WO2020067064A1 - リール工法用長尺鋼管及びその製造方法 - Google Patents

リール工法用長尺鋼管及びその製造方法 Download PDF

Info

Publication number
WO2020067064A1
WO2020067064A1 PCT/JP2019/037380 JP2019037380W WO2020067064A1 WO 2020067064 A1 WO2020067064 A1 WO 2020067064A1 JP 2019037380 W JP2019037380 W JP 2019037380W WO 2020067064 A1 WO2020067064 A1 WO 2020067064A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
steel pipe
clock
section
cross
Prior art date
Application number
PCT/JP2019/037380
Other languages
English (en)
French (fr)
Inventor
貞末 照輝
恒久 半田
善明 村上
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US17/279,218 priority Critical patent/US11731210B2/en
Priority to JP2019567745A priority patent/JP6662505B1/ja
Priority to EP19864023.7A priority patent/EP3858506B1/en
Priority to BR112021005717-0A priority patent/BR112021005717A2/pt
Publication of WO2020067064A1 publication Critical patent/WO2020067064A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/08Seam welding not restricted to one of the preceding subgroups
    • B23K11/093Seam welding not restricted to one of the preceding subgroups for curved planar seams
    • B23K11/0935Seam welding not restricted to one of the preceding subgroups for curved planar seams of tube sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L13/00Non-disconnectible pipe-joints, e.g. soldered, adhesive or caulked joints
    • F16L13/02Welded joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/02Rigid pipes of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/10Pipe-lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L1/00Laying or reclaiming pipes; Repairing or joining pipes on or under water
    • F16L1/12Laying or reclaiming pipes on or under water
    • F16L1/16Laying or reclaiming pipes on or under water on the bottom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L1/00Laying or reclaiming pipes; Repairing or joining pipes on or under water
    • F16L1/12Laying or reclaiming pipes on or under water
    • F16L1/20Accessories therefor, e.g. floats, weights
    • F16L1/202Accessories therefor, e.g. floats, weights fixed on or to vessels
    • F16L1/203Accessories therefor, e.g. floats, weights fixed on or to vessels the pipes being wound spirally prior to laying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/22Pipes composed of a plurality of segments

Definitions

  • the present invention relates to a long steel pipe suitable for a reel method for laying a submarine pipeline, and particularly to a long steel pipe for a reel method excellent in buckling resistance and a method for manufacturing the same.
  • a reel method (hereinafter, also referred to as a reel barge method) is frequently used as a method of laying a submarine pipeline.
  • the reel method is an efficient submarine pipeline laying method used mainly in Northern Europe.
  • the longitudinal ends of steel pipes that become line pipes are sequentially welded circumferentially at a land-based spool base (base) to form long steel pipes (hereinafter also referred to as long steel pipes), and further, coating, etc.
  • the long steel pipe is taken up on a reel of a laying ship (barge), carried to a laying place on the sea, and unwound (rewinded) from the reel, and a pipeline is laid on the seabed.
  • Patent Literature 1 proposes “an electric resistance welded steel pipe for line pipes having excellent weld toughness”.
  • the electric resistance welded steel pipe described in Patent Document 1 is, by mass%, C: 0.01 to 0.15%, Si: 0.005 to 0.9%, Mn: 0.2 to 1.45%, P : 0.01% or less, S: 0.01% or less, Al: 0.1% or less, Ca: 0.005% or less, and the maximum length of the ERW weld in the projection plane ERW with excellent weld toughness, with an area fraction of microdefects of less than 50 ⁇ m of 0.000006 to 0.028% and an absorption energy of 315 J or more in a V notch Charpy impact test at a test temperature of ⁇ 40 ° C. It is a steel pipe.
  • the toughness of the ERW weld (seam portion) is improved by adjusting the amount of minute defects remaining in the ERW weld.
  • Patent Document 2 proposes “a method for producing a low-yield-ratio high-strength hot-rolled steel sheet having excellent low-temperature toughness”.
  • the technology described in Patent Document 2 is based on mass%: C: 0.03 to 0.10%, Si: 0.10 to 0.50%, Mn: 1.4 to 2.2%, P: 0 0.025% or less, S: 0.005% or less, Al: 0.005 to 0.10%, Nb: 0.02 to 0.10%, Ti: 0.001 to 0.030%, Mo: 0.
  • a steel material containing 0.05 to 0.50%, Cr: 0.05 to 0.50%, Ni: 0.001 to 1.00% and having a composition of balance Fe and unavoidable impurities was heated at a heating temperature of 1050. After heating to about 1300 ° C., the steel material is subjected to rough rolling to form a sheet bar, and the sheet bar is subjected to finish rolling at a cumulative rolling reduction of 50% or more in a temperature range of 930 ° C. or less to obtain a hot-rolled steel sheet. Hot rolling process, and immediately after finishing rolling, cooling is started immediately. A cooling step of cooling to a temperature range of cooling stop temperature: Bs point to 450 ° C.
  • Patent Literature 2 a pipeline having fine bainitic ferrite as a main phase and having a structure in which massive martensite is finely dispersed as a second phase, and laid by a reel barge method It is said that low-yield-ratio, high-strength hot-rolled steel sheets with excellent low-temperature toughness suitable for ERW steel pipes for pipes and ERW pipes for pipelines requiring earthquake resistance can be easily and inexpensively manufactured.
  • Patent Document 3 proposes a “method of manufacturing a low YR electric resistance welded steel pipe for a line pipe”.
  • the technique described in Patent Literature 3 is such that, while continuously feeding a steel strip, the steel strip is subjected to entry-side straightening and then formed into a substantially cylindrical open pipe, and the circumferential ends of the open pipe are electrically welded to each other.
  • the pipe obtained by welding is subjected to rotation correction to adjust the external dimensions and shape, a distortion of 0.05 to 7.0% on average in the thickness direction is imparted by entry correction and the pipe length is corrected by rotation correction.
  • This is a method for producing a low-yield-ratio (low YR) ERW steel pipe that imparts a compressive strain of 0.2 to 7.0% in the direction.
  • the basic composition of the steel strip contains, by mass%, C: 0.02 to 0.1% and Mn: 0.6 to 1.8%, preferably further. , Si: 0.01 to 0.5%, P: 0.01% or less, S: 0.01% or less, Al: 0.1% or less, and carbon equivalent (Ceq) of less than 0.44% Is satisfied, and in order to improve the strength, yield ratio, and toughness of the steel pipe, the composition is further selected from Cu: 0.5% or less and Ni: 0.5% or less. Species or two kinds, one or two kinds selected from Cr: 0.5% or less, Mo: 0.5% or less, Ca: 0.005% or less, may be contained.
  • Patent Document 4 proposes “ERW steel pipe in which an increase in the yield ratio after coating is prevented and a method for manufacturing the same”.
  • the technology described in Patent Document 4 is based on mass%, C: 0.03 to 0.12%, Si: 0.03 to 0.5%, Mn: 0.5 to 2.0%, P: 0. 0.03% or less, S: 0.003% or less, Al: 0.10% or less, Nb: 0.003% or more and less than 0.02%, Ti: 0.005 to 0.03%, N: 0.006 %, And Ti> 3.4N, and a weld crack susceptibility composition Pcm (%) satisfying 0.21 or less, respectively, and the remainder is hot-rolled to form a slab comprising Fe and unavoidable impurities.
  • the hot rolled steel sheet is rolled at 600 ° C. or lower, the hot rolled steel sheet is formed into a tube, and the butted surfaces are welded by ERW to form an ERW steel pipe.
  • the ERW pipe is heated to a temperature in the range of 400 to 720 ° C. and tempered.
  • the 250 ° C. if subjected to heat treatment to a heat treatment time as 1h, the difference in yield strength before and after heat treatment of ERW pipe is method of manufacturing an electric resistance welded steel pipe is less than 30 MPa. According to the technique described in Patent Document 4, a low yield ratio is maintained even after tempering, an increase in the yield ratio due to coating heating can be suppressed, and an ERW steel pipe having excellent deformation characteristics suitable as a line pipe can be obtained. And
  • Patent Document 5 proposes a “hot-rolled steel sheet and a method for producing the same”.
  • the technique described in Patent Document 5 is, in terms of mass%, C: 0.03 to 0.10%, Si: 0.01 to 0.50%, Mn: 1.4 to 2.2%, P: 0. 0.025% or less, S: 0.005% or less, Al: 0.005 to 0.10%, Nb: 0.02 to 0.10%, Ti: 0.001 to 0.030%, Mo: 0.
  • the composition contains 0.01 to 0.50%, Cr: 0.01 to 0.50%, Ni: 0.01 to 0.50%, the balance being Fe and unavoidable impurities, and the bainitic ferrite phase
  • the bainitic ferrite phase is composed of a bainitic ferrite phase and a tempered martensite phase, wherein the lath interval of the bainitic ferrite phase is 0.2 to 1.6 ⁇ m, and the inner layer has a bainitic ferrite phase of 50% in area ratio.
  • Patent Document 6 proposes “a low-yield-ratio high-strength hot-rolled steel sheet excellent in low-temperature toughness and a method for producing the same”.
  • the low-yield-ratio high-strength hot-rolled steel sheet described in Patent Document 6 is, by mass%, C: 0.03 to 0.11%, Si: 0.01 to 0.50%, Mn: 1.0 to 2 0.2%, P: 0.025% or less, S: 0.005% or less, Al: 0.005 to 0.10%, Nb: 0.01 to 0.10%, Ti: 0.001 to 0.
  • Mneq (%) Mn + 0.26Si + 1.30Cr + 2.67Mo + 0.8Ni so that Mneq defined in the range of 2.0 to 4.0% is satisfied.
  • the composition consisting of unavoidable impurities and bainitic ferrite as the main phase, with the largest size as the second phase A structure containing 10% or less, an average of 0.5 to 5.0 ⁇ m, and at least 3.0% or more of martensite in area ratio, and an average particle size of bainitic ferrite of 10 ⁇ m or less.
  • a low-yield-ratio high-strength hot-rolled steel sheet excellent in low-temperature toughness having a yield strength in the direction of 30 ° from the rolling direction of 480 MPa or more, a fracture surface transition temperature vTrs of ⁇ 80 ° C. or less, and a yield ratio of 85% or less.
  • a low-yield-ratio high-strength hot-rolled steel sheet having excellent low-temperature toughness can be easily manufactured without performing special heat treatment, and is used for line pipes laid by a reel barge method. It is said that ERW steel pipes can be easily manufactured at low cost.
  • Patent Document 7 describes "a low-yield-ratio high-strength hot-rolled steel sheet having excellent low-temperature toughness and a method for producing the same".
  • the low-yield-ratio high-strength hot-rolled steel sheet described in Patent Document 7 is, by mass%, C: 0.03 to 0.10%, Si: 0.10 to 0.50%, Mn: 1.4 to 2 0.2%, P: 0.025% or less, S: 0.005% or less, Al: 0.005 to 0.10%, Nb: 0.02 to 0.10%, Ti: 0.001 to 0.
  • a low-yield-ratio high-strength hot-rolled steel sheet excellent in low-temperature toughness can be easily manufactured without performing a special heat treatment, and is used for line pipe laid by a reel barge method. It is said that ERW steel pipes can be easily manufactured at low cost.
  • Patent Document 8 proposes “ERW steel pipe for line pipe and a method for manufacturing the same”.
  • the technology described in Patent Document 8 is based on mass%: C: 0.03 to 0.12%, Si: 0.03 to 0.5%, Mn: 0.5 to 2.0%, P: 0 0.03% or less, S: 0.003% or less, Al: 0.10% or less, Nb: 0.003% to 0.009%, Ti: 0.005 to 0.03%, N: 0.006 %, And Ti> 3.4N, and a weld crack susceptibility composition Pcm (%) satisfying 0.21 or less, respectively, and a balance consisting of Fe and unavoidable impurities is hot-rolled. After being rolled at 600 ° C.
  • a line pie which heats and heats the ERW steel pipe after introduction into a heating temperature range of 400 to 720 ° C. Is a manufacturing method of use electric resistance welded steel pipe. According to the technique described in Patent Document 8, a low yield ratio is maintained even after tempering, an increase in the yield ratio due to coating heating can be suppressed, and an ERW steel pipe having excellent deformation characteristics suitable as a line pipe can be obtained. And
  • Patent Literature 9 proposes a “high-strength ERW steel pipe and a method of manufacturing the same” suitable for laying a reel barge.
  • the high-strength ERW steel pipe described in Patent Document 9 is, by mass%, C: 0.04 to 0.15%, Si: 0.10 to 0.50%, Mn: 1.0 to 2.2%.
  • an ERW steel pipe having a high (sheet thickness t) / (outer diameter D) (hereinafter, also referred to as a high (r / D) ERW steel pipe) is manufactured.
  • the yield strength increases, the yield ratio in the pipe axis direction (pipe longitudinal direction) increases, and the elongation steel pipe also has a reduced uniform elongation, particularly due to the introduction of processing strain during pipe forming.
  • the coating heating heating temperature: about 250 ° C.
  • the yield strength is further increased, and it is expected that an electric resistance welded steel pipe having a further high yield ratio and low uniform elongation will be obtained.
  • an ERW steel pipe having a high (sheet thickness t) / (outer diameter D) (hereinafter, also referred to as a high (r / D) ERW steel pipe).
  • an electric resistance welded steel pipe is obtained in which the yield strength increases, the yield ratio in the pipe longitudinal direction increases, and the uniform elongation decreases, particularly due to the introduction of processing strain during pipe formation.
  • the yield strength will be further increased by coating heating (heating temperature: about 250 ° C.) in the reel method, and an ERW steel pipe having a further higher yield ratio and low uniform elongation will be obtained.
  • Patent Literature 8 tempering is performed after pipe forming and electric resistance welding, so that an increase in yield ratio due to subsequent coating heating can be suppressed.
  • Patent Document 8 does not mention tempering processing of a welded portion (circumferential welded portion) in which pipe longitudinal ends are butted and welded together.
  • it is necessary to perform tempering of the circumferential weld.
  • the tempering of the circumferential weld is performed. Is impractical.
  • the yield strength further increases due to coating heating (heating temperature: about 250 ° C.) in the reel method. It is expected that the ERW steel pipe will have low uniform elongation at a high yield ratio.
  • the inside of the long steel pipe Intrados
  • buckling is likely to occur and rupture is likely to occur on the outside (Extrados).
  • An object of the present invention is to solve the problems of the prior art and to propose a long steel pipe for reel construction, which is formed by joining ERW steel pipes and has excellent buckling resistance, and a method of manufacturing the same.
  • the “long steel pipe” refers to a long steel pipe obtained by sequentially welding circumferential ends of a plurality of steel pipes to each other in the pipe longitudinal direction.
  • a long steel pipe for a reel method is a long steel pipe for a reel method, wherein a plurality of ERW steel pipes are joined via a circumferential weld in a pipe longitudinal direction, and a seam of the ERW steel pipe is provided. Assuming that the position is the position of the pipe section 0 o'clock, the pipe section of the ERW steel pipe is divided into 12 equal parts around the pipe axis, and the positions are displayed clockwise in order from 0 o'clock to 11:00 o'clock.
  • a long steel pipe for a reel method and a method for manufacturing the same characterized in that the range of the position of the pipe section or the range of the position of the pipe section at 10 o'clock is oppositely joined.
  • the present inventors first obtained a tensile strength of 510 MPa class ERW steel pipe having an outer diameter of 323.9 mm and a wall thickness of 15.9 mm at each circumferential position shown in FIG. The characteristics were investigated. From each position (seam position: 0 o'clock) of the pipe cross section (pipe cross section) shown in FIG. 1, a tensile test piece (total thickness, GL: 50.8 mm) was sampled so that the pipe longitudinal direction was the tensile direction, and the tensile test was performed.
  • the ERW steel pipe has a YS / TS (hereinafter, also referred to as a yield ratio or Y / T) of 0.98 at a position of 0 o'clock (seam portion) and at a position of 6 o'clock of the pipe cross section. It can be seen that the pipe is an ERW steel pipe that is high, has a low uniform elongation uEl of 2.1 to 2.3%, and exhibits high Y / T and low uEl tensile properties.
  • the position at 2 o'clock of the pipe cross section and the position at 4 o'clock of the pipe cross section have a low Y / T of 0.82-0.83, a high uEl exceeding 11%, and a low Y / T and high uEl tensile properties. Is shown.
  • the low Y / T and high uEl tensile properties are similarly exhibited.
  • the pipe cross section at 1, 5, 5, 7 and 11 o'clock it is a transition region of each adjacent position. The tensile properties at each of these positions depend on the pipe forming method (manufacturing method) of the ERW steel pipe.
  • ERW steel pipe a hot-rolled steel sheet having a predetermined size, which is a general method for manufacturing ERW steel pipe, is used as a material, and the material is bent in the width direction to form an open pipe. After the end portions in the width direction are butted together and subjected to ERW welding to form a seam portion, the outer diameter is adjusted to obtain a product (ERW steel pipe).
  • Table 1 also shows the tensile characteristics of the as-formed as-welded ERW steel pipe after further heat treatment (250 ° C. ⁇ 1 h) simulating coating heating.
  • the tensile properties after the heat treatment are higher in YS (0.5% proof stress) than in the same position in the as-tube-formed state, so that the Y / T is higher, the Y / T is higher, and the uEl is lower. It is a steel pipe having
  • the radius of the reeling former 2 8250 mm is a reel radius of a general reel laying ship.
  • the long steel pipe 1 to be wound has a 2500 mm long ERW steel pipe 12 abutted on both sides of an ERW steel pipe 11 having a length of 6500 mm at both ends in the pipe longitudinal direction, and is circumferentially welded by circumferential welding. A weld was formed and joined.
  • the electric resistance welded steel pipe 12 having a length of 2500 mm is a steel pipe having a higher strength than the electric resistance welded steel pipe 11 having a length of 6500 mm (hereinafter also referred to as a strong pipe), and an electric resistance welded steel pipe having a length of 6500 mm.
  • the sewn steel pipe 11 is referred to as a weak pipe.
  • an electric resistance welded steel pipe (strong pipe) 12 having a length of 2500 mm is placed on both sides of an electric resistance welded steel pipe (weak pipe) 11 having a length of 6500 mm.
  • the end portions in the direction were butted together, and a circumferential weld was formed by circumferential welding and joined to form a long steel pipe.
  • the strength of the ERW steel pipes that are joined so as to be adjacent to each other is different. In such a case, when the long steel pipe 1 is wound around a reel, the ERW steel pipe (weak pipe) is used.
  • the tensile properties at the position (seam) of the pipe cross section at 0 o'clock used in the ERW steel pipe 11 are shown in Table 3 with reference to the tensile properties after heat treatment (250 ° C. ⁇ 1 h) shown in Table 1.
  • uEl 2.00%
  • YS 505 MPa
  • TS 510 MPa
  • Y / T 0.989
  • tensile characteristics high Y / T, low uEl tensile characteristics
  • ERW steel pipe 12 strong pipe
  • Y / T tensile properties represented by 0.988 (high Y / T and low uEl tensile properties).
  • Y / T tensile properties represented by 0.988 (high Y / T and low uEl tensile properties).
  • Y / T is set to be 1.000.
  • the tensile characteristic is high Y / T and low uEl. Analyzed.
  • the tensile properties at the position (seam) of the pipe cross section at 0 o'clock are as follows: uEl: 0.25%, YS: 510 MPa, TS: 510 MPa, Y: / T: a tensile property represented by 1.000 (high Y / T and low uEl tensile property), and in the ERW steel pipe 12 (strong pipe), as shown in Table 3, uEl: 0.29%, YS : 585 MPa, TS: 585 MPa, and Y / T: 1.000 as tensile characteristics (high Y / T and low uEl tensile characteristics).
  • the tensile properties in the range from the position at 2 o'clock to the position at 4 o'clock in the pipe cross section are shown in Tables 1 and 2 with reference to the properties after the heat treatment (250 ° C x 1 h). )), As shown in Table 3, the tensile properties represented by uEl: 10.00%, YS: 422 MPa, TS: 510 MPa, and Y / T: 0.827 (low Y / T and high uEl tensile properties).
  • the electric resistance welded steel pipe 12 (strong pipe) has a tensile property (low) represented by uEl: 10.04%, YS: 481 MPa, TS: 585 MPa, and Y / T: 0.822. Y / T (high uEl tensile properties).
  • the nominal stress-nominal strain curve used in the analysis was created using the Swift equation based on the tensile properties described above.
  • An example of the nominal stress-nominal strain curve used for the analysis is shown in FIG.
  • FIG. 3A shows an example of a steel pipe 11 (weak pipe)
  • FIG. 3B shows an example of a steel pipe 12 (strong pipe).
  • the nominal stress-nominal distortion curve of the circumferential weld was set to be overmatched to that of the ERW steel pipe 12.
  • the assumed cross-sectional position of the ERW steel pipe 11 (weak pipe) shown in Table 3 was set to be inside the reel winding (Intrados) or outside the reel winding (Extrados).
  • Intrados axial distortion the axial distortion occurring inside the reel winding of the long steel pipe 1
  • Extrados axial distortion the axial distortion occurring outside the reel winding.
  • the roundness (DNV availability) was calculated using ⁇ (Dmax ⁇ Dmin) / Dnominal ⁇ . The obtained results are shown in FIGS. 4 to 6, respectively.
  • the Intrados axial strain in the ERW steel pipe 11 (weak pipe) near the fixed-end circumferential weld is about ⁇ 10% (compression in the reel winding inside).
  • Strain the Extrados axial strain is about 10% (tensile strain) outside the reel winding, and a large axial strain is generated.
  • Case 1 is an extremely high Y / T having a tensile property set to Y / T: 1.00 and a uniform elongation uEl as low as 0.25 or 0.29, an extremely high Y / T, and This is a case where seam positions having low uEl tensile properties are joined to each other, and in such a long steel pipe, Intrados axial strain and Extrados axial strain that occur when the steel pipe is wound around a reel become large, and local Buckling and fracture are likely to occur.
  • Case 2 In the case of Case 2 shown in FIGS. 4A to 4C (the case of Case 2 alone is shown in FIGS. 7A and 7B), the electric resistance welded steel pipe 11 (weak pipe) in the vicinity of the circumferential end welded portion on the fixed end side is used. A high axial strain is generated, with the Intrados axial strain being about -6% (compression strain) inside the reel winding and the Extrados axial strain being about 6% (tensile strain) outside the reel winding. Case 2 is located at a seam position having a tensile property of Y / T: 0.988 to 0.989, uEl: 2.00 to 2.01%, a high Y / T, and a low uEl.
  • Case # 6 In the case of Case # 6 shown in FIGS. 5A to 5C, similarly to the case of Case # 1, the Intrados axial direction inside the reel winding of the ERW steel pipe 11 (weak pipe) near the fixed end side circumferential welded portion. A large axial strain is generated with a strain of about -10% (compression strain) and an Extrados axial strain of about 10% (tensile strain) outside the reel winding. Case No. 6 shows that the tensile properties at the seam position of the electric resistance welded steel pipe 11 (weak pipe) are high Y / T set so that Y / T: 1.00, and the uniform elongation uEl is extremely low and extremely high Y.
  • a 2500 mm length is set at the position (seam) of the pipe cross-section at 0 o'clock on both sides of the longitudinal end of the 6500 mm length ERW steel pipe 11 (weak pipe).
  • the ends of the electric resistance welded steel pipe 12 (strong pipe) at 3 o'clock were opposed to each other, and the ends were butted against each other. Thereafter, it is assumed that circumferential welding is performed to obtain a long steel pipe 1.
  • the electric resistance is set to a high Y / T and uniform elongation uEl set at 1.00 such that Y / T is set to 1.00 and an extremely high Y / T and low uEl tensile characteristic.
  • the ERW steel pipe 12 (Strong) is located at the position of 3 o'clock in the ERW steel pipe 11 (weak pipe).
  • the seam position (position at 0 o'clock section) of the pipe is opposed and joined, and the Intrados axial direction inside the reel winding of the ERW steel pipe 11 (weak pipe) near the fixed end side circumferential welded part
  • the strain is about -5% (compression strain)
  • the Extrados axial direction strain is about 5% (tensile strain) outside the reel winding.
  • the inventors of the present invention used a plurality of ERW steel pipes to sequentially weld the ends in the pipe longitudinal direction to form a long steel pipe.
  • the position of the electric resistance welded steel pipe adjacent to it is set so that the range of the position of the pipe cross section from 2 o'clock to the position of the pipe cross section of 4 o'clock or the range of the position of the pipe cross section from 8 o'clock to the position of the pipe cross section at 10 o'clock is opposite.
  • the present invention has been completed based on such findings and further studied. That is, the gist of the present invention is as follows.
  • a long steel pipe for a reel method in which a plurality of ERW steel pipes are joined via a circumferential weld in a pipe longitudinal direction, wherein one of the plurality of ERW steel pipes adjacent to each other is used.
  • the seam position of the steel pipe is defined as the position of the pipe cross section 0 o'clock, and the pipe cross section of the other adjacent electric resistance welded steel pipe is divided into 12 equal parts around the pipe axis.
  • a range of the position of the adjacent one of the plurality of ERW steel pipes from the position of the cross section 2:00 to the position of the position 4:00 of the cross section of the other ERW steel pipe.
  • a long steel pipe for a reel method wherein a range from a position at 8 o'clock in the pipe section to a position at 10 o'clock in the pipe section is oppositely joined.
  • a long steel pipe for a reel method in which a plurality of ERW steel pipes are joined via a circumferential weld in the pipe longitudinal direction, wherein one of the plurality of ERW steel pipes adjacent to each other is used.
  • the seam position of the steel pipe is defined as the position of the pipe cross section 0 o'clock, and the pipe cross section of the other adjacent electric resistance welded steel pipe is divided into 12 equal parts around the pipe axis.
  • a long steel pipe for a reel method wherein a range from a position at 8 o'clock in the pipe section to a position at 10 o'clock in the pipe section is oppositely joined.
  • the other adjacent ERW steel pipe is characterized in that it is an ERW steel pipe having a tensile strength higher by 30 MPa or more than that of the one adjacent ERW steel pipe at a position of 3 o'clock section.
  • the seam position of the ERW steel pipe is defined as the position of the pipe section 0 o'clock, the pipe section is divided into 12 equal parts around the pipe axis, and the respective sections are clockwise in order from the pipe section 0 to the pipe section 11:00,
  • the range of the position of the other electric resistance welded steel pipe adjacent to the 0 o'clock section from the position of the oval section of 2 o'clock to the position of the oval section of the oval section at 4 o'clock or 8 o'clock The longitudinal direction ends of adjacent electric resistance welded steel pipes are joined to each other so that the range of the position of the pipe cross section at 10 o'clock from the position of the pipe section is opposite, and the joining is performed. Production method.
  • the other adjacent ERW steel pipe is an ERW steel pipe having a tensile strength of 30 MPa or more higher than that of the one adjacent steel pipe at a position of 3 o'clock cross section.
  • the position where the electric resistance welded steel pipe has a low uEl at a high Y / T (a position at a pipe cross section of 0 (seam portion), a position at a pipe cross section of 6 o'clock) is reeled at the time of reel winding. Even if it is located inside (Intrados) or outside the reel winding (Extrados), there is a remarkable effect that the generated axial strain is small and buckling or breakage is less likely to occur.
  • FIG. 1 is an explanatory diagram that defines each position in the circumferential direction of a pipe (tube) cross section.
  • FIG. 2A is an explanatory diagram of an analysis model for analyzing strain generated in a long steel pipe at the time of reel winding.
  • FIG. 2B is an explanatory diagram of an analysis model for analyzing strain generated in a long steel pipe at the time of reel winding.
  • FIG. 3A is a graph showing a nominal stress-nominal strain curve used in the analysis.
  • FIG. 3B is a graph showing a nominal stress-nominal strain curve used in the analysis.
  • FIG. 4A is a graph showing a distribution state of intrados axial strain generated in a long steel pipe at the time of reel winding (Case # 1 to Case # 3).
  • FIG. 4B is a graph showing the distribution state of Extrados axial strain generated in the long steel pipe at the time of reel winding (Case # 1 to Case # 3).
  • FIG. 4C is a graph showing a distribution state of roundness generated in the long steel pipe at the time of reel winding (Case # 1 to Case # 3).
  • FIG. 5A is a graph showing the distribution of intrados axial strain generated in a long steel pipe during reel winding (Case # 4 to Case # 6).
  • FIG. 5B is a graph showing a distribution state of extrados axial strain generated in the long steel pipe at the time of reel winding (Case # 4 to Case # 6).
  • FIG. 5C is a graph showing a distribution of roundness generated in the long steel pipe at the time of reel winding (Case # 4 to Case # 6).
  • FIG. 6A is a graph showing the distribution of intrados axial strain generated in a long steel pipe at the time of reel winding (Case # 7 to Case # 9).
  • FIG. 6B is a graph showing the distribution state of Extrados axial strain generated in the long steel pipe at the time of reel winding (Case # 7 to Case # 9).
  • FIG. 6C is a graph showing a distribution state of roundness generated in the long steel pipe at the time of reel winding (Case # 7 to Case # 9).
  • FIG. 7A is a graph showing a distribution state of intrados axial strain generated in a long steel pipe at the time of reel winding (case # 2).
  • FIG. 7B is a graph showing a distribution state of Extrados axial strain generated in the long steel pipe at the time of reel winding (case # 2).
  • FIG. 8A is a graph showing a distribution state of intrados axial strain generated in a long steel pipe at the time of reel winding (case # 9).
  • FIG. 8B is a graph showing a distribution state of Extrados axial strain generated in a long steel pipe at the time of reel winding (case # 9).
  • the seam position of the electric resistance welded steel pipe is set to the position at 0 o'clock of the pipe cross section, and the pipe cross section is divided into 12 equal parts around the pipe axis, and each is clockwise. , The position from the 0 o'clock cross section (seam) to the 11 o'clock position of the pipe cross section.
  • the long steel pipe according to the present invention is a long steel pipe made of an ERW steel pipe for use in a reel method, in which a plurality of ERW steel pipes are sequentially joined in the pipe longitudinal direction via circumferential welds. The longitudinal ends of the sewn steel pipes are abutted to each other, and are sequentially joined to form a circumferential weld by circumferential welding.
  • an ERW pipe having a tensile property in a pipe longitudinal direction at each position in a circumferential direction depends on a pipe forming method (manufacturing method). Is assumed. That is, at the position of the pipe cross section at 0 o'clock (seam portion) and the position of the pipe cross section at 6 o'clock, after the heat treatment (coating heating), the yield ratio (Y / T) is as high as 0.98 and the uniform elongation uEl is about 2.
  • one of the ERW steel pipes adjacent in the pipe longitudinal direction is located at the position (seam) at the cross section of the pipe 0, and the other is adjacent thereto.
  • the ERW steel pipes are sequentially butted so that the range from the position at 2 o'clock in the pipe section to the position at 4 o'clock in the pipe section or the position from 8 o'clock in the pipe section to 10 o'clock in the pipe cross section is sequentially opposed.
  • the ERW pipe 11 when the pipe longitudinal ends of the adjacent ERW pipes 11 and 12 are abutted and joined to each other, the ERW pipe 11 is located at the position of 0 o'clock in the cross section of the high Y / T and low uEl region.
  • the range of the position of the pipe section 2 o'clock from the position of the pipe section 2 o'clock, which is the area of low Y / T and high uEl, or the position of the pipe section 10 o'clock from the position 8 o'clock The longitudinal ends of the pipes are butted against each other so that the areas are opposed to each other, and a circumferential weld is formed by circumferential welding to be joined.
  • the buckling resistance is preferably such that the Intrados axial strain (compression strain) is from -6.00 to -1.00%, more preferably from -5.00% to -1.00%. More preferably, it is from -4.00% to -1.00%.
  • the Intrados axial strain (compression strain) is from -6.00 to 1.00%, a special effect is exhibited in that the steel pipe has excellent buckling resistance and excellent reel bending properties.
  • the Extrados axial strain (tensile strain) is preferably 1.00% or more and 6.00% or less, more preferably 1.00% or more and 5.00% or less, and more preferably 1.00% or more. More preferably, it is 4.00% or less. When the Extrados axial strain (tensile strain) is 1.00% or more and 6.00% or less, a special effect that the steel pipe has excellent buckling resistance and excellent reel bending characteristics is exhibited.
  • Case 9 shown in Table 3 can be exemplified as an example of the long steel pipe described above.
  • Case 9 is a high Y / T and low uEl tensile property of uEl: 2.00%, YS: 505MPa, TS: 510MPa, Y / T: 0.989 when joining the pipe longitudinal ends. Abutting a position (seam) at 0 o'clock section of the ERW steel pipe 11 having the above, so that a position at 3 o'clock section of the adjacent ERW steel pipe 12 is opposed to each other and joined by circumferential welding to join the long steel pipe 1. This is an example.
  • the 3 o'clock position of the electric resistance welded steel pipe 12 has uEl: 10.04%, YS: 481 MPa, TS: 585 MPa, Y / T: 0.822, low Y / T and high uEl tensile properties.
  • the position (seam) of the electric resistance welded steel pipe 11 having the tensile property of high Y / T and low uEl at the tube cross section 0 (seam) is the inside of the reel winding (Intrados) at the time of reel winding, and the reel Even in the outer winding (Extrados), as shown in FIG.
  • the axial strain generated in the ERW steel pipe 11 near the fixed end side circumferential welded portion is about -3% in Intrados axial strain.
  • Extrados axial strain is about 3%, no large axial strain is generated, there is no possibility of buckling or breakage, and a long steel pipe having excellent buckling resistance is obtained.
  • the seam portion of the electric resistance welded steel pipe 11 has a high Y / T set so as to be 1.00 and an extremely small uniform elongation uEl of 0.25%, a high Y / T, and Even if it is assumed that it has a low uEl tensile property, the pipe section 2 of the adjacent ERW steel pipe 12, which is a low Y / T and high uEl region, is opposed to the seam position (position at the pipe section 0 o'clock).
  • Case 8 shown in Table 3 can be exemplified.
  • Case # 8 is such that when joining the pipe longitudinal ends, uEl: 0.25%, YS: 510 MPa, TS: 510 MPa, Y / T: 1.000, especially high Y / T and low uEl At the position (seam) at 0 o'clock of the cross section of the electric resistance welded steel pipe 11 having tensile properties, uEl: 10.04%, YS: 481 MPa, TS: 585 MPa, Y / T: 0.822, low Y / T and high
  • adjacent electric resistance welded steel pipes 12 having the tensile properties of uEl are butted so that the positions at 3 o'clock in the cross section of the pipes are opposed to each other, and joined by circumferential welding to form a long steel pipe 1.
  • the pipe is moved from the position at 2 o'clock in the low Y / T and high uEl region so as to be opposed to the position at 6 o'clock in the cross section which is the high Y / T and low uE1 region.
  • the range of the position at the cross section 4 o'clock or the range of the position at the tube cross section 10 o'clock from the position at 8 o'clock cross section may be matched, and a circumferential weld may be formed by circumferential welding to join.
  • the properties, outer diameter, wall thickness, etc. of the plurality of ERW steel pipes to be used are not particularly specified, but have a strength and toughness suitable for the environment of the pipeline to be laid, It goes without saying that any ERW steel pipe can be applied.
  • the material of the long steel pipe of the present invention is a steel material having a composition comprising, by mass%, C: 0.01% to 1.00% and a balance of Fe and unavoidable impurities, but is not limited thereto. is not.
  • the strength between adjacent ERW pipes does not need to be particularly limited. However, when there is a difference in strength between adjacent ERW pipes, the ERW having lower strength is used. If the seam position of the steel pipe 11 becomes the inside of the reel winding (Intrados) or the outside of the reel winding (Extrados) at the time of reel winding, the axial distortion generated in the ERW steel pipe 11 near the fixed end side circumferential welded portion. There is a risk of becoming larger. Therefore, especially when there is a difference in strength between adjacent ERW pipes, the seam position of the ERW pipe 11 having low strength is changed from the position at 2 o'clock of the ERW pipe 12 having high strength to the pipe section 4. It is important to join the pipe longitudinal ends so that the range of the time position or the range of the position of the pipe section at 10 o'clock is opposite to the position of the pipe section at 8 o'clock.
  • the difference in strength between the low-strength ERW pipe (weak pipe; weak pipe) 11 and the high-strength ERW pipe (strong pipe; strong pipe) 12 (pipe section 3).
  • the tensile strength (TS) at the time position was 75 MPa.
  • the same analysis was performed for a case where the strength difference (tensile strength TS at the position of the tube cross section at 3 o'clock) was 30 MPa, and similar results were obtained.
  • the long steel pipe is reeled.
  • the Intrados axial strain generated in a weakly welded steel pipe (weak pipe: weak @ pipe) near the fixed-end side circumferential weld shows about -10%, and buckling may occur. Make sure there is.
  • the seam positions of adjacent ERW steel pipes are not opposed to each other. It is important to join the ends of the tubes in abutting manner. That is, the position of the seam of the low strength electric resistance welded steel pipe (weak pipe) 11 is changed from the position of the high strength electric resistance welded steel pipe (strong pipe) 12 at the cross section of 2 o'clock to the position of 4 o'clock in the cross section of the pipe. It is important to form a long steel pipe in which the pipe longitudinal ends are joined to each other so as to face each other.
  • the strength difference is preferably from 30 to 100 MPa, more preferably from 30 to 95 MPa, even more preferably from 30 to 90 MPa. When the strength difference is 30 to 100 MPa, an effect of a steel pipe having excellent reel bending characteristics is exhibited.
  • the yield strength (YS) in the tensile properties (as-made) of the strong pipe of the present invention is preferably 289 MPa to 725 MPa, more preferably 289 MPa to 705 MPa, and still more preferably 289 MPa to 691 MPa.
  • the yield strength (YS) is from 289 MPa to 725 MPa, a special effect of a steel pipe having excellent reel bending characteristics is exhibited.
  • the tensile strength (TS) is preferably 413 MPa to 850 MPa, more preferably 413 MPa to 825 MPa, and still more preferably 413 MPa to 810 MPa.
  • TS tensile strength
  • uEL (%) is preferably from 0.29% to 15.2%, more preferably from 0.29% to 13.2%, even more preferably from 0.29% to 12.1%.
  • a special effect of a steel pipe having excellent reel bending characteristics is exhibited.
  • the yield ratio (Y / T) is preferably 0.822 to 1.000, more preferably 0.822 to 0.988, and still more preferably 0.822 to 0.883.
  • the yield ratio (Y / T) is in the range of 0.822 to 1.000, a special effect of a steel pipe having excellent reel bending characteristics is exhibited.
  • the yield strength (YS) in the tensile properties (as-made) of the weak pipe of the present invention is preferably 289 MPa to 778 MPa, more preferably 289 MPa to 721 MPa, and still more preferably 289 MPa to 681 MPa.
  • the yield strength (YS) is 289 MPa to 778 MPa, a special effect of a steel pipe having excellent reel bending properties is exhibited.
  • the tensile strength (TS) is preferably 413 MPa to 787 MPa, more preferably 413 MPa to 781 MPa, and still more preferably 413 MPa to 756 MPa.
  • TS tensile strength
  • uEL (%) is preferably from 0.25% to 12.6%, more preferably from 0.25% to 11.7%, even more preferably from 0.25% to 11.5%.
  • uEL (%) is in the range of 0.25% to 12.6%, a special effect of a steel pipe having excellent reel bending characteristics is exhibited.
  • the yield ratio (Y / T) is preferably 0.82 to 1.000, more preferably 0.82 to 0.998, and still more preferably 0.82 to 0.995.
  • the yield ratio (Y / T) is in the range of 0.82 to 1.000, a special effect of a steel pipe having excellent reel bending characteristics is exhibited.
  • the electric resistance welded steel pipe of the present invention is a long steel pipe formed by joining a plurality of electric resistance welded steel pipes sequentially in the longitudinal direction of the pipe via a circumferential weld.
  • a preferred method for producing the long steel pipe of the present invention will be described. First, a plurality of ERW steel pipes having the same dimensions are prepared according to the required length of the target long steel pipe. Then, the prepared plurality of ERW steel pipes are sequentially butted against the pipe longitudinal ends. When the longitudinal ends of the ERW pipes are abutted against each other, the pipes are positioned at the 0 o'clock cross section of one adjacent ERW pipe from the 2 o'clock position of the other adjacent ERW pipe.
  • the positions at the cross section 4 o'clock or the pipe cross section 8 o'clock are matched so that the position at the pipe cross section 10 o'clock is opposed.
  • a circumferential weld is formed by circumferential welding and joined.
  • the circumferential welding method to be used is not particularly limited, and any conventional welding method such as manual welding, MAG welding, and submerged arc welding can be applied.
  • ERW steel pipes (as-formed) having the dimensions (size) shown in Table 4 were prepared, and these steel pipes were subjected to a heat treatment (250 ° C. ⁇ 1 hr) simulating coating heating.
  • the electric resistance welded steel pipe was selected so that steel pipes having the same dimensions and different tensile strengths after the heat treatment could be obtained.
  • a tensile test piece (total thickness, GL: 50.8 mm) was previously collected from each position (seam position: 0 o'clock) of the pipe cross section shown in FIG. A test was performed to determine the tensile properties at each position in the cross section of the ERW steel pipe.
  • Table 4 also shows the tensile properties (yield strength YS (0.5% proof stress), tensile strength TS, uniform elongation uEl, yield ratio Y / T) at each position of the obtained pipe cross section.
  • the ends of the 2500 mm long ERW steel pipe 12 in the pipe longitudinal direction are joined to both ends of the 6500 mm length ERW steel pipe 11 by butt circumferential welding.
  • a long steel pipe 1 was produced.
  • the circumference welding used the MAG welding method.
  • the ERW steel pipe 12 having a length of 2500 mm was a steel pipe (strong pipe) having higher strength than the ERW steel pipe 11 having a length of 6500 mm.
  • the electric resistance welded steel pipe 11 having a length of 6500 mm is referred to as a weak pipe.
  • test steel pipe No. 1 to No. 20 is a seam position (position of pipe cross section 0 o'clock) or pipe cross section 6:00 of steel pipe (weak pipe) 11 having high Y / T and low uEl tensile properties.
  • a long steel pipe in which the end faces in the longitudinal direction of the pipe are opposed to each other so as to face each other so as to face each other and are joined by circumferential welding.
  • the comparative examples (test steel pipes No. 21 to No. 30) have a high Y / T and low uEl tensile strength at the seam position (position of pipe cross section 0) of the steel pipe (weak pipe) 11. End faces in the longitudinal direction of the steel pipe (Strong pipe) 12 having a tensile property of low uEl at / T, so that any one of the 0, 1, 5, 7, and 11 o'clock positions of the pipe section is opposed to each other. Are joined together by circumferential welding (long steel pipe).
  • the axial strain (Intrados axial strain) generated in the vicinity of the circumferential end weld on the fixed end side of the steel pipe 11 is -1.62% (test steel pipe No. 4) to -3.33. % (Test steel pipe No. 19), and in each case, the compression axial strain (Intrados axial strain) in the region where buckling was likely to occur did not reach ⁇ 6%, and the present invention example It can be said that it is a long steel pipe with excellent buckling resistance.
  • the position where the electric resistance welded steel pipe has a low uEl at a high Y / T is the inside of the reel winding (Intrados) at the time of reel winding.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatment Of Articles (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

耐座屈性に優れた、電縫鋼管製リール工法用長尺鋼管及びその製造方法を提供する。複数本の電縫鋼管の管長手方向端部同士を順次、突き合わせ、円周溶接により円周溶接部を形成し接合して、長尺の鋼管とする。管長手方向に順次接合されてなる複数本の電縫鋼管のうち隣り合う一方の電縫鋼管の管断面0時の位置または管断面6時の位置に、隣り合う他方の電縫鋼管の管断面2時の位置から管断面4時の位置の範囲または管断面8時の位置から管断面10時の位置の範囲が相対するように、突き合わせて接合する。これにより、長尺鋼管をリール工法で、リールに巻付けた際に、高降伏比で低一様伸びの引張特性を有する、長尺鋼管の管断面0時の位置(シーム)または6時の位置が、リール巻付け内側(Intrados)あるいはリール巻付け外側(Extrados)となっても、局所的な座屈や破断が発生するような大きな軸方向歪が発生することはなく、座屈や破断が発生する惧れが少ない、耐座屈性に優れたリール工法用長尺鋼管及びその製造方法である。

Description

リール工法用長尺鋼管及びその製造方法
 本発明は、海底パイプラインを敷設するリール工法用として好適な長尺鋼管に係り、とくに、耐座屈性に優れたリール工法用長尺鋼管及びその製造方法に関する。
 最近では、海底パイプラインの敷設方法として、リール工法(以下、リールバージ法ともいう)が多用されている。リール工法は、北欧を中心に用いられている効率的な海底パイプライン敷設法である。リール工法では、陸上のスプールベース(基地)で、ラインパイプとなる鋼管の管長手方向端部同士を順次円周溶接し、長尺の鋼管(以下、長尺鋼管ともいう)とし、さらにコーティングなどを施したのち、前記長尺鋼管を、敷設船(バージ)のリールに巻き取り、海上の敷設箇所に運び、リールから巻き出し(巻き戻し)ながら、海底にパイプラインを敷設する。
 このリール工法によるパイプラインの敷設においては、長尺鋼管をリールに巻き取る時、リールから巻き戻す時、さらにはアライナー通過時およびストレートナー通過時に、管長手方向に、曲げ-曲げ戻しによる繰返し応力(引張・圧縮)が作用する。長尺鋼管をリールに巻き付ける時には、長尺鋼管の内側(Intrados)に圧縮歪が、外側(Extrados)に引張歪が、それぞれ生じ、巻き付けられた長尺鋼管の内側(Intrados)には局所的な座屈が、外側(Extrados)には局所的な破断が生じることが懸念される。
 このような局所的な破断、座屈を防止するため、リール工法用の鋼管としては、品質、強度の観点から、従来、継目無鋼管が多用されてきた。しかし、製造コストの削減という観点から、安価な電縫鋼管の利用が検討され、リール工法用として、溶接部靭性に優れた、安価な電縫鋼管が熱望されていた。
 このような要望に対し、例えば、特許文献1には、「溶接部靭性に優れたラインパイプ向け電縫鋼管」が提案されている。
 特許文献1に記載された電縫鋼管は、質量%で、C:0.01~0.15%、Si:0.005~0.9%、Mn:0.2~1.45%、P:0.01%以下、S:0.01%以下、Al:0.1%以下、Ca:0.005%以下を含有する組成を有し、電縫溶接部の投影面内における最大長さ50μm未満の微小欠陥の面積分率が0.000006~0.028%であり、試験温度:-40℃におけるVノッチシャルピー衝撃試験の吸収エネルギーが315J以上である、溶接部靭性に優れた電縫鋼管である。
 特許文献1に記載された技術では、電縫溶接部に残留する微小欠陥の量を少なく調整することにより、電縫溶接部(シーム部)の靭性を向上させている。
 このような電縫鋼管の品質向上にともなって、リール工法用として電縫鋼管あるいは電縫鋼管向け熱延鋼板が提案されている。
 例えば、特許文献2には、「低温靭性に優れた低降伏比高強度熱延鋼板の製造方法」が提案されている。
 特許文献2に記載された技術は、質量%で、C:0.03~0.10%、Si:0.10~0.50%、Mn:1.4~2.2%、P:0.025%以下、S:0.005%以下、Al:0.005~0.10%、Nb:0.02~0.10%、Ti:0.001~0.030%、Mo:0.05~0.50%、Cr:0.05~0.50%、Ni:0.001~1.00%を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材を、加熱温度:1050~1300℃に加熱したのち、前記鋼素材に粗圧延を施しシートバーとし、前記シートバーに、930℃以下の温度域での累積圧下率:50%以上となる仕上圧延を施し熱延鋼板とする熱延工程を施し、ついで仕上圧延終了後直ちに冷却を開始し、板厚中央部の平均冷却速度:5~60℃/sで、冷却停止温度:Bs点~450℃の温度域まで冷却する冷却工程と、コイル状に巻取り、60秒以上600秒未満保持した後、冷却する巻取工程とを施す低降伏比高強度熱延鋼板の製造方法である。
 特許文献2に記載された技術によれば、微細なベイニティックフェライトを主相とし、第二相として塊状マルテンサイトを微細に分散させた組織を有し、リールバージ法で敷設されるパイプライン用電縫鋼管向けや、耐震性を要求されるパイプライン用電縫鋼管向けとして好適な、低温靭性に優れた低降伏比高強度熱延鋼板を容易に、かつ安価に製造できるとしている。
 また、特許文献3には、「ラインパイプ向け低YR電縫鋼管の製造方法」が提案されている。特許文献3に記載された技術は、帯鋼を連続的に送りつつ、入側矯正を施した後、略円筒状のオープン管に成形し、前記オープン管の円周方向端部同士を電縫溶接して得た管に、回転矯正を施して外形寸法形状を整えるにあたり、入側矯正にて板厚方向平均で0.05~7.0%の歪みを付与し、かつ回転矯正にて管長方向に0.2~7.0%の圧縮歪みを付与する、低降伏比(低YR)電縫鋼管の製造方法である。
 特許文献3に記載された技術では、帯鋼の基本の組成を、質量%で、C:0.02~0.1%、Mn:0.6~1.8%を含有し、好ましくはさらに、Si:0.01~0.5%、P:0.01%以下、S:0.01%以下、Al:0.1%以下を含有し、炭素当量(Ceq)が0.44%未満を満足し、残部実質的にFeからなる組成として、鋼管の強度、降伏比、靭性を改善するためにさらに、Cu:0.5%以下、Ni:0.5%以下の中から選ばれる1種又は2種、Cr:0.5%以下、Mo:0.5%以下の中から選ばれる1種又は2種、Ca:0.005%以下、の中から選択して含有してもよいとしている。
 特許文献3に記載された技術によれば、素材組成と、入側矯正条件及び回転矯正条件とを適正に組み合わせたことにより、設備の追加を必要とせず、また生産性の低下を伴うこともなく、ラインパイプ向け低降伏比(低YR)電縫鋼管を製造できるとしている。
 また、特許文献4には、「塗装加熱後における降伏比の上昇が防止された電縫鋼管及びその製造方法」が提案されている。
 特許文献4に記載された技術は、質量%で、C:0.03~0.12%、Si:0.03~0.5%、Mn:0.5~2.0%、P:0.03%以下、S:0.003%以下、Al:0.10%以下、Nb:0.003%以上0.02%未満、Ti:0.005~0.03%、N:0.006%以下、をそれぞれ含有するとともに、Ti>3.4N、及び溶接割れ感受性組成Pcm(%)が0.21以下をそれぞれ満足し、残部がFe及び不可避的不純物からなる鋼片を熱間圧延し、600℃以下で巻取り熱延鋼板としたのち、この熱延鋼板を管状に成形加工するとともに、その突合わせ面を電縫溶接することにより造管して電縫鋼管とし、この歪みを導入した後の電縫鋼管を加熱温度400~720℃の範囲内に加熱して焼戻し、熱処理温度を250℃、熱処理時間を1hとして熱処理を施した場合、電縫鋼管の熱処理前後での降伏強度の差が30MPa以下である電縫鋼管の製造方法である。
 特許文献4に記載された技術によれば、焼戻し後も低降伏比が維持され、塗装加熱による降伏比の上昇を抑制でき、ラインパイプとして好適な優れた変形特性を有する電縫鋼管が得られるとしている。
 また、特許文献5には、「熱延鋼板およびその製造方法」が提案されている。
 特許文献5に記載された技術は、質量%で、C:0.03~0.10%、Si:0.01~0.50%、Mn:1.4~2.2%、P:0.025%以下、S:0.005%以下、Al:0.005~0.10%、Nb:0.02~0.10%、Ti:0.001~0.030%、Mo:0.01~0.50%、Cr:0.01~0.50%、Ni:0.01~0.50%を含み、残部Feおよび不可避的不純物からなる組成と、表層が、ベイニティックフェライト相またはベイニティックフェライト相と焼戻マルテンサイト相とからなり、前記ベイニティックフェライト相のラス間隔が0.2~1.6μmであり、内層が、ベイニティックフェライト相を面積率で50%以上とし、第二相として、アスペクト比:5.0未満の塊状マルテンサイトを面積率で1.4~15%含み、内層のベイニティックフェライト相のラス間隔が0.2~1.6μmである組織と、を有する熱延鋼板である。
 特許文献5に記載された技術によれば、低降伏比高強度熱延鋼板を特別な熱処理を施すこともなく、容易に製造でき、リールバージ法で敷設されるラインパイプ用の電縫鋼管を安価にかつ容易に製造できるとしている。
 また、特許文献6には、「低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法」が提案されている。
 特許文献6に記載された低降伏比高強度熱延鋼板は、質量%で、C:0.03~0.11%、Si:0.01~0.50%、Mn:1.0~2.2%、P:0.025%以下、S:0.005%以下、Al:0.005~0.10%、Nb:0.01~0.10%、Ti:0.001~0.05%、B:0.0005%以下を含み、さらにCr:0.01~1.0%、Mo:0.01~0.5%、Ni:0.01~0.5%のうちから選ばれた1種または2種以上を、Mneq(%)=Mn+0.26Si+1.30Cr+2.67Mo+0.8Niで定義されるMneqが2.0~4.0%の範囲を満足するように含有し、残部Feおよび不可避的不純物からなる組成と、ベイニティックフェライトを主相とし、第二相として大きさが最大で10μm以下、平均で0.5~5.0μmであり、かつ、少なくとも面積率で3.0%以上のマルテンサイトを含む組織とを有し、ベイニティックフェライトの平均粒径が10μm以下であり、圧延方向から30°方向の降伏強さが480MPa以上、破面遷移温度vTrsが-80℃以下、降伏比が85%以下である、低温靭性に優れた低降伏比高強度熱延鋼板である。
 特許文献6に記載された技術によれば、低温靭性に優れた低降伏比高強度熱延鋼板を特別な熱処理を施すこともなく、容易に製造でき、リールバージ法で敷設されるラインパイプ用の電縫鋼管を安価にかつ容易に製造できるとしている。
 また、特許文献7には、「低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法」が記載されている。
 特許文献7に記載された低降伏比高強度熱延鋼板は、質量%で、C:0.03~0.10%、Si:0.10~0.50%、Mn:1.4~2.2%、P:0.025%以下、S:0.005%以下、Al:0.005~0.10%、Nb:0.02~0.10%、Ti:0.001~0.030%、Mo:0.05~0.50%、Cr:0.05~0.50%、Ni:0.01~0.50%を含み、残部Feおよび不可避的不純物からなる組成と、ベイニティックフェライトを主相とし、第二相として、アスペクト比:5.0未満の塊状マルテンサイトを面積率で1.4~15%含む組織とを有し、ベイニティックフェライトの平均粒径が10μm以下である、低温靭性に優れた低降伏比高強度熱延鋼板である。
 特許文献7に記載された技術によれば、低温靭性に優れた低降伏比高強度熱延鋼板を特別な熱処理を施すこともなく、容易に製造でき、リールバージ法で敷設されるラインパイプ用の電縫鋼管を安価にかつ容易に製造できるとしている。
 また、特許文献8には、「ラインパイプ用電縫鋼管及びその製造方法」が提案されている。
 特許文献8に記載された技術は、質量%で、C:0.03~0.12%、Si:0.03~0.5%、Mn:0.5~2.0%、P:0.03%以下、S:0.003%以下、Al:0.10%以下、Nb:0.003%以上0.009%以下、Ti:0.005~0.03%、N:0.006%以下、を含有するとともに、Ti>3.4N、及び溶接割れ感受性組成Pcm(%)が0.21以下、をそれぞれ満足し、残部がFe及び不可避的不純物からなる鋼片を熱間圧延し、600℃以下で巻取り、熱延鋼板としたのち、この熱延鋼板を管状に成形加工するとともに、その突合わせ面を電縫溶接することにより造管して電縫鋼管とし、この歪みを導入した後の電縫鋼管を加熱温度400~720℃の範囲内に加熱して焼戻す、ラインパイプ用電縫鋼管の製造方法である。
 特許文献8に記載された技術によれば、焼戻し後も低降伏比が維持され、塗装加熱による降伏比の上昇を抑制でき、ラインパイプとして好適な優れた変形特性を有する電縫鋼管が得られるとしている。
 また、特許文献9には、リールバージ敷設用として好適な、「高強度電縫鋼管およびその製造方法」が提案されている。
 特許文献9に記載された高強度電縫鋼管は、質量%で、C:0.04~0.15%、Si:0.10~0.50%、Mn:1.0~2.2%、P:0.050%以下、S:0.005%以下、Cr:0.2~1.0%、Ti:0.005~0.030%、Al:0.010~0.050%を含有し、残部Fe及び不可避的不純物からなる組成と、ポリゴナルフェライトを体積分率で70%以上とし、体積分率で3~20%の残留オーステナイトと、残部がマルテンサイト、ベイナイトおよびパーライトのうちから選ばれた1種または2種以上からなり、ポリゴナルフェライトが、平均粒径:5μm以上、アスペクト比が1.40以下である組織と、を有する電縫鋼管である。
 特許文献9に記載された技術によれば、X60級以上の高強度で曲げ特性に優れた高強度電縫鋼管を、管全体に対する熱処理を行うことなく、安価に製造できるとしている。
特許第5292830号公報 特開2017-214618号公報 特許第4442541号公報 特許第5316721号公報 特許第5605526号公報 特許第5679114号公報 特許第5776398号公報 特許第5886238号公報 特許第6004144号公報
 しかしながら、特許文献2に記載された熱延鋼板を用いて、(板厚t)/(外径D)が高い電縫鋼管(以下、高(r/D)電縫鋼管ともいう)を製造する場合には、造管時の加工歪の導入によりとくに、降伏強さが増加し、管軸方向(管長手方向)の降伏比が高くなり、しかも一様伸びも低下した電縫鋼管となる。そして、リール工法における塗装加熱(加熱温度:約250℃)により、さらに降伏強さが増加し、更なる高降伏比で低一様伸びの電縫鋼管となることが予想される。このような高降伏比で低一様伸びの箇所を有する電縫鋼管をリール工法によるパイプラインの敷設に用いた場合には、リールに巻き付けられた状態の長尺鋼管に生じる圧縮歪や引張歪により、長尺鋼管の内側(Intrados)には座屈が、外側(Extrados)には破断が、局所的に生じやすくなることが懸念される。
 また、特許文献3に記載された技術では、入側矯正条件及び回転矯正条件とを適正に組み合わせるために、板厚方向や管長手方向に適正量の歪を導入すべく、適正な能力を有する矯正設備を選定して配設する必要がある。さらに、特許文献3に記載された低降伏比(低YR)電縫鋼管では、リール工法における塗装加熱(加熱温度:約250℃)により、降伏強さが増加し、高降伏比で低一様伸びの電縫鋼管となることが懸念される。
 また、特許文献4に記載された技術によれば、造管し、電縫溶接後に焼戻処理を施すことにより、塗装加熱による降伏比の上昇を抑制できるとしているが、しかし、特許文献4には、管長手方向端部同士を突き合わせて溶接接合した溶接部(円周溶接部)の焼戻処理については、言及されていない。円周溶接部においても低降伏比化を実現するためには、円周溶接部の焼戻処理を施す必要があるが、リール工法における円周溶接時に、円周溶接部の焼戻処理を施すことは非現実的である。
 また、特許文献5、6、7に記載された熱延鋼板を用いて、(板厚t)/(外径D)が高い電縫鋼管(以下、高(r/D)電縫鋼管ともいう)を製造する場合には、造管時の加工歪の導入によりとくに、降伏強さが増加し、管長手方向の降伏比が高くなり、しかも一様伸びも低下した電縫鋼管となる。しかも、リール工法における塗装加熱(加熱温度:約250℃)により、さらに降伏強さが増加し、更なる高降伏比で低一様伸びの電縫鋼管となることが予想される。このような高降伏比で低一様伸びの電縫鋼管では、長尺鋼管に生じる圧縮歪や引張歪により、長尺鋼管の内側(Intrados)には座屈が、外側(Extrados)には破断が、局所的に生じやすくなることが懸念される。
 また、特許文献8に記載された技術によれば、造管し、電縫溶接後に焼戻処理を施して、その後の塗装加熱による降伏比の上昇を抑制できるとしている。しかし、特許文献8には、管長手方向端部同士を突き合わせて溶接接合した溶接部(周溶接部)の焼戻処理については、言及されていない。しかも、円周溶接部においても低降伏比化を実現するためには、円周溶接部の焼戻処理を施す必要があるが、リール工法における円周溶接時に、円周溶接部の焼戻処理を施すことは非現実的である。
 また、特許文献9に記載された技術により製造された曲げ特性に優れた高強度電縫鋼管では、リール工法における塗装加熱(加熱温度:約250℃)により、さらに降伏強さが増加し、更なる高降伏比で低一様伸びの電縫鋼管となることが予想される。このような高降伏比で低一様伸びの引張特性を有する電縫鋼管では、リール巻付け時に長尺鋼管に生じる圧縮歪や引張歪により、局所的に、長尺鋼管の内側(Intrados)には座屈が、外側(Extrados)には破断が、生じやすくなることが懸念される。
 本発明は、かかる従来技術の問題を解決し、電縫鋼管を接合してなる、耐座屈性に優れたリール工法用長尺鋼管及びその製造方法を提案することを目的とする。
 なお、ここでいう「長尺鋼管」とは、複数の鋼管の管長手方向端部同士を順次円周溶接し、長尺の鋼管としたものをいう。
 本発明にかかるリール工法用長尺鋼管は、複数本の電縫鋼管を管長手方向に円周溶接部を介して接合されてなるリール工法用長尺鋼管であって、前記電縫鋼管のシーム位置を管断面0時の位置として、前記電縫鋼管の管断面を管軸周りに12等分してそれぞれを時計回りに順に管断面0時から11時の各位置と表示され、前記管長手方向に順次接合されてなる複数本の電縫鋼管のうち隣り合う一方の電縫鋼管の管断面0時の位置に、隣り合う他方の電縫鋼管の管断面2時の位置から管断面4時の位置の範囲または管断面8時の位置から管断面10時の位置の範囲が相対して接合されてなることを特徴とする、リール工法用長尺鋼管及びその製造方法である。
 本発明者らは、上記した目的を達成するため、まず、外径323.9mm×肉厚15.9mmの引張強さ:510MPa級電縫鋼管について、図1に示す円周方向各位置における引張特性を調査した。図1に示す管断面(パイプ断面)の各位置(シーム位置:0時)から、管長手方向が引張方向となるように引張試験片(全厚、GL:50.8mm)を採取し、引張試験を実施して、管断面(パイプ断面)各位置の引張特性(降伏強さYS(0.5%耐力)、引張強さTS、均一伸びuEl)を測定した。なお、電縫鋼管の引張特性は、造管ままの場合と、造管ままの電縫鋼管にさらに、塗装加熱を模した熱処理(250℃×1h)を施した場合と、について調査した。その結果を表1に示す。なお、強度が高い鋼管(ストロングパイプと称する)の場合についても同様に調査して、表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1から、当該電縫鋼管は、管断面0時(シーム部)の位置および管断面6時の位置で、YS/TS(以下、降伏比、またはY/Tともいう)が0.98と高く、一様伸びuElが2.1~2.3%と低い、高Y/Tで低uElの引張特性を示す、電縫鋼管であることがわかる。一方、管断面2時の位置および管断面4時の位置は、Y/Tが0.82~0.83と低く、uElが11%を超えて高い、低Y/Tで高uElの引張特性を示す。管断面8時の位置および管断面10時の位置においても同様に、低Y/Tで高uElの引張特性を示す。なお、管断面1時、5時、7時、11時の各位置では、隣り合う各位置の遷移領域となっている。このような各位置における引張特性は、当該電縫鋼管の造管方法(製造方法)に依存している。
 なお、上記した電縫鋼管では、電縫鋼管の一般的な製造方法である、所定寸法の熱延鋼板を素材とし、該素材に幅方向に曲げ加工を施しオープン管となし、該オープン管の幅方向端部同士を突き合わせ、電縫溶接してシーム部を形成したのち、外径調整して製品(電縫鋼管)としたものである。
 上記した、造管ままの電縫鋼管にさらに、塗装加熱を模した熱処理(250℃×1h)を施したのちの引張特性を表1に併記して示す。熱処理後の引張特性は、同位置の造管ままの同位置に比べて、YS(0.5%耐力)が増加したため、Y/Tがさらに高い、高Y/Tで、uElが低い引張特性を有する鋼管となっている。
 なお、表2に示す強度が高い鋼管(ストロングパイプ)の場合も、強度が高い以外は、円周方向各位置で、表1に示す強度が低い鋼管の場合と同じ傾向の引張特性を示している。
 リール工法では、電縫鋼管を複数本用いて、管長手方向の端部同士を順次、円周溶接して接合し、長尺の鋼管とする。上記したような管断面各位置(円周方向各位置)で引張特性が変化する電縫鋼管を用いる場合には、端部同士の突き合わせ位置によっては、リールに巻き付けた長尺鋼管に座屈、あるいは破断が生じるおそれがあることに、本発明者らは思い至った。
 まず、本発明の基礎となった検討結果について説明する。
 長尺鋼管(パイプ)1をリールに巻き付けた際に、パイプに発生する管長手方向(軸方向)の歪を、有限要素法を用いて解析した。
 この解析では、図2に示すように、半径:8250mmのリーリングフォーマー2に、11500mm長さの長尺鋼管1を巻き付ける場合を想定し、荷重を負荷し長尺鋼管1をリーリングフォーマー2に巻き付けるように曲げ変形させて、長尺鋼管1のリール巻付け外側(Extrados)またはリール巻付け内側(Intrados)に発生する管長手方向(軸方向)の歪、真円度を算出した。なお、解析は、図2Bに示すように、長尺鋼管1がリーリングフォーマー2の外径に密着する最終段階まで行った。ここで、リーリングフォーマー2の半径:8250mmは、一般的なリール敷設船のリール半径である。また、巻付ける長尺鋼管1は、長さ:6500mmの電縫鋼管11を挟んで両側に、長さ:2500mmの電縫鋼管12を管長手方向端部同士で突き合わせ、円周溶接により円周溶接部を形成して接合したものとした。なお、ここで、長さ:2500mmの電縫鋼管12は、長さ:6500mmの電縫鋼管11より強度が高い鋼管(以下、ストロングパイプ(strong pipe)ともいう)とし、長さ:6500mmの電縫鋼管11はウィークパイプ(weak pipe)と称する。
 ここで、実操業に近い状態で、解析する必要から、長さ:6500mmの電縫鋼管(ウィークパイプ)11を挟んで両側に、長さ:2500mmの電縫鋼管(ストロングパイプ)12を管長手方向端部同士を突き合わせて、円周溶接により円周溶接部を形成して接合し、長尺鋼管とした。リール工法の実操業においては、隣り合うように接合された電縫鋼管同士で、強度が異なる場合があり、その場合、長尺鋼管1をリールに巻き付けた際に、電縫鋼管(ウィークパイプ)側の円周溶接部近傍で、とくに大きな軸方向歪が発生し、局所的な座屈、破断が発生する場合が考えられる。
 なお、隣り合う電縫鋼管11、12の管長手方向端部同士を突き合わせて円周溶接するに際し、隣り合う電縫鋼管11、12の相対する管断面位置を、表3に示すような種々の組み合わせで、突き合わせて、円周溶接した場合を想定して、解析した。
Figure JPOXMLDOC01-appb-T000003
 ここで、使用した管断面0時の位置(シーム)の引張特性は、電縫鋼管11(ウィークパイプ)では、表1に示す熱処理(250℃×1h)後の引張特性を参考にし、表3に示すように、uEl:2.00%、YS:505MPa、TS:510MPa、Y/T:0.989で代表される引張特性(高Y/Tで低uEl引張特性)とし、また電縫鋼管12(ストロングパイプ)では、表2に示した熱処理(250℃×1h)を行った後の引張特性を参考にし、表3に示すように、uEl:2.01%、YS:578MPa、TS:585MPa、Y/T:0.988で代表される引張特性(高Y/Tで低uEl引張特性)とした。
 なお、管断面0時の位置(シーム)の引張特性として、Y/T:1.000となるように設定した、とくに高Y/Tで低uElである引張特性の場合を想定し、同様に解析した。このような管断面0時の位置(シーム)の引張特性は、電縫鋼管11(ウィークパイプ)では、表3に示すように、uEl:0.25%、YS:510MPa、TS:510MPa、Y/T:1.000で代表される引張特性(高Y/Tで低uEl引張特性)とし、電縫鋼管12(ストロングパイプ)では、表3に示すように、uEl:0.29%、YS:585MPa、TS:585MPa、Y/T:1.000で代表される引張特性(高Y/Tで低uEl引張特性)とした。
 また、管断面2時の位置から管断面4時の位置の範囲の引張特性は、表1、2に示す熱処理(250℃×1h)後の特性を参照して、電縫鋼管11(ウィークパイプ)では、表3に示すように、uEl:10.00%、YS:422MPa、TS:510MPa、Y/T:0.827で代表される引張特性(低Y/Tで高uEl引張特性)を有し、電縫鋼管12(ストロングパイプ)では、表3に示すように、uEl:10.04%、YS:481MPa、TS:585MPa、Y/T:0.822で代表される引張特性(低Y/Tで高uEl引張特性)を有するものとした。
 なお、解析に使用する公称応力-公称歪曲線は、上記した引張特性に基づき、Swiftの式を用いて作成した。解析に使用した公称応力-公称歪曲線の例をまとめて、図3に示す。図3Aは鋼管11(ウィークパイプ)、図3Bは鋼管12(ストロングパイプ)の場合の例である。
 また、円周溶接部の公称応力-公称歪曲線は、電縫鋼管12のそれに対してオーバーマッチングとなるように設定した。なお、解析にあたっては、表3に示す電縫鋼管11(ウィークパイプ)の想定断面位置がリール巻付け内側(Intrados)、あるいはリール巻付け外側(Extrados)となるように設定した。
 ここで、長尺鋼管1のリール巻付け内側に発生する軸方向歪をIntrados軸方向歪、リール巻付け外側に発生する軸方向歪をExtrados軸方向歪、と称する。また、真円度(DNV ovality)は、{(Dmax-Dmin)/Dnominal}を用いて算出した。
 得られた結果を、図4~図6にそれぞれ示す。
 図4~図6から、荷重を負荷して長尺鋼管をリールに巻き付けるような変形条件では、固定端側の円周溶接部近傍の電縫鋼管11(ウィークパイプ)に、軸方向の歪が集中することがわかる。またその場合には、固定端側の円周溶接部近傍の電縫鋼管11(ウィークパイプ)で、真円度も大きく変化している。
 すなわち、電縫鋼管11(ウィークパイプ)のシーム位置と、電縫鋼管12(ストロングパイプ)のシーム位置とを、相対して接合した場合には、電縫鋼管11(ウィークパイプ)のシーム位置が、巻付け内側(Intrados)、あるいは巻付け外側(Extrados)となる場合に、とくに固定端側の円周溶接部近傍の電縫鋼管11(ウィークパイプ)に、大きなIntrados軸方向歪あるいはExtrados軸方向歪が発生し、座屈あるいは破断が生じる惧れが大きくなる。
 例えば、図4A~Cに示すCase 1の場合には、固定端側円周溶接部近傍の電縫鋼管11(ウィークパイプ)の、リール巻付け内側でIntrados軸方向歪は約-10%(圧縮歪)、リール巻付け外側でExtrados軸方向歪は約10%(引張歪)、と大きな軸方向歪が発生している。Case 1は、引張特性が、Y/T:1.00となるように設定した高Y/Tでかつ一様伸びuElが0.25あるいは0.29と低い、極端に高Y/Tでかつ低uElの引張特性を有するシーム位置同士を相対して接合した場合であり、このような長尺鋼管では、リールに巻き付けた際に発生するIntrados軸方向歪、Extrados軸方向歪が大きくなり、局所的な座屈、破断が発生する惧れが大きくなる。
 また、図4A~Cに示すCase 2の場合(なお、Case 2のみの場合を図7A及びBに示す)には、固定端側の円周溶接部近傍の電縫鋼管11(ウィークパイプ)の、リール巻付け内側でIntrados軸方向歪が約-6%(圧縮歪)、リール巻付け外側でExtrados軸方向歪が約6%(引張歪)、と高い軸方向歪が発生している。Case 2は、引張特性がY/T:0.988~0.989でuEl:2.00~2.01%の高Y/Tでかつ低uElの引張特性を有するシーム位置(管断面0時の位置)同士を相対するように管長手方向端部同士を接合した場合である。このような長尺鋼管では、Case 1に比べて発生する軸方向歪は多少低くなるが、依然として高い軸方向歪が発生することがわかる。
 なお、電縫鋼管12(ストロングパイプ)の管断面0時の位置(シーム)を、Y/T:0.988でuEl:2.01%の高Y/Tで低uElの引張特性に代えて、Y/T:1.00となるように設定した高Y/Tでかつ一様伸びuElが低い、極端に高Y/Tでかつ低uElの引張特性を有するシーム位置とした図5A~Cに示すCase 4の場合でも、固定端側の円周溶接部近傍の電縫鋼管11(ウィークパイプ)で、発生するIntrados軸方向歪は、約-6%(圧縮歪)、Extrados軸方向歪は約6%(引張歪)程度で、Case 2と同程度である。
 また、図5A~Cに示すCase 6の場合には、Case 1の場合と同様に、固定端側円周溶接部近傍の電縫鋼管11(ウィークパイプ)の、リール巻付け内側でIntrados軸方向歪が約-10%(圧縮歪)、リール巻付け外側でExtrados軸方向歪が約10%(引張歪)、と大きな軸方向歪が発生している。Case 6は、電縫鋼管11(ウィークパイプ)のシーム位置の引張特性を、Y/T:1.00となるように設定した高Y/Tでかつ一様伸びuElが低い、極端に高Y/Tでかつ低uElの引張特性とし、電縫鋼管12(ストロングパイプ)の管断面0時の位置(シーム)の引張特性を、Y/T:0.988でuEl:2.01%の高Y/Tで低uElの引張特性として、それらのシーム位置が相対するように、管長手方向端部同士を突き合わせて接合した場合である。このような長尺鋼管では、長尺鋼管をリールに巻き付けた際に発生するIntrados軸方向歪、Extrados軸方向歪は大きく、局所的な座屈、破断が発生する惧れが大きくなる。
 一方、電縫鋼管11(ウィークパイプ)のシーム位置に、電縫鋼管12(ストロングパイプ)の管断面3時の位置を相対させて、端部同士を突き合わせたのち、円周溶接を行い、長尺鋼管1とした場合を想定した、図6A~Cに示すCase 9の場合では、長尺鋼管1をリールに巻付けた際に発生する軸方向歪は、固定端側円周溶接部近傍の電縫鋼管11(ウィークパイプ)で、Intrados軸方向歪が約-3%(圧縮歪)、Extrados軸方向歪が約3%(引張歪)、程度となっており、発生する軸方向歪が、Case 2やCase 4に比べて顕著に少なくなっている。なお、Case 9のみの場合を図8A及びBに示す。
 Case 9では、リールに巻き付ける長尺鋼管1として、6500mm長さの電縫鋼管11(ウィークパイプ)の管長手方向端部の両側でそれぞれ、管断面0時の位置(シーム)に、2500mm長さの電縫鋼管12(ストロングパイプ)の管断面3時の位置を相対させて、端部同士を突き合わせた。その後、円周溶接を行い、長尺鋼管1とした場合を想定している。
 また、Y/T:1.00となるように設定した高Y/Tでかつ一様伸びuElが0.25%と、極端に高Y/Tでかつ低uElの引張特性とした、電縫鋼管11(ウィークパイプ)の管断面0時の位置(シーム)に、電縫鋼管12(ストロングパイプ)の管断面3時の位置が相対するように、管長手方向端部同士を突き合わせた。その後、円周溶接を行い、長尺鋼管1とした図6A~Cに示すCase 8の場合も、Case 9と同様に、固定端側円周溶接部近傍の電縫鋼管11(ウィークパイプ)で発生するIntrados軸方向歪は約-3%(圧縮歪)、Extrados軸方向歪は約3%(引張歪)であり、座屈及び破断の発生の惧れが少ない。
 Case 8の場合は、電縫鋼管11(ウィークパイプ)の管断面0時の位置(シーム)の引張特性は、Case 9よりY/Tが高く、高Y/Tで低uElの引張特性としている。しかし、管断面0時の位置(シーム)の引張特性がこのような高Y/Tで低uElの引張特性である場合でも、電縫鋼管11(ウィークパイプ)のシーム位置に、電縫鋼管12(ストロングパイプ)の管断面3時の位置が相対するように、管長手方向端部同士を突き合わせて接合することにより、発生する軸方向歪は、Case 9と同程度となっている。
 また、図5A~Cに示すCase 5および図6A~Cに示すCase 7の場合には、いずれも、電縫鋼管11(ウィークパイプ)の管断面3時の位置に、電縫鋼管12(ストロングパイプ)のシーム位置(管断面0時の位置)を相対させて、接合しており、固定端側円周溶接部近傍の電縫鋼管11(ウィークパイプ)の、リール巻付け内側でIntrados軸方向歪は約-5%(圧縮歪)、リール巻付け外側でExtrados軸方向歪は約5%(引張歪)程度である。このような長尺鋼管では、リールに巻き付けた際に、局所的な座屈、破断の発生の惧れが小さい、といえる。
 なお、本発明者らは、別の検討から、軸方向歪が-6%(圧縮歪)~6%(引張歪)の範囲であれば、座屈あるいは破断する惧れが小さいことを、知見している。
 このようなことから、本発明者らは、複数本の電縫鋼管を用いて、管長手方向端部同士を順次円周溶接して、長尺の鋼管とするに当り、電縫鋼管のシーム位置に、それに隣り合う電縫鋼管の管断面2時の位置から管断面4時の位置の範囲または管断面8時の位置から管断面10時の位置の範囲が相対するように、隣り合う電縫鋼管の管長手方向端部同士を突き合わせて円周溶接を行うことにより、リール巻付け時のIntrados軸方向歪(圧縮歪)あるいはExtrados軸方向歪(引張歪)が低下し、座屈あるいは破断のおそれがなくなり、リール巻付け時の耐座屈性(耐破断性)が顕著に向上すること、を知見した。
 本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
 [1] 複数本の電縫鋼管が管長手方向に円周溶接部を介して接合されてなるリール工法用長尺鋼管であって、前記複数本の電縫鋼管のうち隣り合う一方の電縫鋼管のシーム位置を管断面0時の位置として、隣り合う他方の電縫鋼管の管断面が管軸周りに12等分されてそれぞれを時計回りに順に管断面0時から11時の各位置とし、前記複数本の電縫鋼管のうち隣り合う一方の電縫鋼管の管断面0時の位置に、前記隣り合う他方の電縫鋼管の管断面2時の位置から管断面4時の位置の範囲または管断面8時の位置から管断面10時の位置の範囲が相対して接合されてなることを特徴とする、リール工法用長尺鋼管。
 [2] 複数本の電縫鋼管が管長手方向に円周溶接部を介して接合されてなるリール工法用長尺鋼管であって、前記複数本の電縫鋼管のうち隣り合う一方の電縫鋼管のシーム位置を管断面0時の位置として、隣り合う他方の電縫鋼管の管断面が管軸周りに12等分されてそれぞれを時計回りに順に管断面0時から11時の各位置とし、前記複数本の電縫鋼管のうち隣り合う一方の電縫鋼管の管断面6時の位置に、前記隣り合う他方の電縫鋼管の管断面2時の位置から管断面4時の位置の範囲または管断面8時の位置から管断面10時の位置の範囲が相対して接合されてなることを特徴とする、リール工法用長尺鋼管。
 [3] 隣り合う一方の電縫鋼管の引張強さが413MPa~850MPaであり、隣り合う他方の電縫鋼管の引張強さが413MPa~787MPaである、[1]又は[2]に記載のリール工法用長尺鋼管。
 [4] 前記隣り合う他方の電縫鋼管を、前記隣り合う一方の電縫鋼管に比べ、管断面3時の位置で比較して、引張強さが30MPa以上高い電縫鋼管とすることを特徴とする、[3]に記載のリール工法用長尺鋼管。
 [5] 長尺の鋼管とする請求項1に記載のリール工法用長尺鋼管の製造方法であって、複数本の電縫鋼管の管長手方向端部同士を順次、突き合わせ円周溶接により接合し、前記電縫鋼管のシーム位置を管断面0時の位置とし、管断面を管軸周りに12等分してそれぞれを時計回りに順に管断面0時から管断面11時の各位置とし、前記突き合わせ円周溶接時に隣り合う一方の電縫鋼管の管断面0時の位置に、隣り合う他方の電縫鋼管の管断面2時の位置から管断面4時の位置の範囲または管断面8時の位置から管断面10時の位置の範囲が相対するように、隣り合う電縫鋼管の管長手方向端部同士を突き合わせて、前記接合を行うこと、を特徴とするリール工法用長尺鋼管の製造方法。
 [6] 長尺の鋼管とする請求項2に記載のリール工法用長尺鋼管の製造方法であって、複数本の電縫鋼管の管長手方向端部同士を順次、突き合わせ円周溶接により接合し、前記電縫鋼管のシーム位置を管断面0時の位置とし、管断面を管軸周りに12等分してそれぞれを時計回りに順に管断面0時から管断面11時の各位置とし、前記突き合わせ円周溶接時に隣り合う一方の電縫鋼管の管断面6時の位置に、隣り合う他方の電縫鋼管の管断面2時の位置から管断面4時の位置の範囲または管断面8時の位置から管断面10時の位置の範囲が相対するように、隣り合う電縫鋼管の管長手方向端部同士を突き合わせて、前記接合を行うこと、を特徴とするリール工法用長尺鋼管の製造方法。
 [7] 隣り合う一方の電縫鋼管の引張強さを413MPa~850MPaとし、隣り合う他方の電縫鋼管の引張強さを413MPa~787MPaとする、請求項5又6に記載のリール工法用長尺鋼管の製造方法。
 [8] 前記隣り合う他方の電縫鋼管を、前記隣り合う一方の鋼管に比べ、管断面3時の位置で比較して、引張強さが30MPa以上高い電縫鋼管とすることを特徴とする[7]に記載のリール工法用長尺鋼管の製造方法。
 本発明によれば、特別な設備を必要とすることもなく、また特別な熱処理を施すこともなく、電縫鋼管製の、耐座屈性に優れたリール工法用長尺鋼管を容易に製造でき、産業上格段な効果を奏する。特に、本発明によれば、電縫鋼管の高Y/Tで低uElとなる位置(管断面0時(シーム部)の位置、管断面6時の位置)が、リール巻付け時にリール巻付け内側(Intrados)またはリール巻付け外側(Extrados)に位置しても、発生する軸方向歪が小さく、座屈や、破断を生じる惧れが小さくなる、という顕著な効果を奏する。
図1は、パイプ(管)断面の円周方向各位置を定義する説明図である。 図2Aは、リール巻付け時に長尺鋼管に発生する歪を解析する解析モデルの説明図である。 図2Bは、リール巻付け時に長尺鋼管に発生する歪を解析する解析モデルの説明図である。 図3Aは、解析に使用した公称応力-公称歪曲線を示すグラフである。 図3Bは、解析に使用した公称応力-公称歪曲線を示すグラフである。 図4Aは、リール巻付け時に長尺鋼管に発生するIntrados軸方向歪の分布状況を示すグラフである(Case 1~Case 3)。 図4Bは、リール巻付け時に長尺鋼管に発生するExtrados軸方向歪軸方向歪の分布状況を示すグラフである(Case 1~Case 3)。 図4Cは、リール巻取り時に長尺鋼管に発生する真円度の分布状況を示すグラフである(Case 1~Case 3)。 図5Aは、リール巻付け時に長尺鋼管に発生するIntrados軸方向歪の分布状況を示すグラフである(Case 4~Case 6)。 図5Bは、リール巻付け時に長尺鋼管に発生するExtrados軸方向歪軸方向歪の分布状況を示すグラフである(Case 4~Case 6)。 図5Cは、リール巻取り時に長尺鋼管に発生する真円度の分布状況を示すグラフである(Case 4~Case 6)。 図6Aは、リール巻付け時に長尺鋼管に発生するIntrados軸方向歪の分布状況を示すグラフである(Case 7~Case 9)。 図6Bは、リール巻付け時に長尺鋼管に発生するExtrados軸方向歪軸方向歪の分布状況を示すグラフである(Case 7~Case 9)。 図6Cは、リール巻取り時に長尺鋼管に発生する真円度の分布状況を示すグラフである(Case 7~Case 9)。 図7Aは、リール巻付け時に長尺鋼管に発生するIntrados軸方向歪の分布状況を示すグラフである(Case 2の場合)。 図7Bは、リール巻付け時に長尺鋼管に発生するExtrados軸方向歪軸方向歪の分布状況を示すグラフである(Case 2の場合)。 図8Aは、リール巻付け時に長尺鋼管に発生するIntrados軸方向歪の分布状況を示すグラフである(Case 9の場合)。 図8Bは、リール巻付け時に長尺鋼管に発生するExtrados軸方向歪の分布状況を示すグラフである(Case 9の場合)。
 本発明では、図1に示すように、管断面における位置について、電縫鋼管のシーム位置を管断面0時の位置として、管断面を管軸周りに12等分して、それぞれを時計回りに、管断面0時の位置(シーム)から管断面11時の位置と表示する。
 本発明の長尺鋼管は、リール工法用で、複数本の電縫鋼管を管長手方向に順次、円周溶接部を介して接合してなる電縫鋼管製の長尺の鋼管であり、電縫鋼管の管長手方向端部同士を突き合わせ、順次、円周溶接により円周溶接部を形成して接合される。
 本発明で使用する電縫鋼管としては、管の造管方法(製造方法)に依存して、例えば、後述するような、円周方向各位置での管長手方向の引張特性を有する電縫鋼管を想定している。すなわち、管断面0時(シーム部)の位置および管断面6時の位置では、熱処理(塗装加熱)後で、降伏比(Y/T)が0.98と高く、一様伸びuElが約2%と低い、高Y/Tで低uElの引張特性を示し、一方、管断面2時の位置から管断面4時の位置の各位置ではいずれも、Y/Tが0.82~0.83と低く、uElが11%を超えて高く、低Y/Tで高uElの引張特性を示す。また、管断面8時の位置から管断面10時の位置の各位置でも同様に、低Y/Tで高uElの引張特性を示す。なお、管断面1時、5時、7時、11時の各位置では、隣り合う各位置の遷移領域となっている。
 このような電縫鋼管を接合して製造された長尺鋼管をリールに巻き付けて巻取る際に、リール巻付け内側(Intrados)に長尺鋼管のシームが位置する場合には、シーム部が高Y/Tで低uElの引張特性を有するため、とくに、隣り合う電縫鋼管のシーム位置同士が相対して接合されている場合に、鋼管に局所的な座屈が発生することが懸念される。なお、この場合、リール巻付け外側(Extrados)には長尺鋼管の管断面6時の位置が位置することになるが、管断面6時の位置も高Y/Tで低uElの引張特性を有するため、鋼管に局所的な破断が発生することが懸念される。
 そこで、本発明の長尺鋼管では、電縫鋼管を管長手方向に順次接合する際に、管長手方向に隣り合う一方の電縫鋼管の管断面0時の位置(シーム)に、隣り合う他方の電縫鋼管の管断面2時の位置から管断面4時の位置の範囲または管断面8時の位置から管断面10時の位置の範囲が相対するように順次突き合わせる。
 本発明では、隣り合う電縫鋼管11、12の管長手方向端部同士を突き合わせて接合するに際し、電縫鋼管11の、高Y/T、低uElの領域である管断面0時の位置に、隣り合う電縫鋼管12の、低Y/T、高uElの領域である管断面2時の位置から管断面4時の位置の範囲または管断面8時の位置から管断面10時の位置の範囲が相対するように管長手方向端部同士を突き合わせて、円周溶接により円周溶接部を形成して接合する。これにより、電縫鋼管11の管断面0時の位置(シーム)が、リール巻付け時にリール巻付け内側(Intrados)、またリール巻付け外側(Extrados)となっても、座屈、破断が発生するような大きな軸方向歪の発生は認められず、耐座屈性に優れた長尺鋼管1となる。電縫鋼管11の管断面0時の位置(シーム)が、リール巻付け時にリール巻付け内側(Intrados)、またリール巻付け外側(Extrados)となっても、固定端側円周溶接部近傍の電縫鋼管11に発生するIntrados軸方向歪(圧縮歪)の下限値が-6.00%以下であり、Extrados軸方向歪(引張歪)の上限値が6.00%以下である。
 耐座屈性は、Intrados軸方向歪(圧縮歪)が、?6.00以上?1.00%以下であることが好ましく、?5.00%以上?1.00%以下であることがより好ましく、?4.00%以上?1.00%以下であることが更に好ましい。Intrados軸方向歪(圧縮歪)が、?6.00以上?1.00%以下であると、耐座屈性に優れ、リール曲げ特性に優れた鋼管であるという格別な効果を発揮する。
 また、Extrados軸方向歪(引張歪)が、1.00%以上6.00%以下であることが好ましく、1.00%以上5.00%以下であることがより好ましく、1.00%以上4.00%以下であることが更に好ましい。
 Extrados軸方向歪(引張歪)が、1.00%以上6.00%以下であると、耐座屈性に優れ、リール曲げ特性に優れた鋼管であるという格別な効果を発揮する。
 上記した長尺鋼管の例として、表3に示すCase 9が例示できる。
 Case 9は、管長手方向端部同士を接合する際に、uEl:2.00%、YS:505MPa、TS:510MPa、Y/T:0.989である高Y/Tで低uElの引張特性を有する電縫鋼管11の管断面0時の位置(シーム)に、隣り合う電縫鋼管12の管断面3時の位置を相対するように突き合わせて、円周溶接により接合し長尺鋼管1とした例である。電縫鋼管12の管断面3時の位置は、uEl:10.04%、YS:481MPa、TS:585MPa、Y/T:0.822である低Y/Tで高uElの引張特性を有する。
 Case 9の例では、高Y/Tで低uElである引張特性を有する、電縫鋼管11の管断面0時の位置(シーム)が、リール巻付け時にリール巻付け内側(Intrados)、またリール巻付け外側(Extrados)となっても、固定端側円周溶接部近傍の電縫鋼管11に発生する軸方向の歪は、図8に示すように、Intrados軸方向歪で-3%程度、Extrados軸方向歪で3%程度と、大きな軸方向歪の発生は認められず、座屈、破断のおそれはなくなり、耐座屈性に優れた長尺鋼管となる。
 また、本発明では、電縫鋼管11のシーム部が、1.00となるように設定した高Y/Tでかつ一様伸びuElが0.25%と極端に小さい、高Y/Tでかつ低uElの引張特性を有すると想定した場合でも、シーム位置(管断面0時の位置)に相対するように、隣り合う電縫鋼管12の、低Y/T、高uEl領域である管断面2時の位置から管断面4時の位置の範囲または管断面8時の位置から管断面10時の位置の範囲を突き合わせて、円周溶接で接合する。これにより、電縫鋼管11のシーム部が、リール巻付け時にリール巻付け内側(Intrados)、またリール巻付け外側(Extrados)となっても、固定端側円周溶接部近傍の電縫鋼管11に発生する軸方向の歪は、座屈、破断のおそれがない程度に小さくすることができる。
 上記した長尺鋼管の例として、表3に示すCase 8が例示できる。Case 8は、管長手方向端部同士を接合する際に、uEl:0.25%、YS:510MPa、TS:510MPa、Y/T:1.000である、とくに高Y/Tで低uElの引張特性を有する電縫鋼管11の管断面0時の位置(シーム)に、uEl:10.04%、YS:481MPa、TS:585MPa、Y/T:0.822である低Y/Tで高uElの引張特性を有する、隣り合う電縫鋼管12の管断面3時の位置が相対するように突き合わせ、円周溶接で接合し長尺鋼管1とした例である。Case 8の例では、特に高Y/Tで低uElである引張特性を有する、電縫鋼管11の管断面0時の位置(シーム)が、リール巻付け時にリール巻付け内側(Intrados)、またリール巻付け外側(Extrados)となっても、固定端側円周溶接部近傍の電縫鋼管11に発生する軸方向の歪は、図6A~Cに示すように、Intrados軸方向歪で-3%程度、Extrados軸方向歪で3%程度と、大きな軸方向歪の発生は認められず、座屈、破断のおそれはなくなり、耐座屈性に優れた長尺鋼管となる。
 なお、本発明の長尺鋼管では、高Y/T、低uEl領域である管断面6時の位置に相対するように、低Y/T、高uEl領域である管断面2時の位置から管断面4時の位置の範囲または管断面8時の位置から管断面10時の位置の範囲を突き合わせて、円周溶接で円周溶接部を形成し接合してもよい。これにより、鋼管の管断面6時の位置が、リール巻付け時にリール巻付け内側(Intrados)、またリール巻付け外側(Extrados)となっても、大きな軸方向歪の発生は認められず、座屈、破断のおそれはなくなる。
 本発明の長尺鋼管では、使用する複数本の電縫鋼管の特性、外径、肉厚等については、とくに規定されないが、敷設するパイプラインの環境に適合した強度・靭性を有する、常用の電縫鋼管がいずれも適用できることは言うまでもない。
 本発明の長尺鋼管の材質は、質量%で、C:0.01%~1.00%を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材であるが、それに限定されるものではない。
 なお、本発明の長尺鋼管では、隣り合う電縫鋼管同士の強度については、とくに限定する必要がないが、隣り合う電縫鋼管で強度に差がある場合には、低い強度を有する電縫鋼管11のシーム位置が、リール巻付け時にリール巻付け内側(Intrados)、またリール巻付け外側(Extrados)となると、固定端側円周溶接部近傍の電縫鋼管11に発生する軸方向の歪が大きくなるリスクがある。そのため、隣り合う電縫鋼管で強度に差がある場合にはとくに、低い強度を有する電縫鋼管11のシーム位置に、高い強度を有する電縫鋼管12の管断面2時の位置から管断面4時の位置の範囲または管断面8時の位置から管断面10時の位置の範囲が相対するように、管長手方向端部同士を突き合わせて、接合することが重要になる。
 上記した図4~図6に示した例では、強度が低い電縫鋼管(ウィークパイプ;weak pipe)11と強度が高い電縫鋼管(ストロングパイプ;strong pipe)12との強度差(管断面3時の位置の引張強さTS)は75MPaであった。なお、同様の解析を、強度差(管断面3時の位置の引張強さTS)が30MPaある場合についても行ったが、同様の結果を得ている。例えば、YS510MPa-uEl 0.27%-Y/T 1.000-TS510MPaの高Y/Tで低uElである引張特性を有する領域(シーム位置)とYS540MPa-uEl 0.28%-Y/T 1.000-TS540MPaの高Y/Tで低uElである引張特性を有する領域(シーム位置)とが相対するように管長手方向端部同士を突き合わせて接合した長尺鋼管では、長尺鋼管をリールに巻付けた場合に、固定端側周溶接近傍の強度が低い電縫鋼管(ウィークパイプ;weak pipe)で発生するIntrados軸方向ひずみが約-10%を示し、座屈が発生する惧れがあることを確認している。
 このようなことから、強度差が30MPa以上ある電縫鋼管を、円周溶接で接合して長尺の鋼管とする場合にはとくに、隣り合う電縫鋼管のシーム位置同士が相対しないように、管長手方向端部同士を突き合わせて接合することが肝要となる。すなわち、強度が低い電縫鋼管(ウィークパイプ;weak pipe)11のシーム位置に、強度が高い電縫鋼管(ストロングパイプ;strong pipe)12の管断面2時の位置から管断面4時の位置を相対するように、管長手方向端部同士を突き合わせて接合した長尺鋼管とすることが肝要となる。
 尚、強度差が30~100MPaが好ましく、30~95MPaがより好ましく、30~90MPaが更に好ましい。強度差が30~100MPaであると、リール曲げ特性に優れた鋼管という効果を発揮する。
 尚、本発明のストロングパイプの引張特性(造管まま)における、降伏強さ(YS)は、289MPa~725MPaが好ましく、289MPa~705MPaがより好ましく、289MPa~691MPaが更に好ましい。降伏強さ(YS)が、289MPa~725MPaであると、リール曲げ特性に優れた鋼管という格別な効果を発揮する。
 そして、引張強さ(TS)は、413MPa~850MPaが好ましく、413MPa~825MPaがより好ましく、413MPa~810MPaが更に好ましい。引張強さ(TS)が、413MPa~850MPaの範囲であると、リール曲げ特性に優れた鋼管という格別な効果を発揮する。
 また、uEL(%)は、0.29%~15.2%が好ましく、0.29%~13.2%がより好ましく、0.29%~12.1%が更に好ましい。uEL(%)が、0.29%~15.2%の範囲であると、リール曲げ特性に優れた鋼管という格別な効果を発揮する。
 降伏比(Y/T)は、0.822~1.000が好ましく、0.822~0.988がより好ましく、0.822~0.883が更に好ましい。降伏比(Y/T)が、0.822~1.000の範囲であると、リール曲げ特性に優れた鋼管という格別な効果を発揮する。
 尚、本発明のウィークパイプの引張特性(造管まま)における、降伏強さ(YS)は、289MPa~778MPaが好ましく、289MPa~721MPaがより好ましく、289MPa~681MPaが更に好ましい。降伏強さ(YS)が、289MPa~778MPaであると、リール曲げ特性に優れた鋼管という格別な効果を発揮する。
 そして、引張強さ(TS)は、413MPa~787MPaが好ましく、413MPa~781MPaがより好ましく、413MPa~756MPaが更に好ましい。引張強さ(TS)が、413MPa~787MPaの範囲であると、リール曲げ特性に優れた鋼管という格別な効果を発揮する。
 また、uEL(%)は、0.25%~12.6%が好ましく、0.25%~11.7%がより好ましく、0.25%~11.5%が更に好ましい。uEL(%)が、0.25%~12.6%の範囲であると、リール曲げ特性に優れた鋼管という格別な効果を発揮する。
 降伏比(Y/T)は、0.82~1.000が好ましく、0.82~0.998がより好ましく、0.82~0.995が更に好ましい。降伏比(Y/T)が、0.82~1.000の範囲であると、リール曲げ特性に優れた鋼管という格別な効果を発揮する。
 本発明の電縫鋼管は、複数本の電縫鋼管を管長手方向に順次、円周溶接部を介して接合してなる長尺の鋼管である。本発明長尺鋼管の好ましい製造方法について説明する。
 まず、目的とする長尺鋼管の必要長さに応じて、同一寸法の電縫鋼管を複数本用意する。そして、用意した複数本の電縫鋼管を管長手方向に順次、管長手方向端部同士を突き合わせる。そして、電縫鋼管の管長手方向端部同士を突き合わせるに際しては、隣り合う一方の電縫鋼管の管断面0時の位置に、隣り合う他方の電縫鋼管の管断面2時の位置から管断面4時の位置または管断面8時の位置から管断面10時の位置が相対するように、突き合わせる。突き合わせたのち、円周溶接により円周溶接部を形成して接合する。なお、使用する円周溶接方法は、特に限定されないが、手溶接、MAG溶接、サブマージアーク溶接等の常用の溶接方法がいずれも適用できる。
 このような突き合わせや接合を繰返し行い、複数本の電縫鋼管からなる所望の長さの長尺鋼管とする。なお、複数本の電縫鋼管に強度差が認められる場合には、強度の低い鋼管を挟むように、強度の高い鋼管を突き合わせて接合する。
 これにより、長尺鋼管をリールに巻き付けた際に、管断面0時の位置(または管断面6時の位置)が、リール巻付け内側(Intrados)、またリール巻付け外側(Extrados)となったとしても、発生する軸方向歪は、局所的な座屈、破断を発生させるに十分な、軸方向歪量に到達することはない。
 以下、さらに実施例に基づき、さらに本発明について説明する。
(電縫鋼管の管断面の各位置の引張特性)
 表4に示す寸法(サイズ)の電縫鋼管(造管まま)を用意し、これら鋼管に、塗装加熱を模した熱処理(250℃×1hr)を施した。なお、同一寸法で、熱処理後の引張強さが異なる鋼管が得られるように、電縫鋼管を選択した。
 そして、予め、図1に示す管断面の各位置(シーム位置:0時)から、管長手方向が引張方向となるように引張試験片(全厚、GL:50.8mm)を採取し、引張試験を実施し、電縫鋼管の管断面の各位置の引張特性を求めた。表4に、得られた管断面各位置の引張特性(降伏強さYS(0.5%耐力)、引張強さTS、均一伸びuEl、降伏比Y/T)を併記して示す。
Figure JPOXMLDOC01-appb-T000004
 そして、図2Aに示すように、6500mm長さの電縫鋼管11の管長手方向の両端部に、2500mm長さの電縫鋼管12の管長手方向端部をそれぞれ、突き合わせ円周溶接により接合して、長尺鋼管1を作製した。円周溶接は、MAG溶接法を用いた。なお、2500mm長さの電縫鋼管12は、6500mm長さの電縫鋼管11に比べ、強度が高い鋼管(ストロングパイプ)を配置した。6500mm長さの電縫鋼管11はウィークパイプと称する。なお、管長手方向端部同士を突き合わせるに際して、表4に示すように、電縫鋼管(ウィークパイプ)11のシーム位置(管断面0時の位置)または管断面6時の位置に、電縫鋼管(ストロングパイプ)12の管断面の各位置が相対するように、突き合わせた。
 得られた長尺鋼管1を、図2Aに示すように、荷重を負荷し、リーリングフォーマー(半径:8250mm)2に巻き付け、図2Bに示すような最終位置まで巻き付けることを想定した。そしてその際に、長尺鋼管1の巻付け内側(Intrados)に発生する管長手方向(軸方向)の歪を、有限要素法を用いて解析した。なお、解析にあたっては、電縫鋼管11(ウィークパイプ)の0時の位置(シーム)または管断面6時の位置が巻付け内側(Intrados)となるようにした。また、有限要素法による解析を行うにあたり、使用した電縫鋼管11、12の管断面の各位置の引張特性は、塗装加熱を模した熱処理(250℃×1h)を施したのちの、表4に示す、uEl、YS、TS、Y/Tで代表される公称応力-公称歪曲線を用いた。なお、公称応力-公称歪曲線は、Swiftの式を用いて作成した。また、円周溶接部の公称応力-公称歪曲線は、電縫鋼管12のそれに対してオーバーマッチングとなるように設定した。
 得られた結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 本発明例(試験鋼管No.1~No.20)は、高Y/Tで低uElの引張特性を有する鋼管(ウィークパイプ)11のシーム位置(管断面0時の位置)または管断面6時の位置に、低Y/Tで高uElの引張特性を有する鋼管(ストロングパイプ)12の管断面2時の位置から管断面4時の位置の範囲または管断面8時の位置から管断面10時の位置の範囲のいずれかの位置が、相対するように管長手方向の端面同士を突き合わせて円周溶接して接合した場合(長尺鋼管)である。
 一方、比較例(試験鋼管No.21~No.30)は、高Y/Tで低uElの引張特性を有する鋼管(ウィークパイプ)11のシーム位置(管断面0時の位置)に、高Y/Tで低uElの引張特性を有する鋼管(ストロングパイプ)12の管断面0時、1時、5時、7時、11時の位置のいずれかが、相対するように管長手方向の端面同士を突き合わせて円周溶接して接合した場合(長尺鋼管)である。
 本発明例ではいずれも、鋼管11の固定端側円周溶接部近傍に発生する軸方向の歪(Intrados軸方向歪)は、-1.62%(試験鋼管No.4)~-3.33%(試験鋼管No.19)であり、いずれの場合も、座屈の発生が懸念される領域の圧縮軸方向ひずみ(Intrados軸方向歪)が-6%に達しておらず、本発明例は耐座屈性に優れた長尺鋼管であるといえる。
 一方、本発明範囲を外れる比較例(試験鋼管No.21~No.30)では、固定端側円周溶接部近傍の鋼管11に発生する圧縮軸方向ひずみ(Intrados軸方向歪)は、-9.22(試験鋼管No.25)~-10.90(試験鋼管No.22)であり、圧縮歪で-6%を超えて座屈の発生が懸念される。本発明の範囲を外れる比較例は、耐座屈性に優れた長尺鋼管であるとはいえない。
 本発明によれば、特別な設備を必要とすることもなく、また特別な熱処理を施すこともなく、電縫鋼管製の、耐座屈性に優れたリール工法用長尺鋼管を容易に製造でき、特に、電縫鋼管の高Y/Tで低uElとなる位置(管断面0時(シーム部)の位置、管断面6時の位置)が、リール巻付け時にリール巻付け内側(Intrados)またはリール巻付け外側(Extrados)に位置しても、発生する軸方向歪が小さく、座屈や、破断を生じる惧れが低下するリール工法用長尺鋼管及びその製造方法を提供することが可能である。
1 長尺鋼管
2 リーリングフォーマー(リール)
11 鋼管(ウィークパイプ)
12 鋼管(ストロングパイプ)
 

Claims (8)

  1.  複数本の電縫鋼管が管長手方向に円周溶接部を介して接合されてなるリール工法用長尺鋼管であって、前記複数本の電縫鋼管のうち隣り合う一方の電縫鋼管のシーム位置を管断面0時の位置として、隣り合う他方の電縫鋼管の管断面が管軸周りに12等分されてそれぞれを時計回りに順に管断面0時から11時の各位置とし、前記複数本の電縫鋼管のうち隣り合う一方の電縫鋼管の管断面0時の位置に、前記隣り合う他方の電縫鋼管の管断面2時の位置から管断面4時の位置の範囲または管断面8時の位置から管断面10時の位置の範囲が相対して接合されてなることを特徴とする、リール工法用長尺鋼管。
  2.  複数本の電縫鋼管が管長手方向に円周溶接部を介して接合されてなるリール工法用長尺鋼管であって、前記複数本の電縫鋼管のうち隣り合う一方の電縫鋼管のシーム位置を管断面0時の位置として、隣り合う他方の電縫鋼管の管断面が管軸周りに12等分されてそれぞれを時計回りに順に管断面0時から11時の各位置とし、前記複数本の電縫鋼管のうち隣り合う一方の電縫鋼管の管断面6時の位置に、前記隣り合う他方の電縫鋼管の管断面2時の位置から管断面4時の位置の範囲または管断面8時の位置から管断面10時の位置の範囲が相対して接合されてなることを特徴とする、リール工法用長尺鋼管。
  3.  隣り合う一方の電縫鋼管の引張強さが413MPa~850MPaであり、隣り合う他方の電縫鋼管の引張強さが413MPa~787MPaである、請求項1又は2に記載のリール工法用長尺鋼管。
  4.  前記隣り合う他方の電縫鋼管を、前記隣り合う一方の電縫鋼管に比べ、管断面3時の位置で比較して、引張強さが30MPa以上高い電縫鋼管とすることを特徴とする、請求項3に記載のリール工法用長尺鋼管。
  5.  長尺の鋼管とする請求項1に記載のリール工法用長尺鋼管の製造方法であって、
     複数本の電縫鋼管の管長手方向端部同士を順次、突き合わせ円周溶接により接合し、
     前記電縫鋼管のシーム位置を管断面0時の位置とし、
     管断面を管軸周りに12等分してそれぞれを時計回りに順に管断面0時から管断面11時の各位置とし、
     前記突き合わせ円周溶接時に隣り合う一方の電縫鋼管の管断面0時の位置に、隣り合う他方の電縫鋼管の管断面2時の位置から管断面4時の位置の範囲または管断面8時の位置から管断面10時の位置の範囲が相対するように、隣り合う電縫鋼管の管長手方向端部同士を突き合わせて、前記接合を行うこと、を特徴とするリール工法用長尺鋼管の製造方法。
  6.  長尺の鋼管とする請求項2に記載のリール工法用長尺鋼管の製造方法であって、
     複数本の電縫鋼管の管長手方向端部同士を順次、突き合わせ円周溶接により接合し、
     前記電縫鋼管のシーム位置を管断面0時の位置とし、
     管断面を管軸周りに12等分してそれぞれを時計回りに順に管断面0時から管断面11時の各位置とし、
     前記突き合わせ円周溶接時に隣り合う一方の電縫鋼管の管断面6時の位置に、隣り合う他方の電縫鋼管の管断面2時の位置から管断面4時の位置の範囲または管断面8時の位置から管断面10時の位置の範囲が相対するように、隣り合う電縫鋼管の管長手方向端部同士を突き合わせて、前記接合を行うこと、を特徴とするリール工法用長尺鋼管の製造方法。
  7.  隣り合う一方の電縫鋼管の引張強さを413MPa~850MPaとし、隣り合う他方の電縫鋼管の引張強さを413MPa~787MPaとする、請求項5又6に記載のリール工法用長尺鋼管の製造方法。
  8.  前記隣り合う他方の電縫鋼管を、前記隣り合う一方の鋼管に比べ、管断面3時の位置で比較して、引張強さが30MPa以上高い電縫鋼管とすることを特徴とする請求項7に記載のリール工法用長尺鋼管の製造方法。
     
PCT/JP2019/037380 2018-09-28 2019-09-24 リール工法用長尺鋼管及びその製造方法 WO2020067064A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/279,218 US11731210B2 (en) 2018-09-28 2019-09-24 Long steel pipe for reel-lay installation and method for producing the same
JP2019567745A JP6662505B1 (ja) 2018-09-28 2019-09-24 リール工法用長尺鋼管及びその製造方法
EP19864023.7A EP3858506B1 (en) 2018-09-28 2019-09-24 Long steel pipe for reel method and manufacturing method for same
BR112021005717-0A BR112021005717A2 (pt) 2018-09-28 2019-09-24 tubo de aço longo para instalação reel-lay e método para produzir o mesmo

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018184770 2018-09-28
JP2018-184770 2018-09-28
JP2018184771 2018-09-28
JP2018-184771 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020067064A1 true WO2020067064A1 (ja) 2020-04-02

Family

ID=69951376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037380 WO2020067064A1 (ja) 2018-09-28 2019-09-24 リール工法用長尺鋼管及びその製造方法

Country Status (5)

Country Link
US (1) US11731210B2 (ja)
EP (1) EP3858506B1 (ja)
JP (1) JP6662505B1 (ja)
BR (1) BR112021005717A2 (ja)
WO (1) WO2020067064A1 (ja)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316721B2 (ja) 1972-08-25 1978-06-03
JPS565526B2 (ja) 1977-06-06 1981-02-05
JPS604144B2 (ja) 1981-02-04 1985-02-01 株式会社東芝 絶縁性結合剤ガラス
JPH033749A (ja) * 1989-05-31 1991-01-09 Hitachi Seiko Ltd 加工方法
JPH03133576A (ja) * 1989-07-06 1991-06-06 Kawasaki Steel Corp リールバージ敷設用電縫鋼管ラインパイプの円周溶接方法
WO1993022592A1 (en) * 1992-04-27 1993-11-11 Den Norske Stats Oljeselskap A.S Method of laying a pipeline from a laybarge, on an uneven seabed
JP2006281217A (ja) * 2005-03-31 2006-10-19 Sumitomo Metal Ind Ltd 連結管及びその製造方法
JP4442541B2 (ja) 2005-09-30 2010-03-31 Jfeスチール株式会社 ラインパイプ向け低yr電縫鋼管の製造方法
JP2010209471A (ja) * 2007-07-23 2010-09-24 Nippon Steel Corp 変形特性に優れた鋼管及びその製造方法
JP5292830B2 (ja) 2007-02-28 2013-09-18 Jfeスチール株式会社 溶接部靭性に優れたラインパイプ向け電縫鋼管
JP5679114B2 (ja) 2011-02-24 2015-03-04 Jfeスチール株式会社 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法
JP5776398B2 (ja) 2011-02-24 2015-09-09 Jfeスチール株式会社 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法
JP5886238B2 (ja) 2011-03-30 2016-03-16 新日鐵住金株式会社 ラインパイプ用電縫鋼管及びその製造方法
JP2017214618A (ja) 2016-05-31 2017-12-07 Jfeスチール株式会社 低温靭性に優れた低降伏比高強度熱延鋼板の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1952217A (en) 1931-10-31 1934-03-27 Alco Products Inc Method of making pipe
JPH0337491A (ja) 1989-07-03 1991-02-18 Kawasaki Steel Corp ラインパイプの敷設方法
US5134267A (en) 1989-07-06 1992-07-28 Kawasaki Steel Corporation Method of conducting circumferential welding of electric welded steel line pipe to be laid by reel barge
DE102006004157A1 (de) 2006-01-30 2007-08-02 Eppendorf Ag Vorrichtung und Verfahren zum Inkubieren von Zellen
GB2476457B (en) * 2009-12-22 2011-11-09 Technip France Method of manufacturing a mechanically lined pipe
IN2015DN00770A (ja) 2012-09-13 2015-07-03 Jfe Steel Corp
GB2508175B (en) * 2012-11-22 2015-06-24 Technip France Mechanically lined pipe
US11767934B2 (en) * 2013-05-23 2023-09-26 Crc-Evans Pipeline International, Inc. Internally welded pipes
GB2521190B (en) * 2013-12-12 2016-07-06 Technip France Tubular assembly
EP3246427B1 (en) 2015-03-06 2018-12-12 JFE Steel Corporation High strength electric resistance welded steel pipe and manufacturing method therefor
WO2021046298A1 (en) * 2019-09-06 2021-03-11 Saudi Arabian Oil Company Reducing the risk of corrosion in pipelines

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316721B2 (ja) 1972-08-25 1978-06-03
JPS565526B2 (ja) 1977-06-06 1981-02-05
JPS604144B2 (ja) 1981-02-04 1985-02-01 株式会社東芝 絶縁性結合剤ガラス
JPH033749A (ja) * 1989-05-31 1991-01-09 Hitachi Seiko Ltd 加工方法
JPH03133576A (ja) * 1989-07-06 1991-06-06 Kawasaki Steel Corp リールバージ敷設用電縫鋼管ラインパイプの円周溶接方法
WO1993022592A1 (en) * 1992-04-27 1993-11-11 Den Norske Stats Oljeselskap A.S Method of laying a pipeline from a laybarge, on an uneven seabed
JP2006281217A (ja) * 2005-03-31 2006-10-19 Sumitomo Metal Ind Ltd 連結管及びその製造方法
JP4442541B2 (ja) 2005-09-30 2010-03-31 Jfeスチール株式会社 ラインパイプ向け低yr電縫鋼管の製造方法
JP5292830B2 (ja) 2007-02-28 2013-09-18 Jfeスチール株式会社 溶接部靭性に優れたラインパイプ向け電縫鋼管
JP2010209471A (ja) * 2007-07-23 2010-09-24 Nippon Steel Corp 変形特性に優れた鋼管及びその製造方法
JP5679114B2 (ja) 2011-02-24 2015-03-04 Jfeスチール株式会社 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法
JP5776398B2 (ja) 2011-02-24 2015-09-09 Jfeスチール株式会社 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法
JP5886238B2 (ja) 2011-03-30 2016-03-16 新日鐵住金株式会社 ラインパイプ用電縫鋼管及びその製造方法
JP2017214618A (ja) 2016-05-31 2017-12-07 Jfeスチール株式会社 低温靭性に優れた低降伏比高強度熱延鋼板の製造方法

Also Published As

Publication number Publication date
JPWO2020067064A1 (ja) 2021-01-07
JP6662505B1 (ja) 2020-03-11
EP3858506B1 (en) 2023-08-23
US11731210B2 (en) 2023-08-22
EP3858506A4 (en) 2021-12-01
US20220032391A1 (en) 2022-02-03
EP3858506A1 (en) 2021-08-04
BR112021005717A2 (pt) 2021-06-22

Similar Documents

Publication Publication Date Title
US10378075B2 (en) High performance material for coiled tubing applications and the method of producing the same
JP6004144B1 (ja) 高強度電縫鋼管およびその製造方法
WO2016103623A1 (ja) 深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管およびその製造方法ならびに深井戸向け高強度厚肉コンダクターケーシング
WO2009119570A1 (ja) ラインパイプ用uoe鋼管及びその製造方法
JP2006289482A (ja) ラインパイプ用低降伏比電縫鋼管の製造方法
JP2002060910A (ja) 高Cr溶接鋼管
JP6662505B1 (ja) リール工法用長尺鋼管及びその製造方法
US11401568B2 (en) Steel material for line pipes, method for producing the same, and method for producing line pipe
US10449636B2 (en) Pipeline and manufacturing method thereof
JP6658385B2 (ja) 鋼管の製造方法
JP5353760B2 (ja) 変形特性に優れる電縫鋼管およびその製造方法
JP2003041345A (ja) 薄板溶接鋼管およびその製造方法
JPH0653912B2 (ja) リールバージ敷設性に優れた高靭性電縫鋼管
EP3733878B1 (en) Steel material for line pipes, production method for same, and production method for line pipe
EP3950997A1 (en) Steel material for line pipes and method for manufacturing same, and line pipe and method for manufacturing same
KR20150127301A (ko) 띠 형상 금속판
SK285606B6 (sk) Spôsob výroby rúrových oblúkov z priamych špirálovo zváraných rúr
JP2001269713A (ja) ステンレス鋼溶接管及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019567745

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021005717

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019864023

Country of ref document: EP

Effective date: 20210428

ENP Entry into the national phase

Ref document number: 112021005717

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210325