WO2020067301A1 - 不活化全粒子インフルエンザワクチン及びその調製法 - Google Patents

不活化全粒子インフルエンザワクチン及びその調製法 Download PDF

Info

Publication number
WO2020067301A1
WO2020067301A1 PCT/JP2019/037884 JP2019037884W WO2020067301A1 WO 2020067301 A1 WO2020067301 A1 WO 2020067301A1 JP 2019037884 W JP2019037884 W JP 2019037884W WO 2020067301 A1 WO2020067301 A1 WO 2020067301A1
Authority
WO
WIPO (PCT)
Prior art keywords
inactivated whole
virus
vaccine
whole particle
hypotonic
Prior art date
Application number
PCT/JP2019/037884
Other languages
English (en)
French (fr)
Inventor
亮大郎 三股
三隅 将吾
岸本 直樹
卓摩 五反田
渚 中田
Original Assignee
デンカ生研株式会社
国立大学法人熊本大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ生研株式会社, 国立大学法人熊本大学 filed Critical デンカ生研株式会社
Priority to KR1020217009021A priority Critical patent/KR20210065952A/ko
Priority to US17/279,898 priority patent/US11890338B2/en
Priority to AU2019346177A priority patent/AU2019346177A1/en
Priority to EP19865376.8A priority patent/EP3858380A4/en
Priority to CN201980062822.3A priority patent/CN112752581B/zh
Publication of WO2020067301A1 publication Critical patent/WO2020067301A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/145Orthomyxoviridae, e.g. influenza virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1131Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5252Virus inactivated (killed)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/575Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 humoral response
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16151Methods of production or purification of viral material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16211Influenzavirus B, i.e. influenza B virus
    • C12N2760/16234Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Definitions

  • the present invention relates to an inactivated whole particle influenza vaccine having high antibody-inducing ability and reduced pyrogenicity, and a method for preparing the same.
  • Influenza virus belongs to the family Orthomyxoviridae, and is a virus classified into A, B, C and D types due to the difference in antigenicity of nucleoprotein and matrix protein present inside the virus. Type A and type B epidemics occur each year, and may become severe due to viral infection, particularly in children and the elderly. Influenza vaccination is known as a prophylactic method against influenza virus infection, and the influenza vaccine is a multivalent vaccine containing antigens of type A 2 strain and type B 1 or 2 strains.
  • influenza vaccines were inactivated whole particle vaccines in which the vaccine strain was inoculated into embryonated chicken eggs, cultured, and the collected and purified virus was inactivated with formaldehyde to infectivity. Due to the problems of local reactions and side reactions such as fever (Non-patent Document 1 and Non-Patent Document 2), since 1972, split vaccines in which virus particles are cleaved by ether treatment to remove lipids in the envelope have been introduced to the market. It is in circulation. The split vaccine is a highly safe vaccine with reduced local and fever reactions, but has the problem of low antibody induction in children with a small history of influenza virus or vaccination and in elderly people with weakened immune function. Was.
  • Patent Literature 1 discloses that virus-like particles obtained by immobilizing virus particles with aldehydes and the like and then defatting the same show higher immunogenicity (antibody induction) than the split vaccine and suppress the pyrogenic reaction. I have.
  • McElhaney J.E. Meneilly G.S., Lechelt K.E., Beattie B.L., Bleackley R.C., Antibody response to whole-virus and split-virus influenza vaccines in successful ageing. 10-60.
  • the present invention relates to providing an inactivated whole particle influenza vaccine in which the ability to induce antibodies is maintained or enhanced and side reactions are reduced.
  • an inactivated whole particle vaccine prepared by concentrating and purifying an influenza virus suspension grown in embryonated chicken eggs contains components of extracellular vesicles derived from embryonated chicken eggs. I discovered that. Surprisingly, in the process of preparing the whole particle vaccine, the virus solution is exposed to a hypotonic solution to obtain an inactivated whole particle vaccine with a reduced content of extracellular vesicles. It was found that the antibody-inducing ability was high and the heat-generating activity was attenuated.
  • the present invention relates to the following 1) to 6).
  • 1) A method for preparing an inactivated whole-particle influenza vaccine using a developing chicken egg method comprising a step of subjecting a virus liquid containing all influenza virus particles collected from a developing chicken egg to hypotonic treatment.
  • the hypotonic solution is an aqueous solution of 160 mOsm / kg or less, preferably 110 mOsm / kg or less.
  • an inactivated whole particle influenza vaccine having high antibody-inducing ability and reduced pyrogenicity.
  • An electron microscopic observation image of extracellular vesicle components obtained by collecting, purifying and concentrating the serum from uninfected growing chicken eggs.
  • influenza vaccine means a vaccine containing at least an antigen of either influenza A virus or influenza B virus. That is, the influenza vaccine of the present invention may be a unit price vaccine containing only one of influenza A virus or influenza B virus, or a multivalent vaccine containing both of them.
  • influenza virus refers to influenza A virus or influenza B virus, or both. Influenza viruses also include all currently known subtypes and those that will be isolated and identified in the future.
  • the influenza virus strain used for preparing the vaccine of the present invention may be a strain isolated from an infected animal or a patient, or a recombinant virus established in cultured cells by genetic engineering.
  • whole influenza virus particles means virus particles that retain the form of the virus obtained by culturing influenza virus, and “inactivated whole particle influenza vaccine” is inactivated. Refers to a vaccine comprising the virus particles.
  • the method for preparing the inactivated whole particle influenza vaccine of the present invention is a preparation method using the embryonated chicken egg method, which includes a step of hypotonic treatment.
  • the “developing chicken egg method” is a method of inoculating a hatched chicken egg with a virus strain and culturing the same, and then clarifying, concentrating, purifying and inactivating the virus suspension to obtain a virus liquid containing virus particles.
  • the culture is performed by inoculating the embryonated hen eggs with the influenza virus strain, at 30 to 37 ° C. for about 1 to 7 days, and preferably at 33 to 35 ° C. for about 2 days.
  • the virus suspension infected allantoic fluid
  • the virus suspension is collected and centrifuged or filtered for clarification.
  • ultrafiltration is performed for concentration.
  • Virus purification can be performed using ultracentrifugation such as sucrose density gradient centrifugation or liquid chromatography.
  • the purified virus solution is inactivated. Examples of the virus inactivation method include formalin treatment, ultraviolet irradiation, treatment with beta-propiolactone, binary ethyleneimine, and the like.
  • the hypotonic treatment is performed at any time until the vaccine is obtained by clarifying, concentrating, purifying, and inactivating the influenza virus suspension cultured and collected in the embryonated chicken eggs.
  • the “hypotonic treatment” includes exposing a virus solution containing all the influenza virus particles recovered from embryonated chicken eggs to the hypotonic solution after culturing. This allows the influenza virus having the envelope lining protein (M1 protein) to retain the particle shape, but extracellular vesicles (such as exosomes, microvesicles or apoptotic vesicles) derived from embryonated hen eggs without the lining protein expand their particles. It is thought to burst.
  • M1 protein envelope lining protein
  • hypotonic solution used here examples include an aqueous solution of 160 mOsm / kg or less, preferably 110 mOsm / kg or less, more preferably 32 mOsm / kg or less.
  • the aqueous solution may contain additives such as a buffer, a dispersant, and a pH adjuster.
  • Preferred hypotonic solutions include, for example, 10 mM Tris-HCl buffer, 10 mM Tris-HCl buffer containing 0.5 w / w% sucrose, and 10 mM Tris-HCl buffer containing 0.2 w / w% sucrose / 1 mM ethylenediaminetetraacetic acid. And the like.
  • the means for exposing the virus solution to the hypotonic solution is not particularly limited.For example, replacing the buffer with the hypotonic solution in dialysis or ultrafiltration, or suspending the virus solution precipitated by centrifugation in the hypotonic solution. And the like.
  • the hypotonic treatment can be performed before or after the clarification step, before or after the concentration step, before or after the purification step, or before or after the inactivation step. Preferably, before and after the inactivation step, more preferably after the inactivation step.
  • the inactivated whole particle influenza vaccine of the present invention thus prepared has a reduced extracellular vesicle component derived from embryonated chicken eggs (Examples 1 and 2).
  • the extracellular vesicle component is reduced means that when the vaccine prepared by the method of the present invention is compared with a vaccine similarly prepared without performing the hypotonic treatment, the extracellular vesicle component contained therein is reduced. It means that the content of the vesicle component is reduced, preferably 30% or more, more preferably 50% or more, more preferably 80% or more, more preferably 90% or more.
  • the proportion of extracellular vesicles to the number of virus particles is preferably 55% or less, more preferably 35% or less, and more preferably Means 25% or less, more preferably 20% or less.
  • the antibody-inducing ability of the inactivated whole particle influenza vaccine of the present invention is higher than that of the split vaccine, and is equal to or higher than that of the inactivated whole particle influenza vaccine not exposed to hypotonic solution.
  • the pyrogenicity is attenuated as compared to the inactivated whole particle influenza vaccine not exposed to hypotonic solution (Example 3-6).
  • the concentration of all particles of influenza virus is preferably 2000 ⁇ g ⁇ HA / mL or less, more preferably 1200 ⁇ g HA / mL or less.
  • the concentration can be measured by a one-way radiation immunodiffusion test described in Reference Example 2 below.
  • the amount of antigen contained in the vaccine may be appropriately changed depending on the type of virus or the administration subject.
  • the inactivated whole particle influenza vaccine of the present invention may further contain a pharmaceutically acceptable carrier in addition to the influenza virus whole particles.
  • a pharmaceutically acceptable carrier include carriers commonly used for the production of vaccines, and specifically, buffers, emulsifiers, preservatives (eg, thimerosal), isotonic agents, pH adjusters, inactivating agents (eg, Formalin or beta-propiolactone), adjuvant (for example, aluminum hydroxide gel) and the like are exemplified.
  • the dosage form of the inactivated whole particle influenza vaccine of the present invention may be, for example, a liquid, a lyophilized powder, a capsule, or a tablet.
  • the administration route of the inactivated whole particle influenza vaccine of the present invention may be, for example, subcutaneous administration, intramuscular administration, intradermal administration, nasal administration, sublingual administration or oral administration.
  • the method of administration may be a syringe, a microneedle, a syringe fitted with a microneedle, a transdermal patch, or a spray.
  • REFERENCE EXAMPLE 1 Isolation of extracellular vesicles contained in the serum of uninfected eggs 72 chicks 11 days old were cooled at 4 ° C. for 1 hour or more, using a disposable injection needle and a syringe (manufactured by Terumo). The serum was collected from each embryonated chicken egg. The collected serum was pooled, and centrifuged at 4 ° C. and 300 ⁇ g for 10 minutes, and the obtained supernatant was further subjected to ultracentrifugation (manufactured by Hitachi Koki Co., Ltd.) at 4 ° C.
  • Example 1 Preparation of inactivated whole particle vaccine of B / Victoria strain and hypotonic treatment
  • B / Texas / 2/2013 strain was inoculated into the allantoic cavity of 12-day-old embryonated chicken eggs, and cultured for 2 days after culture for 2 days
  • the liquid was collected.
  • the collected serum was clarified by filter filtration, adsorbed on barium sulfate, and eluted with a 12% sodium citrate solution to recover influenza virus.
  • the collected virus was further purified by substituting 6.7 mM phosphate buffered saline (pH 7.2) by ultrafiltration, collecting the fraction containing influenza virus by sucrose density gradient centrifugation after buffer replacement.
  • Beta propiolactone as an inactivating agent was added to the purified influenza virus to a final concentration of 0.05%, and the influenza virus infectivity was inactivated by a reaction at 4 ° C. for 24 hours. After this inactivation reaction, the buffer was replaced by 6.7 mM phosphate buffered saline (pH 7.2) containing 1 w / w% sucrose by ultrafiltration (MWCO: 100,000), and this was inactivated. B15VT-19-S151028).
  • the inactivated whole particle vaccine (B15VT-19-S151028) prepared as described above was replaced with 10 mM @ Tris-HCl buffer (pH 7.2, 17 mOsm / kg) by ultrafiltration (MWCO: 100,000). It was left still at 4 ° C. overnight (hypotonic treatment). After the hypotonic treatment, the buffer was replaced with 6.7 mM phosphate buffered saline (pH 7.2) containing 1 w / w% sucrose by ultrafiltration (MWCO: 100,000), and the resulting solution was hypotonic-treated and inactivated. It was a whole particle vaccine (BV170729-10T).
  • the inactivated whole particle vaccine and the hypotonically treated inactivated whole particle vaccine were observed and photographed by a transmission electron microscope (manufactured by JEOL Ltd.) according to the method described above.
  • a transmission electron microscope manufactured by JEOL Ltd.
  • the ratio of extracellular vesicles as gray particles to the number of virus particles as white particles is reduced (82% extracellular vesicles to virus). It can be seen that the percentage of extracellular vesicles in the whole particle virus in which the vesicles were present was reduced to 51% by the hypotonic treatment (FIG. 2B).
  • Example 2 Preparation of inactivated whole particle vaccine of B / Yamagata strain and hypotonic treatment
  • B / Phucket / 3073/2013 strain was inoculated into the allantoic cavity of a 12-day-old embryonated chicken egg and cultured for 2 days after culture.
  • the liquid was collected.
  • the collected serum was clarified by filter filtration, adsorbed on barium sulfate, and eluted with a 12% sodium citrate solution to recover influenza virus.
  • the collected virus was further purified by substituting 6.7 mM phosphate buffered saline (pH 7.2) by ultrafiltration, collecting the fraction containing influenza virus by sucrose density gradient centrifugation after buffer replacement.
  • Beta propiolactone as an inactivating agent was added to the purified influenza virus to a final concentration of 0.05%, and the influenza virus infectivity was inactivated by a reaction at 4 ° C. for 24 hours. After this inactivation reaction, the buffer was replaced by 6.7 mM phosphate buffered saline (pH 7.2) containing 1 w / w% sucrose by ultrafiltration (MWCO: 100,000), and this was inactivated. BYBPL170905).
  • the inactivated whole particle vaccine (BYBPL170905) prepared as described above was replaced by a 10 mM Tris-HCl buffer (pH 7.2, 32 mOsm / kg) containing 0.5 w / w% sucrose by ultrafiltration (MWCO: 100,000). After the replacement, the mixture was allowed to stand at 4 ° C. overnight (hypotonic treatment). After the hypotonic treatment, the buffer was replaced with 1 w / w% sucrose-containing 6.7 mM phosphate buffered saline (pH 7.2) by ultrafiltration (MWCO: 300,000). The treated inactivated whole particle vaccine (HYPBY170913) was used.
  • an inactivated whole particle vaccine of the B / silk / 3073/2013 strain was prepared by the above-mentioned method, and an equal volume of 10 mM Tris-HCl buffer containing 0.2 w / w% sucrose / 1 mM ⁇ ethylenediaminetetraacetic acid was added. And centrifuged at 11,910 ⁇ g for 4 hours at 4 ° C. to obtain a virus precipitate.
  • the suspension was further subjected to ultrafiltration (MWCO: 300,000) to replace the buffer with 1 w / w% sucrose-containing 6.7 mM phosphate buffered saline (pH 7.2), which was then centrifuged to be hypotonic.
  • the treated inactivated whole particle vaccine (17BY-OST171129) was obtained.
  • the inactivated whole particle vaccine (BYBPL170905) and the two types of hypotonically inactivated inactivated whole particle vaccines (HYPBY170913 and 17BY-OST171129) were observed and photographed by a transmission electron microscope (manufactured by JEOL Ltd.) by the method described above.
  • a transmission electron microscope manufactured by JEOL Ltd.
  • FIG. 3A shows that many extracellular vesicles were observed.
  • FIG. 3B is a high-magnification observation image, in which extracellular vesicles are indicated by arrows.
  • FIG. 4 shows an electron microscopic observation image of the inactivated whole particle vaccine (HYPBY170913) subjected to hypotonic treatment by ultrafiltration.
  • the extracellular vesicles show the inactivated whole particle vaccine (HYPBY170913).
  • BYBPL 170905 (whole particle virus in which 108% of extracellular vesicles were present with respect to the virus, but extracellular vesicles were reduced to 23% by hypotonic treatment)
  • FIG. 4B shows fragmented particles as indicated by the arrows.
  • Example 3 Fever test Inactivated whole particle vaccine (BYBPL170905), hypotonic-treated inactivated whole particle vaccine (HYPBY170913), and high-concentration formalin-treated inactivated whole particle vaccine as a control were each 6.7 mM phosphate buffered saline.
  • the solution (pH 7.2) was diluted to a protein concentration of 134 ⁇ g / mL, and administered to rabbits (Japanese white species, male) weighing 1.50 to 1.99 kg at 1 mL / kg.
  • the administration was carried out to three rabbits per sample, and the body temperature was observed up to 180 minutes after the administration, with the body temperature being 15 minutes before administration as 0.
  • the preparation of the inactivated whole particle vaccine treated with high concentration formalin as a control was the same as the preparation of the inactivated whole particle vaccine (BYBPL170905) described above from inoculation of embryonated chicken eggs to purification by sucrose density gradient centrifugation. Formalin was added to the purified influenza virus to a final concentration of 0.08%, and the infectivity of the virus was inactivated by a reaction at 25 ° C. for one week. After the inactivation reaction, the buffer was replaced by ultrafiltration (MWCO: 100,000) with 1 w / w% sucrose-containing 6.7 mM phosphate buffered saline (pH 7.2), which was treated with high-concentration formalin. Activated whole particle vaccine (BYFMA170908).
  • FIG. 6 shows the transition of the average value of the differential body temperature of the rabbits to which each sample was administered, and there was no fever in the inactivated whole particle vaccine treated with high concentration of formalin, and the fever reaction exceeded 1.5 ° C. in the inactivated whole particle vaccine.
  • the inactivated whole particle vaccine treated with hypotonic treatment there is a fever reaction, but the fever reaction is lower than that of the inactivated whole particle vaccine, and the difference in body temperature after 180 minutes when the fever shows the maximum value is compared. It can be seen that the hypotonic inactivated whole particle vaccine is about 0.5 ° C. lower.
  • Example 4 Immunogenicity test (B / Yamagata strain) The mice were evaluated for their ability to induce antibodies of the inactivated whole particle vaccine (BYBPL170905), the hypotonic-treated inactivated whole particle vaccine (HYPBY170913), and the high-concentration formalin-treated inactivated whole particle vaccine (BYFMA170908). Each vaccine was subcutaneously administered to BALB / c mice (female, 5 weeks old) at a dose of 7.5 ⁇ g as a protein amount (5 mice per group). Three weeks after administration, mice were euthanized and whole blood was collected. Serum was obtained by centrifugation after blood collection and the serum was used to measure specific IgG titers against the B / Phuquet / 3073/2013 strain by ELISA.
  • FIG. 7 shows the results of the IgG titer measurement. Comparing the geometric mean antibody titers (hereinafter referred to as GMT) shown in the figure, the group in which the hypotonic treatment of the inactivated whole particle vaccine was administered was the highest, followed by the group in which the inactivated whole particle vaccine was administered and the lowest value. These were the inactivated whole particle vaccine administration groups treated with high concentration of formalin. Therefore, it was shown that the antibody inducing ability of the inactivated whole particle vaccine was reduced by high concentration formalin treatment, but the antibody inducing ability of the inactivated whole particle vaccine treated with hypotonic treatment was improved.
  • GMT geometric mean antibody titers
  • Example 5 Immunogenicity test (A / H3N2 subtype) Inactivated whole particle vaccine (H3BPL170630) of A / Hong Kong / 4801/2014 strain (A / H3N2 subtype), inactivated whole particle vaccine hypotonically treated by ultrafiltration (HYPH3709913), and inactivated by high concentration formalin treatment
  • a whole particle vaccine (H3FMA170713) was prepared by a method according to Examples 2 and 3. These vaccines were evaluated for antibody-producing ability in mice according to the method described in Example 4.
  • a stock solution of the A / Hong Kong / 4801/2014 strain of the influenza HA vaccine "Seiken" was used as a control, and this was used as Split virion.
  • FIG. 8 shows the results of the IgG titer measurement. Comparing the GMTs shown in the figure, the GMT was higher in the order of the hypotonic-treated inactivated whole particle vaccine, the inactivated whole particle vaccine, the Spirit @ virion, and the high-concentration formalin-treated inactivated whole particle vaccine. Only the group administered with the activated whole particle vaccine showed significantly higher antibody induction than the group administered with Split @ virion (Mann-Whitney U test, p ⁇ 0.05). Therefore, similarly to the result of the immunogenicity test of the B / Yamagata strain, it was shown that the antibody production ability of the inactivated whole particle vaccine was improved by the hypotonic treatment.
  • the inactivated whole particle vaccine treated with high-concentration formalin resulted in lower antibody induction than Split @ virion.
  • the high-concentration formalin treatment does not show an exothermic reaction in the exothermic test of Example 3 and is excellent in safety.
  • the antibody production ability is lower than that of the commercially available Split @ virion, it is considered that improvement in the efficacy cannot be expected.
  • Example 6 Evaluation of Cytokine Production A spleen was excised from a BALB / c mouse (female, 11 weeks old) and collected in a Petri dish filled with HBSS (Thermo Scientific). The spleen was minced in HBSS and transferred to a conical tube after the mince. After allowing to stand for about 3 minutes, the intermediate layer was recovered while avoiding precipitates and suspended matter, and the recovered intermediate layer was centrifuged at room temperature and 200 ⁇ g for 10 minutes.
  • erythrocytes were disrupted by adding a hemolysis buffer (17 mM Tris-HCl buffer containing 140 mM ammonium chloride) to the precipitate, followed by centrifugation at 200 ⁇ g for 10 minutes. After washing the precipitate after centrifugation with HBSS, the spleen cells precipitated with RPMI-1640 containing 10% FBS were suspended and used as mouse spleen cells.
  • a hemolysis buffer 17 mM Tris-HCl buffer containing 140 mM ammonium chloride
  • the protein amount of 1 ⁇ g of the inactivated whole particle vaccine of the B / Yamagata strain (BYBPL170905), the inactivated whole particle vaccine treated with hypotonic treatment (HYPBY170913), and the inactivated whole particle vaccine treated with high concentration of formalin (BYFMA170908) is 1.0 ⁇
  • the cells were added to mouse spleen cells of 10 6 cells and cultured at 37 ° C. under 5% CO 2 for 24 hours.
  • the cells were centrifuged at 600 ⁇ g for 5 minutes at room temperature, and the concentration of cytokines produced in the culture supernatant from the spleen cells was measured using the Mouse Th1 / Th2 essential 6 plex kit (eBioscience) and Bio-Plex (Bio-Rad). ).
  • Table 1 shows the cytokine concentration in the culture supernatant.
  • IL-4 is not produced in any vaccine stimulus, while all other cytokines are most produced in hypotonic treated inactivated whole particle vaccine stimulation, followed by inactivated whole particle vaccine, The low yield was the inactivated whole particle vaccine treated with high concentration of formalin.
  • This result correlates with the result of the immunogenicity test of Example 4, and it is thought that the cytokine production from immune cells promoted by the inactivated whole particle vaccine is increased by the hypotonic treatment, and as a result, the antibody inducing ability is also improved.
  • cytokine treatment from immune cells was reduced by high-concentration formalin treatment, and as a result, antibody-producing ability was also reduced.
  • each sample and the standard antigen to which Zwittergent was added were diluted with phosphate buffered saline (pH 7.4) containing 0.05 w / w% sodium azide to prepare a dilution series.
  • This dilution series was added to each well of a 1 w / v% agarose gel (hereinafter referred to as an SRD plate) to which a reference antiserum was added, and allowed to stand for 18 hours or more. After standing, the water in the SRD plate was absorbed with filter paper and stained with Coomassie brilliant blue. After staining, the ring diameter of each sample and the standard antigen was measured, and the hemagglutinin concentration of each sample relative to the standard antigen was calculated by a parallel line quantification method.
  • the inactivated whole particle vaccine hypotonically treated is about 5% lower than that of the inactivated whole particle vaccine, whereas the inactivated whole particle vaccine treated with high concentration of formalin is further reduced by 5%. %descend.
  • the inactivated whole particle vaccine and the inactivated whole particle vaccine subjected to hypotonic treatment have the same hemagglutinin content ratio, but about 16 to 17% of the inactivated whole particle vaccine treated with high concentration of formalin. It will be low.
  • the hemagglutinin concentration of the inactivated whole-particle vaccine did not change significantly in the hypotonic treatment, but was reduced by 10% or more in the high-concentration formalin treatment. This is thought to be due to cross-linking between proteins due to excessive formalin treatment.A low value of the hemagglutinin content leads to a decrease in productivity, and an increase in the total protein of the formulation, which causes side reactions. Concerns increase.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Virology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Plant Pathology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicinal Preparation (AREA)

Abstract

抗体誘導能が維持若しくは増強され、且つ副反応が低減された不活化全粒子インフルエンザワクチンを提供する。 発育鶏卵法を用いた不活化全粒子インフルエンザワクチンの調製方法であって、発育鶏卵から回収されたインフルエンザウイルス全粒子を含むウイルス液を低張処理する工程を含む、方法。

Description

不活化全粒子インフルエンザワクチン及びその調製法
 本発明は、抗体誘導能が高く、発熱原性が低減した不活化全粒子インフルエンザワクチン及びその調製法に関する。
 インフルエンザウイルスはオルソミクソウイルス科に属し、ウイルス内部に存在する核タンパク質及びマトリクスタンパク質の抗原性の違いからA、B、C及びD型に分類されるウイルスである。毎年流行がみられるのはA型及びB型であり、ウイルス感染により特に小児や高齢者で重症化する場合がある。インフルエンザウイルスの感染に対する予防法としてインフルエンザワクチン接種が知られており、インフルエンザワクチンはA型2株及びB型1株若しくは2株の各抗原を含む多価のワクチンである。
 日本において、インフルエンザワクチンは、1971年まではワクチン株を孵化鶏卵に接種して培養後、採取、精製されたウイルスをホルムアルデヒドで感染性を不活性化した不活化全粒子ワクチンが使用されていたが、局所反応及び発熱等の副反応の問題より(非特許文献1及び非特許文献2)、1972年からはエーテル処理によりウイルス粒子を解裂し、エンベロープ中の脂質を除去したスプリットワクチンが市場に流通している。スプリットワクチンは局所反応及び発熱反応が低減された安全性に優れるワクチンであるが、インフルエンザウイルスの既往歴やワクチン接種歴の少ない小児及び免疫機能が衰えた高齢者では抗体誘導が低いという問題があった。
 これに対し、不活化全粒子ワクチンは、自然免疫を賦活化するウイルスゲノムを内包するため小児や高齢者においてもスプリットワクチンに比べて抗体誘導能が高いことから(非特許文献3及び非特許文献4)、近年その改良が検討されている。例えば、特許文献1では、ウイルス粒子をアルデヒド類等で固定化し、その後脱脂処理したウイルス様粒子がスプリットワクチンよりも高い免疫原性(抗体誘導)を示し、発熱反応が抑えられることが開示されている。
国際公開第2016/010081号
Marine,W.M., et al., Reactions and serologic response in young children and infants after administration of inactivated monovalent influenza A vaccine. J. Pediatr. 1976 Jan;88(1):26-30 Wright, P.F., et al., Clinical reactions and serologic response following inactivated monovalent influenza type B vaccine in young children and infants. J. Pediatr. 1976 Jan;88(1):31-35 Gross P.A., Ennis F.A., Gaerlan P.F., Denson L.J., Denning C.R., Schiffman D., A controlled double-blind comparison of reactogenicity, immunogenicity, and protective efficacy of whole-virus and split-product influenza vaccines in children. J Infect Dis. 1977 Nov;136(5):623-32. McElhaney J.E., Meneilly G.S., Lechelt K.E., Beattie B.L., Bleackley R.C., Antibody response to whole-virus and split-virus influenza vaccines in successful ageing. Vaccine. 1993;11(10):1055-60.
 本発明は、抗体誘導能が維持若しくは増強され、且つ副反応が低減された不活化全粒子インフルエンザワクチンを提供することに関する。
 本願発明者らは、鋭意研究の結果、発育鶏卵で増殖したインフルエンザウイルス浮遊液を、濃縮、精製して調製される不活化全粒子ワクチンには発育鶏卵由来の細胞外小胞の成分が含まれることを発見した。そして、驚くべきことに、当該全粒子ワクチンの調製過程で、ウイルス液を低張液に曝すことで、細胞外小胞の含有率が低減された不活化全粒子ワクチンが得られ、当該ワクチンは抗体誘導能が高く、発熱活性が減弱されていることを見出した。
 すなわち、本発明は、以下の1)~6)に係るものである。
 1)発育鶏卵法を用いた不活化全粒子インフルエンザワクチンの調製方法であって、発育鶏卵から回収されたインフルエンザウイルス全粒子を含むウイルス液を低張処理する工程を含む、方法。
 2)低張処理が、前記ウイルス液を低張液中に曝すものである、1)の方法。
 3)低張液が、160mOsm/kg以下、好ましくは110mOsm/kg以下の水溶液である、2)の方法。
 4)不活化された前記ウイルス液に対して低張処理を行う、1)~3)のいずれかの方法。
 5)1)~4のいずれかの方法を用いて調製された、不活化全粒子インフルエンザワクチン。
 6)発育鶏卵法を用いて調製させる不活化全粒子インフルエンザワクチンであって、発育鶏卵由来の細胞外小胞成分が低減された、ワクチン。
 本発明によれば、抗体誘導能が高く、発熱原性が低減された不活化全粒子インフルエンザワクチンを提供することができる。
非感染の発育鶏卵のしょう尿液を採取し、精製及び濃縮して得られた細胞外小胞成分の電子顕微鏡観察像。A:発育鶏卵のしょう尿液に由来する細胞外小胞(15000倍)、B:発育鶏卵のしょう尿液に由来する細胞外小胞(40000倍)。 B/Victoria系統の不活化全粒子ワクチン(B15VT-19-S151028)及び低張処理した不活化全粒子ワクチン(BV170729-10T)の電子顕微鏡観察像。A:不活化全粒子ワクチン(4000倍)、B:低張処理した不活化全粒子ワクチン(4000倍)。 B/Yamagata系統の不活化全粒子ワクチン(BYBPL170905)の電子顕微鏡観察像。A:8000倍、B:40000倍。 限外ろ過により低張処理したB/Yamagata系統の不活化全粒子ワクチン(HYPBY170913)の電子顕微鏡観察像。A:8000倍、B:30000倍。 遠心分離後の沈殿物に対して低張処理したB/Yamagata系統の不活化全粒子ワクチン(17BY-OST171129)の電子顕微鏡観察像。A:8000倍、B:40000倍。 不活化全粒子ワクチン(BYBPL170905)、高濃度ホルムアルデヒド処理した不活化全粒子ワクチン(BYFMA170908)及び低張処理した不活化全粒子ワクチン(HYPBY170913)のウサギ発熱試験結果。 不活化全粒子ワクチン(BYBPL170905)、高濃度ホルムアルデヒド処理した不活化全粒子ワクチン(BYFMA170908)及び低張処理した不活化全粒子ワクチン(HYPBY170913)の免疫原性試験結果。 不活化全粒子ワクチン(H3BPL170630)、高濃度ホルムアルデヒド処理した不活化全粒子ワクチン(H3FMA170713)、低張処理した不活化全粒子ワクチン(HYPH3170913)及びスプリットワクチンの免疫原性試験結果。
 本発明において、「インフルエンザワクチン」とは、少なくともA型インフルエンザウイルス又はB型インフルエンザウイルスのいずれかの抗原を含んでいるワクチンを意味する。すなわち、本発明のインフルエンザワクチンは、A型インフルエンザウイルス又はB型インフルエンザウイルスの一方のみを含む単価ワクチンでもよく、それらを両方含んでいる多価ワクチンでもよい。
 本発明において、「インフルエンザウイルス」と言った場合、A型インフルエンザウイルス若しくはB型インフルエンザウイルス、又はその両者を示す。また、インフルエンザウイルスは、現在知られているすべての亜型、及び将来単離、同定される亜型をも含む。
 本発明のワクチン調製に用いるインフルエンザウイルス株は、感染動物または患者から単離された株であっても、遺伝子工学的に培養細胞で樹立された組換えウイルスであってもよい。
 本発明において、「インフルエンザウイルス全粒子」とは、インフルエンザウイルスを培養して得られるウイルスの形態を保持したままのウイルス粒子を意味し、「不活化全粒子インフルエンザワクチン」とは、不活化された当該ウイルス粒子からなるワクチンを指す。
 本発明の不活化全粒子インフルエンザワクチンの調製方法は、発育鶏卵法を用いた調製方法であって、低張処理する工程を含むものである。
 「発育鶏卵法」とは、ウイルス株を孵化鶏卵に接種して培養した後、ウイルス浮遊液を清澄化、濃縮、精製及び不活化して、ウイルス粒子を含むウイルス液を得る方法である。
 ここで、培養は、インフルエンザウイルス株を孵化鶏卵に接種して、30~37℃で1~7日程度、好ましくは33~35℃で2日間程度行われる。培養終了後、ウイルス浮遊液(感染尿膜腔液)が回収され、清澄化のため、遠心分離または濾過が行われる。次いで、濃縮のために、限外濾過が行われる。ウイルス精製は、ショ糖密度勾配遠心分離等の超遠心分離や液体クロマトグラフィー等の手段を用いて行うことができる。
 精製ウイルス液は不活化処理される。ウイルスの不活化方法は、ホルマリン処理、紫外線照射、ベータプロピオラクトン、バイナリーエチレンイミン等による処理が挙げられる。
 本発明においては、発育鶏卵で培養、回収されたインフルエンザウイルス浮遊液を、清澄化、濃縮、精製、不活化してワクチンを得るまでのいずれかの時期に、低張処理が行われる。
 「低張処理」としては、培養後、発育鶏卵から回収されたインフルエンザウイルス全粒子を含むウイルス液を低張液中に曝すことが挙げられる。これによってエンベロープの裏打ちタンパク質(M1タンパク質)を有するインフルエンザウイルスは粒子形状を保持できるが、裏打ちタンパク質がない発育鶏卵由来の細胞外小胞(エキソソーム、マイクロベシクル若しくはアポトーシス小胞等)は粒子が膨張して破裂すると考えられる。
 ここで使用される低張液としては、例えば160mOsm/kg以下、好ましくは110mOsm/kg以下、より好ましくは32mOsm/kg以下の水溶液が挙げられる。当該水溶液には、緩衝剤、分散剤、pH調整剤等の添加剤を含むことができる。
 好ましい低張液としては、例えば、10mM Tris-HCl緩衝液、0.5w/w%しょ糖含有10mM Tris-HCl緩衝液、0.2w/w%しょ糖・1mM エチレンジアミン四酢酸含有10mM Tris-HCl緩衝液等が挙げられる。
 ウイルス液を低張液中に曝す手段は特に限定されないが、例えば、透析若しくは限外ろ過においてバッファーを低張液に置換すること、遠心分離によって沈殿したウイルス液を低張液に懸濁すること等が挙げられる。
 低張処理は、清澄化工程の前後、濃縮工程の前後、精製工程の前後、又は不活化工程の前後で行うことができる。好ましくは、不活化工程の前後、より好ましくは不活化工程の後である。
 斯くして調製された、本発明の不活化全粒子インフルエンザワクチンは、混入した発育鶏卵由来細胞外小胞成分が低減している(実施例1及び2)。
 ここで、細胞外小胞成分が低減しているとは、本発明の方法で調製されたワクチンを、低張処理を行わずに同様に調製したワクチンと比較した場合に、それに含まれる細胞外小胞成分の含有量が減少していること、好ましくは30%以上、より好ましくは50%以上、より好ましくは80%以上、より好ましくは90%以上減少していることを意味する。或いは、本発明の方法で調製されたワクチンを透過型電子顕微鏡で観察した場合に、ウイルス粒子の数に対する細胞外小胞の存在割合が好ましくは55%以下、より好ましくは35%以下、より好ましくは25%以下、より好ましくは20%以下であることを意味する。
 そして、本発明の不活化全粒子インフルエンザワクチンの抗体誘導能はスプリットワクチンと比べて高く、低張液に曝していない不活化全粒子インフルエンザワクチンと比べて同等以上である。また、発熱原性は低張液に曝していない不活化全粒子インフルエンザワクチンと比べて減弱する(実施例3-6)。
 本発明の不活化全粒子インフルエンザワクチンは、インフルエンザウイルス全粒子の濃度が2000μg HA/mL以下であることが好ましく、1200μg HA/mL以下がより好ましい。前記濃度は、後記参考例2に示す一元放射免疫拡散試験により測定できる。また、本発明の不活化全粒子インフルエンザワクチンにおいて、ワクチンに含まれる抗原量はウイルスの種類又は投与対象に応じて適宜変更してもよい。
 本発明の不活化全粒子インフルエンザワクチンには、インフルエンザウイルス全粒子以外に、さらに医薬として許容され得る担体を含んでいてもよい。当該担体としては、ワクチンの製造に通常用いられる担体が挙げられ、具体的には、緩衝剤、乳化剤、保存剤(例えば、チメロサール)、等張化剤、pH調整剤、不活化剤(例えば、ホルマリン若しくはベータプロピオラクトン)、アジュバント(例えば、水酸化アルミニウムゲル)等が例示される。
 本発明の不活化全粒子インフルエンザワクチンの剤形は、例えば液状、凍結乾燥粉末、カプセル、錠剤であってもよい。
 本発明の不活化全粒子インフルエンザワクチンの投与経路は、例えば、皮下投与、筋肉内投与、皮内投与、経鼻投与、舌下投与又は経口投与であってもよく、その投与方法は、例えば、シリンジ、マイクロニードル、マイクロニードルを取りつけたシリンジ、経皮的パッチ、又はスプレーによる投与方法であってもよい。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらに何ら限定されるものではない。
参考例1 非感染卵のしょう尿液が含む細胞外小胞の単離
 11日齢の発育鶏卵72個を4℃で1時間以上冷却し、ディスポーサブル注射針及びシリンジ(テルモ社製)を用いて各発育鶏卵よりしょう尿液を回収した。回収したしょう尿液はプールして、4℃、300×gで10分間遠心し、得られた上清を更に超遠心機(日立工機社製)で4℃、141,000×gで4時間遠心した。超遠心後の沈殿を6.7mM リン酸緩衝生理食塩液(pH7.2)で懸濁し、再び4℃、141,000×gで4時間遠心した。得られた沈殿を6.7mM リン酸緩衝生理食塩液(pH7.2)で懸濁して、細胞外小胞懸濁液を得た。
 コロジオン支持膜付TEM電子顕微鏡用グリッド(応研商事株式会社製)に0.1%ポリ-L-リジン溶液を5μL滴下し、室温で1分間静置した。静置後、余剰のポリ-L-リジン溶液を濾紙で吸収し、上記の通り調製した細胞外小胞懸濁液を5μL滴下した後に室温で5分間静置した。その後、余剰の細胞外小胞懸濁液を濾紙で吸収し、5μLの2%リンタングステン酸染色液を滴下してネガティブ染色した。染色した検体を透過型電子顕微鏡(日本電子社製)で観察及び撮影した。
 これにより、図1に示すとおり、ウイルス非感染時においても発育鶏卵のしょう尿液には様々な粒子径の小胞が存在していることが確認された。この細胞外小胞はウイルス粒子よりもタンパク質の密度が低いためか、染色液が小胞内部に流入して灰色の粒子として観察された。
実施例1 B/Victoria系統の不活化全粒子ワクチン調製及び低張処理
 B/Texas/2/2013株を12日齢の発育鶏卵のしょう尿膜腔内に接種して、2日間培養後にしょう尿液を採取した。採取したしょう尿液をフィルターろ過で清澄化した後、硫酸バリウム塩に吸着させ、12%クエン酸ナトリウム溶液で溶出してインフルエンザウイルスを回収した。回収したウイルスは、更に限外ろ過で6.7mM リン酸緩衝生理食塩液(pH7.2)に置換し、バッファー置換後にしょ糖密度勾配遠心でインフルエンザウイルスを含む画分を回収することによって精製した。この精製インフルエンザウイルスに終濃度0.05%となるように不活化剤であるベータプロピオラクトンを添加して、4℃、24時間の反応でインフルエンザウイルスの感染性を不活化させた。この不活化反応後に限外ろ過(MWCO:100,000)でバッファーを1w/w% しょ糖含有6.7mM リン酸緩衝生理食塩液(pH7.2)に置換し、これを不活化全粒子ワクチン(B15VT-19-S151028)とした。
 上記の通り調製した不活化全粒子ワクチン(B15VT-19-S151028)を限外ろ過(MWCO:100,000)で10mM Tris-HCl緩衝液(pH7.2、17mOsm/kg)に置換し、置換後に4℃で一晩静置した(低張処理)。低張処理後、限外ろ過(MWCO:100,000)でバッファーを1w/w%しょ糖含有6.7mM リン酸緩衝生理食塩液(pH7.2)に置換し、これを低張処理した不活化全粒子ワクチン(BV170729-10T)とした。
 不活化全粒子ワクチン及び低張処理した不活化全粒子ワクチンを前述の方法で透過型電子顕微鏡(日本電子社製)によって観察及び撮影した。その結果、不活化全粒子ワクチンでは白色の粒子として観察されるウイルス粒子と灰色の粒子である細胞外小胞が同数程度観察される(図2A)。それに対して低張処理した不活化全粒子ワクチンでは白色の粒子であるウイルス粒子の数に対して灰色の粒子である細胞外小胞の割合が少なくなる(ウイルスに対して82%の細胞外小胞が存在していた全粒子ウイルスが、低張化処理により細胞外小胞の存在割合は51%にまで低減)ことがわかる(図2B)。
実施例2 B/Yamagata系統の不活化全粒子ワクチン調製及び低張処理
 B/Phuket/3073/2013株を12日齢の発育鶏卵のしょう尿膜腔内に接種して、2日間培養後にしょう尿液を採取した。採取したしょう尿液をフィルターろ過で清澄化した後、硫酸バリウム塩に吸着させ、12%クエン酸ナトリウム溶液で溶出してインフルエンザウイルスを回収した。回収したウイルスは、更に限外ろ過で6.7mM リン酸緩衝生理食塩液(pH7.2)に置換し、バッファー置換後にしょ糖密度勾配遠心でインフルエンザウイルスを含む画分を回収することによって精製した。この精製インフルエンザウイルスに終濃度0.05%となるように不活化剤であるベータプロピオラクトンを添加して、4℃、24時間の反応でインフルエンザウイルスの感染性を不活化させた。この不活化反応後に限外ろ過(MWCO:100,000)でバッファーを1w/w% しょ糖含有6.7mM リン酸緩衝生理食塩液(pH7.2)に置換し、これを不活化全粒子ワクチン(BYBPL170905)とした。
 上記の通り調製した不活化全粒子ワクチン(BYBPL170905)を限外ろ過(MWCO:100,000)で0.5w/w% しょ糖含有10mM Tris-HCl緩衝液(pH7.2、32mOsm/kg)に置換し、置換後に4℃で一晩静置した(低張処理)。低張処理後、限外ろ過(MWCO:300,000)でバッファーを1w/w% しょ糖含有6.7mM リン酸緩衝生理食塩液(pH7.2)に置換し、これを限外ろ過により低張処理した不活化全粒子ワクチン(HYPBY170913)とした。
 また、前述の方法でB/Phuket/3073/2013株の不活化全粒子ワクチンを調製し、これに等量の0.2w/w% しょ糖・1mM エチレンジアミン四酢酸含有10mM Tris-HCl緩衝液を加えて、4℃、11,910×gで4時間遠心分離して、ウイルスの沈殿を得た。このウイルスの沈殿に0.2w/w% しょ糖・1mM エチレンジアミン四酢酸含有10mM Tris-HCl緩衝液(24mOsm/kg)を加えて懸濁し、10℃以下で15時間静置した(低張処理)。低張処理後、再び4℃、11,910×gで4時間遠心分離してウイルスを沈殿にして、ウイルスの沈殿を1w/w% しょ糖含有6.7mM リン酸緩衝生理食塩液(pH7.2)で懸濁した。この懸濁液を限外ろ過(MWCO:300,000)で更に1w/w% しょ糖含有6.7mM リン酸緩衝生理食塩液(pH7.2)にバッファーを置換し、これを遠心分離により低張処理した不活化全粒子ワクチン(17BY-OST171129)とした。
 不活化全粒子ワクチン(BYBPL170905)及び2種類の低張処理した不活化全粒子ワクチン(HYPBY170913及び17BY-OST171129)を前述の方法で透過型電子顕微鏡(日本電子社製)によって観察及び撮影した。その結果、低倍率における不活化全粒子ワクチンの観察(図3A)では、細胞外小胞が多く観察された。また、図3Bは高倍率の観察画像であり、矢印で細胞外小胞を示した。
 図4には限外ろ過により低張処理した不活化全粒子ワクチン(HYPBY170913)の電子顕微鏡観察像を示すが、低倍率の観察像(図4A)では細胞外小胞が不活化全粒子ワクチン(BYBPL170905)に比べて少なくなっており(ウイルスに対して108%の細胞外小胞が存在していた全粒子ウイルスが、低張化処理により細胞外小胞は存在割合が23%にまで低減)、高倍率の観察像(図4B)では矢印に示すような解裂した粒子の断片が観察された。また、遠心分離により低張処理した不活化全粒子ワクチン(17BY-OST171129)においても、低倍率の観察像(図5A)で細胞外小胞が不活化全粒子ワクチン(BYBPL170905)に比べて少なく(ウイルスに対して108%の細胞外小胞が存在していた全粒子ウイルスが、低張化処理により細胞外小胞の存在割合は16%にまで低減)、限外ろ過により低張処理した不活化全粒子ワクチンと同様に、高倍率の観察像(図5B)において矢印で示す解裂した細胞外小胞の断片が観察された。
実施例3 発熱試験
 不活化全粒子ワクチン(BYBPL170905)、低張処理した不活化全粒子ワクチン(HYPBY170913)及び対照として高濃度ホルマリン処理した不活化全粒子ワクチンを、それぞれ6.7mM リン酸緩衝生理食塩液(pH7.2)でタンパク質濃度が134μg/mLとなるように希釈して、体重1.50~1.99kgのウサギ(日本白色種、雄性)に1mL/kgで投与した。投与は検体あたり3羽のウサギに投与し、投与前15分の体温を0として、投与後180分までの体温の変動を観察した。
 対照である高濃度ホルマリン処理した不活化全粒子ワクチンの調製は、発育鶏卵の接種からしょ糖密度勾配遠心による精製までは前述の不活化全粒子ワクチン(BYBPL170905)の調製と同様であり、得られた精製インフルエンザウイルスに終濃度0.08%となるようにホルマリンを添加し、25℃で1週間の反応によりウイルスの感染性を不活化した。不活化反応後、限外ろ過(MWCO:100,000)でバッファーを1w/w% しょ糖含有6.7mM リン酸緩衝生理食塩液(pH7.2)に置換し、これを高濃度ホルマリン処理した不活化全粒子ワクチン(BYFMA170908)とした。
 図6に各検体を投与したウサギの差体温の平均値の推移を示すが、高濃度ホルマリン処理した不活化全粒子ワクチンでは発熱は無く、不活化全粒子ワクチンでは1.5℃を超える発熱反応が確認された。一方で、低張処理した不活化全粒子ワクチンでは、発熱反応はあるものの不活化全粒子ワクチンと比べて発熱反応は低下しており、発熱が最大値を示す180分後の差体温を比較すると低張処理した不活化全粒子ワクチンの方が約0.5℃低くなることがわかる。
実施例4 免疫原性試験(B/Yamagata系統)
 不活化全粒子ワクチン(BYBPL170905)、低張処理した不活化全粒子ワクチン(HYPBY170913)及び高濃度ホルマリン処理した不活化全粒子ワクチン(BYFMA170908)の抗体誘導能についてマウスを用いて評価した。BALB/cマウス(雌性、5週齢)に各ワクチンをタンパク質量として7.5μgの投与量で皮下投与した(1群あたり5匹)。投与3週間後、マウスを安楽死させ、全採血した。採血後に遠心分離によって血清を得て、この血清を用いてB/Phuket/3073/2013株に対する特異的なIgG力価をELISAによって測定した。
 図7にIgG力価測定の結果を示す。図中に記す幾何平均抗体価(以下、GMT)を比較すると、低張処理した不活化全粒子ワクチン投与群が最も高く、次に高いのは不活化全粒子ワクチン投与群、最も低い値を示したのは高濃度ホルマリン処理した不活化全粒子ワクチン投与群であった。したがって、不活化全粒子ワクチンに対して、高濃度ホルマリン処理することで抗体誘導能が低下するが、低張処理した不活化全粒子ワクチンでは抗体誘導能が向上することが示された。
実施例5 免疫原性試験(A/H3N2亜型)
 A/Hong Kong/4801/2014株(A/H3N2亜型)の不活化全粒子ワクチン(H3BPL170630)、限外ろ過により低張処理した不活化全粒子ワクチン(HYPH3170913)及び高濃度ホルマリン処理した不活化全粒子ワクチン(H3FMA170713)を実施例2及び3に準じた方法で調製した。これらのワクチンを、実施例4に記載する方法に準じてマウスにおける抗体産生能を評価した。また、本実施例においては、対照としてインフルエンザHAワクチン「生研」のA/Hong Kong/4801/2014株の原液を用い、これをSplit virionとした。
 図8にIgG力価測定の結果を示す。図中に記すGMTを比較すると、低張処理した不活化全粒子ワクチン、不活化全粒子ワクチン、Spilit virion、高濃度ホルマリン処理した不活化全粒子ワクチンの順にGMTは高く、低張化処理した不活化全粒子ワクチン投与群のみがSplit virion投与群に対して有意に高い抗体誘導を示した(マン・ホイットニーのU検定、p<0.05)。したがって、B/Yamagata系統の免疫原性試験の結果と同様に、低張処理により不活化全粒子ワクチンの抗体産生能は向上することが示された。
 また、高濃度ホルマリン処理した不活化全粒子ワクチンでは、Split virionよりも抗体誘導が低い結果となった。高濃度ホルマリン処理は、実施例3の発熱試験において発熱反応を示さず、安全性に優れるが、市販されるSplit virionよりも抗体産生能が低いため、有効性の向上は期待できないと考えられる。
実施例6 サイトカイン産生能の評価
 BALB/cマウス(雌性、11週齢)より脾臓を摘出し、HBSS(Thermo Scientific)を満たしたシャーレに回収した。HBSS中で脾臓をミンスし、ミンス後にコニカルチューブに移し替えた。3分程度静置した後に、沈殿物及び浮遊物を避けて中間層を回収し、回収した中間層を室温、200×gで10分間遠心分離した。遠心後に上清を廃棄し、沈殿に溶血バッファー(140mM 塩化アンモニウム含有17mM Tris-HCl緩衝液)を加えて赤血球を破砕し、200×gで10分間遠心分離した。遠心後の沈殿をHBSSで洗浄した後、10% FBS含有RPMI-1640で沈殿した脾細胞を懸濁し、これをマウス脾細胞とした。B/Yamagata系統の不活化全粒子ワクチン(BYBPL170905)、低張処理した不活化全粒子ワクチン(HYPBY170913)及び高濃度ホルマリン処理した不活化全粒子ワクチン(BYFMA170908)のタンパク質量として1μgを1.0×10 cellsのマウス脾細胞へ加え、37℃、5% CO条件下で24時間培養した。培養後、室温、600×gで5分間遠心分離し、脾細胞より培養上清に産生されたサイトカイン濃度をMouse Th1/Th2 essential 6 plexキット(eBioscience社)及びBio-Plex(Bio-Rad社製)で測定した。
 表1に培養上清のサイトカイン濃度を示す。IL-4はいずれのワクチンの刺激においても産生されていないが、その他のサイトカインはいずれも低張処理した不活化全粒子ワクチンの刺激で最も産生されており、次に不活化全粒子ワクチン、最も産生量が低いのが高濃度ホルマリン処理した不活化全粒子ワクチンであった。この結果は、実施例4の免疫原性試験の結果と相関する結果となり、不活化全粒子ワクチンが促す免疫細胞からのサイトカイン産生は低張処理により高まり、その結果、抗体誘導能も向上すると考えられる。一方で、高濃度ホルマリン処理では、免疫細胞からのサイトカイン産生は低下し、その結果として抗体産生能も低下すると考えられた。
Figure JPOXMLDOC01-appb-T000001
参考例2 一元放射免疫拡散試験
 B/Yamagata系統及びA/H3N2亜型の不活化全粒子ワクチン、低張処理した不活化全粒子ワクチン及び高濃度ホルマリン処理した不活化全粒子ワクチンの各ヘムアグルチニン濃度を一元放射免疫拡散試験で測定した。各検体及び標準抗原に終濃度が1.0%となるようにZwittergent(商品名、Merck Millipore社製)を添加して30分間反応させた。反応後、Zwittergentを添加した各検体及び標準抗原を0.05w/w% アジ化ナトリウム含有リン酸緩衝生理食塩液(pH7.4)で希釈し、希釈系列を作製した。この希釈系列を、参照抗血清を加えた1w/v% アガロースゲル(以下、SRDプレート)の各ウェルに添加して18時間以上静置した。静置後、SRDプレートの水分を濾紙で吸収し、クマーシブリリアントブルーで染色した。染色後、各検体及び標準抗原のリング径を測定し、標準抗原に対する各検体のヘムアグルチニン濃度を平行線定量法により算出した。
 各検体のヘムアグルチニン濃度、タンパク質濃度及び総タンパク質に対するヘムアグルチニン含有比率を以下の表2(B/Yamagata系統)及び表3(A/H3N2亜型)に示す。なお、ウイルスごとに3種類の不活化全粒子ワクチンを調製したが、調製材料となるしょ糖密度勾配遠心分離後の精製ウイルスは同一のものを用いた。
 ヘムアグルチニン含有比率を比較すると、B/Yamagata系統では不活化全粒子ワクチンに対して低張処理した不活化全粒子ワクチンは5%程度低くなるが、高濃度ホルマリン処理した不活化全粒子ワクチンでは更に5%低下する。また、A/H3N2亜型では、不活化全粒子ワクチンと低張処理した不活化全粒子ワクチンは同等のヘムアグルチニン含有比率であるが、高濃度ホルマリン処理した不活化全粒子ワクチンでは16~17%程度低値となる。したがって、不活化全粒子ワクチンのヘムアグルチニン濃度は低張処理では大きな変動はないが、高濃度ホルマリン処理では10%若しくはそれ以上の低減が確認された。これは、過剰なホルマリン処理によるタンパク質間の架橋が原因であると考えられ、ヘムアグルチニン含有率が低値を示すことは、生産性の低下に繋がり、また製剤の総タンパク質が増大するため副反応の懸念が高まる。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

Claims (6)

  1.  発育鶏卵法を用いた不活化全粒子インフルエンザワクチンの調製方法であって、発育鶏卵から回収されたインフルエンザウイルス全粒子を含むウイルス液を低張処理する工程を含む、方法。
  2.  低張処理が、前記ウイルス液を低張液中に曝すものである、請求項1記載の方法。
  3.  低張液が、160mOsm/kg以下、好ましくは110mOsm/kg以下の水溶液である、請求項2記載の方法。
  4.  不活化された前記ウイルス液に対して低張処理を行う、請求項1~3のいずれか1項記載の方法。
  5.  請求項1~4のいずれか1項記載の方法を用いて調製された、不活化全粒子インフルエンザワクチン。
  6.  発育鶏卵法を用いて調製させる不活化全粒子インフルエンザワクチンであって、発育鶏卵由来の細胞外小胞成分が低減された、ワクチン。
PCT/JP2019/037884 2018-09-26 2019-09-26 不活化全粒子インフルエンザワクチン及びその調製法 WO2020067301A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217009021A KR20210065952A (ko) 2018-09-26 2019-09-26 불활화 전입자 인플루엔자 백신 및 그 조제법
US17/279,898 US11890338B2 (en) 2018-09-26 2019-09-26 Inactivated whole-virus influenza vaccine and method for preparing same
AU2019346177A AU2019346177A1 (en) 2018-09-26 2019-09-26 Inactivated whole-virus influenza vaccine and method for preparing same
EP19865376.8A EP3858380A4 (en) 2018-09-26 2019-09-26 INACTIVATED WHOLE VIRUS INFLUENZA VACCINE AND METHOD FOR PREPARING IT
CN201980062822.3A CN112752581B (zh) 2018-09-26 2019-09-26 灭活全颗粒流感疫苗及其制备法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018181039A JP7288270B2 (ja) 2018-09-26 2018-09-26 不活化全粒子インフルエンザワクチン及びその調製法
JP2018-181039 2018-09-26

Publications (1)

Publication Number Publication Date
WO2020067301A1 true WO2020067301A1 (ja) 2020-04-02

Family

ID=69953537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037884 WO2020067301A1 (ja) 2018-09-26 2019-09-26 不活化全粒子インフルエンザワクチン及びその調製法

Country Status (7)

Country Link
US (1) US11890338B2 (ja)
EP (1) EP3858380A4 (ja)
JP (1) JP7288270B2 (ja)
KR (1) KR20210065952A (ja)
CN (1) CN112752581B (ja)
AU (1) AU2019346177A1 (ja)
WO (1) WO2020067301A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024019113A1 (ja) * 2022-07-21 2024-01-25 デンカ株式会社 不活化全粒子インフルエンザワクチンの発熱活性低減方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016010081A1 (ja) 2014-07-18 2016-01-21 一般財団法人化学及血清療法研究所 ウイルス様粒子を含むワクチン

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102068592A (zh) 2009-11-19 2011-05-25 曹桂萍 一种治疗肛门湿疹的中药配方
CN102068692A (zh) * 2010-12-30 2011-05-25 北京民海生物科技有限公司 一种流感病毒裂解疫苗及其制备方法
WO2015199129A1 (ja) * 2014-06-25 2015-12-30 東興薬品工業株式会社 インフルエンザワクチン経鼻接種システム
JP2018524323A (ja) * 2015-06-26 2018-08-30 セキラス ユーケー リミテッド 抗原がマッチしたインフルエンザワクチン

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016010081A1 (ja) 2014-07-18 2016-01-21 一般財団法人化学及血清療法研究所 ウイルス様粒子を含むワクチン

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
CHARLES T. HARDY, SARAH A. YOUNG, ROBERT G. WEBSTER, CLAYTON W. NAEVE, RANDALL J. OWENS: "Egg fluids and cells of the chorioallantoic membrane of embryonated chicken eggs can select different variants of influenza A (H3N2) viruses", VIROLOGY, vol. 211, no. 1, 1 August 1995 (1995-08-01), pages 302 - 306, XP055700146, ISSN: 1089-862X, DOI: 10.1006/viro.1995.1405 *
GROSS P.A.ENNIS F.A.GAERLAN P.F.DENSON L.J.DENNING C.R.SCHIFFMAN D.: "A controlled double-blind comparison of reactogenicity, immunogenicity, and protective efficacy of whole-virus and split-product influenza vaccines in children", J INFECT DIS., vol. 136, no. 5, November 1977 (1977-11-01), pages 623 - 32, XP000995134
KAWAKA AKIHIKO: "Special issue, The latest information on influenza and its countermeasures - From One Health perspective- 7. Current status and future of influenza vaccine", MEDICINE AND DRUG JOURNAL, vol. 51, no. 10, 30 November 2014 (2014-11-30), JP, pages 2397 - 2400, XP009527067, ISSN: 0287-4741 *
LUCIA VOJTECH, SEAN HUGHES, CLAIRE LEVY, FLORIAN HLADIK: "The role of exosomes in semen in suppressing natural and vaccine-induced immunity", TOPICS IN ANTIVIRAL MEDICINE, vol. 23, no. e-1, 2015, pages 151 - 152, XP009527083, ISSN: 2161-5861 *
MARINE, W.M. ET AL.: "Reactions and serologic response in young children and infants after administration of inactivated monovalent influenza A vaccine.", J. PEDIATR., vol. 88, no. 1, January 1976 (1976-01-01), pages 26 - 30
MCELHANEY J.E.MENEILLY G.S.LECHELT K.E.BEATTIE B.L.BLEACKLEY R.C.: "Antibody response to whole-virus and split-virus influenza vaccines in successful ageing", VACCINE., vol. 11, no. 10, 1993, pages 1055 - 60, XP023710634, DOI: 10.1016/0264-410X(93)90133-I
See also references of EP3858380A4
WRIGHT, P.F ET AL.: "Clinical reactions and serologic response following inactivated monovalent influenza type B vaccine in young children and infants", J. PEDIATR, vol. 88, no. 1, January 1976 (1976-01-01), pages 31 - 35

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024019113A1 (ja) * 2022-07-21 2024-01-25 デンカ株式会社 不活化全粒子インフルエンザワクチンの発熱活性低減方法

Also Published As

Publication number Publication date
EP3858380A1 (en) 2021-08-04
US11890338B2 (en) 2024-02-06
AU2019346177A1 (en) 2021-04-22
EP3858380A4 (en) 2022-07-13
US20220031833A1 (en) 2022-02-03
CN112752581B (zh) 2024-07-02
KR20210065952A (ko) 2021-06-04
JP7288270B2 (ja) 2023-06-07
JP2020050604A (ja) 2020-04-02
CN112752581A (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
JP7427648B2 (ja) 卵を使用しないインフルエンザウイルスワクチンの作製
CA2197683C (en) Method for preparing an influenza virus, antigens obtained and applications thereof
JP5005700B2 (ja) アルミニウムアジュバントに即座に吸着されるインフルエンザワクチン
JP2012140470A (ja) 粒子状アジュバントと免疫増強物質との組合せを含むインフルエンザワクチン
US10881723B2 (en) Vaccine containing immobilized virus particles
WO2020067301A1 (ja) 不活化全粒子インフルエンザワクチン及びその調製法
JP6602762B2 (ja) ウイルス様粒子を含むワクチン
EP2632487A2 (en) Viral vaccine and process for preparing the same
JP7545955B2 (ja) インフルエンザhaスプリットワクチンの製造方法
WO2024019113A1 (ja) 不活化全粒子インフルエンザワクチンの発熱活性低減方法
JP4642114B2 (ja) 沈降不活化インフルエンザワクチンおよびその製造方法
WO2022210763A1 (ja) インフルエンザワクチン
WO2021172418A1 (ja) 不活化インフルエンザワクチンの製造方法及びそのワクチン組成物
US20150174236A1 (en) Viral vaccine and process for preparing the same
JP2023515829A (ja) 小児対象のための高用量インフルエンザワクチン
Noori et al. Construction of Influenza A/H1N1 virosomal nanobioparticles
Soema Formulation of influenza T cell peptides: in search of a universal influenza vaccine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019346177

Country of ref document: AU

Date of ref document: 20190926

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019865376

Country of ref document: EP

Effective date: 20210426