having an alkyl group having a fluorine atom is a curable organopolysiloxane having a low proportion of the repeating units. Compared to the adhesive paste containing the compound (A2), the cured product obtained by heat curing has a lower storage elastic modulus at −60° C. and a cured product with a higher loss tangent tan δ can be obtained (Example 1 and 2). On the other hand, in the adhesive paste containing the curable organopolysiloxane compound (A1) having a large proportion of repeating units having an alkyl group having a fluorine atom, the proportion of the repeating units is higher than that of the curable organopolysiloxane compound (A2). Compared to adhesive pastes containing even less curable organopolysiloxane compound (A3), a cured product with a lower storage elastic modulus at -60 ° C. can be obtained, but the cured product obtained by heating at a high temperature The bond strength is lower (Example 6 and Comparative Example 5).
That is, as the component (A), by adjusting the proportion of repeating units having an alkyl group having a fluorine atom and the molecular weight of the alkyl group having a fluorine atom, the storage elastic modulus and adhesive strength at -60 ° C. are taken into consideration. , an optimal adhesive paste can be obtained.
An adhesive paste with a lower content of component (B) with respect to the total mass of the adhesive paste and the total mass of the solid content of the adhesive paste can provide a cured product with a lower storage elastic modulus at −60° C. (Example 3-5).
An adhesive paste with a low content of component (C1) has a significantly lower storage modulus at −60° C. of a cured product obtained by heat curing compared to an adhesive paste with a high content of component (C1). and the loss tangent tan δ can be significantly increased (Examples 1 and 6).
An adhesive paste with a lower content of component (C) relative to the total solid mass of the adhesive paste has a lower storage elastic modulus at −60° C. and a cured product with a higher loss tangent tan δ. (Examples 7-9).
 一方、比較例1の接着ペースト1rは、接着ペーストの固形分の総質量に対する(C)成分の含有割合が多いため、硬化物の-60℃における貯蔵弾性率が2900MPa以上となり、また、損失正接tanδは0.11未満となる。そのため、この硬化物を用いた場合、封止樹脂の硬化物との界面での剥がれが多く見られ、半導体パッケージにおける密着信頼性に劣る。
 また、比較例2の接着ペースト2rは、接着ペーストの固形分の総質量に対する(B1)成分及び(C)成分の含有割合が非常に多いため、硬化物の-60℃における貯蔵弾性率が2900MPa以上となり、また、損失正接tanδは0.11未満となる。そのため、この硬化物を用いた場合、封止樹脂の硬化物との界面での剥がれが多く見られ、半導体パッケージにおける密着信頼性に劣る。
 比較例3の接着ペースト3rは、接着ペーストの総質量及び接着ペーストの固形分の総質量に対する(B1)成分の含有割合が多いため、硬化物の-60℃における貯蔵弾性率が2900MPa以上となる。そのため、この硬化物を用いた場合、封止樹脂の硬化物との界面での剥がれが多く見られ、半導体パッケージにおける密着信頼性に劣る。
 比較例4の接着ペースト4rは、接着ペーストの固形分の総質量に対する(C)成分の含有割合が比較的多いため、硬化物の-60℃における貯蔵弾性率が2900MPa以上となり、また、損失正接tanδは0.11未満となる。そのため、この硬化物を用いた場合、封止樹脂の硬化物との界面での剥がれが多く見られ、半導体パッケージにおける密着信頼性に劣る。
On the other hand, since the adhesive paste 1r of Comparative Example 1 contains a large amount of the component (C) relative to the total solid content of the adhesive paste, the cured product has a storage modulus of 2900 MPa or more at −60° C., and the loss tangent tan δ becomes less than 0.11. Therefore, when this cured product is used, peeling is often observed at the interface between the sealing resin and the cured product, resulting in poor adhesion reliability in the semiconductor package.
In addition, since the adhesive paste 2r of Comparative Example 2 has a very large content ratio of the (B1) component and the (C) component with respect to the total mass of the solid content of the adhesive paste, the storage elastic modulus of the cured product at -60 ° C. is 2900 MPa. As described above, the loss tangent tan δ is less than 0.11. Therefore, when this cured product is used, peeling is often observed at the interface between the sealing resin and the cured product, resulting in poor adhesion reliability in the semiconductor package.
Since the adhesive paste 3r of Comparative Example 3 contains a large amount of the component (B1) with respect to the total mass of the adhesive paste and the total mass of the solid content of the adhesive paste, the cured product has a storage elastic modulus of 2900 MPa or more at −60° C. . Therefore, when this cured product is used, peeling is often observed at the interface between the sealing resin and the cured product, resulting in poor adhesion reliability in the semiconductor package.
Since the adhesive paste 4r of Comparative Example 4 has a relatively large content ratio of the component (C) with respect to the total solid content of the adhesive paste, the storage elastic modulus of the cured product at -60 ° C. is 2900 MPa or more, and the loss tangent tan δ becomes less than 0.11. Therefore, when this cured product is used, peeling is often observed at the interface between the sealing resin and the cured product, resulting in poor adhesion reliability in the semiconductor package.
 比較例6の接着ペースト6rは、(C)成分を含有せず、接着ペーストを80℃で20時間加熱硬化した後、さらに100℃で20時間加熱硬化して得られた硬化物が室温(23℃)で変形を伴わずに取り扱うことができる程度の硬さにならなかったため、貯蔵弾性率測定用の試験片を作製することができなかった。また、(B)成分及び(C)成分を含有しなかったため、接着ペーストを高温で加熱して得られる硬化物は、十分な接着強度を発現しない。そのため、この硬化物を用いた場合、ワイヤーボンディング工程において、半導体素子の剥がれが見られ、また、接着ペーストの硬化物と成形枠付き支持基板底面との界面で剥離したため、剥離発生率を評価することができなかった。
 比較例7の接着ペースト7rは、(C)成分の含有割合が少なく、接着ペーストを80℃で20時間加熱硬化した後、さらに100℃で20時間加熱硬化して得られた硬化物が室温(23℃)で変形を伴わずに取り扱うことができる程度の硬さにならなかったため、貯蔵弾性率測定用の試験片を作製することができなかった。また、(B)成分を含有せず、かつ(C)成分の含有割合が少なかったため、接着ペーストを高温で加熱して得られる硬化物は、十分な接着強度を発現しない。そのため、この硬化物を用いた場合、ワイヤーボンディング工程において、半導体素子の剥がれが見られ、また、接着ペーストの硬化物と成形枠付き支持基板底面との界面で剥離したため、剥離発生率を評価することができなかった。
The adhesive paste 6r of Comparative Example 6 did not contain the component (C), and was cured by heating at 80°C for 20 hours and then at 100°C for 20 hours. ° C.), it was not possible to prepare a test piece for storage modulus measurement because the hardness did not reach a level that could be handled without deformation. Moreover, since the components (B) and (C) were not contained, the cured product obtained by heating the adhesive paste at a high temperature does not exhibit sufficient adhesive strength. Therefore, when this cured product was used, peeling of the semiconductor element was observed in the wire bonding process, and peeling occurred at the interface between the cured adhesive paste and the bottom surface of the support substrate with the molding frame. I couldn't.
The adhesive paste 7r of Comparative Example 7 has a low content of the component (C), and after curing the adhesive paste by heating at 80° C. for 20 hours, the cured product obtained by further heating and curing at 100° C. for 20 hours is room temperature ( 23° C.), it was not possible to prepare a test piece for measuring the storage elastic modulus because the hardness was not such that it could be handled without deformation. Moreover, since the component (B) was not contained and the content of the component (C) was low, the cured product obtained by heating the adhesive paste at a high temperature did not exhibit sufficient adhesive strength. Therefore, when this cured product was used, peeling of the semiconductor element was observed in the wire bonding process, and peeling occurred at the interface between the cured adhesive paste and the bottom surface of the support substrate with the molding frame. I couldn't.

Claims (10)

  1.  硬化性オルガノポリシロキサン化合物(A)を含有する接着ペーストであって、
     前記接着ペーストを80℃で20時間加熱硬化した後、さらに100℃で20時間加熱硬化して得られる硬化物の、-60℃における貯蔵弾性率が2900MPa未満であり、かつ、前記接着ペーストを170℃で2時間加熱硬化して得られる硬化物と、銀メッキ銅板との100℃における接着強度が、5N/mm□以上である接着ペースト。
    An adhesive paste containing a curable organopolysiloxane compound (A),
    After curing the adhesive paste by heating at 80° C. for 20 hours, the cured product obtained by further heating and curing at 100° C. for 20 hours has a storage modulus of less than 2900 MPa at −60° C. An adhesive paste having an adhesive strength of 5 N/mm square or more at 100° C. between a cured product obtained by heating and curing at 100° C. for 2 hours and a silver-plated copper plate.
  2.  前記硬化性オルガノポリシロキサン化合物(A)が、ポリシルセスキオキサン化合物である、請求項1に記載の接着ペースト。 The adhesive paste according to claim 1, wherein the curable organopolysiloxane compound (A) is a polysilsesquioxane compound.
  3.  さらに溶媒(S)を含有し、固形分濃度が、70質量%以上100質量%未満のものである、請求項1又は2に記載の接着ペースト。 The adhesive paste according to claim 1 or 2, which further contains a solvent (S) and has a solid content concentration of 70% by mass or more and less than 100% by mass.
  4.  さらに、下記(B)成分を、接着ペーストの固形分の総質量に対して、5質量%以上30質量%未満含有する、請求項1~3のいずれかに記載の接着ペースト。
    (B)成分:平均一次粒子径が、8μm以下の微粒子
    The adhesive paste according to any one of claims 1 to 3, further comprising 5% by mass or more and less than 30% by mass of the following component (B) with respect to the total mass of the solid content of the adhesive paste.
    (B) component: fine particles with an average primary particle size of 8 μm or less
  5.  さらに、下記(C)成分を、接着ペーストの固形分の総質量に対して、2質量%以上19質量%未満含有する、請求項1~4のいずれかに記載の接着ペースト。
    (C)成分:シランカップリング剤
    The adhesive paste according to any one of claims 1 to 4, further comprising 2% by mass or more and less than 19% by mass of the following component (C) with respect to the total mass of the solid content of the adhesive paste.
    (C) component: silane coupling agent
  6.  貴金属触媒を実質的に含有しない、請求項1~5のいずれかに記載の接着ペースト。 The adhesive paste according to any one of claims 1 to 5, which contains substantially no noble metal catalyst.
  7.  接着ペーストを80℃で20時間加熱硬化した後、さらに100℃で20時間加熱硬化して得られる硬化物の、-60℃における損失正接tanδが、0.11以上である、請求項1~6のいずれかに記載の接着ペースト。 Claims 1 to 6, wherein the cured product obtained by heating and curing the adhesive paste at 80°C for 20 hours and then further heating and curing at 100°C for 20 hours has a loss tangent tan δ at -60°C of 0.11 or more. The adhesive paste according to any one of 1.
  8.  半導体素子固定材用接着剤である、請求項1~7のいずれかに記載の接着ペースト。 The adhesive paste according to any one of claims 1 to 7, which is an adhesive for semiconductor element fixing materials.
  9.  請求項1~8のいずれかに記載の接着ペーストを、半導体素子固定材用接着剤として使用する方法。 A method of using the adhesive paste according to any one of claims 1 to 8 as an adhesive for a semiconductor element fixing material.
  10.  請求項1~8のいずれかに記載の接着ペーストを、半導体素子固定材用接着剤として使用する半導体装置の製造方法であって、下記工程(BI)及び工程(BII)を有する半導体装置の製造方法。
    工程(BI):半導体素子と支持基板の一方又は両方の接着面に前記接着ペーストを塗布し、圧着する工程
    工程(BII):工程(BI)で得られた圧着物の前記接着ペーストを加熱硬化させ、前記半導体素子を前記支持基板に固定する工程
    A method for manufacturing a semiconductor device using the adhesive paste according to any one of claims 1 to 8 as an adhesive for a semiconductor element fixing material, comprising the following steps (BI) and (BII). Method.
    Step (BI): Applying the adhesive paste to the bonding surface of one or both of the semiconductor element and the support substrate, and press-bonding Step (BII): Heating and curing the adhesive paste of the crimped product obtained in Step (BI) and fixing the semiconductor element to the support substrate
PCT/JP2022/013289 2021-03-26 2022-03-22 Adhesive paste, usage method for adhesive paste, and production method for semiconductor device WO2022202845A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023509214A JPWO2022202845A1 (en) 2021-03-26 2022-03-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021054376 2021-03-26
JP2021-054376 2021-03-26

Publications (1)

Publication Number Publication Date
WO2022202845A1 true WO2022202845A1 (en) 2022-09-29

Family

ID=83395626

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/013289 WO2022202845A1 (en) 2021-03-26 2022-03-22 Adhesive paste, usage method for adhesive paste, and production method for semiconductor device
PCT/JP2022/013288 WO2022202844A1 (en) 2021-03-26 2022-03-22 Adhesive paste, method for using adhesive paste, and method for manufacturing semiconductor device

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013288 WO2022202844A1 (en) 2021-03-26 2022-03-22 Adhesive paste, method for using adhesive paste, and method for manufacturing semiconductor device

Country Status (3)

Country Link
JP (2) JPWO2022202844A1 (en)
TW (2) TW202244238A (en)
WO (2) WO2022202845A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110948A1 (en) * 2015-12-22 2017-06-29 リンテック株式会社 Curable composition, method for producing curable composition, cured product, use of curable composition, and optical device
WO2018030287A1 (en) * 2016-08-08 2018-02-15 東レ・ダウコーニング株式会社 Curable particulate silicone composition, semiconductor member comprising curable particulate silicone composition, and molding method for semiconductor member comprising curable particulate silicone composition
WO2020067454A1 (en) * 2018-09-28 2020-04-02 リンテック株式会社 Curable composition, cured product and use of curable composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110948A1 (en) * 2015-12-22 2017-06-29 リンテック株式会社 Curable composition, method for producing curable composition, cured product, use of curable composition, and optical device
WO2018030287A1 (en) * 2016-08-08 2018-02-15 東レ・ダウコーニング株式会社 Curable particulate silicone composition, semiconductor member comprising curable particulate silicone composition, and molding method for semiconductor member comprising curable particulate silicone composition
WO2020067454A1 (en) * 2018-09-28 2020-04-02 リンテック株式会社 Curable composition, cured product and use of curable composition

Also Published As

Publication number Publication date
JPWO2022202845A1 (en) 2022-09-29
WO2022202844A1 (en) 2022-09-29
JPWO2022202844A1 (en) 2022-09-29
TW202244237A (en) 2022-11-16
TW202244238A (en) 2022-11-16

Similar Documents

Publication Publication Date Title
JP6151458B2 (en) Curable composition, method for producing curable composition, cured product, method for using curable composition, and optical device
JP6151457B2 (en) Curable composition, method for producing curable composition, cured product, method for using curable composition, and optical device
JP6151459B2 (en) Curable composition, method for producing curable composition, cured product, method for using curable composition, and optical device
JP6821600B2 (en) Curable composition, method for producing curable composition, cured product, and method for using curable composition
JP6840901B2 (en) Curable composition, cured product, and how to use the curable composition
WO2022202845A1 (en) Adhesive paste, usage method for adhesive paste, and production method for semiconductor device
WO2022202846A1 (en) Adhesive paste, method for using adhesive paste, and method for manufacturing semiconductor device
JP2022151346A (en) Adhesive paste, application method of adhesive paste and production method of semiconductor device
JP6830563B2 (en) Curable Polysilsesquioxane Compounds, Curable Compositions, Curables, and How to Use Curable Compositions
JP6840900B2 (en) Curable composition, cured product, and how to use the curable composition
JP2023139659A (en) Adhesive paste, method for using adhesive paste, and method for manufacturing semiconductor device
WO2022209064A1 (en) Adhesive paste, method for using adhesive paste, and method for producing semiconductor device
JP2024004932A (en) Adhesive paste, method for using adhesive paste and method for producing light-emitting device
WO2021060562A1 (en) Curable composition, cured product, and method for using curable composition
WO2021060561A1 (en) Curable composition, cured product, and method for using curable composition
JP2020158609A (en) Curable composition, cured product and method for using curable composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775627

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023509214

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775627

Country of ref document: EP

Kind code of ref document: A1