WO2016103623A1 - 深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管およびその製造方法ならびに深井戸向け高強度厚肉コンダクターケーシング - Google Patents

深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管およびその製造方法ならびに深井戸向け高強度厚肉コンダクターケーシング Download PDF

Info

Publication number
WO2016103623A1
WO2016103623A1 PCT/JP2015/006232 JP2015006232W WO2016103623A1 WO 2016103623 A1 WO2016103623 A1 WO 2016103623A1 JP 2015006232 W JP2015006232 W JP 2015006232W WO 2016103623 A1 WO2016103623 A1 WO 2016103623A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel pipe
strength thick
erw
temperature
Prior art date
Application number
PCT/JP2015/006232
Other languages
English (en)
French (fr)
Inventor
聡太 後藤
岡部 能知
雪彦 岡崎
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020177015946A priority Critical patent/KR101967691B1/ko
Priority to CA2967902A priority patent/CA2967902C/en
Priority to EP15872198.5A priority patent/EP3239316B1/en
Priority to CN201580070398.9A priority patent/CN107109568B/zh
Priority to US15/539,510 priority patent/US11053564B2/en
Priority to JP2016516998A priority patent/JP5999284B1/ja
Publication of WO2016103623A1 publication Critical patent/WO2016103623A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B19/00Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work
    • B21B19/12Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work the axes of the rollers being arranged essentially parallel to the axis of the work
    • B21B19/14Rolling tubes by means of additional rollers arranged inside the tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B23/00Tube-rolling not restricted to methods provided for in only one of groups B21B17/00, B21B19/00, B21B21/00, e.g. combined processes planetary tube rolling, auxiliary arrangements, e.g. lubricating, special tube blanks, continuous casting combined with tube rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/08Seam welding not restricted to one of the preceding subgroups
    • B23K11/087Seam welding not restricted to one of the preceding subgroups for rectilinear seams
    • B23K11/0873Seam welding not restricted to one of the preceding subgroups for rectilinear seams of the longitudinal seam of tubes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/17Rigid pipes obtained by bending a sheet longitudinally and connecting the edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to an ERW steel pipe suitable for a conductor casing used as earth retaining for a well when excavating an oil well or a gas well, and is particularly used for developing a deep sea oil field or a deep sea gas field existing at a depth of 3,000 m or more.
  • the present invention relates to a high-strength thick-walled electric-welded steel pipe suitable for a conductor casing (hereinafter also referred to as a deep well) and a method for producing the same.
  • Conductor casings are used as earth retainings for wells to protect oil well pipes from external pressure during the early stages of oil and gas well drilling.
  • a conductor casing has been manufactured by joining a UOE steel pipe and a connector (threaded forged member).
  • the conductor casing is subjected to post-weld heat treatment in a temperature range of more than 500 ° C and less than 600 ° C in order to remove residual stress at the joint between the steel pipe and the forged member and to prevent hydrogen cracking. Therefore, there has been a demand for a steel pipe that is excellent in post-weld heat treatment resistance and can suppress a decrease in strength due to post-weld heat treatment and can maintain a desired strength even after post-weld heat treatment.
  • Patent Document 1 describes a high-strength riser steel pipe excellent in high-temperature SR characteristics (resistance to SR embrittlement).
  • the technology described in Patent Document 1 is weight%, C: 0.02 to 0.18%, Si: 0.05 to 0.50%, Mn: 1.00 to 2.00%, Cr: 0.30 to 1.00%, Ti: 0.005 to 0.030%, Nb : A riser steel pipe having a steel composition including 0.060% or less and Al: 0.10% or less and excellent in high-temperature SR characteristics.
  • Patent Document 2 uses a pipe expansion device in which grooves are formed on the outer peripheral portions of all of a plurality of dies attached to the pipe expansion device, for each steel pipe to be expanded.
  • a method of expanding a UOE steel pipe which is expanded by changing a die attached to a pipe expanding device, which is opposed to the inner peripheral side of the steel pipe weld.
  • the die wear amount of the pipe expanding device is made uniform, and the roundness of the steel pipe can be improved.
  • Patent Document 2 has a problem that a sufficient roundness cannot be ensured particularly for a conductor casing for a deep well.
  • the present invention provides a high-strength, thick-walled electric-welded steel pipe that is suitable for deep-well conductor casings and has high strength, high toughness, and excellent heat resistance after welding, and a method for producing the same.
  • the purpose is to provide.
  • high strength refers to a case where the strength is API X80 grade or higher, that is, yield strength YS: 555 MPa or more and tensile strength TS: 625 MPa or more.
  • high toughness refers to a case where Charpy impact test absorbed energy vE ⁇ 40 at a test temperature of ⁇ 40 ° C. is 27 J or more.
  • thick here means a case where the thickness is 15 mm or more. For deep sea embedment, the wall thickness is preferably 20 mm or more.
  • Excellent heat resistance after welding means that the strength of the base metal remains higher than API X80 grade after post-weld heat treatment exceeding 500 ° C and below 600 ° C. It shall be said.
  • the present inventors diligently studied the properties of a steel pipe suitable for a conductor casing for deep wells. As a result, it has been found that it is necessary to use a steel pipe whose roundness is adjusted to 0.6% or less in order to prevent breakage due to bending deformation when laying the conductor casing. If the roundness of the steel pipe to be used is 0.6% or less, the threaded member and the joint (steel pipe end) are broken by repeated bending deformation without performing special additional processes such as cutting and straightening. It was found that it can be reduced to such an extent that it can be suppressed.
  • an ERW steel pipe is more preferable than a UOE steel pipe as such a steel pipe.
  • the ERW steel pipe is continuously formed into a cylindrical shape by a plurality of rolls, and has a higher roundness than a UOE steel pipe formed by press working and pipe expansion.
  • the diameter reduction rolling by a sizer roll is finally performed after the electric resistance welding. It has been found that it is effective to perform the applied molding.
  • an inner roll is disposed on the downstream side of the cage roll group.
  • the present inventors have further studied diligently about the influence of the composition of the hot-rolled steel sheet as the steel pipe material and the hot-rolling conditions on the strength of the steel pipe after the heat treatment after welding.
  • the strength of ERW steel pipes can be maintained at API X80 grade or higher.
  • the amount of Nb precipitates (precipitated Nb) needs to exceed 75% of the content of Nb in terms of Nb.
  • the amount of fine Nb precipitates (precipitated Nb) is 75% or less of the Nb content, the decrease in yield strength YS during post-weld heat treatment cannot be suppressed.
  • the present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows. (1) By mass%, C: 0.01 to 0.12%, Si: 0.05 to 0.50%, Mn: 1.0 to 2.2%, P: 0.03% or less, S: 0.005% or less, Al: 0.001 to 0.10%, N: 0.006 %, Nb: 0.010 to 0.100%, Ti: 0.001 to 0.050%, the composition consisting of the balance Fe and inevitable impurities, and a bainitic ferrite phase with a volume fraction of 90% or more as the main phase, the main phase And a second phase having a volume ratio of 10% or less (including 0%), the bainitic ferrite phase has an average particle size of 10 ⁇ m or less, and a particle size of less than 20 nm in the base material portion Nb precipitates have a structure in which the Nb equivalent is a ratio of the total Nb content (%) and is dispersed in excess of 75%, and the following
  • a hot rolled steel sheet is continuously roll-formed by a roll forming machine to form an open tube having a substantially circular cross section, the ends of the open tube are butted together, and the butted portion is pressed with a squeeze roll
  • An electric resistance welded steel pipe is then welded into an electric resistance welded steel pipe, and then subjected to in-line heat treatment on the electric resistance welded portion of the electric resistance welded steel pipe, and then subjected to shrink diameter rolling.
  • C 0.01 to 0.12%
  • Si 0.05 to 0.50%
  • Mn 1.0 to 2.2%
  • P 0.03% or less
  • S 0.005% or less
  • Al 0.001 to 0.10%
  • N 0.006% or less
  • Nb 0.010 to 0.100%
  • Ti 0.001 to 0.050%
  • the steel material composed of the remaining Fe and inevitable impurities is heated to a temperature of 1150 to 1250 ° C for 60 minutes or more.
  • the roll forming machine is a roll forming machine comprising a cage roll group consisting of a plurality of rolls and a fin path forming roll group consisting of a plurality of rolls.
  • an inner roll is disposed on the downstream side in the cage roll group, and two or more positions are pressed from the inner wall side of the hot-rolled steel sheet in the middle of forming.
  • the in-line heat treatment of the ERW weld is performed by heating the ERW weld to a heating temperature of 830 to 1150 ° C.
  • the cooling is performed at an average cooling rate of 10 to 70 ° C / s in the temperature range of 550 ° C, and cooling to the cooling stop temperature of 550 ° C or below at the plate thickness center temperature.
  • the reduced diameter rolling is a rolling having a reduced diameter ratio of 0.2 to 3.3%. Manufacturing method of sewn steel pipe.
  • a high-strength thick-walled electric-welded steel pipe that is suitable for a conductor casing for deep wells and has high strength, high toughness, and excellent heat resistance after welding can be easily obtained without any additional processing. In addition, it can be manufactured at a low cost and has a remarkable industrial effect.
  • the present invention when the conductor casing is laid, the occurrence of breakage is suppressed, and there is an effect that the laying cost is reduced.
  • there is an effect that a conductor casing having a strength of API X80 grade or higher can be obtained even after a post-weld heat treatment that exceeds 500 ° C. and less than 600 ° C.
  • the electric resistance welded steel pipe of the present invention also has an effect that it is useful for a line pipe for joining pipes to each other by circumferential welding.
  • the high-strength thick-walled electric-welded steel pipe of the present invention is a high-strength thick-walled electric-welded steel pipe for a conductor casing for deep wells.
  • the “high-strength thick-walled electric-welded steel pipe” here is a thick-walled electric-welded steel pipe with a thickness of 15 mm or more, in which both the base metal part and the electric-welded welded part have high strength of API X80 grade or higher.
  • the base metal part retains a high strength of yield strength YS: 555 MPa or more and a tensile strength TS: 625 MPa or more, and the ERW weld part retains a high strength of tensile strength TS: 625 MPa or more.
  • the high-strength thick-walled electric-welded steel pipe of the present invention is, in mass%, C: 0.01 to 0.12%, Si: 0.05 to 0.50%, Mn: 1.0 to 2.2%, P: 0.03% or less, S: 0.005% or less, Al : 0.001 to 0.10%, N: 0.006% or less, Nb: 0.010 to 0.100%, Ti: 0.001 to 0.050% included, or V: 0.1% or less, Mo: 0.5% or less, Cr: 0.5% or less, Cu : 0.5% or less, Ni: 1.0% or less, B: One or more selected from 0.0030% or less, and / or Ca: 0.0005-0.0050%, REM: 0.0005-0.0050% 1 type or 2 types, and has a composition composed of the balance Fe and inevitable impurities.
  • C 0.01-0.12% C is an important element that contributes to increasing the strength of the steel pipe, and needs to be contained in an amount of 0.01% or more in order to ensure the desired high strength. On the other hand, if the content exceeds 0.12%, weldability deteriorates. In addition, a large amount of C exceeding 0.12% causes martensite formation when cooling is fast after hot rolling or in-line heat treatment of ERW welds, and a large amount of pearlite is generated when cooling is slow. It may be easy to produce and may cause toughness or strength reduction. Therefore, C is limited to a range of 0.01 to 0.12%. In addition, Preferably it is 0.03-0.10%, More preferably, it is 0.03-0.08%.
  • Si 0.05-0.50%
  • Si is an element that contributes to an increase in strength of the steel pipe by solid solution strengthening.
  • the Si content needs to be 0.05% or more.
  • Si has a stronger affinity for O (oxygen) than Fe, and forms a eutectic oxide with high viscosity together with Mn oxide during ERW welding. For this reason, when it contains excessively exceeding 0.50%, the quality of an electric-welding weld will be deteriorated.
  • Si was limited to the range of 0.05 to 0.50%.
  • the content is 0.05 to 0.30%.
  • Mn 1.0-2.2% Mn is an element that contributes to increasing the strength of the steel pipe, and needs to be contained in an amount of 1.0% or more in order to ensure the desired high strength. On the other hand, if it is contained in a large amount exceeding 2.2%, like C, martensite is easily generated and weldability is lowered. For this reason, Mn was limited to a range of 1.0 to 2.2%. It is preferably 1.2 to 2.0%.
  • S 0.005% or less S is present in the steel as coarse sulfide inclusions such as MnS, and causes a decrease in ductility and toughness. Therefore, it is desirable to reduce S as much as possible. In the present invention, up to 0.005% is acceptable. For these reasons, S is limited to 0.005% or less. In addition, Preferably it is 0.004% or less. In addition, excessive reduction leads to a rise in refining costs, so 0.0001% or more is preferable.
  • Al 0.001 to 0.10%
  • Al is an element usefully acting as a deoxidizer for steel. In order to obtain such an effect, it is necessary to contain 0.001% or more. On the other hand, when it contains more than 0.10% in a large amount, an Al oxide is generated, and the cleanliness of the steel is lowered. Therefore, Al is limited to the range of 0.001 to 0.10%. Preferably, the content is 0.005 to 0.08%.
  • Nb 0.010 to 0.100%
  • Nb is an important element in the present invention. It is an element that exists as Nb carbonitride in steel during the heating of steel materials (slabs), suppresses coarsening of austenite grains, and contributes to refinement of the structure. In addition, it precipitates as fine Nb precipitates in hot-rolled steel sheets, suppresses matrix recovery and recrystallization during post-weld heat treatment above 500 ° C and below 600 ° C, and reduces the strength of the steel pipe base material after post-weld heat treatment To prevent. In order to obtain such an effect, a content of 0.010% or more is required. On the other hand, an excessive content exceeding 0.100% adversely affects the toughness of the steel pipe. Therefore, Nb is limited to the range of 0.010 to 0.100%. Preferably, the content is 0.020 to 0.080%.
  • the above components are basic components.
  • V 0.1% or less
  • Mo 0.5% or less
  • Cr 0.5% or less
  • Cu 0.5% or less
  • Ni 1.0% or less
  • B 0.0030% or less
  • One kind or two or more kinds selected and / or one or two kinds selected from Ca: 0.0005 to 0.0050% and REM: 0.0005 to 0.0050% may be contained.
  • V 0.1%, Mo: 0.5%, Cr: 0.5%, Cu: 0.5%, Ni: 1.0%, B: 0.0030%
  • the content exceeding each will lead to deterioration of weldability and toughness, and material cost There is a risk of rising prices.
  • V 0.1% or less, Mo: 0.5% or less, Cr: 0.5% or less, Cu: 0.5% or less, Ni: 1.0% or less, B: 0.0030% or less, respectively.
  • V is 0.08% or less
  • Mo is 0.45% or less
  • Cr is 0.3% or less
  • Cu is 0.35% or less
  • Ni is 0.35% or less
  • B is 0.0025% or less.
  • Ca and REM replace the expanded sulfide inclusions such as MnS with spherical sulfide inclusions. It is an element that contributes to the form control of the inclusions that can be selected and contained as necessary. In order to obtain such an effect, both Ca and REM must be contained by 0.0005% or more. On the other hand, if both Ca and REM contain more than 0.0050%, oxide inclusions may increase and the toughness may be reduced. For this reason, when it contains, it is preferable to limit to Ca: 0.0005-0.0050% and REM: 0.0005-0.0050%.
  • the balance other than the above components is composed of Fe and inevitable impurities.
  • the high-strength thick-walled ERW steel pipe of the present invention has the above-described composition, and both the base material portion and the ERW weld portion have a bainitic ferrite phase having a volume ratio of 90% or more as a main phase, And a second phase having a volume ratio of 10% or less (including 0%).
  • the average particle size of the bainitic ferrite phase is 10 ⁇ m or less, and fine Nb precipitates having a particle size of less than 20 nm in the base material part are 75% in terms of Nb ratio (%) to the total Nb amount.
  • the ERW steel pipe of the present invention has both a base metal part and an ERW welded part. It has a structure whose main phase is bainitic ferrite phase of 90% or more. If the bainitic ferrite phase is less than 90%, that is, the second phase other than the main phase is 10% or more, and the desired toughness cannot be secured. Examples of the second phase other than the main phase include hard phases such as pearlite, degenerate pearlite, bainite, and martensite. For this reason, the volume fraction of the bainitic ferrite phase that is the main phase is limited to 90% or more. In addition, Preferably it is 95% or more.
  • the bainitic ferrite phase which is the main phase
  • the “grain size” here refers to the size of a region where the orientation difference is within 15 ° by obtaining the orientation difference between adjacent crystal grains by the SEM / EBSD method.
  • Particle size Fine Nb precipitates of less than 20 nm: In Nb conversion, the ratio (%) to the total Nb amount exceeds 75%.
  • the amount of fine Nb precipitates is 75% or less in terms of Nb, the amount of fine Nb precipitates is insufficient, and the desired heat resistance after welding cannot be ensured. For this reason, the amount of fine Nb precipitates having a particle size of less than 20 nm was limited to more than 75% in terms of Nb, as a ratio (%) to the total Nb amount.
  • the high-strength thick-walled electric-welded steel pipe of the present invention is an electric-welded steel pipe having the above-described composition and the above-described structure and having a roundness of the steel pipe end portion of 0.6% or less.
  • Roundness 0.6% or less If the roundness of the end of the ERW pipe is 0.6% or less, before joining the connector to the pipe end by circumferential welding, cutting and straightening treatment is not performed. The amount of mistaking is within an allowable range, and the occurrence of breakage due to repeated curved deformation can be suppressed. If the roundness of the ERW steel pipe exceeds 0.6%, the amount of misalignment at the joint with the connector (screw member) increases, and there is an increased concern that the joint will break due to the pipe's own weight or bending deformation when embedded. For this reason, the roundness of the ERW steel pipe is limited to 0.6% or less.
  • roundness (%) ⁇ (maximum outer diameter of the steel pipe mm ⁇ ) ⁇ (minimum outer diameter of the steel pipe mm ⁇ ) ⁇ / (nominal outer diameter mm ⁇ ) ⁇ 100 (1) Defined by It is desirable to continuously measure the maximum outer diameter and the minimum outer diameter of the steel pipe with a laser displacement meter. In addition, when measuring by necessity, it shall be determined from the values measured at least at 32 locations in the circumferential direction.
  • the above-described conductor casing for a deep well including the high-strength thick-walled electric-welded steel pipe according to the present invention has screw members attached to both ends of the high-strength thick-walled electric-welded steel pipe.
  • the method for attaching the screw member is not particularly limited.
  • the screw member can be attached by MIG welding, TIG welding, or the like.
  • the screw member for example, carbon steel, stainless steel or the like can be used as the screw member.
  • the ERW steel pipe of the present invention is manufactured from a hot-rolled steel sheet.
  • a hot-rolled steel sheet it is cold-rolled by a roll forming machine (preferably by a cage roll group consisting of a plurality of rolls and a fin pass forming roll group consisting of a plurality of rolls), After making an open pipe with a substantially circular cross section, the ends of the open pipe are butted together, and the butted portion is pressed by a squeeze roll to make an electric-welded steel pipe, and then the electric-welded steel pipe After the in-line heat treatment is performed on the electric-welded welded portion, it is manufactured through a step of reducing diameter rolling.
  • a roll forming machine preferably by a cage roll group consisting of a plurality of rolls and a fin pass forming roll group consisting of a plurality of rolls
  • the hot-rolled steel sheet used as the raw material is a thick-walled hot-rolled steel sheet (hot-rolled steel strip) having a thickness of 15 mm or more, preferably 51 mm or less, manufactured by the following steps on the steel material having the above composition.
  • the molten steel having the above composition is melted by a conventional melting method such as a converter, and a conventional casting method such as a continuous casting method is used. It is preferable to use a slab or other slab (steel material). In place of the continuous casting method, there is no problem even if a steel material (steel slab) is formed by using the ingot-bundling rolling method.
  • the steel material having the composition described above is heated to a temperature in the temperature range of 1150 to 1250 ° C, and is then subjected to hot rolling that consists of rough rolling and finish rolling, and the finish rolling finish temperature is 750 ° C or higher. Apply.
  • Heating temperature 1150-1250 ° C
  • the heating temperature is set to a temperature range of 1150 to 1250 ° C.
  • the soaking at the heating temperature is preferably 60 min or more from the viewpoint of uniformizing the heating temperature of the steel material.
  • the rough rolling is not particularly limited as long as it can be a sheet bar having a predetermined size and shape.
  • the finish rolling finish temperature is adjusted to 750 ° C or higher. This temperature is the surface temperature.
  • Finish rolling end temperature 750 ° C. or more If the finish rolling end temperature is less than 750 ° C., ferrite transformation starts and the generated coarse ferrite is processed, resulting in a decrease in strength. For this reason, the finish rolling finish temperature was limited to 750 ° C. or higher.
  • cooling is started preferably within 5 s, and the average cooling rate in the temperature range of 750 ° C. to 650 ° C. at the plate thickness center temperature is 8 to 70. Accelerated cooling at °C / s is applied, and the coiling temperature is 580 ° C and 700 ° C or less. In addition, after winding up in a coil shape, it cools.
  • Average cooling rate in the temperature range of 750 ° C to 650 ° C for accelerated cooling 8 to 70 ° C / s
  • the average cooling rate in the temperature range of 750 ° C to 650 ° C is less than 8 ° C / s
  • the cooling rate is slow, and the resulting structure becomes a coarse polygonal ferrite phase with an average particle size of more than 10 ⁇ m and pearlite.
  • the required toughness and strength cannot be ensured.
  • the average cooling rate exceeds 70 ° C./s, a martensite phase is generated and the toughness may be lowered. Therefore, the average cooling rate in the temperature range of 750 ° C. to 650 ° C.
  • All the above-mentioned temperatures are plate thickness center temperature. The temperature at the center of the plate thickness is obtained by calculating the temperature distribution in the cross section by heat transfer analysis and correcting the result by the actual outer surface and inner surface temperatures.
  • the cooling stop temperature of the accelerated cooling is preferably a temperature in the temperature range of 580 to 720 ° C. as the plate surface temperature. If the cooling stop temperature of accelerated cooling is out of the temperature range of 580 to 720 ° C, the desired coiling temperature: more than 580 ° C and 700 ° C or less may not be secured stably.
  • Winding temperature Over 580 ° C and below 700 ° C At high temperatures where the winding temperature exceeds 700 ° C, the amount of coarse Nb carbonitride (precipitate) increases, and after welding is performed at over 500 ° C and below 600 ° C. It becomes impossible to prevent a decrease in yield strength during heat treatment.
  • the coiling temperature is 580 ° C or lower, the amount of fine Nb carbonitride (precipitate) deposited decreases, and it is possible to prevent a decrease in yield strength in post-weld heat treatment performed at temperatures exceeding 500 ° C and below 600 ° C. Disappear. For this reason, the coiling temperature is limited to a temperature range of more than 580 ° C. and 700 ° C. or less.
  • a fine Nb precipitate with a particle size of less than 20 nm is dispersed in a ratio exceeding 75% in terms of Nb ratio (%) to the total Nb content. It can be ensured, and it is possible to prevent a decrease in yield strength in post-welding heat treatment performed at a temperature exceeding 500 ° C. and less than 600 ° C.
  • a preferable range of the coiling temperature is 600 to 680 ° C. All of the above temperatures are plate surface temperatures.
  • the hot-rolled steel sheet obtained under the above-mentioned production conditions has a bainitic ferrite phase with a volume ratio of 90% or more as the main phase and the balance bainitic ferrite phase with a volume ratio of 10% or less (including 0%). It consists of the second phase other than. Structure in which fine Nb precipitates with an average particle size of the main phase of 10 ⁇ m or less and a particle size of less than 20 nm are dispersed in excess of 75% in terms of Nb ratio (%) to the total Nb content.
  • High strength of API X80 grade or higher that is, yield strength YS: high strength of 555MPa or higher, low temperature toughness with absorbed energy vE -40 of 27J or higher in test temperature: -40 ° C And a hot-rolled steel sheet.
  • the roll forming machine 2 is preferably a roll forming machine including a cage roll group 2a including a plurality of rolls and a fin pass forming roll group 2b including a plurality of rolls.
  • the inner roll to be disposed is preferably a roll having a shape as shown in FIG. 2 and capable of pressing two or more positions from the viewpoint of improving roundness and reducing equipment load.
  • the roll forming, the pressure welding with the squeeze roll, and the electric resistance welding are not particularly limited as long as an electric resistance steel pipe having a predetermined size can be manufactured, and any conventional method can be applied.
  • the obtained ERW steel pipe is subjected to heat treatment (seam annealing) of the ERW welded portion in-line.
  • the in-line heat treatment of the ERW weld portion uses an induction heating device 9 and a cooling device 10 arranged on the exit side of the squeeze roll 4 so that the ERW weld portion can be heated as shown in FIG. Is preferable.
  • the induction heating device 9 is preferably provided with one or a plurality of coils 9a so that one or more stages of heating can be performed. If a plurality of coils 9a are used, heating can be performed uniformly.
  • Heat treatment of ERW welds is carried out so that the minimum temperature part in the thickness direction is 830 ° C or higher and the maximum heating temperature is 1150 ° C or lower in ERW welds, and the temperature range is 800 to 550 ° C at the center of the plate thickness. It is preferable that the water is cooled at an average cooling rate in the range of 10 ° C./s to 70 ° C./s, and cooled to a cooling stop temperature (plate thickness central temperature): 550 ° C. or lower. The cooling stop temperature may be lower. If the minimum temperature of the heating temperature at the ERW weld is less than 830 ° C., the heating temperature may be too low to secure a desired ERW weld structure.
  • the heating temperature in the heat treatment of the ERW weld is preferably set to a temperature in the range of 830 ° C to 1150 ° C.
  • the cooling rate at the center of the plate thickness is less than 10 ° C./s, the formation of polygonal ferrite is promoted, and there is a possibility that a desired ERW weld structure cannot be secured.
  • the cooling rate after heating is preferably an average cooling rate in the range of 10 to 70 ° C./s.
  • the cooling stop temperature is preferably in the temperature range of 550 ° C. or lower. If the cooling stop temperature is higher than 550 ° C., the ferrite transformation is not completed, and a coarse pearlite structure is generated during the cooling after the cooling stop, which may cause a decrease in toughness or strength.
  • the structure of the ERW welded portion is the same structure as the base material portion, that is, the bainitic ferrite phase having a volume ratio of 90% or more as the main phase, It can be made into the structure
  • the diameter-reduction rolling is preferably performed cold with a sizer 8 composed of two or three or more pairs of rolls.
  • the diameter reduction ratio of the diameter reduction rolling is preferably in the range of 0.2 to 3.3%. If the diameter reduction rate is less than 0.2%, the desired roundness (0.6% or less) may not be ensured. On the other hand, if it exceeds 3.3%, the compression in the circumferential direction becomes too large, the thickness fluctuation in the circumferential direction becomes large, and the efficiency of circumferential welding may be reduced. For this reason, the reduction ratio of the reduced diameter rolling is preferably in the range of 0.2 to 3.3%.
  • Diameter reduction ratio (%) ⁇ (Pipe outer circumference length mm before diameter reduction rolling) ⁇ (Pipe outer circumference length mm after diameter reduction rolling) ⁇ / (Before diameter reduction rolling) Pipe circumference length mm) x 100 It shall be calculated using By performing the above-described reduction rolling, a high-strength thick-walled electric-welded steel pipe having a roundness of the steel pipe end portion of 0.6% or less can be obtained.
  • the obtained steel material was reheated under the conditions shown in Table 2 (heating temperature (° C.) ⁇ heating time (min)), and then subjected to hot rolling consisting of rough rolling and finish rolling to obtain a hot rolled steel sheet. .
  • the hot rolling was performed under the conditions shown in Table 2 with the rolling reduction (%) in the non-recrystallization temperature range and the finish rolling finishing temperature (° C.).
  • cooling is started and accelerated cooling is performed at the center thickness of the plate at the conditions shown in Table 2 (average cooling rate in the temperature range of 750 to 650 ° C, cooling stop temperature).
  • the coil was wound into a coil shape at the winding temperature shown in FIG.
  • the roll is continuously roll-formed in the cold.
  • An open tube having a substantially circular cross section was used.
  • the opposite ends of the open pipe were butted against each other, and the butted portions were electro-welded while being pressed with a squeeze roll to obtain an electric-welded steel pipe having a size shown in Table 3.
  • the inner roll disposed on the downstream side of the cage roll group was pressed at least two points in the width direction from the inner wall side of the semi-formed product.
  • in-line heat treatment was performed on the ERW welded portion of the obtained ERW steel pipe under the conditions shown in Table 3.
  • the in-line heat treatment was performed using an in-line heat treatment apparatus provided with an induction heating device and a water cooling device disposed on the exit side of the squeeze roll.
  • the average cooling rate and the cooling stop temperature are temperatures at the center of the plate thickness.
  • the average cooling rate is an average cooling rate in the temperature range of 800 to 550 ° C.
  • the ERW steel pipe that has been subjected to in-line heat treatment is further subjected to reduction rolling at a reduction ratio shown in Table 3 in a cold reduction mill (sizer roll), and has the dimensions shown in Table 3.
  • a steel pipe was obtained.
  • a diameter reduction mill having 2 to 4 rolls was used. In some ERW steel pipes, diameter reduction rolling was not performed.
  • the roundness of the tube end was determined by the above equation (1).
  • the outer diameter shown in Table 3 is a nominal outer diameter.
  • Test pieces were collected from the obtained electric resistance welded steel pipe and subjected to a structure observation, a tensile test, an impact test, and a post-weld heat treatment test.
  • the test method is as follows.
  • (1) Microstructure observation A specimen for microstructural observation was collected from the base material portion (position 90 ° in the circumferential direction from the electro-resistance welded portion) and the electro-resistance welded portion of the obtained electric resistance welded steel pipe.
  • the base metal part is polished so that the thickness center position of the cross section in the tube axis direction (L cross section) is the observation surface, and the ERW welded part is polished so that the cross section in the pipe circumferential direction (C cross section) is the observation surface.
  • Nital The base metal part is polished so that the thickness center position of the cross section in the tube axis direction (L cross section) is the observation surface
  • the ERW welded part is polished so that the cross section in the pipe circumferential direction (C cross section) is the observation surface
  • the tissue was observed using a scanning electron microscope SEM (Scanning Electron Microscope) (magnification: 1000 times) and imaged in at least two fields of view. Using the obtained tissue photograph, image analysis was performed to determine the tissue identification and the fraction of each phase. The identified area fraction value was treated as a volume fraction value.
  • SEM Sccanning Electron Microscope
  • the crystal grain boundary having an orientation difference of 15 ° or more was obtained by the SEM / EBSD (Electron Back Scattering Diffraction) method, and the arithmetic average of the equivalent circle diameters of the obtained grains was defined as the average grain size of the main phase.
  • the crystal grain size was calculated using software software Orientation Imaging Imaging Microscopy Data Analysis manufactured by Ametex Corporation.
  • a specimen for electrolytic extraction was taken from the base material part (position at 90 ° in the circumferential direction from the ERW welded part) of the obtained ERW steel pipe, and the electrolytic solution (10 vol.% Acetylacetone-1 mass% chloride) In a tetramethylammonium-methanol solution), electrolysis was performed at a current density of 20 mA / cm 2 .
  • the obtained electrolytic residue was dissolved in the liquid, collected with an aluminum filter (pore size: 0.02 ⁇ m), and the liquid that passed through the aluminum filter was analyzed for Nb content by ICP emission spectroscopy. As a quantity, the ratio (%) to the total Nb quantity was calculated.
  • All of the examples of the present invention are API X80 grade suitable for conductor casings for deep wells, and have high strength with yield strength YS: 555 MPa or more, tensile strength TS: 625 MPa or more, and excellent low temperature toughness. In addition, there is little decrease in strength even after the heat treatment after welding, and the electric resistance welded steel pipe retains excellent post-weld heat treatment resistance. On the other hand, in comparative examples that are outside the scope of the present invention, the strength is insufficient, the low-temperature toughness is lowered, or the heat resistance after welding is lowered.
  • Hot-rolled steel sheet hot-rolled steel strip
  • Roll forming machine 3
  • Welding machine 4
  • Squeeze roll 5
  • ERW steel pipe 6
  • Bead cutting machine 7
  • Leveler 8
  • Sizer 9
  • Induction heating device 10
  • Cooling device 11 Thermometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Abstract

高強度で高靭性、さらに耐溶接後熱処理性に優れた電縫鋼管を提供する。C:0.01~0.12%、Si:0.05~0.50%、Mn:1.0~2.2%、P:0.03%以下、S:0.005%以下、Al:0.001~0.10%、N:0.006%以下、Nb:0.010~0.100%、Ti:0.001~0.050%を含む組成と、体積率で90%以上のベイニティックフェライト相を主相とし、該主相と、体積率で10%以下(0%を含む)の第二相とからなり、ベイニティックフェライト相の平均粒径が10μm 以下で、かつ粒径:20nm 未満の微細なNb 析出物が、Nb 換算で、全Nb 量に対する比率(%)で、75%を超えて分散してなる組織と、を有する熱延鋼板を素材として、ロール成形により、略円形断面に成形したのち、電縫溶接して電縫鋼管とし、ついで電縫鋼管の電縫溶接部にインライン熱処理を施し、さらに縮径圧延して、鋼管端部の真円度が、0.6%以下である電縫鋼管とする。

Description

深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管およびその製造方法ならびに深井戸向け高強度厚肉コンダクターケーシング
 本発明は、油井やガス井の掘削時に、井戸の土留めとして用いられるコンダクターケーシング用として好適な電縫鋼管に係り、とくに水深3,000m以上に存在する深海油田や深海ガス田の開発に用いられる井戸(以下、深井戸ともいう)向け、コンダクターケーシング用として好適な、高強度厚肉電縫鋼管およびその製造方法に関する。
 コンダクターケーシングは、油井やガス井の掘削作業の初期段階に、油井管を外圧から保護する、井戸の土留めとして用いられている。従来から、コンダクターケーシングは、UOE鋼管とコネクター(ねじ加工された鍛造部材)とを接合して製造されてきた。
 コンダクターケーシングには、井戸に埋設する際に、湾曲変形が繰り返し付加される。さらに、深い井戸に埋設する場合には、コンダクターケーシングには、自重による応力負荷も加わる。そのため、とくに、深井戸向けのコンダクターケーシングには、
 (1)敷設時に繰り返される湾曲変形で破断しないこと、
 (2)自重に耐えるだけの強度を保持していること、
が要求される。コンダクターケーシングにおける湾曲変形時の破断を防止するために、とくに接続部における目違い等による応力集中を抑制することが重要であるとされている。そして、目違い等の抑制には、使用する鋼管の真円度の向上が挙げられる。
 通常、コンダクターケーシングには、鋼管と鍛造部材との接合部の残留応力除去や、水素割れ防止のために、500℃超え600℃未満の温度範囲で溶接後熱処理が施される。そのため、溶接後熱処理による強度の低下を抑制し、溶接後熱処理後でも所望の強度を保持できる耐溶接後熱処理性に優れる鋼管が要望されていた。
 このような要望に対し、例えば、特許文献1には、高温SR特性(SR脆化に対する抵抗性)に優れた高強度ライザー鋼管が記載されている。特許文献1に記載された技術は、重量%で、C:0.02~0.18%、Si:0.05~0.50%、Mn:1.00~2.00%、Cr:0.30~1.00%、Ti:0.005~0.030%、Nb:0.060%以下、Al:0.10%以下を含む鋼組成を有する、高温SR特性に優れたライザー鋼管である。特許文献1に記載された技術では、上記した組成に加えて、Cu:0.50%以下、Ni:0.50%以下、Mo:0.50%以下およびV:0.10%以下のうちの1種または2種以上、Ca:0.0005~0.0050%および/またはB:0.0020%以下、を含有してもよいとしている。特許文献1に記載された技術では、所定量のCrを含有させ、素地フェライトの軟化を遅らせ、軟化抵抗の増加により、溶接後熱処理における靭性低下、強度低下を抑制することができ、高温SR特性が向上するとしている。
 また、鋼管の真円度を向上させる技術として、特許文献2には、拡管装置に取り付けられた複数のダイス全ての外周部に、溝加工が施された拡管装置を用い、拡管する鋼管ごとに、鋼管溶接部における内周側の余盛と相対する、拡管装置に取り付けられたダイスを変更して拡管するUOE鋼管の拡管方法が記載されている。特許文献2に記載された技術によれば、拡管装置のダイス摩耗量が均一化され、鋼管の真円度向上を図ることができるとしている。
特許第3558198号公報 特開2006-289439号公報
 コンダクターケーシングにおいて、埋設時に付加される繰返し湾曲変形による破断を防止するためには、応力集中を抑制することが肝要である。そのためにコネクタを接続する鋼管が、ある程度以上の真円度を有することが必要である。しかし、特許文献1には、真円度向上のための、目違い抑制の対策等についての言及は一切ない。特許文献1に記載された技術では、真円度向上のための対策が採られておらず、したがって、とくに、深井戸向けコンダクターケーシング用としては、鋼管端部の真円度が不足することになる。特許文献1に記載された技術で製造された鋼管を、深井戸向けコンダクターケーシング用とするためには、さらに切削や矯正により鋼管端部の真円度を改善する工程を付加する必要があり、特許文献1に記載された技術では、コンダクターケーシングを製造する際の生産性が低下するという問題があった。
 また、特許文献2に記載された技術によっても、とくに、深井戸向けコンダクターケーシング用としては、十分な真円度を確保できていないという問題があった。
 本発明は、かかる従来技術の問題を解決し、深井戸向けコンダクターケーシング用として好適な、高強度で高靭性、さらに耐溶接後熱処理性に優れた高強度厚肉電縫鋼管およびその製造方法を提供することを目的とする。
 なお、ここでいう「高強度」とは、API X80グレード以上の高強度、すなわち、降伏強さYS:555MPa以上、引張強さTS:625MPa以上である場合をいう。また、ここでいう「高靭性」とは、試験温度:-40℃でのシャルピー衝撃試験吸収エネルギーvE-40が27J以上である場合をいう。また、ここでいう「厚肉」とは、肉厚:15mm以上である場合をいう。なお、深海埋設用としては好ましくは肉厚20mm以上である。また、「耐溶接後熱処理性に優れた」とは、500℃超え600℃未満の溶接後熱処理を施したのちにおいても、母材の強度が、API X80グレード以上の強度を維持している場合をいうものとする。
 上記した目的を達成するため、本発明者らは、深井戸向けコンダクターケーシング用として好適な鋼管の性状について鋭意検討した。その結果、コンダクターケーシングを敷設する際の湾曲変形により、破断が生じないためには、真円度を0.6%以下に調整された鋼管を使用する必要があることを見出した。使用する鋼管の真円度が0.6%以下であれば、切削、矯正等の特別な追加工程を施すことなく、ねじ加工部材と接合部(鋼管端部)の目違いを、繰返し湾曲変形による破断を抑制できる程度に低下できることを見出した。
 そして、本発明者らは、このような鋼管としては、UOE鋼管よりも電縫鋼管が好適であることに想到した。電縫鋼管は、複数のロールで連続的に成形して円筒形状としており、プレス加工と拡管とにより成形されるUOE鋼管よりも、高い真円度を有している。そして、本発明者らの検討によれば、深井戸向けコンダクターケーシング用として好適な真円度を保持する電縫鋼管とするために、電縫溶接後に、最終的にサイザーロールによる縮径圧延を施す成形を行なうことが有効であることを知見した。さらなる真円度の向上には、造管のロール成形を、ケージロール群と、フィンパス成形ロール群とによるロール成形に加えて、ケージロール群における下流側に、インナーロールを配設し、インナーロールにより、成形途中の熱延鋼板の内壁側から2点以上の位置を押圧する成形を加えることがよいこと、また、これによりフィンパス成形の負荷が軽減されることも知見した。
 また、本発明者らは、さらに、溶接後熱処理後の鋼管強度に及ぼす、鋼管素材である熱延鋼板の組成、熱延条件の影響について、鋭意検討した。その結果、500℃超え600℃未満の溶接後熱処理後においても、電縫鋼管の強度が、API X80グレード以上を維持できるためには、鋼管素材である熱延鋼板で、粒径20nm未満の微細なNb析出物(析出Nb)量を、Nb換算で含有Nb量の75%超えとする必要があることを見出した。微細なNb析出物(析出Nb)量が、含有Nb量の75%以下では、溶接後熱処理時の降伏強さYSの低下を抑制できないことを知見した。
 本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
(1)質量%で、C:0.01~0.12%、Si:0.05~0.50%、Mn:1.0~2.2%、P:0.03%以下、S:0.005%以下、Al:0.001~0.10%、N:0.006%以下、Nb:0.010~0.100%、Ti:0.001~0.050%を含み、残部Fe及び不可避的不純物からなる組成と、体積率で90%以上のベイニティックフェライト相を主相とし、該主相と、体積率で10%以下(0%を含む)の第二相とからなり、前記ベイニティックフェライト相の平均粒径が10μm以下であり、かつ母材部において粒径:20nm未満の微細なNb析出物が、Nb換算で、全Nb量に対する比率(%)で、75%を超えて分散してなる組織と、を有し、かつ、次(1)式
真円度(%)={(鋼管の最大外径mmφ)-(鋼管の最小外径mmφ)}/(公称外径mmφ)×100 ‥‥(1)
で定義される鋼管端部の真円度が、0.6%以下であることを特徴とする深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管。
(2)(1)において、前記組成に加えてさらに、質量%で、V:0.1%以下、Mo:0.5%以下、Cr:0.5%以下、Cu:0.5%以下、Ni:1.0%以下、B:0.0030%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管。
(3)(1)または(2)において、前記組成に加えてさらに、質量%で、Ca:0.0005~0.0050%、REM:0.0005~0.0050%のうちから選ばれた1種または2種を含有する組成とすることを特徴とする深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管。
(4)熱延鋼板を、ロール成形機により連続的にロール成形して、略円形断面のオープン管としたのち、該オープン管の端部同士を突き合わせ、該突き合わせた部位を、スクイズロールで圧接しながら、電縫溶接して電縫鋼管とし、ついで該電縫鋼管の電縫溶接部にインライン熱処理を施した後、縮径圧延する電縫鋼管の製造方法であって、前記熱延鋼板を、質量%で、C:0.01~0.12%、Si:0.05~0.50%、Mn:1.0~2.2%、P:0.03%以下、S:0.005%以下、Al:0.001~0.10%、N:0.006%以下、Nb:0.010~0.100%、Ti:0.001~0.050%を含み、残部Fe及び不可避的不純物からなる組成の鋼素材に、加熱温度:1150~1250℃の温度域で60min以上均熱する加熱を施したのち、仕上圧延終了温度:750℃以上とする熱間圧延を施し、該熱間圧延終了後、板厚中央部温度で750℃~650℃の温度域での平均冷却速度が8~70℃/sとなるように加速冷却を施し、巻取温度:580℃超え700℃以下で巻き取る工程を施して製造された熱延鋼板とすることを特徴とする深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管の製造方法。
(5)(4)において、前記ロール成形機が、複数のロールからなるケージロール群と、さらに複数のロールからなるフィンパス成形ロール群とからなるロール成形機であることを特徴とする深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管の製造方法。
(6)(5)において、前記ケージロール群における下流側にインナーロールを配設し、成形途中の前記熱延鋼板の内壁側から2点以上の位置を押圧することを特徴とする深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管の製造方法。
(7)(4)ないし(6)のいずれかにおいて、前記電縫溶接部のインライン熱処理が、該電縫溶接部を加熱温度:830~1150℃に加熱したのち、板厚中央温度で800~550℃の温度域での平均冷却速度が10~70℃/sである冷却を行い、板厚中央温度で冷却停止温度:550℃以下の冷却停止温度まで冷却する処理であることを特徴とする深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管の製造方法。
(8)(4)ないし(7)のいずれかにおいて、前記縮径圧延が、縮径率:0.2~3.3%とする圧延であることを特徴とする深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管の製造方法。
(9)(4)ないし(8)のいずれかにおいて、前記組成に加えてさらに、質量%で、V:0.1%以下、Mo:0.5%以下、Cr:0.5%以下、Cu:0.5%以下、Ni:1.0%以下、B:0.0030%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管の製造方法。
(10)(4)ないし(9)のいずれかにおいて、前記組成に加えてさらに、質量%で、Ca:0.0005~0.0050%、REM:0.0005~0.0050%のうちから選ばれた1種または2種を含有する組成とすることを特徴とする深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管の製造方法。
(11)(1)ないし(3)のいずれかに記載の深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管の両管端に螺子部材を取り付けてなる深井戸向け高強度厚肉コンダクターケーシング。
 本発明によれば、特段の追加処理を施すことなく、深井戸向けコンダクターケーシング用として好適な、高強度で高靭性、さらに耐溶接後熱処理性に優れた高強度厚肉電縫鋼管を容易に、かつ安価に製造でき、産業上格段の効果を奏する。また、本発明によれば、コンダクターケーシングの敷設に際し、破断の発生が抑制され、敷設コスト削減に貢献するという効果もある。また、本発明によれば、500℃超え600℃未満の溶接後熱処理後においても、API X80級以上の強度を保持したコンダクターケーシングとすることができるという効果もある。さらに、本発明の電縫鋼管は、円周溶接によってパイプとパイプを接合するラインパイプ用としても有用であるという効果もある。
図1は、本発明の電縫鋼管の製造に好適な製造設備列の一例を模式的に示す説明図である。 図2は、インナーロールの形状の一例を模式的に示す説明図である。 図3は、インライン熱処理設備の一例を模式的に示す説明図である。
 本発明の高強度厚肉電縫鋼管は、深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管である。ここでいう「高強度厚肉電縫鋼管」とは、母材部および電縫溶接部がともにAPI X80グレード以上の高強度を有する、肉厚:15mm以上の厚肉電縫鋼管である。なお、母材部は、降伏強さYS:555MPa以上、引張強さTS:625MPa以上の高強度を、電縫溶接部は引張強さTS:625MPa以上の高強度を保持する。
 本発明の高強度厚肉電縫鋼管は、質量%で、C:0.01~0.12%、Si:0.05~0.50%、Mn:1.0~2.2%、P:0.03%以下、S:0.005%以下、Al:0.001~0.10%、N:0.006%以下、Nb:0.010~0.100%、Ti:0.001~0.050%を含み、あるいはさらに、V:0.1%以下、Mo:0.5%以下、Cr:0.5%以下、Cu:0.5%以下、Ni:1.0%以下、B:0.0030%以下のうちから選ばれた1種または2種以上、および/または、Ca:0.0005~0.0050%、REM:0.0005~0.0050%のうちから選ばれた1種または2種、を含み、残部Fe及び不可避的不純物からなる組成を有する。
 まず、本発明の高強度厚肉電縫鋼管の組成限定理由について説明する。以下、とくに断わらない限り、組成における質量%は単に%で記す。
 C:0.01~0.12%
 Cは、鋼管の強度増加に寄与する重要な元素であり、所望の高強度を確保するためには0.01%以上の含有を必要とする。一方、0.12%を超えて多量に含有すると、溶接性が低下する。さらに、0.12%を超える多量のCの含有は、熱間圧延後の冷却時あるいは電縫溶接部のインライン熱処理時に、冷却が速い場合にマルテンサイトの生成を、冷却が遅い場合に多量のパーライトの生成を、容易にし、靭性低下や強度低下を招く恐れがある。このため、Cは0.01~0.12%の範囲に限定した。なお、好ましくは0.03~0.10%、より好ましくは0.03~0.08%である。
 Si:0.05~0.50%
 Siは、固溶強化により、鋼管の強度増加に寄与する元素であり、このような効果を得て、所望の高強度を確保するためには0.05%以上の含有を必要とする。また、Siは、FeよりもO(酸素)との親和力が強く、電縫溶接時にMn酸化物とともに粘度の高い共晶酸化物を形成する。このため、0.50%を超えて過剰に含有すると、電縫溶接部の品質を劣化させる。このようなことから、Siは0.05~0.50%の範囲に限定した。なお、好ましくは0.05~0.30%である。
 Mn:1.0~2.2%
 Mnは、鋼管の強度増加に寄与する元素であり、所望の高強度を確保するためには1.0%以上の含有を必要とする。一方、2.2%を超えて多量に含有すると、Cと同様に、マルテンサイトを生成しやすくし、溶接性を低下させる。このため、Mnは1.0~2.2%の範囲に限定した。なお、好ましくは1.2~2.0%である。
 P:0.03%以下
 Pは、鋼中に不純物として存在し、しかも結晶粒界等に偏析し易く、靭性等の鋼管特性に悪影響を及ぼす元素であり、できるだけ低減することが好ましい。本発明では、0.03%までは許容できる。このようなことから、Pは0.03%以下に限定した。なお、好ましくは0.02%以下である。なお、過度の低減は、精錬コストの高騰を招くため、0.001%以上とすることが好ましい。
 S:0.005%以下
 Sは、鋼中では、MnS等の粗大な硫化物系介在物として存在し、延性や靭性の低下を招くため、できるだけ低減することが望ましい。本発明では、0.005%までは許容できる。このようなことから、Sは0.005%以下に限定した。なお、好ましくは0.004%以下である。なお、過度の低減は、精錬コストの高騰を招くため、0.0001%以上とすることが好ましい。
 Al:0.001~0.10%
 Alは、鋼の脱酸剤として有用に作用する元素であり、このような効果を得るためには、0.001%以上含有する必要がある。一方、0.10%を超えて多量に含有すると、Al酸化物を生成し、鋼の清浄度を低下させる。このため、Alは0.001~0.10%の範囲に限定した。なお、好ましくは0.005~0.08%である。
 N:0.006%以下
 Nは、鋼中では不可避的不純物として存在し、固溶してあるいは窒化物を形成して、鋼管の母材部あるいは電縫溶接部の靭性低下を招く。このため、できるだけ低減することが望ましい。本発明では、0.006%までは許容できる。このようなことから、Nは0.006%以下に限定した。
 Nb:0.010~0.100%
 Nbは、本発明では重要な元素である。鋼素材(スラブ)加熱時に、鋼中にNb炭窒化物として存在し、オーステナイト粒の粗大化を抑制し、組織微細化に寄与する元素である。また、熱延鋼板中に微細Nb析出物として析出し、500℃超え600℃未満の溶接後熱処理時のマトリックスの回復・再結晶を抑制して、溶接後熱処理後の鋼管母材部の強度低下を防止する。このような効果を得るためには、0.010%以上の含有を必要とする。一方、0.100%を超える過剰の含有は、鋼管の靭性に悪影響を及ぼす。このため、Nbは0.010~0.100%の範囲に限定した。なお、好ましくは、0.020~0.080%である。
 Ti:0.001~0.050%
 Tiは、Nと結合しTi窒化物を形成し、鋼管靭性に悪影響を及ぼすNを固定し、鋼管靭性を向上させる作用を有する。このような効果を得るためには、0.001%以上の含有を必要とする。一方、0.050%を超えて含有すると、鋼管靭性の著しい低下を招く。このため、Tiは0.001~0.050%の範囲に限定した。なお、好ましくは0.005~0.030%である。
 上記した成分が基本の成分である。本発明では、基本の組成に加えてさらに、V:0.1%以下、Mo:0.5%以下、Cr:0.5%以下、Cu:0.5%以下、Ni:1.0%以下、B:0.0030%以下のうちから選ばれた1種または2種以上、および/または、Ca:0.0005~0.0050%、REM:0.0005~0.0050%のうちから選ばれた1種または2種、を含有してもよい。
 V:0.1%以下、Mo:0.5%以下、Cr:0.5%以下、Cu:0.5%以下、Ni:1.0%以下、B:0.0030%以下のうちから選ばれた1種または2種以上
 V、Mo、Cr、Cu、Ni、Bはいずれも、焼入れ性向上を介して、鋼板の強度増加に寄与する元素であり、必要に応じて、選択して含有できる。これらの元素の含有は、とくに、板厚が16mm以上の厚肉の場合に、パーライト、ポリゴナルフェライトの生成を防止し、所望の強度、靭性を確保するうえで有効である。このような効果を得るためには、V:0.05%以上、Mo:0.05%以上、Cr:0.05%以上、Cu:0.05%以上、Ni:0.05%以上、B:0.0005%以上、含有することが望ましい。一方、V:0.1%、Mo:0.5%、Cr:0.5%、Cu:0.5%、Ni:1.0%、B:0.0030%、それぞれを超える含有は、溶接性および靱性の低下を招くとともに、材料コストの高騰を招くおそれがある。このため、含有する場合には、V:0.1%以下、Mo:0.5%以下、Cr:0.5%以下、Cu:0.5%以下、Ni:1.0%以下、B: 0.0030%以下に、それぞれ限定することが好ましい。なお、より好ましくはV:0.08%以下、Mo:0.45%以下、Cr:0.3%以下、Cu:0.35%以下、Ni:0.35%以下、B:0.0025%以下である。
 Ca:0.0005~0.0050%、REM:0.0005~0.0050%のうちから選ばれた1種または2種
 Ca、REMはいずれも、伸展したMnS等の硫化物系介在物を球状の硫化物系介在物とする介在物の形態制御に寄与する元素であり、必要に応じて選択して含有できる。このような効果を得るためには、Ca、REMともに0.0005%以上含有する必要がある。一方、Ca、REMとも0.0050%を超えて含有すると、酸化物系介在物が増加し、靱性を低下させるおそれがある。このため、含有する場合には、Ca:0.0005~0.0050%、REM:0.0005~0.0050%の範囲に限定することが好ましい。
 上記した成分以外の残部は、Fe及び不可避的不純物からなる。
 本発明高強度厚肉電縫鋼管は、上記した組成を有し、さらに母材部および電縫溶接部がともに、体積率で90%以上のベイニティックフェライト相を主相とし、該主相と、体積率で10%以下(0%を含む)の第二相とからなる。前記ベイニティックフェライト相の平均粒径が10μm以下であり、かつ母材部において粒径:20nm未満の微細なNb析出物が、Nb換算で、全Nb量に対する比率(%)で、75%を超えて分散してなる組織を有し、鋼管端部の真円度が、0.6%以下である厚肉の電縫鋼管である。
 主相:体積率で90%以上のベイニティックフェライト相
 コンダクターケーシング用として所望の高強度、靭性を兼備させるために、本発明の電縫鋼管では、母材部および電縫溶接部ともに、体積率で90%以上のベイニティックフェライト相を主相とする組織を有する。ベイニティックフェライト相が90%未満では、すなわち主相以外の第二相が10%以上となり、所望の靭性を確保できなくなる。主相以外の第二相としては、パーライト、縮退パーライト、ベイナイト、マルテンサイトなどの硬質相が例示できる。このようなことから、主相であるベイニティックフェライト相の体積率は90%以上に限定した。なお、好ましくは95%以上である。
 ベイニティックフェライト相の平均粒径:10μm以下
 コンダクターケーシング用として所望の高強度、靭性を兼備させるために、本発明では、主相であるベイニティックフェライト相を平均粒径が10μm以下と微細な組織とする。平均粒径が10μmを超えて大きくなると、所望の高靭性を保持することができなくなる。このため、主相であるベイニティックフェライト相の平均粒径は10μm以下に限定した。なお、ここでいう「粒径」は、SEM/EBSD法で、隣接する結晶粒の間の方位差を求め、方位差が15°以内の領域の大きさをいうものとする。
 粒径:20nm未満の微細なNb析出物:Nb換算で、全Nb量に対する比率(%)で、75%超え
 粒径:20nm未満の微細なNb析出物(主として炭窒化物)は、500℃超え600℃未満の温度範囲で施される溶接後熱処理における回復・再結晶による降伏強さの低下を抑制する作用、すなわち優れた耐溶接後熱処理性を付与する作用、を有する。このため、本発明では、鋼管母材部に、粒径:20nm未満の微細なNb析出物を、Nb換算で、全Nb量に対する比率(%)で、75%超え、析出させる。微細なNb析出物の析出量が、Nb換算で、75%以下では、微細なNb析出物の析出量が不足し、所望の耐溶接後熱処理性を確保できなくなる。このため、粒径:20nm未満の微細なNb析出物量はNb換算で、全Nb量に対する比率(%)で、75%超えに限定した。
 なお、ここでいう「粒径:20nm未満の微細なNb析出物量」は、電縫鋼管の母材部から採取した電解抽出用試験片を、電解液(10vol.%アセチルアセトン-1質量%塩化テトラメチルアンモニウム-メタノール溶液)中で電解し、得られた電解残渣について、孔径:0.02μmのフィルターでろ過し、フィルターを通過したNb量を分析して得られた値を用いるものとする。
 本発明の高強度厚肉電縫鋼管は、上記した組成、上記した組織を有し、さらに、鋼管端部の真円度が0.6%以下の電縫鋼管である。
 真円度:0.6%以下
 電縫鋼管端部の真円度が0.6%以下であれば、管端部にコネクタを円周溶接により接合する前に、切削・矯正処理を行なわずに接合部の目違い量は許容範囲となり、繰返し湾曲変形による破断の発生を抑制できる。電縫鋼管の真円度が0.6%を超えると、コネクタ(ねじ部材)との接合部の目違い量が大きくなり、埋設する際のパイプ自重や湾曲変形により接合部で破断する懸念が高まる。このようなことから、電縫鋼管の真円度は0.6%以下に限定した。なお、鋼管の真円度は、次(1)式
真円度(%)={(鋼管の最大外径mmφ)-(鋼管の最小外径mmφ)}/(公称外径mmφ)×100 ‥‥(1)
で定義される。鋼管の最大外径、最小外径は、レーザー変位計で連続的に計測することが望ましい。なお、止むを得ず手動で計測する場合には、少なくとも円周方向の32箇所で測定した値から決定するものとする。
 上記した本発明の高強度厚肉電縫鋼管を構成に含む深井戸向けのコンダクターケーシングは、高強度厚肉電縫鋼管の両管端に螺子部材を取り付けてなる。螺子部材の取り付け方法は特に限定されず、例えば、MIG溶接、TIG溶接等により取り付け可能である。また、螺子部材として、例えば炭素鋼、ステンレス鋼等を使用可能である。
 つぎに、本発明の高強度厚肉電縫鋼管の製造方法について説明する。
 本発明の電縫鋼管は、熱延鋼板を素材として製造される。
 すなわち、熱延鋼板に、冷間で、ロール成形機により(好ましくは、複数のロールからなるケージロール群と、複数のロールからなるフィンパス成形ロール群とにより)、連続的にロール成形して、略円形断面のオープン管としたのち、該オープン管の端部同士を突き合わせ、該突き合わせた部位を、スクイズロールで圧接しながら、電縫溶接して電縫鋼管とし、ついで、該電縫鋼管の電縫溶接部にインライン熱処理を施した後、縮径圧延する工程を経て、製造される。
 素材として用いる熱延鋼板は、上記した組成の鋼素材に、次に示す工程を経て製造された板厚:15mm以上、好ましくは51mm以下の厚肉熱延鋼板(熱延鋼帯)とする。
 なお、鋼素材の製造方法については、本発明では特に限定する必要はなく、上記した組成の溶鋼を転炉等の常用の溶製方法で溶製し、連続鋳造法等の常用の鋳造方法でスラブ等の鋳片(鋼素材)とすることが好ましい。なお、連続鋳造法に代えて、造塊-分塊圧延法を用いて鋼素材(鋼片)としてもなんら問題はない。
 上記した組成の鋼素材に、加熱温度を1150~1250℃の温度域の温度とする加熱を施したのち、粗圧延と仕上圧延からなり、仕上圧延終了温度:750℃以上とする熱間圧延を施す。
 加熱温度:1150~1250℃
 熱延鋼板の靱性向上のためには、結晶粒の微細化が期待できる低い加熱温度とすることが好ましい。しかしながら、加熱温度が1150℃未満では、加熱温度が低すぎて、未溶解炭化物の固溶が進まず、API X80グレード以上の所望の高強度を確保できない場合がある。一方、加熱温度が1250℃を超える高温では、オーステナイト(γ)粒の粗大化が生じ、靭性が低下するうえ、スケール生成量の増加を招き、表面性状の悪化を招く恐れがあるとともに、エネルギーロスの増大を招き経済的に不利になる。このため、鋼素材の加熱温度は、1150~1250℃の温度域の温度とした。なお、当該加熱温度での均熱保持は、60min以上とすることが、鋼素材の加熱温度均一化の観点からも好ましい。
 粗圧延は、所定の寸法形状のシートバーとすることができればよく、とくに限定する必要はない。仕上圧延では、仕上圧延終了温度:750℃以上に調整する。なお、この温度は、表面温度とする。
 仕上圧延終了温度:750℃以上
 仕上圧延終了温度が、750℃未満では、フェライト変態が開始し、生成した粗大なフェライトが加工されるため、強度の低下を招く。このため、仕上圧延終了温度は、750℃以上に限定した。なお、板厚中心温度で930℃以下の未再結晶温度域での圧下率を20%以上に調整することが好ましい。未再結晶温度域での圧下率を20%未満では、未再結晶温度域での圧下率が少なく、フェライトの核生成サイトが少なく、フェライト粒の微細化を達成できない恐れがある。そのため、未再結晶温度域での圧下率を20%以上に調整することが好ましい。なお、圧延機への負荷の観点から、未再結晶温度域での圧下率は95%以下とすることが好ましい。
 本発明では、上記した熱間圧延を終了したのち、直ちに、好ましくは5s以内に、冷却を開始し、板厚中央部温度で750℃~650℃の温度域での平均冷却速度が8~70℃/sとなる加速冷却を施し、巻取温度:580℃超え700℃以下で、コイル状に巻き取る。なお、コイル状に巻き取った後は、放冷する。
 加速冷却の750℃~650℃の温度域での平均冷却速度:8~70℃/s
 750℃~650℃の温度域での平均冷却速度が8℃/s未満では、冷却速度が遅く、生成する組織が、平均粒径が10μm超の粗大なポリゴナルフェライト相とパーライトとなり、ケーシング用として要求される靭性、強度を確保できなくなる。一方、平均冷却速度が70℃/sを超えると、マルテンサイト相が生成し、靭性が低下する恐れがある。そのため、750℃~650℃の温度域での平均冷却速度を8~70℃/sの範囲に限定した。なお、好ましくは10~50℃/sである。上記した温度はいずれも、板厚中央部温度である。板厚中央部の温度は、伝熱解析により断面内の温度分布を計算し、その結果を実際の外面および内面の温度によって補正することにより求める。
 なお、加速冷却の冷却停止温度は、板表面温度で、580~720℃の温度域の温度とすることが好ましい。加速冷却の冷却停止温度が、580~720℃の温度域を外れると、所望の巻取温度:580℃超え700℃以下を安定して確保できなくなるおそれがある。
 巻取温度:580℃超え700℃以下
 巻取温度が700℃を超える高温では、粗大なNb炭窒化物(析出物)の析出量が増加し、500℃超え600℃未満で実施される溶接後熱処理における降伏強さの低下を防止できなくなる。一方、巻取温度が580℃以下では、微細なNb炭窒化物(析出物)の析出量が少なくなり、500℃超え600℃未満で実施される溶接後熱処理における降伏強さの低下を防止できなくなる。このため、巻取温度は580℃超え700℃以下の温度域の温度に限定した。巻取温度を上記した温度域に調整することにより、粒径:20nm未満の微細なNb析出物が、Nb換算で、全Nb量に対する比率(%)で、75%を超えて分散した組織を確保でき、500℃超え600℃未満で実施される溶接後熱処理における降伏強さの低下を防止できる。なお、巻取温度の好ましい範囲は600~680℃である。上記した温度はいずれも、板表面温度である。
 上記した製造条件で得られた熱延鋼板は、体積率で90%以上のベイニティックフェライト相を主相とし、残部が体積率で10%以下(0%を含む)のベイニティックフェライト相以外の第二相からなる。主相の平均粒径が10μm以下であり、かつ粒径:20nm未満の微細なNb析出物が、Nb換算で、全Nb量に対する比率(%)で、75%を超えて分散してなる組織を有し、API X80グレード以上の高強度、すなわち、降伏強さYS:555MPa以上の高強度と、試験温度:-40℃でのシャルピー衝撃試験の吸収エネルギーvE-40が27J以上となる低温靭性と、を有する熱延鋼板である。
 つぎに、上記した組成、組織を有する熱延鋼板(熱延鋼帯)1を鋼管素材として、図1に示す、ロール成形機2により、連続的にロール成形して、略円形断面のオープン管とする。そののち、該オープン管の端部同士を突き合わせ、該突き合わせた部位を、スクイズロール4で圧接しながら、高周波抵抗加熱、高周波誘導加熱等を利用した溶接機3で、融点以上に加熱しながら、電縫溶接して電縫鋼管5とする。なお、ロール成形機2は、複数のロールからなるケージロール群2aと、複数のロールからなるフィンパス成形ロール群2bとからなるロール成形機とすることが好ましい。
 なお、ケージロール群2aにおける下流側にインナーロール2a1を少なくとも1段配設し、成形途中の熱延鋼板の内壁側から2点以上の位置を押圧することが、真円度向上のためには、好ましい。配設するインナーロールは、図2に示すような形状の、2点以上の位置を押圧することができるロールとすることが、真円度の向上および設備負荷軽減の観点から好ましい。
 ロール成形、スクイズロールでの圧接、電縫溶接の方法については、所定寸法の電縫鋼管が製造できればよく、とくに限定する必要はなく、常用の方法がいずれも適用できる。
 得られた電縫鋼管には、ついで、図1に示すように、インラインで、電縫溶接部の熱処理(シームアニール)が施される。
 電縫溶接部のインライン熱処理は、例えば、図1に示すような、電縫溶接部が加熱可能なように、スクイズロール4の出側に配設された誘導加熱装置9および冷却装置10を用いて行なうことが好ましい。誘導加熱装置9は、図3に示すように、1段、あるいは複数段の加熱が可能なように、1基あるいは複数基のコイル9aを配設することが好ましい。複数基のコイル9aを用いれば、加熱を均一に行うことが可能となる。
 電縫溶接部の熱処理は、電縫溶接部で肉厚方向の最低温度部が830℃以上、最高加熱温度が1150℃以下となるように加熱し、板厚中央における800~550℃の温度域での平均冷却速度で10℃/s以上70℃/sの範囲で水冷し、冷却停止温度(板厚中央温度):550℃以下まで冷却することが好ましい。冷却停止温度は更に低い温度となってもよい。電縫溶接部での加熱温度の最低温度が830℃未満では、加熱温度が低すぎて、所望の電縫溶接部組織を確保できなくなるおそれがある。一方、最高加熱温度が1150℃を超えて高温となると、結晶粒が粗大化し、靭性低下を招くおそれがある。このため、電縫溶接部の熱処理における加熱温度は、830℃以上1150℃以下の範囲の温度とすることが好ましい。
 また、板厚中央における冷却速度が10℃/s未満では、ポリゴナルフェライトの生成が促進され、所望の電縫溶接部組織を確保できなくなるおそれがある。一方、冷却速度が70℃/sを超えて急冷となると、マルテンサイト等の硬質相が生成し、所望の電縫溶接部組織を確保できなくなり、靭性が低下するおそれがある。このため、加熱後の冷却は、平均で10~70℃/sの範囲の冷却速度が好ましい。なお、冷却の停止温度は550℃以下の温度域の温度が好ましい。冷却停止温度が550℃超える高温では、フェライト変態が完了せず、冷却停止後の放冷中に粗大なパーライト組織が生成し、靭性の低下、あるいは強度の低下が懸念される。
 上記した電縫溶接部の熱処理(シームアニール)により、電縫溶接部の組織を、母材部と同様の組織、すなわち、体積率で90%以上のベイニティックフェライト相を主相とし、該主相と、体積率で10%以下(0%を含む)の第二相とからなり、前記ベイニティックフェライト相の平均粒径が10μm以下である組織とすることができる。
 ついで、縮径圧延を施し、真円度の向上を図る。
 縮径圧延は、一対のロールを2基、あるいは、3基以上のロールで構成されたサイザー8で、冷間で行なうことが好ましい。縮径圧延の縮径率は、0.2~3.3%の範囲とすることが好ましい。縮径率が0.2%未満では、所望の真円度(0.6%以下)を確保できないおそれがある。一方、3.3%を超えて多くなると、円周方向への圧縮が大きくなりすぎて、円周方向の肉厚変動が大きくなり、円周溶接の効率が低下するおそれがある。このため、縮径圧延の縮径率は0.2~3.3%の範囲が好ましい。なお、縮径率は、次式
 縮径率(%)={(縮径圧延前の管外周長さmm)-(縮径圧延後の管外周長さmm)}/(縮径圧延前の管外周長さmm)×100
を用いて算出するものとする。上記した縮径圧延を施すことにより、鋼管端部の真円度が、0.6%以下の高強度厚肉電縫鋼管とすることができる。
 以下、実施例に基づき、さらに本発明について具体的に説明する。
 表1に示す組成(残部はFe及び不可避的不純物)の溶鋼を転炉で溶製し、連続鋳造法でスラブ(鋳片:肉厚250mm)とし、鋼素材とした。
 得られた鋼素材を、表2に示す条件(加熱温度(℃)×加熱時間(min))で再加熱したのち、粗圧延と仕上圧延とからなる熱間圧延を施し、熱延鋼板とした。なお、熱間圧延は、表2に示す、未再結晶温度域での圧下率(%)、仕上圧延終了温度(℃)、の条件の圧延で行なった。仕上圧延終了後、直ちに冷却を開始し、板厚中心温度で、表2に示す条件(750~650℃の温度域での平均冷却速度、冷却停止温度)で冷却する加速冷却を施し、表2に示す巻取温度でコイル状に巻き取り、鋼管素材とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 得られた熱延鋼板を鋼管素材として、複数のロールからなるケージロール群と、複数のロールからなるフィンパス成形ロール群とからなるロール成形機を用いて、冷間で連続的にロール成形して、略円形断面のオープン管とした。そののち、該オープン管の相対する端部同士を突き合わせ、スクイズロールで圧接しながら、該突き合わせた部位を電縫溶接して、表3に示す大きさの電縫鋼管とした。なお、一部の電縫鋼管では、ケージロール群における下流側に配設したインナーロールで、半成形品の内壁側から、少なくとも幅方向に2点で押圧した。
 ついで、得られた電縫鋼管の電縫溶接部に、表3に示す条件でインライン熱処理を施した。なお、インライン熱処理は、スクイズロールの出側に配設された、誘導加熱装置と水冷装置を備えたインライン熱処理装置を用いて、行なった。なお、平均冷却速度及び冷却停止温度は板厚中央部の温度である。また、平均冷却速度は800~550℃の温度域での平均冷却速度である。
 インライン熱処理を施された電縫鋼管には、さらに、縮径圧延機(サイザーロール)で、冷間で、表3に示す縮径率で縮径圧延を施し、表3に示す寸法の電縫鋼管を得た。なお、縮径圧延機は、表3に示すように、2~4基のロールを有するものを使用した。なお、一部の電縫鋼管では、縮径圧延を施さなかった。管端部の真円度は、上記(1)式にて求めた。なお、表3に示す外径は、公称外径である。
Figure JPOXMLDOC01-appb-T000003
 得られた電縫鋼管から、試験片を採取して、組織観察、引張試験、衝撃試験、溶接後熱処理試験を実施した。試験方法はつぎのとおりである。
(1)組織観察
 得られた電縫鋼管の母材部(電縫溶接部から円周方向に90°の位置)および電縫溶接部から、組織観察用試験片を採取した。母材部については管軸方向断面(L断面)の肉厚中央位置が、電縫溶接部については、管周方向断面(C断面)が観察面となるように研磨し、腐食(腐食液:ナイタール)した。走査型電子顕微鏡SEM(Scanning Electron Microscope)(倍率:1000倍)を用いて組織を観察し、少なくとも2視野で撮像した。得られた組織写真を用いて、画像解析し、組織の同定と、各相の分率を求めた。なお、同定した面積分率の値は、体積分率の値として扱った。
 SEM/EBSD(Electron Back Scattering Diffraction)法で、方位差が15°以上の結晶粒界を求め、得られた粒の円相当径の算術平均を、主相の平均粒径とした。なお、結晶粒径の算出にはアメテックス株式会社製ソフトウェアOrientation Imaging Microscopy Data Analysisを用いた。
 また、得られた電縫鋼管の母材部(電縫溶接部から円周方向に90°の位置)から、電解抽出用試験片を採取し、電解液(10vol.%アセチルアセトン-1質量%塩化テトラメチルアンモニウム-メタノール溶液)中で、電流密度:20mA/cmで電解した。得られた電解残渣を、液に溶かし、アルミフィルター(孔径:0.02μm)で捕集し、アルミフィルターを通過した液について、ICP発光分光法でNb量を分析し、粒径20nm未満の析出Nb量とし、全Nb量に対する比率(%)を算出した。
(2)引張試験
 得られた電縫鋼管の母材部(電縫溶接部から円周方向に180°の位置)および電縫溶接部から、引張方向が管軸方向と直交する方向(C方向)となるように、ASTM A 370の規定に準拠して、板状引張試験片を採取し、引張特性(降伏強さYS、引張強さTS)を求めた。
(3)衝撃試験
 得られた電縫鋼管の母材部(電縫溶接部から円周方向に90°の位置)および電縫溶接部から、ASTM A 370の規定に準拠して、試験片長手方向が円周方向(C方向)となるように、Vノッチ試験片を採取し、試験温度:-40℃でシャルピー衝撃試験を各3本実施し、吸収エネルギーvE-40(J)を求め、3本の平均値を当該鋼管のvE-40とした。
(4)溶接後熱処理試験
 得られた電縫鋼管の母材部から試験材を採取し、採取した試験材を、表5に示す溶接後熱処理を想定した加熱温度に保持した熱処理炉に装入し、試験材の温度が(加熱温度-10℃)に到達した時点から、表5に示す所定の保持時間が経過した後、熱処理炉から取り出し、放冷した。熱処理済みの試験材から、引張方向が管軸方向と直交する方向(C方向)となるように、ASTM A 370の規定に準拠して、板状引張試験片を採取し、引張特性(降伏強さYS、引張強さTS)を求めた。
 得られた結果を、表4、表5に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 本発明例はいずれも、深井戸向けコンダクターケーシング用として好適な、API X80グレードである、降伏強さYS:555MPa以上、引張強さTS:625MPa以上の高強度と、優れた低温靭性とを有し、しかも溶接後熱処理後にも強度の低下が少なく、優れた耐溶接後熱処理性をも保持した電縫鋼管となっている。一方、本発明の範囲を外れる比較例は、強度が不足しているか、低温靭性が低下しているか、耐溶接後熱処理性が低下している。
1  熱延鋼板(熱延鋼帯)
2  ロール成形機
3  溶接機
4  スクイズロール
5  電縫鋼管
6  ビード切削機
7  レベラ
8  サイザー
9  誘導加熱装置
10 冷却装置
11 温度計

Claims (11)

  1.  質量%で、
     C :0.01~0.12%、         Si:0.05~0.50%、
     Mn:1.0~2.2%、          P :0.03%以下、
     S :0.005%以下、          Al:0.001~0.10%、
     N :0.006%以下、          Nb:0.010~0.100%、
     Ti:0.001~0.050%
    を含み、残部Fe及び不可避的不純物からなる組成と、
    体積率で90%以上のベイニティックフェライト相を主相とし、該主相と、体積率で10%以下(0%を含む)の第二相とからなり、前記ベイニティックフェライト相の平均粒径が10μm以下であり、かつ母材部において粒径:20nm未満の微細なNb析出物が、Nb換算で、全Nb量に対する比率(%)で、75%を超えて分散してなる組織と、
    を有し、かつ、
    下記(1)式で定義される鋼管端部の真円度が、0.6%以下であることを特徴とする深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管。
                      記
    真円度(%)={(鋼管の最大外径mmφ)-(鋼管の最小外径mmφ)}/(公称外径mmφ)×100 ‥‥(1)
  2.  前記組成に加えてさらに、質量%で、V:0.1%以下、Mo:0.5%以下、Cr:0.5%以下、Cu:0.5%以下、Ni:1.0%以下、B:0.0030%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項1に記載の深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管。
  3.  前記組成に加えてさらに、質量%で、Ca:0.0005~0.0050%、REM:0.0005~0.0050%のうちから選ばれた1種または2種を含有する組成とすることを特徴とする請求項1または請求項2に記載の深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管。
  4.  熱延鋼板を、ロール成形機により連続的にロール成形して、略円形断面のオープン管としたのち,該オープン管の端部同士を突き合わせ、該突き合わせた部位を、スクイズロールで圧接しながら、電縫溶接して電縫鋼管とし、ついで該電縫鋼管の電縫溶接部にインライン熱処理を施した後、縮径圧延する電縫鋼管の製造方法であって、
    前記熱延鋼板を、質量%で、
     C :0.01~0.12%、         Si:0.05-0.50%、
     Mn:1.0~2.2%、          P :0.03%以下、
     S :0.005%以下、          Al:0.001~0.10%、
     N :0.006%以下、          Nb:0.010~0.100%、
     Ti:0.001~0.050%
    を含み、残部Fe及び不可避的不純物からなる組成の鋼素材に、
    加熱温度:1150~1250℃の温度域で60min以上均熱する加熱を施したのち、仕上圧延終了温度:750℃以上とする熱間圧延を施し、該熱間圧延終了後、板厚中央部温度で750℃~650℃の温度域での平均冷却速度が8~70℃/sとなるように加速冷却を施し、巻取温度:580℃超え700℃以下で巻き取る工程を施して製造された熱延鋼板とすることを特徴とする深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管の製造方法。
  5.  前記ロール成形機が、複数のロールからなるケージロール群と、さらに複数のロールからなるフィンパス成形ロール群とからなるロール成形機であることを特徴とする請求項4に記載の深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管の製造方法。
  6.  前記ケージロール群における下流側にインナーロールを配設し、成形途中の前記熱延鋼板の内壁側から2点以上の位置を押圧することを特徴とする請求項5に記載の深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管の製造方法。
  7.  前記電縫溶接部のインライン熱処理が、該電縫溶接部を加熱温度:830~1150℃に加熱したのち、板厚中央温度で800~550℃の温度域での平均冷却速度が10~70℃/sである冷却を行い、板厚中央温度で冷却停止温度:550℃以下の冷却停止温度まで冷却する処理であることを特徴とする請求項4ないし6のいずれかに記載の深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管の製造方法。
  8.  前記縮径圧延が、縮径率:0.2~3.3%とする圧延であることを特徴とする請求項4ないし7のいずれかに記載の深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管の製造方法。
  9.  前記組成に加えてさらに、質量%で、V:0.1%以下、Mo:0.5%以下、Cr:0.5%以下、Cu:0.5%以下、Ni:1.0%以下、B:0.0030%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項4ないし8のいずれかに記載の深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管の製造方法。
  10.  前記組成に加えてさらに、質量%で、Ca:0.0005~0.0050%、REM:0.0005~0.0050%のうちから選ばれた1種または2種を含有する組成とすることを特徴とする請求項4ないし9のいずれかに記載の深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管の製造方法。
  11.  請求項1ないし3のいずれかに記載の深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管の両管端に螺子部材を取り付けてなる深井戸向け高強度厚肉コンダクターケーシング。
PCT/JP2015/006232 2014-12-25 2015-12-15 深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管およびその製造方法ならびに深井戸向け高強度厚肉コンダクターケーシング WO2016103623A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020177015946A KR101967691B1 (ko) 2014-12-25 2015-12-15 심정에 사용되는 컨덕터 케이싱용 고강도 후육 전봉 강관, 그의 제조 방법 및 심정에 사용되는 고강도 후육 컨덕터 케이싱
CA2967902A CA2967902C (en) 2014-12-25 2015-12-15 High-strength thick-walled electric-resistance-welded steel pipe for deep-well conductor casing, method for manufacturing the same, and high-strength thick-walled conductor casing for deep wells
EP15872198.5A EP3239316B1 (en) 2014-12-25 2015-12-15 High-strength thick-walled electric resistance welded steel pipe for conductor casing for deep well, production method therefor, and high-strength thick-walled conductor casing for deep well
CN201580070398.9A CN107109568B (zh) 2014-12-25 2015-12-15 用于深井用导体套管的高强度厚壁电阻焊钢管及其制造方法和深井用高强度厚壁导体套管
US15/539,510 US11053564B2 (en) 2014-12-25 2015-12-15 High strength thick-walled electric-resistance-welded steel pipe for deep-well conductor casing, method for manufacturing the same, and high-strength thick-walled conductor casing for deep wells
JP2016516998A JP5999284B1 (ja) 2014-12-25 2015-12-15 深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管およびその製造方法ならびに深井戸向け高強度厚肉コンダクターケーシング

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014262104 2014-12-25
JP2014-262104 2014-12-25

Publications (1)

Publication Number Publication Date
WO2016103623A1 true WO2016103623A1 (ja) 2016-06-30

Family

ID=56149690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/006232 WO2016103623A1 (ja) 2014-12-25 2015-12-15 深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管およびその製造方法ならびに深井戸向け高強度厚肉コンダクターケーシング

Country Status (7)

Country Link
US (1) US11053564B2 (ja)
EP (1) EP3239316B1 (ja)
JP (1) JP5999284B1 (ja)
KR (1) KR101967691B1 (ja)
CN (1) CN107109568B (ja)
CA (1) CA2967902C (ja)
WO (1) WO2016103623A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018127646A (ja) * 2017-02-06 2018-08-16 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
JP2019031698A (ja) * 2017-08-04 2019-02-28 Jfeスチール株式会社 厚肉電縫鋼管およびその製造方法
JP6690788B1 (ja) * 2019-03-29 2020-04-28 Jfeスチール株式会社 電縫鋼管およびその製造方法、並びに鋼管杭
JP6690787B1 (ja) * 2019-03-29 2020-04-28 Jfeスチール株式会社 電縫鋼管およびその製造方法、並びに鋼管杭

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2954141T3 (es) * 2016-07-14 2023-11-20 Tata Steel Nederland Tubes Bv Método para la fabricación en línea de tubo de acero
WO2019097729A1 (ja) * 2017-11-20 2019-05-23 日本製鉄株式会社 焼入れ用Alめっき溶接管、並びにAlめっき中空部材及びその製造方法
RU2749085C1 (ru) * 2018-01-30 2021-06-03 ДжФЕ СТИЛ КОРПОРЕЙШН Стальной материал для магистральных труб, способ его получения и способ изготовления магистральной трубы
CN109033590B (zh) * 2018-07-13 2023-09-12 北京工业大学 一种基于模锻模具磨损的工艺参数优化方法
CN109202028B (zh) * 2018-09-10 2020-03-10 武汉科技大学 一种高延伸凸缘钢板及其制备方法
US11739866B2 (en) * 2018-10-12 2023-08-29 Nippon Steel Corporation Electric resistance welded steel pipe for torsion beam
CN109536838B (zh) * 2018-12-20 2020-12-01 张家港宏昌钢板有限公司 针状铁素体型耐低温n80级石油套管用钢及制备方法
CN110846565A (zh) * 2019-09-30 2020-02-28 邯郸钢铁集团有限责任公司 组织及性能稳定的低成本大壁厚抗酸管线钢及其生产方法
WO2021106577A1 (ja) * 2019-11-29 2021-06-03 Jfeスチール株式会社 電縫鋼管およびその製造方法
CN115838845B (zh) * 2022-10-20 2024-05-03 河南中原特钢装备制造有限公司 光伏玻璃制造用压延辊20CrNiMo钢的冶炼工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315957A (ja) * 2003-03-27 2004-11-11 Jfe Steel Kk 低温靱性および溶接性に優れた高強度電縫管用熱延鋼帯およびその製造方法
JP2007138289A (ja) * 2005-10-18 2007-06-07 Jfe Steel Kk 厚手高強度熱延鋼板およびその製造方法
JP2007138290A (ja) * 2005-10-18 2007-06-07 Jfe Steel Kk 厚手高強度熱延鋼板およびその製造方法
JP2007254797A (ja) * 2006-03-22 2007-10-04 Jfe Steel Kk 母材部および電縫溶接部の靱性に優れた厚肉電縫鋼管およびその製造方法
JP2008274405A (ja) * 2007-03-30 2008-11-13 Jfe Steel Kk 耐sr特性および変形性能に優れた高強度鋼板およびその製造方法
JP2010174343A (ja) * 2009-01-30 2010-08-12 Jfe Steel Corp 低温靭性に優れた厚肉高張力熱延鋼板の製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4174495A (en) 1978-06-30 1979-11-13 Westinghouse Electric Corp. Static current limiting switch with soft forced commutation
SU1388236A1 (ru) * 1986-10-28 1988-04-15 Предприятие П/Я А-3881 Способ изготовлени сварных соединений
JP3376850B2 (ja) 1997-03-27 2003-02-10 日本鋼管株式会社 高強度高靱性熱延鋼板の製造方法
TW404856B (en) 1997-03-28 2000-09-11 Kawasaki Steel Co Smoothing device on steel pipe seams and its manufacturing method
US6419768B1 (en) * 2001-01-29 2002-07-16 Crucible Materials Corp. Method for producing welded tubing having a uniform microstructure
WO2003006699A1 (fr) * 2001-07-13 2003-01-23 Nkk Corporation Tube d'acier a resistance elevee, superieure a celle de la norme api x6
JP4305216B2 (ja) 2004-02-24 2009-07-29 Jfeスチール株式会社 溶接部の靭性に優れる耐サワー高強度電縫鋼管用熱延鋼板およびその製造方法
JP2006289439A (ja) 2005-04-11 2006-10-26 Sumitomo Metal Ind Ltd Uoe鋼管の拡管方法および装置
JP4442541B2 (ja) 2005-09-30 2010-03-31 Jfeスチール株式会社 ラインパイプ向け低yr電縫鋼管の製造方法
WO2008105110A1 (ja) * 2007-02-28 2008-09-04 Jfe Steel Corporation 溶接部靭性に優れたラインパイプ向け電縫鋼管
BRPI0802615B1 (pt) * 2007-03-30 2018-01-16 Nippon Steel & Sumitomo Metal Corporation Produtos tubulares em pegada nos campos petrolíferos (octg) para expansão em poço e método de fabricação do mesmo
JP5776398B2 (ja) * 2011-02-24 2015-09-09 Jfeスチール株式会社 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法
EP2634271B1 (en) * 2011-04-19 2016-07-20 Nippon Steel & Sumitomo Metal Corporation Electric resistance welded (erw) steel pipe for oil well use and process for producing erw steel pipe for oil well use
JP5339006B1 (ja) * 2011-09-27 2013-11-13 新日鐵住金株式会社 ラインパイプ用ホットコイル及びその製造方法
CN102367560B (zh) 2011-11-09 2013-06-19 南京钢铁股份有限公司 一种高强度耐腐蚀直缝焊管用钢的制造方法
JP5516680B2 (ja) 2012-09-24 2014-06-11 Jfeスチール株式会社 電縫溶接部の耐hic性および低温靭性に優れた電縫鋼管およびその製造方法
CN103911558B (zh) 2014-03-04 2016-07-06 宝钢集团新疆八一钢铁有限公司 一种耐磨耐低温耐大气腐蚀钢的生产方法
WO2016103624A1 (ja) 2014-12-25 2016-06-30 Jfeスチール株式会社 深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管およびその製造方法並びに深井戸向け高強度厚肉コンダクターケーシング

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315957A (ja) * 2003-03-27 2004-11-11 Jfe Steel Kk 低温靱性および溶接性に優れた高強度電縫管用熱延鋼帯およびその製造方法
JP2007138289A (ja) * 2005-10-18 2007-06-07 Jfe Steel Kk 厚手高強度熱延鋼板およびその製造方法
JP2007138290A (ja) * 2005-10-18 2007-06-07 Jfe Steel Kk 厚手高強度熱延鋼板およびその製造方法
JP2007254797A (ja) * 2006-03-22 2007-10-04 Jfe Steel Kk 母材部および電縫溶接部の靱性に優れた厚肉電縫鋼管およびその製造方法
JP2008274405A (ja) * 2007-03-30 2008-11-13 Jfe Steel Kk 耐sr特性および変形性能に優れた高強度鋼板およびその製造方法
JP2010174343A (ja) * 2009-01-30 2010-08-12 Jfe Steel Corp 低温靭性に優れた厚肉高張力熱延鋼板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIROSHI NAKATA ET AL.: "API X80 Grade Electric Resistance Welded Pipe with Excellent Low Temperature Toughness", JFE GIHO, vol. 29, February 2012 (2012-02-01), pages 11 - 16 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018127646A (ja) * 2017-02-06 2018-08-16 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
JP2019031698A (ja) * 2017-08-04 2019-02-28 Jfeスチール株式会社 厚肉電縫鋼管およびその製造方法
JP6690788B1 (ja) * 2019-03-29 2020-04-28 Jfeスチール株式会社 電縫鋼管およびその製造方法、並びに鋼管杭
JP6690787B1 (ja) * 2019-03-29 2020-04-28 Jfeスチール株式会社 電縫鋼管およびその製造方法、並びに鋼管杭
WO2020202333A1 (ja) * 2019-03-29 2020-10-08 Jfeスチール株式会社 電縫鋼管およびその製造方法、並びに鋼管杭
WO2020202334A1 (ja) * 2019-03-29 2020-10-08 Jfeスチール株式会社 電縫鋼管およびその製造方法、並びに鋼管杭
KR20210132698A (ko) * 2019-03-29 2021-11-04 제이에프이 스틸 가부시키가이샤 전봉 강관 및 그의 제조 방법, 그리고 강관 말뚝
KR102551615B1 (ko) 2019-03-29 2023-07-05 제이에프이 스틸 가부시키가이샤 전봉 강관 및 그의 제조 방법, 그리고 강관 말뚝

Also Published As

Publication number Publication date
JPWO2016103623A1 (ja) 2017-04-27
CA2967902C (en) 2020-07-21
KR101967691B1 (ko) 2019-04-10
KR20170082617A (ko) 2017-07-14
EP3239316A1 (en) 2017-11-01
JP5999284B1 (ja) 2016-09-28
US20170362678A1 (en) 2017-12-21
CN107109568A (zh) 2017-08-29
US11053564B2 (en) 2021-07-06
EP3239316A4 (en) 2018-05-16
CN107109568B (zh) 2018-12-25
CA2967902A1 (en) 2016-06-30
EP3239316B1 (en) 2020-08-26

Similar Documents

Publication Publication Date Title
JP5999284B1 (ja) 深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管およびその製造方法ならびに深井戸向け高強度厚肉コンダクターケーシング
JP6015879B1 (ja) 深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管およびその製造方法並びに深井戸向け高強度厚肉コンダクターケーシング
KR101993542B1 (ko) 고강도 전봉 강관 및 그 제조 방법
EP3042976B1 (en) Steel sheet for thick-walled high-strength line pipe having exceptional corrosion resistance, crush resistance properties, and low-temperature ductility, and line pipe
JP5857400B2 (ja) 高圧縮強度ラインパイプ用溶接鋼管及びその製造方法
KR101802255B1 (ko) 라인 파이프용 후육 전봉 강관 및 그의 제조 방법
WO2011065578A1 (ja) 高い圧縮強度および高い靭性に優れたラインパイプ用溶接鋼管及びその製造方法
JP2015190026A (ja) ラインパイプ用厚肉高強度電縫鋼管およびその製造方法
TWI763404B (zh) 電焊鋼管及其製造方法
JP6947333B2 (ja) 電縫鋼管およびその製造方法ならびにラインパイプおよび建築構造物
JP2015189984A (ja) 低降伏比高強度高靭性鋼板、低降伏比高強度高靭性鋼板の製造方法および鋼管
JP2012167328A (ja) 圧潰強度に優れた高靱性uoe鋼管及びその製造方法
JPWO2019151045A1 (ja) ラインパイプ用鋼材およびその製造方法ならびにラインパイプの製造方法
CN114729426B (zh) 电阻焊钢管用热轧钢板及其制造方法、电阻焊钢管及其制造方法、管线管、建筑结构物
JP6319129B2 (ja) 深井戸向けコンダクターケーシング用高強度厚肉スパイラル鋼管及びその製造方法
JP6369347B2 (ja) 深井戸向けコンダクターケーシング用高強度厚肉スパイラル鋼管及びその製造方法
JP7211566B1 (ja) 高強度熱延鋼板およびその製造方法、並びに高強度電縫鋼管およびその製造方法
JP6984785B2 (ja) 角形鋼管およびその製造方法並びに建築構造物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016516998

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872198

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2967902

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20177015946

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015872198

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15539510

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE