WO2018110550A1 - Thermosetting resin composition, photocurable resin composition, cured product and heat resistance improving agent - Google Patents

Thermosetting resin composition, photocurable resin composition, cured product and heat resistance improving agent Download PDF

Info

Publication number
WO2018110550A1
WO2018110550A1 PCT/JP2017/044570 JP2017044570W WO2018110550A1 WO 2018110550 A1 WO2018110550 A1 WO 2018110550A1 JP 2017044570 W JP2017044570 W JP 2017044570W WO 2018110550 A1 WO2018110550 A1 WO 2018110550A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
group
weight
less
mol
Prior art date
Application number
PCT/JP2017/044570
Other languages
French (fr)
Japanese (ja)
Inventor
慎吾 金谷
Original Assignee
ナガセケムテックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナガセケムテックス株式会社 filed Critical ナガセケムテックス株式会社
Priority to JP2018556691A priority Critical patent/JPWO2018110550A1/en
Publication of WO2018110550A1 publication Critical patent/WO2018110550A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines

Definitions

  • the present invention relates to a thermosetting resin composition, a photocurable resin composition, a cured product, and a heat resistance improver.
  • an epoxy resin is cured with various curing agents to form a cured product having excellent mechanical properties, water resistance, chemical resistance, heat resistance, electrical properties, and the like. Therefore, it is used in a wide range of fields such as electrical / electronic materials, structural materials, and paints.
  • epoxy resins such as bisphenol A type epoxy resins are used because of a good balance between heat resistance and mechanical strength. It is used a lot.
  • Patent Document 1 gives a cured product excellent in low viscosity, low stress, and adhesiveness, and is suitable as an epoxy compound suitable for electrical / electronic device materials such as semiconductor sealing materials and underfill materials.
  • Epoxy obtained by condensing an epoxy group-containing alkoxysilicon compound in the presence of a basic catalyst as an epoxy group-containing silicon compound that can be a component of a thermosetting resin composition that gives a cured product with excellent heat resistance Compounds are disclosed.
  • An object of this invention is to provide the thermosetting resin composition or photocurable resin composition which can obtain the hardened
  • the first of the present invention is (A) an epoxy resin having an average epoxy group number of 2 or more, and (B) RSiO 3/2 as a repeating structural unit, and among all the repeating structural units contained in one molecule, it is essential.
  • a repeating unit in which R is an organic group containing a glycidyl group as a component is 100 mol% or less and 50 mol% or more, and R is an aryl group and / or an alkyl group having 1 to 12 carbon atoms as an optional component Silsesquioxane derivatives having a weight average molecular weight Mw of 2,000 to 10,000, and (C) an amine having two or more amino groups capable of reacting with the epoxy group, wherein the unit is 50 mol% or less and 0 mol% or more.
  • a thermosetting compound comprising 5 parts by weight to 30 parts by weight of the (B) silsesquioxane derivative with respect to 100 parts by weight of the (A) epoxy resin.
  • This invention relates to
  • thermosetting resin composition it is preferable that (A) the epoxy resin is an aromatic epoxy resin.
  • the second of the present invention relates to a cured product obtained by curing the thermosetting resin composition.
  • 4th of this invention is related with the hardened
  • a fifth aspect of the present invention is an additive for improving the heat resistance of an epoxy resin, wherein RSiO 3/2 is a repeating structural unit and is an essential component among all the repeating structural units contained in one molecule.
  • the repeating structural unit in which R is an organic group containing a glycidyl group is 100 mol% or less and 50 mol% or more, and R is an aryl group and / or an alkyl group having 1 to 12 carbon atoms as an optional component Relates to a heat resistance improver comprising a silsesquioxane derivative having a weight average molecular weight Mw of 2,000 to 10,000.
  • thermosetting resin composition or a photocurable resin composition capable of obtaining a cured product having excellent mechanical strength and heat resistance can be obtained.
  • thermosetting resin composition and photocurable resin composition The thermosetting resin composition of the present invention comprises (A) an epoxy resin, (B) a silsesquioxane derivative, and (C) an amine-based compound, and (A) 100 parts by weight of the epoxy resin (B)
  • the silsesquioxane derivative is 5 parts by weight or more and 30 parts by weight or less.
  • the photocurable resin composition of the present invention comprises (A) an epoxy resin, (B) a silsesquioxane derivative, and (D) a photocationic polymerization initiator, and (A) 100 parts by weight of the epoxy resin ( B)
  • the silsesquioxane derivative is 30 parts by weight or more and 150 parts by weight or less.
  • the epoxy resin has an average number of epoxy groups of 2 or more. It is not particularly limited as long as it is an epoxy resin having two or more average epoxy groups, and various epoxy resins such as aromatic epoxy resins, aliphatic epoxy resins, and alicyclic epoxy resins can be used. Of these, aromatic epoxy resins are preferred because of their excellent heat resistance.
  • the epoxy resin is not particularly limited as long as the average number of epoxy groups is 2 or more, but the average number of epoxy groups is preferably 2 or more and 4 or less. By setting it as this range, since (A) epoxy resin can take a crosslinked structure, it is excellent in heat resistance. On the other hand, if the average number of epoxy groups is less than 2, a sufficient cross-linked structure cannot be obtained, so that (A) epoxy resin cannot obtain sufficient cured product properties, and electrical / electronic materials, structural materials, paints, etc. Can not be used as.
  • the average number of epoxy groups can be determined by dividing the weight average molecular weight determined by gel permeation chromatography (GPC) by the epoxy equivalent determined in accordance with JIS K7236.
  • the aromatic epoxy resin is not particularly limited as long as it has an aromatic ring in one molecule and has an average number of epoxy groups of 2 or more.
  • bisphenol compounds such as bisphenol A and bisphenol F or derivatives thereof; biphenyl compounds such as 4,4′-biphenol, 3,3 ′, 5,5′-tetramethylbiphenyl-4,4′-diol or the like Derivative; Trifunctional phenyl resin having trihydroxyphenylmethane skeleton and aminophenol skeleton; Phenol novolak resin; Cresol novolak resin; Phenol aralkyl resin having phenylene skeleton; Phenol aralkyl resin having biphenylene skeleton; Naphthol aralkyl resin; An epoxy resin obtained by epoxidizing a derivative of
  • aromatic epoxy resins bisphenol compounds such as bisphenol A and bisphenol F or their derivatives, phenol novolac resins, cresol novolac resins, and diaminodiphenylmethane skeletons because the cured products obtained have good heat resistance and mechanical strength. Epoxy resins obtained by epoxidizing these derivatives are preferred.
  • the aliphatic epoxy resin is not particularly limited as long as it has an aliphatic skeleton and has an average number of epoxy groups of 2 or more.
  • epoxy resins obtained by epoxidizing aliphatic diols such as ethylene glycol, propylene glycol, butanediol, hexanediol, octanediol, nonanediol, decanediol, polyhydric alcohols such as pentaerythritol, sorbitol, or derivatives thereof Etc.
  • epoxy resin obtained by epoxidizing hexanediol, ethylene glycol, propylene glycol, pentaerythritol, or a derivative thereof is preferable because of its excellent compatibility with the (B) silsesquioxane derivative.
  • the alicyclic epoxy resin is not particularly limited as long as it has an alicyclic skeleton in one molecule and has an average number of epoxy groups of 2 or more.
  • epoxy resins such as the aromatic epoxy resin, aliphatic epoxy resin, and alicyclic epoxy resin may be used alone or in combination of two or more.
  • the silsesquioxane derivative has a repeating structure in which RSiO 3/2 is a repeating structural unit, and R is an organic group containing a glycidyl group as an essential component among all the repeating structural units contained in one molecule.
  • the repeating unit in which the unit is 100 mol% or less and 50 mol% or more and R is an aryl group and / or an alkyl group having 1 to 12 carbon atoms as an optional component is 50 mol% or less and 0 mol% or more,
  • the weight average molecular weight Mw is 2,000 or more and 10,000 or less.
  • the repeating structural unit in which R is an organic group containing a glycidyl group is 100 mol% or less and 50 mol% or more as an essential component.
  • the ratio is preferably 100 mol% or less and 75 mol% or more, more preferably 100 mol% or less and 90 mol% or more, further preferably 100 mol% or less and 95 mol% or more, and more preferably 100 mol%. Most preferred. This is because the resulting cured product has more excellent mechanical strength and heat resistance. If it is less than 50 mol%, both mechanical strength and heat resistance tend to decrease.
  • a repeating structural unit in which R is an aryl group and / or an alkyl group having 1 to 12 carbon atoms is an optional component of 50
  • the proportion is preferably not more than 25 mol% and not less than 0 mol%, more preferably not more than 10 mol% and not less than 0 mol%, most preferably 0 mol%. . This is because the resulting cured product has more excellent mechanical strength and heat resistance. When it exceeds 50 mol%, both mechanical strength and heat resistance tend to decrease.
  • Examples of the organic group containing a glycidyl group include a glycidoxyalkyl group to which an oxyglycidyl group having 4 or less carbon atoms such as ⁇ -glycidoxyethyl, ⁇ -glycidoxypropyl, and ⁇ -glycidoxybutyl is bonded; Glycidyl group: ⁇ - (3,4-epoxycyclohexyl) ethyl group, ⁇ - (3,4-epoxycyclohexyl) propyl group, ⁇ - (3,4-epoxycycloheptyl) ethyl group, ⁇ - (3,4 epoxy) Substituted with a cycloalkyl group having 5 to 8 carbon atoms having an oxirane group such as (cyclohexyl) propyl group, ⁇ - (3,4-epoxycyclohexyl) butyl group, and ⁇ - (3,4-epoxycyclohex
  • thermosetting resin composition a glycidoxyalkyl group is preferred in the thermosetting resin composition because of its excellent reactivity with amine compounds.
  • D Since it is excellent in the reactivity with a photocationic polymerization initiator, in a photocurable resin composition, a glycidoxyalkyl group is preferable. Sufficient cured product characteristics (heat resistance and mechanical strength) can be obtained by excellent reactivity with (C) amine compound or (D) photocationic polymerization initiator.
  • aryl group examples include a phenyl group; and alkylaryl groups such as a methylphenyl group and a dimethylphenyl group.
  • the alkyl group having 1 to 12 carbon atoms may be linear or branched. For example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group.
  • the cured product obtained by curing the resulting thermosetting resin composition and the cured product obtained by curing the photocurable resin composition are excellent in heat resistance
  • (A) A methyl group, phenyl group, isobutyl, isooctyl group, and the like are preferable because they are compatible with the epoxy resin without any problem.
  • R is the composition of RSiO 3/2 is an organic group containing a glycidyl group, and R is an aryl group and / or one or more carbon atoms and 12 or less alkyl groups RSiO 3/2
  • the composition of can be analyzed by 1 H-NMR or FTIR.
  • JNM-ECZR manufactured by JEOL Ltd., 400 MHz
  • Frontier Optica manufactured by PerkinElmer, KBr method
  • silsesquioxane derivatives can be obtained in a ladder type, a random type, or other structures (such as a cage type structure) depending on hydrolysis and condensation conditions.
  • the (B) silsesquioxane derivative of the present invention preferably has a ladder type structure or a random type structure, or has both a ladder type structure and a random type structure.
  • the (B) silsesquioxane derivative preferably contains a ladder type structure and / or a random type structure in an amount of 80% by weight or more, and 85% by weight or more because the resulting cured product has excellent impact resistance. It is preferably contained, and more preferably 90% by weight or more. Furthermore, among these, since the mechanical strength of the hardened
  • the (B) silsesquioxane derivative may contain a structure other than the ladder type and the random type.
  • other structures are inevitably produced as by-products, and this may coexist in small amounts as impurities.
  • Examples of the structure other than the ladder type and the random type include what is usually called a cage structure.
  • the cage structure includes an incomplete cage structure in which a part of the cage structure is opened.
  • the content of the ladder structure and / or the random structure in the silsesquioxane derivative can be determined as follows. A cage structure (a part of the cage structure was opened from the m / z peak area derived from the cage structure of the silsesquioxane derivative (B) by liquid chromatography mass spectrometry (LC-MS). The content of the ladder structure and / or the random structure is obtained by subtracting the weight of the cage structure obtained from the weight of the silsesquioxane derivative (B). The content can be determined.
  • the silsesquioxane derivative is an essential component in which R is an RSiO 3/2 introduction of an organic group containing a glycidyl group, so that a trialkoxysilane in which R has an organic group containing a glycidyl group;
  • R which is an optional component
  • trialkoxysilane in which R has an organic group containing a glycidyl group include, for example, ⁇ -glycidoxyethyltrimethoxysilane, ⁇ -glycidoxyethyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxy Examples include silane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltriethoxysilane, and the like. These may be used alone or in combination of two or more.
  • trialkoxysilane having an aryl group and / or an alkyl group having 1 to 12 carbon atoms examples include phenyltrimethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, and butyltrimethoxysilane. And isobutyltrimethoxysilane, hexyltrimethoxysilane, n-octyltrimethoxysilane, n-octyltrimethoxysilane, isooctyltrimethoxysilane, n-decyltrimethoxysilane and the like. These may be used alone or in combination of two or more.
  • the conditions for the hydrolysis / condensation reaction are preferably 30 to 120 ° C. and 1 to 24 hours, more preferably 40 to 90 ° C. and 2 to 12 hours, still more preferably 50 to 70 ° C. 3-8 hours.
  • a catalyst may be used.
  • the catalyst include a basic catalyst and an acidic catalyst.
  • the basic catalyst include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide, benzyltriethylammonium hydroxide, sodium hydroxide, and potassium hydroxide.
  • tetramethylammonium hydroxide or sodium hydroxide is preferably used because of its high catalytic activity.
  • the acidic catalyst examples include hydrochloric acid, sulfuric acid, nitric acid, acetic acid, phosphoric acid, boric acid, trifluoroacetic acid, trifluoromethanesulfonic acid, and p-toluenesulfonic acid.
  • hydrochloric acid, nitric acid, or acetic acid is preferably used because of its high catalytic activity.
  • a solvent can be used for the hydrolysis / condensation reaction as necessary.
  • solvents include alcohols such as methanol and ethanol; ethers such as tetrahydrofuran; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol dimethyl ether, diethylene glycol monomethyl ether, and diethylene glycol monoethyl.
  • Glycol ethers such as ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether and diethylene glycol monobutyl ether; alkylene glycol compounds such as methyl cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, propylene glycol methyl ether acetate and 3-methoxybutyl-1-acetate Alkyl ether acetates; toluene, aromatic hydrocarbons such as xylene; methyl ethyl ketone, methyl isobutyl ketone (MIBK), may be mentioned ketones such as methyl amyl ketone, cyclohexanone. These solvents may be used alone or in a combination of two or more.
  • alkylene glycol compounds such as methyl cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, propylene glycol methyl
  • the silsesquioxane derivative is a cured product obtained by curing the resulting thermosetting resin composition or a cured product obtained by curing the photo-curable resin composition.
  • the weight average molecular weight Mw is 2,000 or more and 10,000 or less.
  • the lower limit of the weight average molecular weight Mw is preferably 2,500 or more, and more preferably 3,000 or more.
  • the upper limit value of the weight average molecular weight Mw is preferably 8,000 or less, and more preferably 7,000 or less.
  • Optical properties of a cured product obtained by curing a thermosetting resin composition or a photocurable resin composition obtained by curing the thermosetting resin composition obtained by reducing the compatibility with the epoxy resin. (Transparency) tends to deteriorate.
  • the weight average molecular weight Mw is a value measured by polystyrene permeation gel permeation chromatography (GPC).
  • GPC polystyrene permeation gel permeation chromatography
  • the viscosity of the silsesquioxane derivative is preferably 1,000 mPa ⁇ s to 50,000 mPa ⁇ s at 25 ° C., more preferably 3,000 mPa ⁇ s to 30,000 mPa ⁇ s. It is because it is excellent in workability
  • the thermosetting resin composition of the present invention contains (A) an epoxy resin, (B) a silsesquioxane derivative, and (C) an amine compound.
  • the content of (B) the silsesquioxane derivative is: (A) It is 5 to 30 weight part with respect to 100 weight part of epoxy resins. (B) The lower limit of the content of the silsesquioxane derivative may be 10 parts by weight or more, or 15 parts by weight or more, and the upper limit may be 25 parts by weight or less, or 20 parts by weight or less. . (B) When the silsesquioxane derivative is 5 parts by weight or more and 30 parts by weight or less, the cured product obtained by curing the obtained thermosetting resin composition has both excellent mechanical strength and heat resistance.
  • the photocurable resin composition of the present invention contains (A) an epoxy resin, (B) a silsesquioxane derivative, and (D) a photocationic polymerization initiator.
  • A It is 30 to 150 weight part with respect to 100 weight part of epoxy resins.
  • B The lower limit of the content of the silsesquioxane derivative may be 35 parts by weight or more, 40 parts by weight or more, or 45 parts by weight or more, and the upper limit is 130 parts by weight or less, or 100 parts by weight or less. It may be.
  • the silsesquioxane derivative is 30 parts by weight or more and 150 parts by weight or less, the cured product obtained by curing the obtained photocurable resin composition has both excellent mechanical strength and heat resistance.
  • the silsesquioxane derivative can be used as a heat resistance improver that improves the heat resistance of the (A) epoxy resin by being added to the (A) epoxy resin.
  • the (C) amine compound contained in the thermosetting resin composition is not particularly limited as long as it is an amine compound having two or more amino groups capable of reacting with the epoxy group contained in the (A) epoxy resin.
  • Various amine compounds such as alicyclic amines, aromatic amines, ketimine compounds, and guanidine derivatives can be used.
  • aliphatic amine examples include aliphatic polyamines such as ethylenediamine, propylenediamine, butylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, and pentaethylenehexamine.
  • alicyclic amines examples include isophorone diamine, 1,2-diaminocyclohexane, 1,3-bis (aminomethyl) cyclohexane, 4,4′-methylenebis (2-methylcyclohexaneamine), 1- (2-amino And alicyclic polyamines such as ethyl) piperazine, bis (4-aminocyclohexyl) methane, and norbornanediamine.
  • aromatic amines include aromatic polyamines such as phenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, dimethylbenzylamine, diethyltoluenediamine, and m-xylylenediamine.
  • the various (C) amine compounds may be used alone or in combination of two or more.
  • (C) amine compounds 4,4′-methylenebis (2-methylcyclohexaneamine) is preferably used because of excellent reactivity with (A) epoxy resin and (B) silsesquioxane derivative. .
  • the content of the (C) amine compound in the thermosetting resin composition of the present invention is 0.5 equivalent or more and 1.1 equivalent or less with respect to 1 equivalent of the epoxy group in the thermosetting resin composition. It is preferable to set it to 0.7 equivalent or more and 1.0 equivalent or less.
  • the lower limit of (C) amine compound is 10 parts by weight or more or 20 parts by weight or more with respect to 100 parts by weight of the total of (A) epoxy resin and (B) silsesquioxane derivative.
  • the upper limit may be 50 parts by weight or less or 40 parts by weight or less.
  • the amount of the (C) amine compound is preferably 20 parts by weight or more and 50 parts by weight or less based on 100 parts by weight of the total of (A) the epoxy resin and (B) the silsesquioxane derivative.
  • the amount of the (C) amine compound is preferably 20 parts by weight or more and 50 parts by weight or less based on 100 parts by weight of the total of (A) the epoxy resin and (B) the silsesquioxane derivative.
  • the amount of the (C) amine compound is preferably 20 parts by weight or more and 50 parts by weight or less based on 100 parts by weight of the total of (A) the epoxy resin and (B) the silsesquioxane derivative.
  • the photocationic polymerization initiator (D) possessed by the photocurable resin composition generates a strong acid such as tetrafluoroboric acid or hexafluorophosphoric acid by UV irradiation or heating, and (A) an epoxy resin or ( B) There is no particular limitation as long as the silsesquioxane derivative is activated and can initiate a polymerization reaction.
  • the various (D) photocationic polymerization initiators may be used alone or in combination of two or more.
  • a triarylsulfonium salt is preferably used because of excellent reactivity with the (A) epoxy resin and the (B) silsesquioxane derivative.
  • the content of the (D) photocationic polymerization initiator in the photocurable resin composition of the present invention is (D) a photocation with respect to a total of 100 parts by weight of the (A) epoxy resin and (B) silsesquioxane derivative.
  • the lower limit of the polymerization initiator may be 0.1 parts by weight or more or 0.5 parts by weight or more, and the upper limit may be 10 parts by weight or less or 5 parts by weight or less.
  • the total amount of (A) epoxy resin and (B) silsesquioxane derivative is 100 parts by weight, and (D) the cationic photopolymerization initiator is preferably 0.5 parts by weight or more and 5 parts by weight or less.
  • the cured product obtained by curing the photocurable resin composition obtained has both excellent mechanical strength and excellent heat resistance. Can do.
  • the content is less than 0.1 parts by weight, curing is delayed, and when it exceeds 10 parts by weight, the cured product becomes brittle and the mechanical strength is remarkably reduced.
  • the silsesquioxane derivative having a structure other than the ladder type and the random type is included as an impurity, the content of the (D) photocationic polymerization initiator is appropriately reduced and increased in consideration of the content as appropriate. Good.
  • a cured product can be produced by advancing curing of the thermosetting resin composition or the photocurable resin composition of the present invention.
  • the production is performed by heating the thermosetting resin composition of the present invention and, if necessary, post-curing by heating, or by UV irradiation and, if necessary, UV irradiation or heating by heating the photocurable resin composition. After post-curing, for example, cooling with a mold or the like, and curing may be mentioned.
  • the cured product obtained by curing the thermosetting resin composition of the present invention and the cured product obtained by curing the photocurable resin composition can achieve both excellent mechanical strength and heat resistance.
  • the cured product obtained by curing the thermosetting resin composition of the present invention and the cured product obtained by curing the photo-curable resin composition are partially entangled when the cut surface is observed by SEM (500 times). A fibrous substance showing a certain direction can be confirmed.
  • the cured product can be said to be in a state where the fibrous substance and other regions are phase-separated, and by taking such a state, the fibrous substance has an effect as a molecular chain molecular filler in the cured product. In order to suppress the micro Brownian motion, it is presumed that both excellent mechanical strength and excellent heat resistance can be achieved.
  • Such a state in which the fibrous substance and other regions are phase-separated can be obtained as follows.
  • the (B) silsesquioxane derivative has a glass transition temperature Tg of a cured product obtained when (C) an amine compound or (D) a photocationic polymerization initiator is used as a curing agent, compared with (A) an epoxy resin. And very low.
  • the state-like substance and other regions are in a phase-separated state. For example, when an acid anhydride curing agent is used as the curing agent instead of (C) the amine compound, it cannot be obtained.
  • the bending strength of a cured product obtained by curing the thermosetting resin composition of the present invention is preferably 80 MPa or more, more preferably 81 MPa or more, and further preferably 82 MPa or more.
  • the bending strength is preferably higher, and the upper limit is not particularly limited, but for example, it can be practically used if it is 100 MPa or less.
  • the elongation percentage is preferably 4.0% or more, more preferably 4.1% or more, still more preferably 4.3% or more, and most preferably 4.5% or more. From a practical viewpoint, it may be 5% or less.
  • the bending strength and elongation of the cured product can be measured by a test method based on JIS K7171.
  • the glass transition temperature of the cured product obtained by curing the thermosetting resin composition and the photocurable resin composition of the present invention depends on the type of epoxy resin used, but compared with the case where the epoxy resin is used alone.
  • the temperature is preferably increased by 10 ° C or more, more preferably by 15 ° C or more, and further preferably by 20 ° C or more.
  • the glass transition temperature Tg of a cured product obtained by curing the thermosetting resin composition and the photocurable resin composition of the present invention is 165 ° C. or higher when an aromatic epoxy resin is used as the (A) epoxy resin. It is preferably 168 ° C. or higher, more preferably 170 ° C. or higher.
  • the glass transition temperature Tg is preferably higher, and the upper limit value is not particularly limited.
  • the glass transition temperature Tg of the cured product obtained by curing the thermosetting resin composition and the photocurable resin composition of the present invention is 90 ° C or higher when an alicyclic epoxy resin is used as the (A) epoxy resin. Preferably, it is 100 ° C. or higher, more preferably 105 ° C. or higher.
  • the glass transition temperature Tg is preferably higher, and the upper limit value is not particularly limited.
  • the glass transition temperature Tg of the cured product is measured using a differential scanning calorimetry (DSC) apparatus or a dynamic viscoelasticity measuring apparatus such as DMS6100 (manufactured by Seiko Instruments Inc.) in a temperature range of 30 to 250 ° C. and a temperature increase rate of 2 It can be measured under the conditions of ° C / min and frequency of 1 MHz.
  • DSC differential scanning calorimetry
  • DMS6100 manufactured by Seiko Instruments Inc.
  • the elastic modulus of a cured product obtained by curing the photocurable resin composition of the present invention is preferably 1.5 GPa or more, more preferably 1.8 GPa or more, and further preferably 2.0 GPa or more.
  • the higher elastic modulus is preferable, and the upper limit is not particularly limited, but for example, it can be practically used if it is 5.0 GPa or less.
  • the elastic modulus of the cured product can be measured using a dynamic viscoelasticity measuring device such as DMS6100 (manufactured by Seiko Instruments Inc.) under conditions of a frequency of 1 Hz and 25 ° C.
  • DMS6100 manufactured by Seiko Instruments Inc.
  • the pencil hardness of a cured product obtained by curing the photocurable resin composition of the present invention is preferably 3H or more, and more preferably 4H or more. Although an upper limit is not specifically limited, From a viewpoint of mechanical strength, it is 6H or less, for example.
  • the pencil hardness can be measured by a test method based on JIS K 5600-5-4.
  • a cured product obtained by curing a thermosetting resin composition or a cured product obtained by curing a photocurable resin composition has excellent mechanical strength and excellent heat resistance.
  • High mechanical and electrical connection despite being easily exposed to high temperatures and high humidity, used in the fields of electrical and electronic materials such as laminates, FRP (composite materials), adhesives, and automotive materials It can be suitably used as a component material that requires reliability.
  • Example 1 Each component was mixed according to the formulation shown in Table 1 to obtain the desired composition.
  • Each composition obtained was defoamed and stirred for 5 minutes and then cured at 80 ° C. for 1 hour and further at 150 ° C. for 5 hours to obtain a cured product having a thickness of 2 mm and cut into a size of 10 mm ⁇ 50 mm.
  • a cured product having a thickness of 6 mm and cut into a size of 13 mm ⁇ 140 mm were prepared as test pieces.
  • glass transition temperature Tg degreeC
  • MPa bending strength
  • elongation rate %
  • ⁇ Glass transition temperature Tg (° C.)> Using a dynamic viscoelasticity measuring device DMS6100 (manufactured by Seiko Instruments Inc.), measurement was performed under the conditions of a temperature range of 30 to 250 ° C., a temperature rising rate of 2 ° C./min, and a frequency of 1 MHz. A test piece having a thickness of 2 mm and 10 mm ⁇ 50 mm was used.
  • ⁇ Bending strength (MPa) and elongation (%)> According to JIS K7171, the measurement was carried out using a strograph VG20-E (manufactured by Toyo Seiki Seisakusho) under the conditions of a measurement temperature of 25 ° C., a measurement humidity of 50% RH, a load cell of 1.0 kN and a head moving speed of 5 mm / min. A test piece having a thickness of 6 mm and 13 mm ⁇ 140 mm was used.
  • the glass transition temperature Tg is 17 ° C. by blending the (B) silsesquioxane derivative. As it increased above, both bending strength and elongation increased.
  • the cured product of (B) silsesquioxane derivative has a glass transition temperature Tg of 45 ° C., which is 100 compared with (A) the epoxy resin shown in Comparative Examples 1 and 2. More than °C.
  • Tg glass transition temperature
  • (B) Silsesquioxane derivative is blended in an amount of 5 parts by weight to 30 parts by weight with respect to 100 parts by weight of (A) epoxy resin.
  • Tg glass transition temperature
  • Example 4 to 5 and Comparative Example 9 Each component was mixed according to the formulation shown in Table 2 to obtain the desired composition. Each composition obtained was degassed and stirred for 5 minutes, and then a table-top conveyor UV (LH6 / LC-6B manufactured by Heraeus) was used with a high-pressure mercury lamp at a peak illuminance of 80 mW / cm 2 and an integrated exposure amount of 1000 mJ. / Cm 2 irradiation, and further cured at 120 ° C. for 30 minutes.
  • table-top conveyor UV LH6 / LC-6B manufactured by Heraeus
  • ⁇ Pencil hardness> The pencil hardness (750 ⁇ 10 g load) based on JIS K5600-5-4 was measured at 25 ° C. using a pencil hardness tester (manufactured by Yasuda Seiki Co., Ltd.).
  • the glass transition temperature Tg increased by 10 ° C. or more due to the blending of the (B) silsesquioxane derivative. Also improved.
  • the cured product (Examples 1 to 3) obtained by curing the thermosetting resin composition of the present invention and the cured product (Examples 4 to 5) obtained by curing the photocurable resin composition are as follows. It was shown that both have excellent mechanical strength and excellent heat resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Silicon Polymers (AREA)

Abstract

The purpose of the present invention is to provide: a thermosetting resin composition or a photocurable resin composition, which enables the achievement of a cured product that has excellent mechanical strength and excellent heat resistance. A thermosetting resin composition which contains (A) an epoxy resin having an average number of epoxy groups of 2 or more, (B) a silsesquioxane derivative which has a weight average molecular weight Mw of from 2,000 to 10,000 (inclusive), while containing RSiO3/2 groups as repeating constituent units, and wherein from 50% by mole to 100% by mole (inclusive) of all the repeating constituent units contained in each molecule are essential repeating constituent units wherein R is an organic group containing a glycidyl group and from 0% by mole to 50% by mole (inclusive) of all the repeating constituent units contained in each molecule are optional repeating constituent units wherein R is an aryl group and/or an alkyl group having 1 to 12 carbon atoms (inclusive), and (C) an amine compound having two or more amino groups which are reactive with the epoxy groups. From 5 parts by weight to 30 parts by weight (inclusive) of the silsesquioxane derivative (B) is contained per 100 parts by weight of the epoxy resin (A).

Description

熱硬化性樹脂組成物、光硬化性樹脂組成物、硬化物及び耐熱性向上剤Thermosetting resin composition, photocurable resin composition, cured product and heat resistance improver
 本発明は、熱硬化性樹脂組成物、光硬化性樹脂組成物、硬化物及び耐熱性向上剤に関する。 The present invention relates to a thermosetting resin composition, a photocurable resin composition, a cured product, and a heat resistance improver.
 一般的にエポキシ樹脂は種々の硬化剤で硬化させることにより、機械的性質、耐水性、耐薬品性、耐熱性、電気的性質等に優れた硬化物を形成する。そのため、電気・電子材料、構造用材料、塗料等の幅広い分野で利用されている。特に、半導体用封止剤、積層板、FRP(複合材料)、接着剤等の電気・電子材料用分野では、耐熱性及び機械強度のバランスの良さから、ビスフェノールA型エポキシ樹脂等のエポキシ樹脂が多用されている。 Generally, an epoxy resin is cured with various curing agents to form a cured product having excellent mechanical properties, water resistance, chemical resistance, heat resistance, electrical properties, and the like. Therefore, it is used in a wide range of fields such as electrical / electronic materials, structural materials, and paints. In particular, in the field of electrical and electronic materials such as semiconductor sealants, laminates, FRP (composite materials), adhesives, etc., epoxy resins such as bisphenol A type epoxy resins are used because of a good balance between heat resistance and mechanical strength. It is used a lot.
 特許文献1には、低粘度、低応力性、密着性に優れた硬化物を与え、半導体封止材、アンダーフィル材等の電気・電子デバイス材料に適するエポキシ化合物として、また特許文献2には、耐熱性に優れた硬化物を与える熱硬化性樹脂組成物の一成分となりうるエポキシ基含有ケイ素化合物として、それぞれエポキシ基含有アルコキシケイ素化合物を、塩基性触媒の存在下に縮合させて得られるエポキシ化合物が開示されている。 Patent Document 1 gives a cured product excellent in low viscosity, low stress, and adhesiveness, and is suitable as an epoxy compound suitable for electrical / electronic device materials such as semiconductor sealing materials and underfill materials. Epoxy obtained by condensing an epoxy group-containing alkoxysilicon compound in the presence of a basic catalyst as an epoxy group-containing silicon compound that can be a component of a thermosetting resin composition that gives a cured product with excellent heat resistance Compounds are disclosed.
特開2006-008747号公報JP 2006-008747 A 国際公開第2004/072150号パンフレットInternational Publication No. 2004/072150 Pamphlet
 近年、エポキシ樹脂の長期信頼性の要求が高度化しており、機械強度を損なうことなく、耐熱性を向上させることが強く求められる。しかしながら、従来のエポキシ化合物では、十分な耐熱性を得ることが特に困難で、機械強度及び耐熱性の両立という点で不十分であった。本発明は、機械強度及び耐熱性に優れた硬化物を得ることができる熱硬化性樹脂組成物または光硬化性樹脂組成物を提供することを目的とする。 In recent years, the demand for long-term reliability of epoxy resins has advanced, and there is a strong demand for improving heat resistance without impairing mechanical strength. However, conventional epoxy compounds are particularly difficult to obtain sufficient heat resistance, and are insufficient in terms of both mechanical strength and heat resistance. An object of this invention is to provide the thermosetting resin composition or photocurable resin composition which can obtain the hardened | cured material excellent in mechanical strength and heat resistance.
 本発明の第一は、(A)平均エポキシ基数が2個以上のエポキシ樹脂、(B)RSiO3/2を繰り返し構成単位とし、1分子中に含まれる全ての前記繰り返し構成単位のうち、必須成分としてRがグリシジル基を含む有機基である繰り返し構成単位が100モル%以下50モル%以上であり、任意成分としてRがアリール基及び/又は炭素数1以上12以下のアルキル基である繰り返し構成単位が50モル%以下0モル%以上である、重量平均分子量Mw2,000以上10,000以下のシルセスキオキサン誘導体、及び(C)前記エポキシ基と反応可能なアミノ基を2個以上有するアミン系化合物を含み、前記(A)エポキシ樹脂100重量部に対し、前記(B)シルセスキオキサン誘導体が5重量部以上30重量部以下である、熱硬化性樹脂組成物に関する。 The first of the present invention is (A) an epoxy resin having an average epoxy group number of 2 or more, and (B) RSiO 3/2 as a repeating structural unit, and among all the repeating structural units contained in one molecule, it is essential. A repeating unit in which R is an organic group containing a glycidyl group as a component is 100 mol% or less and 50 mol% or more, and R is an aryl group and / or an alkyl group having 1 to 12 carbon atoms as an optional component Silsesquioxane derivatives having a weight average molecular weight Mw of 2,000 to 10,000, and (C) an amine having two or more amino groups capable of reacting with the epoxy group, wherein the unit is 50 mol% or less and 0 mol% or more. A thermosetting compound comprising 5 parts by weight to 30 parts by weight of the (B) silsesquioxane derivative with respect to 100 parts by weight of the (A) epoxy resin. This invention relates to a curable resin composition.
 前記熱硬化性樹脂組成物において、(A)エポキシ樹脂が芳香族系エポキシ樹脂であることが好ましい。 In the thermosetting resin composition, it is preferable that (A) the epoxy resin is an aromatic epoxy resin.
 本発明の第二は、前記熱硬化性樹脂組成物を硬化してなる硬化物に関する。 The second of the present invention relates to a cured product obtained by curing the thermosetting resin composition.
 本発明の第三は、(A)平均エポキシ基数が2個以上のエポキシ樹脂、(B)RSiO3/2を繰り返し構成単位とし、1分子中に含まれる全ての前記繰り返し構成単位のうち、必須成分としてRがグリシジル基を含む有機基である繰り返し構成単位が100モル%以下50モル%以上であり、任意成分としてRがアリール基及び/又は炭素数1以上12以下のアルキル基である繰り返し構成単位が50モル%以下0モル%以上である、重量平均分子量Mw2,000以上10,000以下のシルセスキオキサン誘導体、及び(D)光カチオン重合開始剤を含み、前記(A)エポキシ樹脂100重量部に対し、前記(B)シルセスキオキサン誘導体が30重量部以上150重量部以下である、光硬化性樹脂組成物に関する。 In the third aspect of the present invention, (A) an epoxy resin having an average number of epoxy groups of 2 or more and (B) RSiO 3/2 as a repeating structural unit, among all the repeating structural units contained in one molecule, essential A repeating unit in which R is an organic group containing a glycidyl group as a component is 100 mol% or less and 50 mol% or more, and R is an aryl group and / or an alkyl group having 1 to 12 carbon atoms as an optional component A unit containing 50 mol% or less and 0 mol% or more of a weight average molecular weight Mw of 2,000 or more and 10,000 or less of a silsesquioxane derivative, and (D) a photocationic polymerization initiator, and the (A) epoxy resin 100 It is related with the photocurable resin composition whose said (B) silsesquioxane derivative is 30 to 150 weight part with respect to a weight part.
 本発明の第四は、前記光硬化性樹脂組成物を硬化してなる硬化物に関する。 4th of this invention is related with the hardened | cured material formed by hardening | curing the said photocurable resin composition.
 本発明の第五は、エポキシ樹脂の耐熱性を向上させるための添加剤であって、RSiO3/2を繰り返し構成単位とし、1分子中に含まれる全ての前記繰り返し構成単位のうち、必須成分としてRがグリシジル基を含む有機基である繰り返し構成単位が100モル%以下50モル%以上であり、任意成分としてRがアリール基及び/又は炭素数1以上12以下のアルキル基である繰り返し構成単位が50モル%以下0モル%以上である、重量平均分子量Mw2,000以上10,000以下のシルセスキオキサン誘導体を含む、耐熱性向上剤に関する。 A fifth aspect of the present invention is an additive for improving the heat resistance of an epoxy resin, wherein RSiO 3/2 is a repeating structural unit and is an essential component among all the repeating structural units contained in one molecule. The repeating structural unit in which R is an organic group containing a glycidyl group is 100 mol% or less and 50 mol% or more, and R is an aryl group and / or an alkyl group having 1 to 12 carbon atoms as an optional component Relates to a heat resistance improver comprising a silsesquioxane derivative having a weight average molecular weight Mw of 2,000 to 10,000.
 本発明によれば、機械強度及び耐熱性に優れた硬化物を得ることができる熱硬化性樹脂組成物または光硬化性樹脂組成物を得ることができる。 According to the present invention, a thermosetting resin composition or a photocurable resin composition capable of obtaining a cured product having excellent mechanical strength and heat resistance can be obtained.
 以下、本発明の好ましい実施の形態の一例を具体的に説明する。 Hereinafter, an example of a preferred embodiment of the present invention will be specifically described.
 [熱硬化性樹脂組成物及び光硬化性樹脂組成物]
 本発明の熱硬化性樹脂組成物は、(A)エポキシ樹脂、(B)シルセスキオキサン誘導体、及び(C)アミン系化合物を含み、(A)エポキシ樹脂100重量部に対し、(B)シルセスキオキサン誘導体が5重量部以上30重量部以下である。
[Thermosetting resin composition and photocurable resin composition]
The thermosetting resin composition of the present invention comprises (A) an epoxy resin, (B) a silsesquioxane derivative, and (C) an amine-based compound, and (A) 100 parts by weight of the epoxy resin (B) The silsesquioxane derivative is 5 parts by weight or more and 30 parts by weight or less.
 本発明の光硬化性樹脂組成物は、(A)エポキシ樹脂、(B)シルセスキオキサン誘導体、及び(D)光カチオン重合開始剤を含み、(A)エポキシ樹脂100重量部に対し、(B)シルセスキオキサン誘導体が30重量部以上150重量部以下である。 The photocurable resin composition of the present invention comprises (A) an epoxy resin, (B) a silsesquioxane derivative, and (D) a photocationic polymerization initiator, and (A) 100 parts by weight of the epoxy resin ( B) The silsesquioxane derivative is 30 parts by weight or more and 150 parts by weight or less.
 [(A)エポキシ樹脂]
 (A)エポキシ樹脂は、平均エポキシ基数が2個以上である。2個以上の平均エポキシ基を持つエポキシ樹脂であれば特に限定されず、芳香族系エポキシ樹脂、脂肪族エポキシ樹脂、及び脂環式エポキシ樹脂等の各種エポキシ樹脂を用いることができる。これらの中でも芳香族系エポキシ樹脂が耐熱性に優れるため好ましい。
[(A) Epoxy resin]
(A) The epoxy resin has an average number of epoxy groups of 2 or more. It is not particularly limited as long as it is an epoxy resin having two or more average epoxy groups, and various epoxy resins such as aromatic epoxy resins, aliphatic epoxy resins, and alicyclic epoxy resins can be used. Of these, aromatic epoxy resins are preferred because of their excellent heat resistance.
 (A)エポキシ樹脂は、平均エポキシ基数が2個以上であれば特に限定されないが、平均エポキシ基数は2個以上4個以下が好ましい。この範囲とすることにより、(A)エポキシ樹脂は架橋構造を取れるため、耐熱性に優れる。一方、平均エポキシ基数が2個未満であると十分な架橋構造をとることができないため、(A)エポキシ樹脂は十分な硬化物特性を得られず、電気・電子材料、構造用材料、塗料等として使用することができない。 (A) The epoxy resin is not particularly limited as long as the average number of epoxy groups is 2 or more, but the average number of epoxy groups is preferably 2 or more and 4 or less. By setting it as this range, since (A) epoxy resin can take a crosslinked structure, it is excellent in heat resistance. On the other hand, if the average number of epoxy groups is less than 2, a sufficient cross-linked structure cannot be obtained, so that (A) epoxy resin cannot obtain sufficient cured product properties, and electrical / electronic materials, structural materials, paints, etc. Can not be used as.
 平均エポキシ基数は、ゲルパーミエーションクロマトグラフィー(GPC)により求めた重量平均分子量を、JIS K7236に準じて求めたエポキシ当量で割ることにより求めることができる。 The average number of epoxy groups can be determined by dividing the weight average molecular weight determined by gel permeation chromatography (GPC) by the epoxy equivalent determined in accordance with JIS K7236.
 芳香族系エポキシ樹脂としては、1分子中に芳香族環を有し、平均エポキシ基数が2個以上のものであれば、特に限定されない。例えば、ビスフェノールA、ビスフェノールF等のビスフェノール化合物又はこれらの誘導体;4,4’-ビフェノール、3,3’,5,5’-テトラメチルビフェニル-4,4’-ジオール等のビフェニル化合物又はこれらの誘導体;トリヒドロキシフェニルメタン骨格、アミノフェノール骨格を有する3官能のフェノール樹脂;フェノールノボラック樹脂;クレゾールノボラック樹脂;フェニレン骨格を有するフェノールアラルキル樹脂;ビフェニレン骨格を有するフェノールアラルキル樹脂;ナフトールアラルキル樹脂;ジアミノジフェニルメタン骨格の誘導体等をエポキシ化したエポキシ樹脂等が挙げられる。 The aromatic epoxy resin is not particularly limited as long as it has an aromatic ring in one molecule and has an average number of epoxy groups of 2 or more. For example, bisphenol compounds such as bisphenol A and bisphenol F or derivatives thereof; biphenyl compounds such as 4,4′-biphenol, 3,3 ′, 5,5′-tetramethylbiphenyl-4,4′-diol or the like Derivative; Trifunctional phenyl resin having trihydroxyphenylmethane skeleton and aminophenol skeleton; Phenol novolak resin; Cresol novolak resin; Phenol aralkyl resin having phenylene skeleton; Phenol aralkyl resin having biphenylene skeleton; Naphthol aralkyl resin; An epoxy resin obtained by epoxidizing a derivative of
 これらの芳香族系エポキシ樹脂の中でも、得られる硬化物の耐熱性と機械強度が良好なためビスフェノールA、ビスフェノールF等のビスフェノール化合物又はこれらの誘導体、フェノールノボラック樹脂、クレゾールノボラック樹脂、及びジアミノジフェニルメタン骨格の誘導体をエポキシ化したエポキシ樹脂が好ましい。 Among these aromatic epoxy resins, bisphenol compounds such as bisphenol A and bisphenol F or their derivatives, phenol novolac resins, cresol novolac resins, and diaminodiphenylmethane skeletons because the cured products obtained have good heat resistance and mechanical strength. Epoxy resins obtained by epoxidizing these derivatives are preferred.
 脂肪族エポキシ樹脂としては、脂肪族骨格を有し、平均エポキシ基数が2個以上のものであれば、特に限定されない。例えば、エチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオール、オクタンジオール、ノナンジオール、デカンジオール等の脂肪族ジオール、若しくはペンタエリスリトール、ソルビトール等の多価アルコール、又はこれらの誘導体等をエポキシ化したエポキシ樹脂等が挙げられる。 The aliphatic epoxy resin is not particularly limited as long as it has an aliphatic skeleton and has an average number of epoxy groups of 2 or more. For example, epoxy resins obtained by epoxidizing aliphatic diols such as ethylene glycol, propylene glycol, butanediol, hexanediol, octanediol, nonanediol, decanediol, polyhydric alcohols such as pentaerythritol, sorbitol, or derivatives thereof Etc.
 これらの脂肪族エポキシ樹脂の中でも、(B)シルセスキオキサン誘導体との相溶性が優れるため、ヘキサンジオール、エチレングリコール、プロピレングリコール、ペンタエリスリトール、又はその誘導体をエポキシ化したエポキシ樹脂が好ましい。 Among these aliphatic epoxy resins, epoxy resin obtained by epoxidizing hexanediol, ethylene glycol, propylene glycol, pentaerythritol, or a derivative thereof is preferable because of its excellent compatibility with the (B) silsesquioxane derivative.
 脂環式エポキシ樹脂としては、1分子中に脂環式骨格を有し、平均エポキシ基数が2個以上のものであれば、特に限定されない。例えば、3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート;3,4-エポキシシクロヘキセニルメチル-3’,4’-エポキシシクロヘキセンカルボキシレート;2,3-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物;ジシクロペンタジエン型エポキシ樹脂;及び水素添加ビスフェノールA、水素添加ビスフェノールF、水素添加ビフェノール、シクロヘキサンジオール、シクロヘキサンジメタノール、シジロヘキサンジエタノール等の脂環構造を有するジオール又はこれらの誘導体等を挙げることができる。 The alicyclic epoxy resin is not particularly limited as long as it has an alicyclic skeleton in one molecule and has an average number of epoxy groups of 2 or more. For example, 3 ′, 4′-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate; 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexene carboxylate; 2,3-bis (hydroxymethyl) 1,2-epoxy-4- (2-oxiranyl) cyclohexane adduct of 1-butanol; dicyclopentadiene type epoxy resin; and hydrogenated bisphenol A, hydrogenated bisphenol F, hydrogenated biphenol, cyclohexanediol, cyclohexanedimethanol And diols having an alicyclic structure such as sirolohexanediethanol or derivatives thereof.
 これらの脂環式エポキシ樹脂の中でも、得られる硬化物の耐熱性、機械強度が特に優れるため、3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレートを用いることが好ましい。 Among these alicyclic epoxy resins, it is preferable to use 3 ', 4'-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate because the resulting cured product has particularly excellent heat resistance and mechanical strength.
 上記芳香族系エポキシ樹脂、脂肪族エポキシ樹脂、脂環式エポキシ樹脂等の各種エポキシ樹脂は単独で用いてもよく、2種以上を併用してもよい。 Various epoxy resins such as the aromatic epoxy resin, aliphatic epoxy resin, and alicyclic epoxy resin may be used alone or in combination of two or more.
 [(B)シルセスキオキサン誘導体]
 (B)シルセスキオキサン誘導体は、RSiO3/2を繰り返し構成単位とし、1分子中に含まれる全ての前記繰り返し構成単位のうち、必須成分としてRがグリシジル基を含む有機基である繰り返し構成単位が100モル%以下50モル%以上であり、任意成分としてRがアリール基及び/又は炭素数1以上12以下のアルキル基である繰り返し構成単位が50モル%以下0モル%以上であって、重量平均分子量Mwは、2,000以上10,000以下である。
[(B) Silsesquioxane derivative]
(B) The silsesquioxane derivative has a repeating structure in which RSiO 3/2 is a repeating structural unit, and R is an organic group containing a glycidyl group as an essential component among all the repeating structural units contained in one molecule. The repeating unit in which the unit is 100 mol% or less and 50 mol% or more and R is an aryl group and / or an alkyl group having 1 to 12 carbon atoms as an optional component is 50 mol% or less and 0 mol% or more, The weight average molecular weight Mw is 2,000 or more and 10,000 or less.
 (B)シルセスキオキサン誘導体1分子中に含まれる全ての前記繰り返し構成単位のうち、Rがグリシジル基を含む有機基である繰り返し構成単位は、必須成分として100モル%以下50モル%以上の比率で含まれるところ、当該比率は、100モル%以下75モル%以上が好ましく、100モル%以下90モル%以上がより好ましく、100モル%以下95モル%以上がさらに好ましく、100モル%であることが最も好ましい。得られる硬化物が、より優れた機械強度及び耐熱性を奏するためである。50モル%未満であると、機械強度及び耐熱性のいずれも低下する傾向となる。 (B) Among all the above repeating structural units contained in one molecule of the silsesquioxane derivative, the repeating structural unit in which R is an organic group containing a glycidyl group is 100 mol% or less and 50 mol% or more as an essential component. When included in a ratio, the ratio is preferably 100 mol% or less and 75 mol% or more, more preferably 100 mol% or less and 90 mol% or more, further preferably 100 mol% or less and 95 mol% or more, and more preferably 100 mol%. Most preferred. This is because the resulting cured product has more excellent mechanical strength and heat resistance. If it is less than 50 mol%, both mechanical strength and heat resistance tend to decrease.
 (B)シルセスキオキサン誘導体1分子中に含まれる全ての前記繰り返し構成単位のうち、Rがアリール基及び/又は炭素数1以上12以下のアルキル基である繰り返し構成単位は、任意成分として50モル%以下0モル%以上の比率で含まれるところ、当該比率は、25モル%以下0モル%以上が好ましく、10モル%以下0モル%以上がより好ましく、0モル%であることが最も好ましい。得られる硬化物が、より優れた機械強度及び耐熱性を奏するためである。50モル%を超えると、機械強度及び耐熱性のいずれも低下する傾向となる。 (B) Of all the above repeating structural units contained in one molecule of the silsesquioxane derivative, a repeating structural unit in which R is an aryl group and / or an alkyl group having 1 to 12 carbon atoms is an optional component of 50 When included in a proportion of not more than mol% and not less than 0 mol%, the proportion is preferably not more than 25 mol% and not less than 0 mol%, more preferably not more than 10 mol% and not less than 0 mol%, most preferably 0 mol%. . This is because the resulting cured product has more excellent mechanical strength and heat resistance. When it exceeds 50 mol%, both mechanical strength and heat resistance tend to decrease.
 グリシジル基を含む有機基としては、例えば、β-グリシドキシエチル、γ-グリシドキシプロピル、γ-グリシドキシブチル等の炭素数4以下のオキシグリシジル基が結合したグリシドキシアルキル基;グリシジル基;β-(3,4-エポキシシクロヘキシル)エチル基、γ-(3,4-エポキシシクロヘキシル)プロピル基、β-(3,4-エポキシシクロヘプチル)エチル基、β-(3,4エポキシシクロヘキシル)プロピル基、β-(3,4-エポキシシクロヘキシル)ブチル基、及びβ-(3,4-エポキシシクロヘキシル)ペンチル基等のオキシラン基を持った炭素数5~8のシクロアルキル基で置換されたアルキル基等が挙げられる。 Examples of the organic group containing a glycidyl group include a glycidoxyalkyl group to which an oxyglycidyl group having 4 or less carbon atoms such as β-glycidoxyethyl, γ-glycidoxypropyl, and γ-glycidoxybutyl is bonded; Glycidyl group: β- (3,4-epoxycyclohexyl) ethyl group, γ- (3,4-epoxycyclohexyl) propyl group, β- (3,4-epoxycycloheptyl) ethyl group, β- (3,4 epoxy) Substituted with a cycloalkyl group having 5 to 8 carbon atoms having an oxirane group such as (cyclohexyl) propyl group, β- (3,4-epoxycyclohexyl) butyl group, and β- (3,4-epoxycyclohexyl) pentyl group. And alkyl groups.
 これらのグリシジル基を含む有機基の中でも、(C)アミン系化合物との反応性に優れるため、熱硬化性樹脂組成物においてはグリシドキシアルキル基が好ましい。また、(D)光カチオン重合開始剤との反応性に優れるため、光硬化性樹脂組成物においてはグリシドキシアルキル基が好ましい。(C)アミン系化合物または(D)光カチオン重合開始剤との反応性が優れることで、十分な硬化物特性(耐熱性及び機械強度)を得ることが出来る。 Among these organic groups containing a glycidyl group, (C) a glycidoxyalkyl group is preferred in the thermosetting resin composition because of its excellent reactivity with amine compounds. Moreover, (D) Since it is excellent in the reactivity with a photocationic polymerization initiator, in a photocurable resin composition, a glycidoxyalkyl group is preferable. Sufficient cured product characteristics (heat resistance and mechanical strength) can be obtained by excellent reactivity with (C) amine compound or (D) photocationic polymerization initiator.
 アリール基としては、例えば、フェニル基;メチルフェニル基及びジメチルフェニル基等のアルキルアリール基が挙げられる。また、炭素数1以上12以下のアルキル基としては、直鎖状でも分岐状でもよく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、tert-ペンチル基、イソペンチル基、2-メチルブチル基、1-エチルプロピル基、ヘキシル基、イソヘキシル基、4-メチルペンチル基、3-メチルペンチル基、2-メチルペンチル基、1-メチルペンチル基、3,3-ジメチルブチル基、2,2-ジメチルブチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、1,3-ジメチルブチル基、2,3-ジメチルブチル基、1-エチルブチル基、2-エチルブチル基、ヘプチル基、n-オクチル基、イソオクチル基、ノニル基、デシル基、及びウンデシル基等が挙げられる。 Examples of the aryl group include a phenyl group; and alkylaryl groups such as a methylphenyl group and a dimethylphenyl group. The alkyl group having 1 to 12 carbon atoms may be linear or branched. For example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group. Group, tert-butyl group, n-pentyl group, neopentyl group, tert-pentyl group, isopentyl group, 2-methylbutyl group, 1-ethylpropyl group, hexyl group, isohexyl group, 4-methylpentyl group, 3-methylpentyl group Group, 2-methylpentyl group, 1-methylpentyl group, 3,3-dimethylbutyl group, 2,2-dimethylbutyl group, 1,1-dimethylbutyl group, 1,2-dimethylbutyl group, 1,3- Dimethylbutyl group, 2,3-dimethylbutyl group, 1-ethylbutyl group, 2-ethylbutyl group, heptyl group, n-octyl group, isooctyl group Nonyl group, decyl group, and undecyl group.
 アリール基又は炭素数1以上12以下のアルキル基の中でも、得られる熱硬化性樹脂組成物を硬化してなる硬化物及び光硬化性樹脂組成物を硬化してなる硬化物の耐熱性に優れ、(A)エポキシ樹脂と問題無く相溶するため、メチル基、フェニル基、イソブチル、イソオクチル基等が好ましい。 Among the aryl group or the alkyl group having 1 to 12 carbon atoms, the cured product obtained by curing the resulting thermosetting resin composition and the cured product obtained by curing the photocurable resin composition are excellent in heat resistance, (A) A methyl group, phenyl group, isobutyl, isooctyl group, and the like are preferable because they are compatible with the epoxy resin without any problem.
 (B)シルセスキオキサン誘導体における、Rがグリシジル基を含む有機基であるRSiO3/2の組成、並びにRがアリール基及び/又は炭素数1以上12以下のアルキル基であるRSiO3/2の組成は、1H-NMRまたはFTIRによって、分析することができる。装置としては、1H-NMRはJNM-ECZR(日本電子株式会社製、400MHz)、FTIRは、Frontier Optica(パーキンエルマー社製、KBr法)を用いることができる。 (B) in the silsesquioxane derivative, R is the composition of RSiO 3/2 is an organic group containing a glycidyl group, and R is an aryl group and / or one or more carbon atoms and 12 or less alkyl groups RSiO 3/2 The composition of can be analyzed by 1 H-NMR or FTIR. As the apparatus, JNM-ECZR (manufactured by JEOL Ltd., 400 MHz) can be used for 1 H-NMR, and Frontier Optica (manufactured by PerkinElmer, KBr method) can be used for FTIR.
 一般に、シルセスキオキサン誘導体は、加水分解、縮合の条件によりラダー型、ランダム型又は他の構造のもの(かご型構造など)が得られることが知られている。本発明の(B)シルセスキオキサン誘導体は、ラダー型構造もしくはランダム型構造を有していること、またはラダー型構造及びランダム型構造の両方の構造を有していることが好ましい。特に、(B)シルセスキオキサン誘導体は、得られる硬化物が優れた耐衝撃性を有するため、ラダー型構造及び/又はランダム型構造を80重量%以上含有することが好ましく、85重量%以上含有することが好ましく、90重量%以上含有することがさらに好ましい。さらにその中でも、得られる硬化物の機械強度が優れるため、ラダー型構造の含有比率がより高い方が好ましい。 Generally, it is known that silsesquioxane derivatives can be obtained in a ladder type, a random type, or other structures (such as a cage type structure) depending on hydrolysis and condensation conditions. The (B) silsesquioxane derivative of the present invention preferably has a ladder type structure or a random type structure, or has both a ladder type structure and a random type structure. In particular, the (B) silsesquioxane derivative preferably contains a ladder type structure and / or a random type structure in an amount of 80% by weight or more, and 85% by weight or more because the resulting cured product has excellent impact resistance. It is preferably contained, and more preferably 90% by weight or more. Furthermore, among these, since the mechanical strength of the hardened | cured material obtained is excellent, the one where the content rate of a ladder type structure is higher is preferable.
 また、(B)シルセスキオキサン誘導体は、ラダー型、ランダム型以外の他の構造のものを含んでいてもよい。(B)シルセスキオキサン誘導体の製造に際して他の構造のものが副産物として不可避的に生成し、これが不純物として少量併存することがある。ラダー型、ランダム型以外の他の構造としては、通常、かご型構造体と称されるものが挙げられる。なお、このかご型構造体には、かご型構造体の一部が開環した不完全なかご型構造体も含まれる。 Further, the (B) silsesquioxane derivative may contain a structure other than the ladder type and the random type. (B) In the production of the silsesquioxane derivative, other structures are inevitably produced as by-products, and this may coexist in small amounts as impurities. Examples of the structure other than the ladder type and the random type include what is usually called a cage structure. The cage structure includes an incomplete cage structure in which a part of the cage structure is opened.
 (B)シルセスキオキサン誘導体中のラダー型構造及び/又はランダム型構造の含有量は以下のとおり求めることができる。液体クロマトグラフ質量分析(LC-MS)により、(B)シルセスキオキサン誘導体のかご型構造体に由来するm/zピーク面積からかご型構造体(かご型構造体の一部が開環した不完全なかご型構造体を含む)の含有量を求め、(B)シルセスキオキサン誘導体の重量から求めたかご型構造体の重量を差し引くことにより、ラダー型構造及び/又はランダム型構造の含有量を求めることができる。 (B) The content of the ladder structure and / or the random structure in the silsesquioxane derivative can be determined as follows. A cage structure (a part of the cage structure was opened from the m / z peak area derived from the cage structure of the silsesquioxane derivative (B) by liquid chromatography mass spectrometry (LC-MS). The content of the ladder structure and / or the random structure is obtained by subtracting the weight of the cage structure obtained from the weight of the silsesquioxane derivative (B). The content can be determined.
 (B)シルセスキオキサン誘導体は、必須成分であるRがグリシジル基を含む有機基のRSiO3/2導入のため、Rがグリシジル基を含む有機基を有するトリアルコキシシランと、さらに必要に応じ、任意成分であるRがアリール基及び/又は炭素数1以上12以下のアルキル基のRSiO3/2導入のため、アリール基及び/又は炭素数1以上12以下のアルキル基を有するトリアルコキシシランとを合わせて、加水分解・縮合反応を行うことにより得ることができる。 (B) The silsesquioxane derivative is an essential component in which R is an RSiO 3/2 introduction of an organic group containing a glycidyl group, so that a trialkoxysilane in which R has an organic group containing a glycidyl group; A trialkoxysilane having an aryl group and / or an alkyl group having 1 to 12 carbon atoms in order to introduce RSiO 3/2 in which R, which is an optional component, is an aryl group and / or an alkyl group having 1 to 12 carbon atoms; And can be obtained by performing a hydrolysis / condensation reaction.
 Rがグリシジル基を含む有機基を有するトリアルコキシシランとして、具体的には、例えば、β-グリシドキシエチルトリメトキシシラン、β-グリシドキシエチルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等を挙げることができる。これらは単独で用いてもよく、2種以上を併用してもよい。 Specific examples of trialkoxysilane in which R has an organic group containing a glycidyl group include, for example, β-glycidoxyethyltrimethoxysilane, β-glycidoxyethyltriethoxysilane, γ-glycidoxypropyltrimethoxy Examples include silane, γ-glycidoxypropyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriethoxysilane, and the like. These may be used alone or in combination of two or more.
 また、アリール基及び/又は炭素数1以上12以下のアルキル基を有するトリアルコキシシランとしては、例えば、フェニルトリメトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン、プロピルトリメトキシシラン、ブチルトリメトキシシラン、イソブチルトリメトキシシラン、ヘキシルトリメトキシシラン、n-オクチルトリメトキシシラン、n-オクチルトリメトキシシラン、イソオクチルトリメトキシシラン、n-デシルトリメトキシシラン等を挙げることができる。これらは単独で用いてもよく、2種以上を併用してもよい。 Examples of the trialkoxysilane having an aryl group and / or an alkyl group having 1 to 12 carbon atoms include phenyltrimethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, and butyltrimethoxysilane. And isobutyltrimethoxysilane, hexyltrimethoxysilane, n-octyltrimethoxysilane, n-octyltrimethoxysilane, isooctyltrimethoxysilane, n-decyltrimethoxysilane and the like. These may be used alone or in combination of two or more.
 加水分解・縮合反応(hydrolytic condensation)の条件としては、30~120℃、1~24時間が好ましく、より好ましくは、40~90℃、2~12時間であり、さらに好ましくは50~70℃、3~8時間である。 The conditions for the hydrolysis / condensation reaction are preferably 30 to 120 ° C. and 1 to 24 hours, more preferably 40 to 90 ° C. and 2 to 12 hours, still more preferably 50 to 70 ° C. 3-8 hours.
 当該加水分解・縮合反応には触媒を使用してもよく、その触媒としては、例えば、塩基性触媒、酸性触媒を挙げることができる。塩基性触媒としては、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド、ベンジルトリエチルアンモニウムヒドロキシド、水酸化ナトリウム、及び水酸化カリウム等を挙げることができる。これらのなかでも、触媒活性が高いことからテトラメチルアンモニウムヒドロキシド、又は水酸化ナトリウムが好ましく用いられる。酸性触媒としては、塩酸、硫酸、硝酸、酢酸、リン酸、ホウ酸、トリフルオロ酢酸、トリフルオロメタンスルフォン酸、及びp-トルエンスルホン酸等を挙げることが出来る。これらの中でも、触媒活性が高いことから、塩酸、硝酸、又は酢酸が好ましく用いられる。 In the hydrolysis / condensation reaction, a catalyst may be used. Examples of the catalyst include a basic catalyst and an acidic catalyst. Examples of the basic catalyst include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide, benzyltriethylammonium hydroxide, sodium hydroxide, and potassium hydroxide. Among these, tetramethylammonium hydroxide or sodium hydroxide is preferably used because of its high catalytic activity. Examples of the acidic catalyst include hydrochloric acid, sulfuric acid, nitric acid, acetic acid, phosphoric acid, boric acid, trifluoroacetic acid, trifluoromethanesulfonic acid, and p-toluenesulfonic acid. Among these, hydrochloric acid, nitric acid, or acetic acid is preferably used because of its high catalytic activity.
 また、当該加水分解・縮合反応には必要に応じて溶媒を使用することができる。このような溶媒としては、例えば、メタノール、エタノール等のアルコール類;テトラヒドロフラン等のエーテル類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノブチルエーテル等のグリコールエーテル類;メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、プロピレングリコールメチルエーテルアセテート、3-メトキシブチル-1-アセテート等のアルキレングリコールモノアルキルエーテルアセテート類;トルエン、キシレン等の芳香族炭化水素類;メチルエチルケトン、メチルイソブチルケトン(MIBK)、メチルアミルケトン、シクロヘキサノン等のケトン類を挙げることができる。これらの溶媒は1種を単独で用いてもよいし、2種以上を混合して用いてもよい。 In addition, a solvent can be used for the hydrolysis / condensation reaction as necessary. Examples of such solvents include alcohols such as methanol and ethanol; ethers such as tetrahydrofuran; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol dimethyl ether, diethylene glycol monomethyl ether, and diethylene glycol monoethyl. Glycol ethers such as ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether and diethylene glycol monobutyl ether; alkylene glycol compounds such as methyl cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, propylene glycol methyl ether acetate and 3-methoxybutyl-1-acetate Alkyl ether acetates; toluene, aromatic hydrocarbons such as xylene; methyl ethyl ketone, methyl isobutyl ketone (MIBK), may be mentioned ketones such as methyl amyl ketone, cyclohexanone. These solvents may be used alone or in a combination of two or more.
 なお、ラダー型又はランダム型の構造体を得ることができる製造方法のうち、主にラダー型の構造体については、特開平6-306173号公報に記載の方法等を挙げることができる。 Of the manufacturing methods capable of obtaining a ladder-type or random-type structure, the method described in JP-A-6-306173 can be exemplified mainly for the ladder-type structure.
 (B)シルセスキオキサン誘導体は、得られる熱硬化性樹脂組成物を硬化してなる硬化物または光硬化性樹脂組成物を硬化してなる硬化物の機械強度及び耐熱性の両立のため、重量平均分子量Mwは2,000以上10,000以下である。その重量平均分子量Mwの下限値は、2,500以上が好ましく、3,000以上がより好ましい。また、その重量平均分子量Mwの上限値は、8,000以下が好ましく、7,000以下がさらに好ましい。重量平均分子量Mwが2,000未満であると、機械強度が著しく低下し、重量平均分子量Mwが10,000を超えると、粘度が高くなりすぎ、(A)エポキシ樹脂に配合する場合に作業性が低下する、また(A)エポキシ樹脂との相溶性が低下し、得られる熱硬化性樹脂組成物を硬化してなる硬化物または光硬化性樹脂組成物を硬化してなる硬化物の光学特性(透明性)が悪化する傾向となる。重量平均分子量Mwはポリスチレン換算ゲル透過クロマトグラフィー(GPC)にて測定した値である。測定にはウォーターズ社製Shodex KF-803Lカラムを使用することができる。 (B) The silsesquioxane derivative is a cured product obtained by curing the resulting thermosetting resin composition or a cured product obtained by curing the photo-curable resin composition. The weight average molecular weight Mw is 2,000 or more and 10,000 or less. The lower limit of the weight average molecular weight Mw is preferably 2,500 or more, and more preferably 3,000 or more. Further, the upper limit value of the weight average molecular weight Mw is preferably 8,000 or less, and more preferably 7,000 or less. When the weight average molecular weight Mw is less than 2,000, the mechanical strength is remarkably lowered, and when the weight average molecular weight Mw exceeds 10,000, the viscosity becomes too high and (A) workability when blended with an epoxy resin. Optical properties of a cured product obtained by curing a thermosetting resin composition or a photocurable resin composition obtained by curing the thermosetting resin composition obtained by reducing the compatibility with the epoxy resin. (Transparency) tends to deteriorate. The weight average molecular weight Mw is a value measured by polystyrene permeation gel permeation chromatography (GPC). A Waters Shodex KF-803L column can be used for the measurement.
 (B)シルセスキオキサン誘導体の粘度は、25℃下にて1,000mPa・s以上50,000mPa・s以下が好ましく、3,000mPa・s以上30,000mPa・s以下がより好ましい。この範囲であることで、作業性、相溶性に優れるためである。 (B) The viscosity of the silsesquioxane derivative is preferably 1,000 mPa · s to 50,000 mPa · s at 25 ° C., more preferably 3,000 mPa · s to 30,000 mPa · s. It is because it is excellent in workability | operativity and compatibility because it is this range.
 本発明の熱硬化性樹脂組成物は、(A)エポキシ樹脂、(B)シルセスキオキサン誘導体、及び(C)アミン系化合物を含むところ、(B)シルセスキオキサン誘導体の含有量は、(A)エポキシ樹脂100重量部に対し、5重量部以上30重量部以下である。(B)シルセスキオキサン誘導体の含有量の下限値は、10重量部以上、または15重量部以上であってよく、上限値は、25重量部以下、または20重量部以下であってもよい。(B)シルセスキオキサン誘導体が5重量部以上30重量部以下であることにより、得られる熱硬化性樹脂組成物を硬化してなる硬化物は、優れた機械強度及び耐熱性を両立することができる。一方、5重量部未満であると、機械強度及び耐熱性のいずれも不十分となり、30重量部を超えると、機械強度及び耐衝撃性の何れも低下し、特に機械強度が悪化する。 The thermosetting resin composition of the present invention contains (A) an epoxy resin, (B) a silsesquioxane derivative, and (C) an amine compound. The content of (B) the silsesquioxane derivative is: (A) It is 5 to 30 weight part with respect to 100 weight part of epoxy resins. (B) The lower limit of the content of the silsesquioxane derivative may be 10 parts by weight or more, or 15 parts by weight or more, and the upper limit may be 25 parts by weight or less, or 20 parts by weight or less. . (B) When the silsesquioxane derivative is 5 parts by weight or more and 30 parts by weight or less, the cured product obtained by curing the obtained thermosetting resin composition has both excellent mechanical strength and heat resistance. Can do. On the other hand, if it is less than 5 parts by weight, both the mechanical strength and the heat resistance are insufficient, and if it exceeds 30 parts by weight, both the mechanical strength and the impact resistance are lowered, and the mechanical strength is particularly deteriorated.
 本発明の光硬化性樹脂組成物は、(A)エポキシ樹脂、(B)シルセスキオキサン誘導体、及び(D)光カチオン重合開始剤を含むところ、(B)シルセスキオキサン誘導体の含有量は、(A)エポキシ樹脂100重量部に対し、30重量部以上150重量部以下である。(B)シルセスキオキサン誘導体の含有量の下限値は、35重量部以上、40重量部以上、または45重量部以上であってよく、上限値は、130重量部以下、または100重量部以下であってもよい。(B)シルセスキオキサン誘導体が30重量部以上150重量部以下であることにより、得られる光硬化性樹脂組成物を硬化してなる硬化物は、優れた機械強度及び耐熱性を両立することができる。一方、30重量部未満であると、機械強度及び耐熱性のいずれも不十分となり、150重量部を超えると、機械強度及び耐衝撃性の何れも低下し、特に機械強度が悪化する。 The photocurable resin composition of the present invention contains (A) an epoxy resin, (B) a silsesquioxane derivative, and (D) a photocationic polymerization initiator. (A) It is 30 to 150 weight part with respect to 100 weight part of epoxy resins. (B) The lower limit of the content of the silsesquioxane derivative may be 35 parts by weight or more, 40 parts by weight or more, or 45 parts by weight or more, and the upper limit is 130 parts by weight or less, or 100 parts by weight or less. It may be. (B) When the silsesquioxane derivative is 30 parts by weight or more and 150 parts by weight or less, the cured product obtained by curing the obtained photocurable resin composition has both excellent mechanical strength and heat resistance. Can do. On the other hand, if the amount is less than 30 parts by weight, both the mechanical strength and the heat resistance are insufficient. If the amount exceeds 150 parts by weight, both the mechanical strength and the impact resistance are lowered, and the mechanical strength is particularly deteriorated.
 (B)シルセスキオキサン誘導体は、(A)エポキシ樹脂に添加することにより、(A)エポキシ樹脂の耐熱性を向上する、耐熱性向上剤として用いることができる。 (B) The silsesquioxane derivative can be used as a heat resistance improver that improves the heat resistance of the (A) epoxy resin by being added to the (A) epoxy resin.
 [(C)アミン系化合物]
 熱硬化性樹脂組成物が有する(C)アミン系化合物は、(A)エポキシ樹脂が有するエポキシ基と反応可能なアミノ基を2個以上有するアミン系化合物であれば特に限定されず、脂肪族アミン、脂環式アミン、芳香族アミン、ケチミン化合物、グアニジン誘導体等の各種アミン系化合物を用いることができる。
[(C) amine compound]
The (C) amine compound contained in the thermosetting resin composition is not particularly limited as long as it is an amine compound having two or more amino groups capable of reacting with the epoxy group contained in the (A) epoxy resin. Various amine compounds such as alicyclic amines, aromatic amines, ketimine compounds, and guanidine derivatives can be used.
 脂肪族アミンとしては、例えば、エチレンジアミン、プロピレンジアミン、ブチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、及びペンタエチレンヘキサミン等の脂肪族ポリアミン類が挙げられる。 Examples of the aliphatic amine include aliphatic polyamines such as ethylenediamine, propylenediamine, butylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, and pentaethylenehexamine.
 脂環式アミンとしては、例えば、イソホロンジアミン、1,2-ジアミノシクロヘキサン、1、3-ビス(アミノメチル)シクロヘキサン、4,4’-メチレンビス(2-メチルシクロヘキサンアミン)、1-(2-アミノエチル)ピペラジン、ビス(4-アミノシクロヘキシル)メタン、及びノルボルナンジアミン等の脂環族ポリアミン類が挙げられる。 Examples of alicyclic amines include isophorone diamine, 1,2-diaminocyclohexane, 1,3-bis (aminomethyl) cyclohexane, 4,4′-methylenebis (2-methylcyclohexaneamine), 1- (2-amino And alicyclic polyamines such as ethyl) piperazine, bis (4-aminocyclohexyl) methane, and norbornanediamine.
 芳香族アミンとしては、例えば、フェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ジメチルベンジルアミン、ジエチルトルエンジアミン、及びm-キシリレンジアミン等の芳香族ポリアミン類が挙げられる。 Examples of aromatic amines include aromatic polyamines such as phenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, dimethylbenzylamine, diethyltoluenediamine, and m-xylylenediamine.
 上記各種の(C)アミン系化合物は、単独で用いてもよく、2種以上を併用してもよい。上記(C)アミン系化合物の中でも、(A)エポキシ樹脂及び(B)シルセスキオキサン誘導体との反応性に優れるため、4,4’-メチレンビス(2-メチルシクロヘキサンアミン)を用いることが好ましい。 The various (C) amine compounds may be used alone or in combination of two or more. Among the (C) amine compounds, 4,4′-methylenebis (2-methylcyclohexaneamine) is preferably used because of excellent reactivity with (A) epoxy resin and (B) silsesquioxane derivative. .
 本発明の熱硬化性樹脂組成物における(C)アミン系化合物の含有量は、当該熱硬化性樹脂組成物中のエポキシ基1当量に対し0.5当量以上1.1当量以下となるようにすることが好ましく、0.7当量以上1.0当量以下となるようにすることがより好ましい。また、重量比で述べると、(A)エポキシ樹脂と(B)シルセスキオキサン誘導体の合計100重量部に対し(C)アミン系化合物の下限値は10重量部以上または20重量部以上であってよく、上限値は50重量部以下または40重量部以下であってもよい。(A)エポキシ樹脂と(B)シルセスキオキサン誘導体の合計100重量部に対し(C)アミン系化合物は20重量部以上50重量部以下が好ましい。(C)アミン系化合物が、この範囲にあることにより、得られる熱硬化性樹脂組成物を硬化してなる硬化物は、優れた機械強度及び優れた耐熱性を両立することができる。一方、その含有量が10重量部未満であると、硬化が遅くなり、50重量部を超えると、機械強度が低下し、得られる硬化物の着色が強くなる。なお、ラダー型、ランダム型以外の他の構造のシルセスキオキサン誘導体を不純物として含む場合、適宜その含有量を考慮して(C)アミン系化合物の配合量を適宜に減量増量すればよい。 The content of the (C) amine compound in the thermosetting resin composition of the present invention is 0.5 equivalent or more and 1.1 equivalent or less with respect to 1 equivalent of the epoxy group in the thermosetting resin composition. It is preferable to set it to 0.7 equivalent or more and 1.0 equivalent or less. In terms of weight ratio, the lower limit of (C) amine compound is 10 parts by weight or more or 20 parts by weight or more with respect to 100 parts by weight of the total of (A) epoxy resin and (B) silsesquioxane derivative. The upper limit may be 50 parts by weight or less or 40 parts by weight or less. The amount of the (C) amine compound is preferably 20 parts by weight or more and 50 parts by weight or less based on 100 parts by weight of the total of (A) the epoxy resin and (B) the silsesquioxane derivative. When the (C) amine compound is within this range, a cured product obtained by curing the resulting thermosetting resin composition can achieve both excellent mechanical strength and excellent heat resistance. On the other hand, when the content is less than 10 parts by weight, curing is delayed, and when it exceeds 50 parts by weight, the mechanical strength is lowered and the resulting cured product is strongly colored. When a silsesquioxane derivative having a structure other than a ladder type or random type is included as an impurity, the content of the (C) amine compound may be appropriately reduced and increased in consideration of the content.
 [(D)光カチオン重合開始剤]
 光硬化性樹脂組成物が有する(D)光カチオン重合開始剤は、UV照射あるいは加熱によりテトラフルオロホウ酸や、ヘキサフルオロリン酸などの強酸を生じ、その強酸により、(A)エポキシ樹脂または(B)シルセスキオキサン誘導体が活性化され、重合反応を開始できるものであれば特に限定されない。
[(D) Photocationic polymerization initiator]
The photocationic polymerization initiator (D) possessed by the photocurable resin composition generates a strong acid such as tetrafluoroboric acid or hexafluorophosphoric acid by UV irradiation or heating, and (A) an epoxy resin or ( B) There is no particular limitation as long as the silsesquioxane derivative is activated and can initiate a polymerization reaction.
 (D)光カチオン重合開始剤としては、例えば、市販品としては、IRGACURE(登録商標)270、IRGACURE(登録商標)290(BASF社製)、アデカオプトマー(登録商標)SP-150、アデカオプトマー(登録商標)SP-170(ADEKA社製)、CPI(登録商標)-100P、CPI(登録商標)-101A、及びCPI(登録商標)-200K(サンアプロ社製)等のトリアリールスルホニウム塩;IRGACURE(登録商標)250(BASF社製)、WPI(登録商標)-113、WPI(登録商標)-116、WPI(登録商標)-124(和光純薬社製)、及びPI(登録商標)-2074(ソルベイジャパン社製)等のジアリールヨードニウム塩等を用いることができる。 (D) As the photocationic polymerization initiator, for example, as commercially available products, IRGACURE (registered trademark) 270, IRGACURE (registered trademark) 290 (manufactured by BASF), Adekaoptomer (registered trademark) SP-150, Adekatop Triarylsulfonium salts such as Mer (registered trademark) SP-170 (manufactured by ADEKA), CPI (registered trademark) -100P, CPI (registered trademark) -101A, and CPI (registered trademark) -200K (manufactured by San Apro); IRGACURE (registered trademark) 250 (manufactured by BASF), WPI (registered trademark) -113, WPI (registered trademark) -116, WPI (registered trademark) -124 (manufactured by Wako Pure Chemical Industries, Ltd.), and PI (registered trademark)- Diaryliodonium salts such as 2074 (manufactured by Solvay Japan) can be used.
 上記各種の(D)光カチオン重合開始剤は、単独で用いてもよく、2種以上を併用してもよい。上記(D)光カチオン重合開始剤の中でも、(A)エポキシ樹脂及び(B)シルセスキオキサン誘導体との反応性に優れるため、トリアリールスルホニウム塩を用いることが好ましい。 The various (D) photocationic polymerization initiators may be used alone or in combination of two or more. Among the above (D) photocationic polymerization initiators, a triarylsulfonium salt is preferably used because of excellent reactivity with the (A) epoxy resin and the (B) silsesquioxane derivative.
 本発明の光硬化性樹脂組成物における(D)光カチオン重合開始剤の含有量としては、(A)エポキシ樹脂と(B)シルセスキオキサン誘導体の合計100重量部に対し(D)光カチオン重合開始剤の下限値が0.1重量部以上または0.5重量部以上であってよく、上限値が10重量部以下または5重量部以下であってもよい。(A)エポキシ樹脂と(B)シルセスキオキサン誘導体の合計100重量部に対し(D)光カチオン重合開始剤は0.5重量部以上5重量部以下が好ましい。(D)光カチオン重合開始剤の含有量が、この範囲にあることにより、得られる光硬化性樹脂組成物を硬化してなる硬化物は、優れた機械強度及び優れた耐熱性を両立することができる。一方、その含有量が0.1重量部未満であると、硬化が遅くなり、10重量部を超えると、硬化物が脆くなり、機械強度が著しく低下する。なお、ラダー型、ランダム型以外の他の構造のシルセスキオキサン誘導体を不純物として含む場合、適宜その含有量を考慮して(D)光カチオン重合開始剤の配合量を適宜に減量増量すればよい。 The content of the (D) photocationic polymerization initiator in the photocurable resin composition of the present invention is (D) a photocation with respect to a total of 100 parts by weight of the (A) epoxy resin and (B) silsesquioxane derivative. The lower limit of the polymerization initiator may be 0.1 parts by weight or more or 0.5 parts by weight or more, and the upper limit may be 10 parts by weight or less or 5 parts by weight or less. The total amount of (A) epoxy resin and (B) silsesquioxane derivative is 100 parts by weight, and (D) the cationic photopolymerization initiator is preferably 0.5 parts by weight or more and 5 parts by weight or less. (D) When the content of the cationic photopolymerization initiator is within this range, the cured product obtained by curing the photocurable resin composition obtained has both excellent mechanical strength and excellent heat resistance. Can do. On the other hand, when the content is less than 0.1 parts by weight, curing is delayed, and when it exceeds 10 parts by weight, the cured product becomes brittle and the mechanical strength is remarkably reduced. In addition, when the silsesquioxane derivative having a structure other than the ladder type and the random type is included as an impurity, the content of the (D) photocationic polymerization initiator is appropriately reduced and increased in consideration of the content as appropriate. Good.
 [硬化物]
 本発明の熱硬化性樹脂組成物または光硬化性樹脂組成物の硬化を進めることにより、硬化物を製造することができる。その製造は、本発明の熱硬化性樹脂組成物を加熱及び必要に応じて加熱による後硬化を行った後、または、光硬化性樹脂組成物をUV照射及び必要に応じてUV照射若しくは加熱による後硬化を行った後、例えば、金型により成形する等して冷却し、硬化することが挙げられる。
[Cured product]
A cured product can be produced by advancing curing of the thermosetting resin composition or the photocurable resin composition of the present invention. The production is performed by heating the thermosetting resin composition of the present invention and, if necessary, post-curing by heating, or by UV irradiation and, if necessary, UV irradiation or heating by heating the photocurable resin composition. After post-curing, for example, cooling with a mold or the like, and curing may be mentioned.
 本発明の熱硬化性樹脂組成物を硬化してなる硬化物および光硬化性樹脂組成物を硬化してなる硬化物は、優れた機械強度及び耐熱性を両立することができる。 The cured product obtained by curing the thermosetting resin composition of the present invention and the cured product obtained by curing the photocurable resin composition can achieve both excellent mechanical strength and heat resistance.
 本発明の熱硬化性樹脂組成物を硬化してなる硬化物及び光硬化性樹脂組成物を硬化してなる硬化物は、その切断面をSEM(500倍)により観察すると、部分的に絡まりながら一定の方向性を示すような繊維状の物質が確認できる。硬化物は、この繊維状の物質とその他の領域が相分離した状態であると言え、このような状態をとることで繊維状の物質が硬化物の中で網目鎖の分子フィラーとしての効果を示し、ミクロブラウン運動を抑制するため、優れた機械強度及び優れた耐熱性を両立することができるものと推測される。 The cured product obtained by curing the thermosetting resin composition of the present invention and the cured product obtained by curing the photo-curable resin composition are partially entangled when the cut surface is observed by SEM (500 times). A fibrous substance showing a certain direction can be confirmed. The cured product can be said to be in a state where the fibrous substance and other regions are phase-separated, and by taking such a state, the fibrous substance has an effect as a molecular chain molecular filler in the cured product. In order to suppress the micro Brownian motion, it is presumed that both excellent mechanical strength and excellent heat resistance can be achieved.
 このような繊維状の物質とその他の領域が相分離した状態は、以下のようにして得られる。(B)シルセスキオキサン誘導体は、(C)アミン系化合物または(D)光カチオン重合開始剤を硬化剤として用いた場合に得られる硬化物のガラス転移温度Tgが(A)エポキシ樹脂に比べて非常に低い。このようなガラス転移温度Tgが相対的に低い(B)シルセスキオキサン誘導体と共に(A)エポキシ樹脂を(C)アミン系化合物または(D)光カチオン重合開始剤を用いて硬化することで繊維状の物質とその他の領域が相分離した状態となる。例えば、(C)アミン系化合物に代えて酸無水物系硬化剤を硬化剤として用いた場合には、得られるものではない。 Such a state in which the fibrous substance and other regions are phase-separated can be obtained as follows. The (B) silsesquioxane derivative has a glass transition temperature Tg of a cured product obtained when (C) an amine compound or (D) a photocationic polymerization initiator is used as a curing agent, compared with (A) an epoxy resin. And very low. A fiber obtained by curing (A) an epoxy resin with (C) an amine compound or (D) a photocationic polymerization initiator together with (B) a silsesquioxane derivative having a relatively low glass transition temperature Tg. The state-like substance and other regions are in a phase-separated state. For example, when an acid anhydride curing agent is used as the curing agent instead of (C) the amine compound, it cannot be obtained.
 本発明の熱硬化性樹脂組成物を硬化してなる硬化物の曲げ強度は、80MPa以上が好ましく、81MPa以上がより好ましく、82MPa以上がさらに好ましい。曲げ強度はより高い方が好ましく、上限値は特に限定されないが、例えば100MPa以下であれば、実用上使用できる。そして、伸び率は、4.0%以上が好ましく、4.1%以上がより好ましく、4.3%以上がさらに好ましく、4.5%以上が最も好ましい。実用上の観点からは、5%以下であってもよい。 The bending strength of a cured product obtained by curing the thermosetting resin composition of the present invention is preferably 80 MPa or more, more preferably 81 MPa or more, and further preferably 82 MPa or more. The bending strength is preferably higher, and the upper limit is not particularly limited, but for example, it can be practically used if it is 100 MPa or less. The elongation percentage is preferably 4.0% or more, more preferably 4.1% or more, still more preferably 4.3% or more, and most preferably 4.5% or more. From a practical viewpoint, it may be 5% or less.
 硬化物の曲げ強度および伸び率は、JIS K7171に準拠した試験法で測定することができる。 The bending strength and elongation of the cured product can be measured by a test method based on JIS K7171.
 本発明の熱硬化性樹脂組成物及び光硬化性樹脂組成物を硬化してなる硬化物のガラス転移温度は使用するエポキシ樹脂の種類にもよるが、エポキシ樹脂単独で使用した場合と比較して10℃以上上昇することが好ましく、15℃以上上昇することがより好ましく、20℃以上上昇することがさらに好ましい。 The glass transition temperature of the cured product obtained by curing the thermosetting resin composition and the photocurable resin composition of the present invention depends on the type of epoxy resin used, but compared with the case where the epoxy resin is used alone. The temperature is preferably increased by 10 ° C or more, more preferably by 15 ° C or more, and further preferably by 20 ° C or more.
 本発明の熱硬化性樹脂組成物及び光硬化性樹脂組成物を硬化してなる硬化物のガラス転移温度Tgは、(A)エポキシ樹脂として芳香族系エポキシ樹脂を用いる場合は、165℃以上が好ましく、168℃以上がより好ましく、170℃以上がさらに好ましい。ガラス転移温度Tgはより高い方が好ましく、上限値は特に限定されないが、例えば、200℃以下であれば、実使用できる。 The glass transition temperature Tg of a cured product obtained by curing the thermosetting resin composition and the photocurable resin composition of the present invention is 165 ° C. or higher when an aromatic epoxy resin is used as the (A) epoxy resin. It is preferably 168 ° C. or higher, more preferably 170 ° C. or higher. The glass transition temperature Tg is preferably higher, and the upper limit value is not particularly limited.
 本発明の熱硬化性樹脂組成物及び光硬化性樹脂組成物を硬化してなる硬化物のガラス転移温度Tgは、(A)エポキシ樹脂として脂環式エポキシ樹脂を用いる場合は、90℃以上が好ましく、100℃以上がより好ましく、105℃以上がさらに好ましい。ガラス転移温度Tgはより高い方が好ましく、上限値は特に限定されないが、例えば、200℃以下であれば、実使用できる。 The glass transition temperature Tg of the cured product obtained by curing the thermosetting resin composition and the photocurable resin composition of the present invention is 90 ° C or higher when an alicyclic epoxy resin is used as the (A) epoxy resin. Preferably, it is 100 ° C. or higher, more preferably 105 ° C. or higher. The glass transition temperature Tg is preferably higher, and the upper limit value is not particularly limited.
 硬化物のガラス転移温度Tgは、示差走査熱量測定(DSC)装置や、動的粘弾性測定装置、例えばDMS6100(セイコーインスツル社製)を用いて、温度範囲30~250℃、昇温速度2℃/分、周波数1MHzの条件で測定することができる。 The glass transition temperature Tg of the cured product is measured using a differential scanning calorimetry (DSC) apparatus or a dynamic viscoelasticity measuring apparatus such as DMS6100 (manufactured by Seiko Instruments Inc.) in a temperature range of 30 to 250 ° C. and a temperature increase rate of 2 It can be measured under the conditions of ° C / min and frequency of 1 MHz.
 本発明の光硬化性樹脂組成物を硬化してなる硬化物の弾性率は、1.5GPa以上が好ましく、1.8GPa以上がより好ましく、2.0GPa以上がさらに好ましい。弾性率はより高い方が好ましく、上限値は特に限定されないが、例えば、5.0GPa以下であれば、実用上使用できる。 The elastic modulus of a cured product obtained by curing the photocurable resin composition of the present invention is preferably 1.5 GPa or more, more preferably 1.8 GPa or more, and further preferably 2.0 GPa or more. The higher elastic modulus is preferable, and the upper limit is not particularly limited, but for example, it can be practically used if it is 5.0 GPa or less.
 硬化物の弾性率は、動的粘弾性測定装置、例えばDMS6100(セイコーインスツル社製)を用いて、周波数1Hz、25℃の条件で測定することができる。 The elastic modulus of the cured product can be measured using a dynamic viscoelasticity measuring device such as DMS6100 (manufactured by Seiko Instruments Inc.) under conditions of a frequency of 1 Hz and 25 ° C.
 本発明の光硬化性樹脂組成物を硬化してなる硬化物の鉛筆硬度は、3H以上が好ましく、4H以上がより好ましい。上限値は特に限定されないが、機械強度の観点からは、例えば6H以下である。鉛筆硬度は、JIS K 5600-5-4に準拠した試験法で測定することができる。 The pencil hardness of a cured product obtained by curing the photocurable resin composition of the present invention is preferably 3H or more, and more preferably 4H or more. Although an upper limit is not specifically limited, From a viewpoint of mechanical strength, it is 6H or less, for example. The pencil hardness can be measured by a test method based on JIS K 5600-5-4.
 上記のとおり、熱硬化性樹脂組成物を硬化してなる硬化物または光硬化性樹脂組成物を硬化してなる硬化物は優れた機械強度及び優れた耐熱性を兼ね備えるため、半導体用封止剤、積層板、FRP(複合材料)、接着剤等の電気・電子材料用分野及び自動車用材料分野等で用いられる、高温多湿下に晒されやすい環境下にもかかわらず高い機械的・電気的接続信頼性が求められる部品材料として好適に用いることができる。 As described above, a cured product obtained by curing a thermosetting resin composition or a cured product obtained by curing a photocurable resin composition has excellent mechanical strength and excellent heat resistance. High mechanical and electrical connection, despite being easily exposed to high temperatures and high humidity, used in the fields of electrical and electronic materials such as laminates, FRP (composite materials), adhesives, and automotive materials It can be suitably used as a component material that requires reliability.
 以下に実施例を掲げて本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
 (合成例1)
 シルセスキオキサン(SQ)誘導体1の合成
 撹拌機及び温度計を設置した反応容器に、MIBK50.0g、水酸化ナトリウムの20%水溶液0.700g(水酸化ナトリウム3.50mmol)、蒸留水9.00g(500mmol)を仕込んだ後、γ-グリシドキシプロピルトリメトキシシラン50.0g(212mmol)を50~55℃で徐々に加え、3時間撹拌放置した。反応終了後、MIBK50.0gを加え、さらに25.0gの蒸留水で水層のpHが中性になるまで水洗した。次に減圧下でMIBKを留去して目的の化合物、SQ誘導体1を得た。Mwは3,850であった。IR分析したところ、ラダーもしくはランダム型構造含むことを支持する、Si-O-Si結合の伸縮振動に基づく1100cm-1と1050cm-1付近のピークを確認した。SQ誘導体1を構成する繰り返し構成単位は、Rがグリシドキシプロピル基であるRSiO3/2が100モル%であった。なお、液体クロマトグラフ質量分析によるm/zピーク面積を算出した結果、ランダム型構造のもの及び/又はラダー型構造のものの含有量は87重量%であった。
(Synthesis Example 1)
Synthesis of Silsesquioxane (SQ) Derivative 1 In a reaction vessel equipped with a stirrer and a thermometer, 50.0 g of MIBK, 0.700 g of a 20% aqueous solution of sodium hydroxide (3.50 mmol of sodium hydroxide), distilled water 9. After charging 00 g (500 mmol), 50.0 g (212 mmol) of γ-glycidoxypropyltrimethoxysilane was gradually added at 50 to 55 ° C. and left to stir for 3 hours. After completion of the reaction, 50.0 g of MIBK was added, and further washed with 25.0 g of distilled water until the pH of the aqueous layer became neutral. Next, MIBK was distilled off under reduced pressure to obtain the target compound, SQ derivative 1. Mw was 3,850. When IR analysis supports that include ladder or random structure was confirmed a peak around 1100 cm -1 and 1050 cm -1 based on the stretching vibration of Si-O-Si bonds. As for the repeating structural unit constituting the SQ derivative 1, RSiO 3/2 in which R is a glycidoxypropyl group was 100 mol%. In addition, as a result of calculating the m / z peak area by liquid chromatograph mass spectrometry, the content of the random structure and / or the ladder structure was 87% by weight.
 (合成例2)
 シルセスキオキサン(SQ)誘導体2の合成
 撹拌機及び温度計を設置した反応容器に、MIBK50.0g、水酸化ナトリウムの20%水溶液0.700g(水酸化ナトリウム3.50mmol)、蒸留水9.10g(506mmol)を仕込んだ後、γ-グリシドキシプロピルトリメトキシシラン48.5g(205mmol)、メチルトリメトキシシラン1.50g(11.0mmol)を50~55℃で徐々に加え、3時間撹拌放置した。反応終了後、MIBK50.0gを加え、さらに25.0gの蒸留水で水層のpHが中性になるまで水洗した。次に減圧下でMIBKを留去して目的の化合物、SQ誘導体2を得た。Mwは5,300であった。IR分析したところ、ラダーもしくはランダム型構造含むことを支持する、Si-O-Si結合の伸縮振動に基づく1100cm-1と1050cm-1付近のピークを確認した。SQ誘導体2を構成する繰り返し構成単位は、Rがグリシドキシプロピル基であるRSiO3/2が95モル%、Rがメチル基のRSiO3/2が5モル%であった。なお、液体クロマトグラフ質量分析によるm/zピーク面積を算出した結果、ランダム型構造のもの及び/又はラダー型構造のものの含有量は89重量%であった。
(Synthesis Example 2)
Synthesis of Silsesquioxane (SQ) Derivative 2 In a reaction vessel equipped with a stirrer and a thermometer, 50.0 g of MIBK, 0.700 g of a 20% aqueous solution of sodium hydroxide (3.50 mmol of sodium hydroxide), distilled water 9. After charging 10 g (506 mmol), 48.5 g (205 mmol) of γ-glycidoxypropyltrimethoxysilane and 1.50 g (11.0 mmol) of methyltrimethoxysilane were gradually added at 50 to 55 ° C. and stirred for 3 hours. I left it alone. After completion of the reaction, 50.0 g of MIBK was added, and further washed with 25.0 g of distilled water until the pH of the aqueous layer became neutral. Next, MIBK was distilled off under reduced pressure to obtain the target compound, SQ derivative 2. Mw was 5,300. When IR analysis supports that include ladder or random structure was confirmed a peak around 1100 cm -1 and 1050 cm -1 based on the stretching vibration of Si-O-Si bonds. As for the repeating structural units constituting the SQ derivative 2, RSiO 3/2 in which R is a glycidoxypropyl group was 95 mol%, and RSiO 3/2 in which R was a methyl group was 5 mol%. In addition, as a result of calculating the m / z peak area by liquid chromatograph mass spectrometry, the content of the random structure and / or the ladder structure was 89% by weight.
 (合成例3)
 シルセスキオキサン(SQ)誘導体3の合成
 撹拌機及び温度計を設置した反応容器に、MIBK50.0g、水酸化ナトリウムの20%水溶液0.750g(水酸化ナトリウム3.75mmol)、蒸留水9.80g(544mmol)を仕込んだ後、γ-グリシドキシプロピルトリメトキシシラン27.2g(115mmol)、フェニルトリメトキシシラン22.8g(115mmol)を50~55℃で徐々に加え、3時間撹拌放置した。反応終了後、MIBK50.0gを加え、さらに25.0gの蒸留水で水層のpHが中性になるまで水洗した。次に減圧下でMIBKを留去して目的の化合物、SQ誘導体3を得た。Mwは3,350であった。IR分析したところ、ラダーもしくはランダム型構造含むことを支持する、Si-O-Si結合の伸縮振動に基づく1100cm-1と1050cm-1付近のピークを確認した。SQ誘導体3を構成する繰り返し構成単位は、Rがグリシドキシプロピル基であるRSiO3/2が50モル%、Rがフェニル基のRSiO3/2が50モル%であった。なお、液体クロマトグラフ質量分析によるm/zピーク面積を算出した結果、ランダム型構造のもの及び/又はラダー型構造のものの含有量は92重量%であった。
(Synthesis Example 3)
Synthesis of Silsesquioxane (SQ) Derivative 3 In a reaction vessel equipped with a stirrer and a thermometer, MIBK 50.0 g, sodium hydroxide 2050 aqueous solution 0.750 g (sodium hydroxide 3.75 mmol), distilled water 9. After charging 80 g (544 mmol), 27.2 g (115 mmol) of γ-glycidoxypropyltrimethoxysilane and 22.8 g (115 mmol) of phenyltrimethoxysilane were gradually added at 50 to 55 ° C. and left to stir for 3 hours. . After completion of the reaction, 50.0 g of MIBK was added, and further washed with 25.0 g of distilled water until the pH of the aqueous layer became neutral. Next, MIBK was distilled off under reduced pressure to obtain the target compound, SQ derivative 3. Mw was 3,350. When IR analysis supports that include ladder or random structure was confirmed a peak around 1100 cm -1 and 1050 cm -1 based on the stretching vibration of Si-O-Si bonds. As for the repeating structural units constituting the SQ derivative 3, RSiO 3/2 in which R is a glycidoxypropyl group was 50 mol%, and RSiO 3/2 in which R was a phenyl group was 50 mol%. In addition, as a result of calculating the m / z peak area by liquid chromatograph mass spectrometry, the content of the random structure and / or the ladder structure was 92% by weight.
 (比較合成例4)
 シルセスキオキサン(SQ)誘導体4の合成
 撹拌機及び温度計を設置した反応容器に、MIBK50.0g、水酸化ナトリウムの20%水溶液0.790g(水酸化ナトリウム3.95mmol)、蒸留水10.2g(567mmol)を仕込んだ後、γ-グリシドキシプロピルトリメトキシシラン14.2g(60mmol)、フェニルトリメトキシシラン35.8g(181mmol)を50~55℃で徐々に加え、3時間撹拌放置した。反応終了後、MIBK50.0gを加え、さらに25.0gの蒸留水で水層のpHが中性になるまで水洗した。次に減圧下でMIBKを留去して目的の化合物、SQ誘導体4を得た。Mwは4,730であった。IR分析したところ、ラダーもしくはランダム型構造含むことを支持する、Si-O-Si結合の伸縮振動に基づく1100cm-1と1050cm-1付近のピークを確認した。SQ誘導体4を構成する繰り返し構成単位は、Rがグリシドキシプロピル基であるRSiO3/2が25モル%、Rがフェニル基のRSiO3/2が75モル%であった。なお、液体クロマトグラフ質量分析によるm/zピーク面積を算出した結果、ランダム型構造のもの及び/又はラダー型構造のものの含有量は93重量%であった。
(Comparative Synthesis Example 4)
Synthesis of Silsesquioxane (SQ) Derivative 4 In a reaction vessel equipped with a stirrer and a thermometer, MIBK 50.0 g, sodium hydroxide 20% aqueous solution 0.790 g (sodium hydroxide 3.95 mmol), distilled water 10. After charging 2 g (567 mmol), 14.2 g (60 mmol) of γ-glycidoxypropyltrimethoxysilane and 35.8 g (181 mmol) of phenyltrimethoxysilane were gradually added at 50 to 55 ° C. and left to stir for 3 hours. . After completion of the reaction, 50.0 g of MIBK was added, and further washed with 25.0 g of distilled water until the pH of the aqueous layer became neutral. Next, MIBK was distilled off under reduced pressure to obtain the target compound, SQ derivative 4. Mw was 4,730. When IR analysis supports that include ladder or random structure was confirmed a peak around 1100 cm -1 and 1050 cm -1 based on the stretching vibration of Si-O-Si bonds. The repeating structural unit constituting the SQ derivative 4 was 25 mol% of RSiO 3/2 in which R is a glycidoxypropyl group, and 75 mol% of RSiO 3/2 in which R is a phenyl group. In addition, as a result of calculating the m / z peak area by liquid chromatograph mass spectrometry, content of the thing of a random type structure and / or a ladder type structure was 93 weight%.
 (実施例1乃至3及び比較例1乃至8)
 表1に示す配合により各成分を混合し、目的の組成物を得た。得られた各組成物を、5分間脱泡撹拌した後、80℃で1時間、さらに150℃で5時間の条件で硬化させて、厚み2mmの硬化物とし、10mm×50mmの大きさに切り出したもの、及び、厚み6mmの硬化物とし、13mm×140mmの大きさに切り出したものを試験片として作成した。得られた試験片について、下記の方法により、ガラス転移温度Tg(℃)、曲げ強度(MPa)、及び伸び率(%)を測定した。結果は、表1に示す。
(Examples 1 to 3 and Comparative Examples 1 to 8)
Each component was mixed according to the formulation shown in Table 1 to obtain the desired composition. Each composition obtained was defoamed and stirred for 5 minutes and then cured at 80 ° C. for 1 hour and further at 150 ° C. for 5 hours to obtain a cured product having a thickness of 2 mm and cut into a size of 10 mm × 50 mm. And a cured product having a thickness of 6 mm and cut into a size of 13 mm × 140 mm were prepared as test pieces. About the obtained test piece, glass transition temperature Tg (degreeC), bending strength (MPa), and elongation rate (%) were measured with the following method. The results are shown in Table 1.
 なお、表1中の略号の意味は以下のとおりである。
・JER828:ビスフェノールA型エポキシ樹脂(三菱化学株式会社製)
・JER152:フェノールノボラック型エポキシ樹脂(三菱化学株式会社製)
・113:4,4’-メチレンビス(2-メチルシクロヘキサンアミン)(三菱化学株式会社製)
・MH-700G:4-メチルヘキサヒドロ無水フタル酸とヘキサヒドロ無水フタル酸の混合物(新日本理化会社製)
・2E4MZ:2-エチル-4-メチルイミダゾール(四国化成工業会社製)
In addition, the meaning of the symbol in Table 1 is as follows.
・ JER828: Bisphenol A type epoxy resin (Mitsubishi Chemical Corporation)
・ JER152: Phenol novolac type epoxy resin (Mitsubishi Chemical Corporation)
113: 4,4'-methylenebis (2-methylcyclohexaneamine) (Mitsubishi Chemical Corporation)
・ MH-700G: Mixture of 4-methylhexahydrophthalic anhydride and hexahydrophthalic anhydride (manufactured by Shin Nippon Chemical Co., Ltd.)
・ 2E4MZ: 2-Ethyl-4-methylimidazole (manufactured by Shikoku Chemicals Co., Ltd.)
 <ガラス転移温度Tg(℃)>
 動的粘弾性測定装置DMS6100(セイコーインスツル社製)を用いて、温度範囲30~250℃、昇温速度2℃/分、周波数1MHzの条件で測定した。試験片は、厚み2mm、10mm×50mmのものを使用した。
<Glass transition temperature Tg (° C.)>
Using a dynamic viscoelasticity measuring device DMS6100 (manufactured by Seiko Instruments Inc.), measurement was performed under the conditions of a temperature range of 30 to 250 ° C., a temperature rising rate of 2 ° C./min, and a frequency of 1 MHz. A test piece having a thickness of 2 mm and 10 mm × 50 mm was used.
 <曲げ強度(MPa)及び伸び率(%)>
 JIS K7171に準じ、ストログラフVG20-E(東洋精機製作所社製)を用いて、測定温度25℃、測定湿度50%RH、ロードセル1.0kN、ヘッド移動速度5mm/minの条件で測定した。試験片は、厚み6mm、13mm×140mmのものを使用した。
<Bending strength (MPa) and elongation (%)>
According to JIS K7171, the measurement was carried out using a strograph VG20-E (manufactured by Toyo Seiki Seisakusho) under the conditions of a measurement temperature of 25 ° C., a measurement humidity of 50% RH, a load cell of 1.0 kN and a head moving speed of 5 mm / min. A test piece having a thickness of 6 mm and 13 mm × 140 mm was used.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 比較例1と実施例1及び2との比較、並びに比較例2と実施例3との比較により示されるように、(B)シルセスキオキサン誘導体の配合により、ガラス転移温度Tgは、17℃以上上昇すると共に、曲げ強度及び伸び率のいずれも向上した。 As shown by the comparison between Comparative Example 1 and Examples 1 and 2, and the comparison between Comparative Example 2 and Example 3, the glass transition temperature Tg is 17 ° C. by blending the (B) silsesquioxane derivative. As it increased above, both bending strength and elongation increased.
 ここで、比較例3から分かるように(B)シルセスキオキサン誘導体の硬化物は、ガラス転移温度Tgは45℃と、比較例1及び2に示される(A)エポキシ樹脂と比較して100℃以上低い。このようにガラス転移温度Tgが非常に低い(B)シルセスキオキサン誘導体を(A)エポキシ樹脂に配合してもそのガラス転移温度Tgを高くすることができた。これは、(C)アミン系化合物を硬化剤として用いることによるものであって、酸無水物を硬化剤として用いた場合(比較例6乃至8)には、このようなガラス転移温度Tgの上昇は見られなかった。 Here, as can be seen from Comparative Example 3, the cured product of (B) silsesquioxane derivative has a glass transition temperature Tg of 45 ° C., which is 100 compared with (A) the epoxy resin shown in Comparative Examples 1 and 2. More than ℃. Thus, even when the (B) silsesquioxane derivative having a very low glass transition temperature Tg was blended with the (A) epoxy resin, the glass transition temperature Tg could be increased. This is because (C) an amine compound is used as a curing agent, and when an acid anhydride is used as a curing agent (Comparative Examples 6 to 8), such a glass transition temperature Tg is increased. Was not seen.
 比較例1、比較例4及び実施例2の比較により示されるように、(B)シルセスキオキサン誘導体が1分子中に含まれる全ての繰り返し構成単位RSiO3/2のうち、Rがグリシジル基を含む有機基である繰り返し構成単位が50モル%未満である場合には、(B)シルセスキオキサン誘導体の配合によりガラス転移温度Tgは低下し、曲げ強度及び伸び率も共に低下した。 As shown by the comparison between Comparative Example 1, Comparative Example 4 and Example 2, (B) Of all the repeating structural units RSiO 3/2 in which the silsesquioxane derivative is contained in one molecule, R is a glycidyl group. When the repeating structural unit which is an organic group containing is less than 50 mol%, the glass transition temperature Tg was lowered by blending the (B) silsesquioxane derivative, and both the bending strength and the elongation were also lowered.
 また、比較例5と実施例1乃至3との比較により示されるように、(A)エポキシ樹脂100重量部に対し、(B)シルセスキオキサン誘導体が5重量部以上30重量部以下の配合割合の範囲を外れた場合には、ガラス転移温度Tgは低下し、曲げ強度及び伸び率も共に低下した。 Further, as shown by comparison between Comparative Example 5 and Examples 1 to 3, (B) Silsesquioxane derivative is blended in an amount of 5 parts by weight to 30 parts by weight with respect to 100 parts by weight of (A) epoxy resin. When the ratio was out of the range, the glass transition temperature Tg was lowered, and the bending strength and elongation were both lowered.
 (実施例4乃至5及び比較例9)
 表2に示す配合により各成分を混合し、目的の組成物を得た。得られた各組成物を、5分間脱泡撹拌した後、卓上コンベアUV(ヘレウス社製LH6/LC-6B)を用いて、高圧水銀ランプ、ピーク照度80mW/cmにて、積算露光量1000mJ/cm照射し、さらに120℃30分の条件で硬化した。得られた試験片(厚み2mm、10mm×50mm)について、上記の方法によりガラス転移温度Tg(℃)、並びに、下記の方法により、弾性率(GPa)、及び鉛筆硬度を測定した。結果は、表2に示す。
(Examples 4 to 5 and Comparative Example 9)
Each component was mixed according to the formulation shown in Table 2 to obtain the desired composition. Each composition obtained was degassed and stirred for 5 minutes, and then a table-top conveyor UV (LH6 / LC-6B manufactured by Heraeus) was used with a high-pressure mercury lamp at a peak illuminance of 80 mW / cm 2 and an integrated exposure amount of 1000 mJ. / Cm 2 irradiation, and further cured at 120 ° C. for 30 minutes. About the obtained test piece (thickness 2 mm, 10 mm × 50 mm), the glass transition temperature Tg (° C.) was measured by the above method, and the elastic modulus (GPa) and pencil hardness were measured by the following method. The results are shown in Table 2.
 なお、表2中の略号の意味は以下のとおりである。
・EX-252:水添ビスフェノールA骨格のエポキシ樹脂(ナガセケムテックス株式会社製)
・CPI-200K:トリアリールスルホニウム塩系の光カチオン重合開始剤(サンアプロ株式会社製、CPIは登録商標)
In addition, the meaning of the symbol in Table 2 is as follows.
EX-252: Hydrogenated bisphenol A skeleton epoxy resin (manufactured by Nagase ChemteX Corporation)
CPI-200K: Triarylsulfonium salt-based photocationic polymerization initiator (manufactured by San Apro, CPI is a registered trademark)
 <弾性率(GPa)>
 動的粘弾性測定装置DMS6100(セイコーインスツル社製)にて、周波数1Hz、25℃での弾性率を測定した。
<Elastic modulus (GPa)>
The elastic modulus at a frequency of 1 Hz and 25 ° C. was measured with a dynamic viscoelasticity measuring device DMS6100 (manufactured by Seiko Instruments Inc.).
 <鉛筆硬度>
JIS K5600-5-4に基づく鉛筆硬度(750±10g荷重)を、鉛筆硬度試験機(安田精機社製)を用いて25℃で測定した。
<Pencil hardness>
The pencil hardness (750 ± 10 g load) based on JIS K5600-5-4 was measured at 25 ° C. using a pencil hardness tester (manufactured by Yasuda Seiki Co., Ltd.).
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 比較例9と実施例4及び5との比較により示されるように、(B)シルセスキオキサン誘導体の配合により、ガラス転移温度Tgは、10℃以上上昇すると共に、弾性率及び鉛筆硬度のいずれも向上した。 As shown by the comparison between Comparative Example 9 and Examples 4 and 5, the glass transition temperature Tg increased by 10 ° C. or more due to the blending of the (B) silsesquioxane derivative. Also improved.
 以上のとおり、本発明の熱硬化性樹脂組成物を硬化してなる硬化物(実施例1乃至3)及び光硬化性樹脂組成物を硬化してなる硬化物(実施例4乃至5)は、いずれも優れた機械強度及び優れた耐熱性を兼ね備えることが示された。 As described above, the cured product (Examples 1 to 3) obtained by curing the thermosetting resin composition of the present invention and the cured product (Examples 4 to 5) obtained by curing the photocurable resin composition are as follows. It was shown that both have excellent mechanical strength and excellent heat resistance.

Claims (6)

  1.  (A)平均エポキシ基数が2個以上のエポキシ樹脂、
    (B)RSiO3/2を繰り返し構成単位とし、1分子中に含まれる全ての前記繰り返し構成単位のうち、必須成分としてRがグリシジル基を含む有機基である繰り返し構成単位が100モル%以下50モル%以上であり、任意成分としてRがアリール基及び/又は炭素数1以上12以下のアルキル基である繰り返し構成単位が50モル%以下0モル%以上である、重量平均分子量Mw2,000以上10,000以下のシルセスキオキサン誘導体、及び
    (C)前記エポキシ基と反応可能なアミノ基を2個以上有するアミン系化合物を含み、
    前記(A)エポキシ樹脂100重量部に対し、前記(B)シルセスキオキサン誘導体が5重量部以上30重量部以下である、熱硬化性樹脂組成物。
    (A) an epoxy resin having an average number of epoxy groups of 2 or more,
    (B) 100% by mole or less of the repeating structural unit having RSiO 3/2 as a repeating structural unit, wherein R is an organic group containing a glycidyl group as an essential component among all the repeating structural units contained in one molecule. The weight average molecular weight Mw is 2,000 or more and 10 or more, wherein the repeating structural unit in which R is an aryl group and / or an alkyl group having 1 to 12 carbon atoms is 50 mol% or less and 0 mol% or more. 2,000 or less silsesquioxane derivatives, and (C) an amine compound having two or more amino groups capable of reacting with the epoxy group,
    The thermosetting resin composition whose said (B) silsesquioxane derivative is 5 to 30 weight part with respect to 100 weight part of said (A) epoxy resin.
  2.  (A)エポキシ樹脂が芳香族系エポキシ樹脂である、請求項1に記載の熱硬化性樹脂組成物。 (A) The thermosetting resin composition according to claim 1, wherein the epoxy resin is an aromatic epoxy resin.
  3.  請求項1又は2に記載の熱硬化性樹脂組成物を硬化してなる硬化物。 Hardened | cured material formed by hardening | curing the thermosetting resin composition of Claim 1 or 2.
  4.  (A)平均エポキシ基数が2個以上のエポキシ樹脂、
    (B)RSiO3/2を繰り返し構成単位とし、1分子中に含まれる全ての前記繰り返し構成単位のうち、必須成分としてRがグリシジル基を含む有機基である繰り返し構成単位が100モル%以下50モル%以上であり、任意成分としてRがアリール基及び/又は炭素数1以上12以下のアルキル基である繰り返し構成単位が50モル%以下0モル%以上である、重量平均分子量Mw2,000以上10,000以下のシルセスキオキサン誘導体、及び
    (D)光カチオン重合開始剤を含み、
    前記(A)エポキシ樹脂100重量部に対し、前記(B)シルセスキオキサン誘導体が30重量部以上150重量部以下である、光硬化性樹脂組成物。
    (A) an epoxy resin having an average number of epoxy groups of 2 or more,
    (B) 100% by mole or less of the repeating structural unit having RSiO 3/2 as a repeating structural unit, wherein R is an organic group containing a glycidyl group as an essential component among all the repeating structural units contained in one molecule. The weight average molecular weight Mw is 2,000 or more and 10 or more, wherein the repeating structural unit in which R is an aryl group and / or an alkyl group having 1 to 12 carbon atoms is 50 mol% or less and 0 mol% or more. 1,000 or less silsesquioxane derivatives, and (D) a photocationic polymerization initiator,
    The photocurable resin composition whose said (B) silsesquioxane derivative is 30 to 150 weight part with respect to 100 weight part of said (A) epoxy resin.
  5.  請求項4に記載の光硬化性樹脂組成物を硬化してなる硬化物。 Hardened | cured material formed by hardening | curing the photocurable resin composition of Claim 4.
  6.  エポキシ樹脂の耐熱性を向上させるための添加剤であって、
    RSiO3/2を繰り返し構成単位とし、1分子中に含まれる全ての前記繰り返し構成単位のうち、必須成分としてRがグリシジル基を含む有機基である繰り返し構成単位が100モル%以下50モル%以上であり、任意成分としてRがアリール基及び/又は炭素数1以上12以下のアルキル基である繰り返し構成単位が50モル%以下0モル%以上である、重量平均分子量Mw2,000以上10,000以下のシルセスキオキサン誘導体を含む、耐熱性向上剤。
    An additive for improving the heat resistance of an epoxy resin,
    RSiO 3/2 is a repeating structural unit, and among all the repeating structural units contained in one molecule, the repeating structural unit in which R is an organic group containing a glycidyl group as an essential component is 100 mol% or less and 50 mol% or more Wherein R is an aryl group and / or an alkyl group having 1 to 12 carbon atoms as an optional component, and the weight average molecular weight Mw is 2,000 or more and 10,000 or less, wherein the repeating structural unit is 50 mol% or less and 0 mol% or more. A heat resistance improver comprising a silsesquioxane derivative.
PCT/JP2017/044570 2016-12-15 2017-12-12 Thermosetting resin composition, photocurable resin composition, cured product and heat resistance improving agent WO2018110550A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018556691A JPWO2018110550A1 (en) 2016-12-15 2017-12-12 Thermosetting resin composition, photocurable resin composition, cured product and heat resistance improver

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-243546 2016-12-15
JP2016243546 2016-12-15

Publications (1)

Publication Number Publication Date
WO2018110550A1 true WO2018110550A1 (en) 2018-06-21

Family

ID=62558692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044570 WO2018110550A1 (en) 2016-12-15 2017-12-12 Thermosetting resin composition, photocurable resin composition, cured product and heat resistance improving agent

Country Status (2)

Country Link
JP (1) JPWO2018110550A1 (en)
WO (1) WO2018110550A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018095819A (en) * 2016-12-16 2018-06-21 株式会社ダイセル Curable composition, adhesive sheet, cured product, laminate, and device
CN112739748A (en) * 2018-09-28 2021-04-30 琳得科株式会社 Curable polysilsesquioxane compound, curable composition, cured product, and method for using curable composition
WO2021157472A1 (en) * 2020-02-04 2021-08-12 パナソニックIpマネジメント株式会社 Side filling resin composition, semiconductor device, and method for removing side filling material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005338790A (en) * 2004-04-30 2005-12-08 Nagase Chemtex Corp Composition for color filter protective film
JP2012116989A (en) * 2010-12-02 2012-06-21 Nagase Chemtex Corp Resin lens and optical resin composition
JP2013504684A (en) * 2009-09-14 2013-02-07 ナミックス株式会社 Underfill for high density interconnect flip chip

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005338790A (en) * 2004-04-30 2005-12-08 Nagase Chemtex Corp Composition for color filter protective film
JP2013504684A (en) * 2009-09-14 2013-02-07 ナミックス株式会社 Underfill for high density interconnect flip chip
JP2012116989A (en) * 2010-12-02 2012-06-21 Nagase Chemtex Corp Resin lens and optical resin composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018095819A (en) * 2016-12-16 2018-06-21 株式会社ダイセル Curable composition, adhesive sheet, cured product, laminate, and device
JP7069449B2 (en) 2016-12-16 2022-05-18 株式会社ダイセル Curable compositions, adhesive sheets, cured products, laminates, and equipment
CN112739748A (en) * 2018-09-28 2021-04-30 琳得科株式会社 Curable polysilsesquioxane compound, curable composition, cured product, and method for using curable composition
WO2021157472A1 (en) * 2020-02-04 2021-08-12 パナソニックIpマネジメント株式会社 Side filling resin composition, semiconductor device, and method for removing side filling material

Also Published As

Publication number Publication date
JPWO2018110550A1 (en) 2019-10-24

Similar Documents

Publication Publication Date Title
JP5325791B2 (en) Epoxy resin containing alicyclic diamine curing agent
JP5415947B2 (en) One-component cyanate-epoxy composite resin composition
JP5475223B2 (en) One-component cyanate-epoxy composite resin composition, cured product thereof and method for producing the same, and sealing material and adhesive using the same
US20110281117A1 (en) Curable composition based on epoxy resins and hetero-poly-cyclic polyamines
KR101919308B1 (en) Water-based amine curing agents for curable resin systems
KR101239296B1 (en) Low temperature curable epoxy compositions
JP2006188707A (en) Curable composition
WO2018110550A1 (en) Thermosetting resin composition, photocurable resin composition, cured product and heat resistance improving agent
WO2018212233A1 (en) Curable composition for adhesive agent, adhesive sheet, cured article, laminate, and apparatus
JP6126837B2 (en) Liquid curable resin composition and use thereof
JP6429793B2 (en) Liquid epoxy resin composition
JP6116852B2 (en) Liquid curable resin composition and use thereof
TWI520980B (en) The epoxy resin composition and cured
US8877837B2 (en) Curing of epoxy resin compositions comprising cyclic carbonates using mixtures of amino hardeners and catalysts
JPH0339101B2 (en)
JP5301997B2 (en) Liquid epoxy resin composition and cured epoxy resin
WO2011097009A2 (en) Curable epoxy resin compositions
JP5279036B2 (en) Novel epoxy resin, production method thereof, epoxy resin composition and cured product
JP7008418B2 (en) Thermosetting resin composition and cured product
JP6135175B2 (en) Multifunctional epoxy resin composition, curable epoxy resin composition and cured product
US8586653B2 (en) Curing of epoxy resin compositions comprising cyclic carbonates using mixtures of amino hardeners
JP2013510942A (en) Amine adduct
JP6852622B2 (en) Thermosetting epoxy resin composition
WO2024050658A1 (en) Two component composition based on a blend of epoxide compounds
TW202346468A (en) Epoxy resin composition and cured product thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881654

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018556691

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17881654

Country of ref document: EP

Kind code of ref document: A1