WO2020066402A1 - 光照射装置 - Google Patents

光照射装置 Download PDF

Info

Publication number
WO2020066402A1
WO2020066402A1 PCT/JP2019/033128 JP2019033128W WO2020066402A1 WO 2020066402 A1 WO2020066402 A1 WO 2020066402A1 JP 2019033128 W JP2019033128 W JP 2019033128W WO 2020066402 A1 WO2020066402 A1 WO 2020066402A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
line
distribution pattern
mirror
light source
Prior art date
Application number
PCT/JP2019/033128
Other languages
English (en)
French (fr)
Inventor
健太 向島
達磨 北澤
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to JP2020548191A priority Critical patent/JPWO2020066402A1/ja
Publication of WO2020066402A1 publication Critical patent/WO2020066402A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/33Multi-surface reflectors, e.g. reflectors with facets or reflectors with portions of different curvature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/67Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors
    • F21S41/675Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors by moving reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • F21V14/04Controlling the distribution of the light emitted by adjustment of elements by movement of reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/20Illuminance distribution within the emitted light

Definitions

  • the present invention relates to a light irradiation device.
  • an apparatus that reflects light emitted from a light source toward the front of a vehicle and scans an area in front of the vehicle with the reflected light to form a predetermined light distribution pattern.
  • a plurality of light sources composed of light emitting elements, and a blade scan (registered trademark) that forms a desired light distribution pattern by reflecting light emitted from the plurality of light sources on a reflecting surface while rotating in one direction around a rotation axis.
  • An optical unit that uses a polygon mirror instead of a rotating reflector is also known. In such an optical unit, there is room for improvement in controlling the light distribution pattern.
  • optical units using polygon mirrors are becoming smaller. Accordingly, the distance between the polygon mirror and a surface from which light is emitted from the optical unit (light emitting surface) is also becoming narrower. As a result, the diffusion width of the light distribution pattern is reduced.
  • the light irradiation device provided with such a polygon mirror has room for improvement in this respect.
  • an object of the present invention is to provide a light irradiation device capable of precisely controlling a light distribution pattern.
  • Another object of the present invention is to provide a light irradiation device that can make a part of a light distribution pattern brighter than other parts with a simple configuration.
  • Another object of the present invention is to provide a light irradiation device capable of preventing a decrease in efficiency due to a loss of turning off a light source.
  • Another object of the present invention is to provide a light irradiation device capable of adjusting the luminous intensity in a light distribution pattern.
  • Another object of the present invention is to provide a light irradiation device that can reduce the size of an optical unit without reducing the diffusion width of a light distribution pattern.
  • a light irradiation device is: Light source, A rotatable mirror that reflects light emitted from the light source, With A light irradiating device, wherein the light is divided into a plurality of stages and scanned in a line to form a light distribution pattern by displacing the reflection direction of the light by rotation of the mirror,
  • the light distribution pattern includes a first line and a second line, The width of the first line is different from the width of the second line.
  • the mirror is arranged in parallel with a first reflection surface for forming the first line and a rotation direction of the mirror with respect to the first reflection surface to form the second line. And at least a second reflective surface, A curvature of the first reflection surface in a direction along the rotation axis of the mirror may be different from a curvature of the second reflection surface in a direction along the rotation axis.
  • the width of the first line and the width of the second line can be made different with a simple configuration.
  • the first reflection surface may be formed of a surface curved in a convex shape in the direction
  • the second reflection surface may be formed of a surface curved in a concave shape in the direction.
  • the first reflection surface and the second reflection surface may be each configured by a surface curved in a convex shape in the direction.
  • the first reflection surface and the second reflection surface may each be configured by a surface curved concavely in the direction.
  • the first reflecting surface may be formed of a surface curved in a convex shape in the direction
  • the second reflecting surface may be formed of a flat surface in the direction.
  • the first reflecting surface may be formed of a plane in the direction
  • the second reflecting surface may be formed of a surface curved concavely in the direction.
  • the width of the first line and the width of the second line can be easily changed.
  • the inclination angle of the first reflection surface with respect to the rotation axis of the mirror may be different from the inclination angle of the second reflection surface with respect to the rotation axis.
  • the first line and the second line can be formed in different regions in the light distribution pattern.
  • the second line is disposed between a plurality of the first lines,
  • the width of the second line may be smaller than the width of the plurality of first lines.
  • the light irradiation device Further comprising an optical member that transmits the light reflected by the mirror,
  • the incident diameter of the light incident on the optical member may be different depending on the curvatures of the first reflection surface and the second reflection surface.
  • the width of the first line and the width of the second line in the light distribution pattern can be made different by making the diameter of light incident upon the optical member different.
  • the mirror may be configured as a polygon mirror.
  • the mirror is a polygon mirror.
  • the light irradiation device Light source, A rotatable mirror that reflects light emitted from the light source, With A light irradiating device, wherein the light is divided into a plurality of stages and scanned in a line to form a light distribution pattern by displacing the reflection direction of the light by rotation of the mirror,
  • the light distribution pattern includes a first line and a second line,
  • the spot diameter of the light emitted from the light source to form the first line is different from the spot diameter of the light emitted from the light source to form the second line.
  • the width (thickness) of the first line and the width of the second line constituting the light distribution pattern irradiated to the front of the device can be made different from each other. Control becomes possible.
  • the light source includes a first light source for forming the first line, and a second light source for forming the second line.
  • the spot diameter of the light emitted from the first light source may be different from the spot diameter of the light emitted from the second light source.
  • the width of the first line and the width of the second line can be made different with a simple configuration.
  • the spot shape of the light is a flat shape
  • the first line irradiating the light so that the minor axis of the flat shape is along the scanning direction of the light
  • the second line is formed, the light may be irradiated such that the major axis of the flat shape is along the scanning direction of the light.
  • lines having different widths can be formed using a plurality of light sources having the same configuration and having a flat light emission surface. Therefore, product cost can be reduced.
  • the light emitted from the light source may be parallel light.
  • the width of the second line may be smaller than the width of the first line.
  • the luminous intensity is higher in the narrow line, so that only a predetermined area in the light distribution pattern can be brightened.
  • the second line may be arranged between a plurality of the first lines.
  • the light distribution pattern can be effectively controlled, particularly, by narrowing the line of the central portion that needs fine control in the entire area of the light distribution pattern.
  • the light irradiation device A first light source, A second light source; A rotatable mirror that reflects the first light emitted from the first light source and the second light emitted from the second light source, respectively, By the displacement of the reflection direction of the first light and the second light due to the rotation of the mirror, the first light and the second light are respectively divided into a plurality of stages and scanned in a line to form a light distribution pattern.
  • the light distribution pattern includes a first light distribution pattern formed by scanning the first light, and a second light distribution pattern formed by scanning the second light, The first light distribution pattern and a part of the second light distribution pattern are formed so as to overlap.
  • a part of the light distribution pattern can be made brighter than other parts with a simple configuration. Therefore, precise control of the light distribution pattern becomes easy.
  • the first light distribution pattern and the second light distribution pattern may be formed so as to overlap in a central region in the scanning direction of the first light and the second light.
  • the central region of the light distribution pattern can be made brighter than other portions.
  • the reflecting surface of the mirror is configured such that at least one convex portion and at least one concave portion are continuously connected in the rotation direction of the mirror,
  • the first light distribution pattern is formed by scanning so that the first light reciprocates in the scanning direction of the first light
  • the second light distribution pattern is formed by scanning so that the second light reciprocates in the scanning direction of the second light
  • a part of the first light distribution pattern and a part of the second light distribution pattern may be formed to overlap in a central region of the first light and the second light in the scanning direction.
  • the light irradiation device A first unit having a first light source and a rotatable first mirror that reflects first light emitted from the first light source, A second unit having a second light source and a rotatable second mirror that reflects the second light emitted from the second light source, As the reflection directions of the first light and the second light are respectively displaced by the rotation of the first mirror and the second mirror, the first light and the second light are respectively divided into a plurality of stages and formed into a line.
  • a light irradiation device that is scanned to form a light distribution pattern,
  • the light distribution pattern includes a first light distribution pattern formed by scanning the first light, and a second light distribution pattern formed by scanning the second light,
  • the first light distribution pattern and a part of the second light distribution pattern are formed so as to overlap.
  • the reflecting surface of the first mirror is configured such that at least one convex portion and at least one concave portion are continuously connected in the rotation direction of the first mirror
  • the reflecting surface of the second mirror is configured such that at least one convex portion and at least one concave portion are continuously connected in the rotation direction of the second mirror
  • the first light distribution pattern is formed by scanning so that the first light reciprocates in the scanning direction
  • the second light distribution pattern is formed by scanning so that the second light reciprocates in the scanning direction
  • a part of the first light distribution pattern and a part of the second light distribution pattern may be formed to overlap in a central region of the first light and the second light in the scanning direction.
  • the first mirror and the second mirror may be configured as a polygon mirror.
  • a polygon mirror as the first mirror and the second mirror.
  • the light irradiation device Light source, A rotatable mirror that reflects light emitted from the light source, With A light irradiating device, wherein the light is divided into a plurality of stages and scanned in a line to form a light distribution pattern by displacing the reflection direction of the light by rotation of the mirror,
  • the mirror has a plurality of reflection surfaces that are continuous in the rotation direction of the mirror, A boundary between at least one of the plurality of reflecting surfaces and a reflecting surface adjacent to the at least one reflecting surface is chamfered.
  • a boundary portion between all of the plurality of reflecting surfaces may be chamfered.
  • the boundary between some of the plurality of reflection surfaces is chamfered, the boundary between the other reflection surfaces may not be chamfered.
  • the light distribution pattern includes a plurality of first lines and a second line
  • the plurality of first lines are formed by light reflected on a reflection surface sandwiched between boundaries that are not chamfered
  • the second line is formed by light reflected on a reflecting surface sandwiched between boundaries that are chamfered
  • the second line may be disposed between the plurality of first lines.
  • the glare from the oncoming vehicle can be prevented by forming the second line formed at the position corresponding to the oncoming vehicle by the light reflected by the chamfered reflecting surface.
  • the first line formed at a position where no oncoming vehicle exists by the light reflected by the reflection surface that is not chamfered it is possible to maintain the luminous intensity of the light distribution pattern.
  • the light irradiation device Light source, A rotatable mirror that reflects light emitted from the light source, With A light irradiating device, wherein the light is divided into a plurality of stages and scanned in a line to form a light distribution pattern by displacing the reflection direction of the light by rotation of the mirror,
  • the reflecting surface of the mirror is configured such that at least one convex portion and at least one concave portion are continuously connected in the rotation direction of the mirror.
  • One reciprocating line in the scanning direction of the light in the light distribution pattern may be formed by the light reflected by one convex portion and one concave portion adjacent to the one convex portion.
  • a single reciprocating line can be formed continuously without turning off the light source at both ends of the line.
  • the reflection surface includes a plurality of the convex portions and a plurality of the concave portions, The convex portions and the concave portions may be alternately arranged along the rotation direction.
  • the light irradiation device Light source, A rotatable mirror that reflects light emitted from the light source, With A light irradiation device, wherein the light is divided into a plurality of stages and scanned in a line by the displacement of the reflection direction of the light due to the rotation of the mirror, In one line, the output of the light emitted from the light source is changed.
  • the output of light emitted from the light source changes in one line.
  • the scanning direction of the light may be configured to reciprocate.
  • the output may be changed so that the output of the light is greater at the center of the line in the scanning direction than at other portions.
  • the light irradiation device Light source, A rotatable mirror that reflects light emitted from the light source, With A light irradiation device, wherein the light is divided into a plurality of stages and scanned in a line by the displacement of the reflection direction of the light due to the rotation of the mirror,
  • the mirror is an annular mirror; The light is reflected by the inner surface of the annular mirror.
  • the light emission surface of the light irradiation device is compared with the case where the light is reflected on the outer surface of the mirror.
  • the distance to is longer. Therefore, the optical unit can be reduced in size while preventing the diffusion width of the light distribution pattern from being reduced.
  • the light may be reflected also by the outer surface of the annular mirror.
  • the light source may include a first light source for irradiating the inner surface with the light, and a second light source for irradiating the outer surface with the light.
  • the diffusion width of the light distribution pattern can be adjusted more freely. Further, according to the light irradiation device having the above configuration, by superimposing the two light distribution patterns, the luminous intensity of a part of the light distribution pattern can be increased.
  • the light irradiation device A motor for rotating the mirror, And a support for supporting the mirror by the motor,
  • the mirror is composed of a plurality of reflection surfaces, The edge between the plurality of reflection surfaces and the support are arranged so as to be linearly arranged in the emission direction of the light emitted from the light source.
  • the edge between the reflection surfaces and the support for supporting the mirror are arranged in a straight line in the light emission direction. Therefore, it is possible to prevent the efficiency of the light emitted from the light source from decreasing.
  • An optical member that transmits light reflected by the inner surface may be further provided.
  • the optical member includes a phosphor and a projection lens,
  • the phosphor is disposed between the mirror and the projection lens,
  • the light reflected by the inner surface is scanned onto the phosphor,
  • Light emitted from the phosphor is transmitted through the projection lens and emitted.
  • the distance between the rotatable mirror surface that reflects light and the phosphor can be made longer than when light is reflected outside the mirror.
  • the size of the optical unit can be reduced.
  • a light irradiation device capable of preventing a decrease in efficiency due to a loss of turning off a light source.
  • the present invention it is possible to provide a light irradiation device capable of adjusting the luminous intensity in the light distribution pattern.
  • the present invention it is possible to provide a light irradiation device that can reduce the size of the optical unit without reducing the diffusion width of the light distribution pattern.
  • FIG. 3 is a top view of the optical unit in FIG. 2.
  • FIG. 3 is a side view of the optical unit in FIG. 2.
  • FIG. 5 is a side view illustrating a state where a rotating mirror is rotated in the optical unit of FIG. 4.
  • FIG. 3 is a schematic diagram illustrating an example of a light distribution pattern formed in front of a vehicle by the optical unit in FIG. 2.
  • FIG. 3 is a top view of the optical unit according to the first embodiment. It is a side view of the optical unit of FIG.
  • FIG. 9 is a top view illustrating a state in which the rotating mirror has rotated from the state in FIG.
  • FIG. 8 is a schematic diagram illustrating an example of a light distribution pattern formed in front of a vehicle by the optical unit in FIG. 7. It is a side view of the optical unit concerning a 1st modification.
  • FIG. 12 is a schematic diagram illustrating an example of a light distribution pattern formed in front of a vehicle by the optical unit in FIG. 11. It is a schematic diagram which shows an example of the light distribution pattern formed in the vehicle front by the optical unit which concerns on a 2nd modification. It is a side view of the optical unit concerning a 3rd modification. It is a top view of the optical unit concerning a second embodiment.
  • FIG. 16 is a schematic diagram illustrating a spot diameter of a first light source provided in the optical unit in FIG. 15.
  • FIG. 15 is a schematic diagram illustrating a spot diameter of a first light source provided in the optical unit in FIG. 15.
  • FIG. 16 is a schematic diagram illustrating a spot diameter of a second light source provided in the optical unit in FIG. 15.
  • FIG. 16 is a schematic diagram illustrating an example of a light distribution pattern formed in front of the vehicle by the optical unit in FIG. 15.
  • FIG. 16 is a top view illustrating a state in which light is emitted from a first light source in the optical unit in FIG. 15.
  • FIG. 16 is a top view illustrating a state in which light is emitted from a second light source in the optical unit in FIG. 15. It is a side view of the optical unit concerning a third embodiment. It is an optical unit concerning a 4th embodiment, and is a top view showing the state where light was emitted from the 1st light source.
  • FIG. 16 is a schematic diagram illustrating a spot diameter of a second light source provided in the optical unit in FIG. 15.
  • FIG. 16 is a schematic diagram illustrating an example of a light distribution pattern formed in front of the vehicle by the optical unit in FIG. 15.
  • FIG. 22 is a top view illustrating a state where light is emitted from a second light source in the optical unit of FIG. 21.
  • FIG. 22 is a schematic diagram illustrating an example of a light distribution pattern formed in front of a vehicle by light emitted from a first light source in the optical unit in FIG. 21.
  • FIG. 22 is a schematic diagram illustrating an example of a light distribution pattern formed in front of a vehicle by light emitted from a second light source in the optical unit in FIG. 21.
  • 24 is a schematic diagram illustrating an example of a light distribution pattern in which the light distribution pattern of FIG. 23 and the light distribution pattern of FIG. 24 are superimposed. It is a top view showing the optical unit concerning a 5th embodiment.
  • FIG. 22 is a schematic diagram illustrating an example of a light distribution pattern formed in front of a vehicle by light emitted from a first light source in the optical unit in FIG. 21.
  • FIG. 22 is a schematic diagram illustrating an example of a light distribution pattern formed
  • FIG. 27 is a top view illustrating a state where a rotating mirror is rotated in the optical unit of FIG. 26.
  • FIG. 27 is a top view showing a state in which the rotating mirror has been further rotated in the optical unit of FIG. 26.
  • FIG. 27 is a top view showing a state in which the rotating mirror has been further rotated in the optical unit of FIG. 26.
  • FIG. 27 is a top view showing a state in which the rotating mirror has been further rotated in the optical unit of FIG. 26.
  • FIG. 27 is a top view showing a state in which the rotating mirror has been further rotated in the optical unit of FIG. 26.
  • FIG. 27 is a schematic diagram illustrating an example of a light distribution pattern formed forward of the vehicle by the optical unit of FIG. 26 mounted on a right headlamp.
  • FIG. 27 is a schematic diagram illustrating an example of a light distribution pattern formed forward of the vehicle by the optical unit of FIG.
  • FIG. 33 is a schematic diagram illustrating an example of a light distribution pattern in which the light distribution pattern of FIG. 31 and the light distribution pattern of FIG. 32 are superimposed. It is an optical unit concerning a 4th modification, and is a top view showing the state where light was emitted from the 1st light source.
  • FIG. 35 is a top view illustrating a state where light is emitted from a second light source in the optical unit in FIG. 34. It is a top view of the optical unit concerning a 6th embodiment.
  • FIG. 37 is a top view of a rotating mirror included in the optical unit in FIG. 36.
  • FIG. 39 is a schematic diagram illustrating an example of a light distribution pattern formed by light reflected by the rotating mirror of FIG. 38.
  • FIG. 38 is a top view showing a state in which light from a light source is reflected at the boundary of the rotating mirror whose boundary shown in FIG. 37 is chamfered.
  • FIG. 38 is a schematic diagram illustrating an example of a light distribution pattern formed by light reflected by the rotating mirror in FIGS. 36 and 37. It is a top view which shows an example of the rotating mirror with which the optical unit concerning a 5th modification is provided.
  • FIG. 39 is a schematic diagram illustrating an example of a light distribution pattern formed by light reflected by the rotating mirror of FIG. 38.
  • FIG. 38 is a top view showing a state in which light from a light source is reflected at the boundary of the rotating mirror whose boundary shown in FIG. 37 is chamfered.
  • FIG. 38 is a schematic diagram illustrating an example of a light distribution pattern formed by light reflected by the rotating mirror in FIG
  • FIG. 43 is a schematic diagram illustrating an example of a light distribution pattern formed by light reflected by the rotating mirror in FIG. 42. It is a top view of the optical unit concerning a 7th embodiment.
  • FIG. 45 is a top view showing a state where the rotating mirror has rotated in the optical unit of FIG. 44.
  • FIG. 46 is a top view showing a state where the rotating mirror has further rotated in the optical unit of FIG. 45.
  • FIG. 47 is a top view showing a state where the rotating mirror has further rotated in the optical unit of FIG. 46.
  • FIG. 50 is a top view illustrating a state where the rotating mirror is further rotated in the optical unit of FIG. 47.
  • FIG. 50 is a top view illustrating a state where the rotating mirror is further rotated in the optical unit of FIG.
  • FIG. 50 is a top view showing a state where the rotating mirror has been further rotated in the optical unit of FIG. 49.
  • FIG. 51 is a top view illustrating a state where the rotating mirror has further rotated in the optical unit in FIG. 50.
  • It is a schematic diagram which shows an example of the light distribution pattern formed in the vehicle front by the optical unit of 7th Embodiment. It is a mimetic diagram showing an example of a light distribution pattern formed ahead of vehicles by an optical unit concerning an 8th embodiment. It is a top view showing the optical unit concerning a 9th embodiment.
  • FIG. 55 is a top view illustrating a state where a rotating mirror is rotated in the optical unit in FIG. 54.
  • FIG. 55 is a top view showing a state where the rotating mirror has been further rotated in the optical unit of FIG. 54.
  • FIG. 55 is a top view showing a state where the rotating mirror has been further rotated in the optical unit of FIG. 54.
  • FIG. 55 is a top view showing a state where the rotating mirror has been further rotated in the optical unit of FIG. 54.
  • FIG. 55 is a schematic diagram illustrating an example of a light distribution pattern formed in front of the vehicle by the optical unit in FIG. 54.
  • FIG. 55 is a schematic diagram illustrating an example of a light distribution pattern when light output from a light source according to the optical unit in FIG. 54 is constant. It is the perspective view which showed typically the structure of the optical unit which concerns on 10th Embodiment.
  • FIG. 55 is a schematic diagram illustrating an example of a light distribution pattern formed in front of the vehicle by the optical unit in FIG. 54.
  • FIG. 55 is a schematic diagram illustrating an example of a light distribution pattern when light output from a
  • FIG. 63 is a top view of the optical unit in FIG. 61.
  • FIG. 63 is a side view of the optical unit in FIG. 61.
  • FIG. 63 is a side view showing a state where the rotating mirror has rotated in the optical unit of FIG. 61.
  • It is a top view of the optical unit concerning 11th embodiment.
  • It is a side view of the optical unit concerning 11th embodiment.
  • It is a side view showing the state where the rotation mirror rotated in the optical unit concerning an 11th embodiment.
  • It is a schematic diagram which shows an example of the light distribution pattern formed in the vehicle front by the optical unit which concerns on 11th embodiment.
  • the “left-right direction”, “front-back direction”, and “up-down direction” are relative directions set for the vehicle headlight shown in FIG. 1 for convenience of description.
  • the “front-back direction” is a direction including the “front direction” and the “back direction”.
  • the “left-right direction” is a direction including “left direction” and “right direction”.
  • the “vertical direction” is a direction including “upward” and “downward”.
  • the optical unit (an example of a light irradiation device) of the present invention can be used for various vehicle lamps. First, an outline of a vehicle headlamp on which an optical unit according to each embodiment described later can be mounted will be described.
  • FIG. 1 is a horizontal sectional view of a vehicle headlamp.
  • FIG. 2 is a perspective view schematically showing a configuration of an optical unit mounted on the vehicle headlight of FIG.
  • FIG. 3 is a top view of the optical unit, and
  • FIGS. 4 and 5 are side views of the optical unit.
  • the vehicle headlamp 10 shown in FIG. 1 is a right headlamp mounted on the right side of the front end of the vehicle, and has the same structure as the headlamp mounted on the left side except that it is symmetrical. Therefore, hereinafter, the right vehicle headlamp 10 will be described in detail, and the description of the left vehicle headlamp will be omitted.
  • the vehicle headlamp 10 includes a lamp body 12 having a concave portion that opens forward.
  • the lamp body 12 has a front opening covered with a transparent front cover 14 to form a lamp chamber 16.
  • the light room 16 functions as a space in which the two lamp units 20 and 30 are housed in a state of being arranged side by side in the vehicle width direction.
  • the lamp unit 20 arranged inside the vehicle width direction that is, the lower side shown in FIG. 1 in the right vehicle headlamp 10 is configured to emit a low beam.
  • the lamp unit 30 disposed outside in the vehicle width direction that is, the upper side shown in FIG. 1 of the right vehicle headlamp 10 is a lamp unit having a lens 36. , And a variable high beam.
  • the low beam lamp unit 20 has a reflector 22 and a light source 24 made of, for example, an LED.
  • the reflector 22 and the LED light source 24 are tiltably supported with respect to the lamp body 12 by known means (not shown), for example, means using an aiming screw and a nut.
  • the high beam lamp unit 30 includes a light source 32, a rotating mirror 34 as a reflector, and a plano-convex lens as a projection lens disposed in front of the rotating mirror 34. 36, and a phosphor 38 disposed between the rotating mirror 34 and the plano-convex lens 36.
  • a laser light source laser diode (LD)
  • a semiconductor light emitting element such as an LED or an EL element can be used as a light source.
  • the light source 32 can be turned on and off by a light source control unit (not shown). In particular, for controlling a light distribution pattern described later, it is preferable to use a light source capable of turning on and off accurately in a short time.
  • the light source control unit includes, for example, at least one electronic control unit (ECU: Electronic Control Unit).
  • the electronic control unit may include at least one microcontroller including one or more processors and one or more memories, and other electronic circuits including active elements such as transistors and passive elements.
  • the processor is, for example, a CPU (Central Processing Unit), an MPU (Micro Processing Unit) and / or a GPU (Graphics Processing Unit).
  • the memory includes a ROM (Read Only Memory) and a RAM (Random Access Memory).
  • the control program of the lamp unit 30 may be stored in the ROM.
  • the light source control unit emits light from the light source 32 based on vehicle surrounding information obtained from a sensor such as a LIDAR included in a vehicle including the vehicle headlamp 10 and mirror position information obtained from a sensor provided in a motor 40 described below. Light output can be controlled.
  • the shape of the plano-convex lens 36 may be appropriately selected according to the light distribution characteristics such as a required light distribution pattern and illuminance distribution, and an aspheric lens or a free-form surface lens is used.
  • the rear focus of the plano-convex lens 36 is set, for example, near the light emitting surface of the phosphor 38. As a result, the light image on the light emitting surface of the phosphor 38 is turned upside down and is irradiated forward.
  • the phosphor 38 is made of, for example, a resin material mixed with phosphor powder that emits yellow light when excited by blue laser light emitted from the light source 32.
  • the laser light emitted from the phosphor 38 by mixing the blue laser light and the yellow fluorescent light becomes white light.
  • the rotating mirror 34 is rotatably connected to a motor 40 as a driving source.
  • the rotating mirror 34 is rotated by a motor 40 in a rotation direction D about a rotation axis R.
  • the rotation axis R of the rotation mirror 34 is oblique to the optical axis Ax (see FIG. 4).
  • the rotating mirror 34 includes a plurality of (12 in this example) reflecting surfaces 34a to 34l arranged along the rotating direction D.
  • the reflecting surfaces 34a to 34l of the rotating mirror 34 reflect the light emitted from the light source 32 while rotating. This enables scanning using light from the light source 32 as shown in FIG.
  • the rotating mirror 34 is, for example, a polygon mirror in which twelve reflecting surfaces are formed in a polygonal shape.
  • the reflecting surface 34a and the reflecting surface 34g located on the diagonally opposite side of the reflecting surface 34a are referred to as a first reflecting surface pair 34A.
  • the reflecting surface 34b and the reflecting surface 34h located on the diagonally opposite side of the reflecting surface 34b are defined as a second reflecting surface pair 34B.
  • the reflecting surface 34c and the reflecting surface 34i located on the diagonally opposite side of the reflecting surface 34c are defined as a third reflecting surface pair 34C.
  • the reflecting surface 34d and the reflecting surface 34j on the diagonally opposite side of the reflecting surface 34d are defined as a fourth reflecting surface pair 34D.
  • the reflecting surface 34e and the reflecting surface 34k located on the diagonally opposite side of the reflecting surface 34e are referred to as a fifth reflecting surface pair 34E.
  • the reflecting surface 34f and the reflecting surface 341 located on the diagonally opposite side of the reflecting surface 34f are referred to as a sixth reflecting surface pair 34F.
  • the first reflecting surface pair 34A is a surface formed in the up-down direction and the front-back direction when the laser light from the light source 32 is reflected by the reflecting surface 34a (that is, in the case of the arrangement shown in FIGS. 3 and 4).
  • the corners are formed to be substantially the same.
  • the second reflecting surface pair 34B is a surface formed in the up-down direction and the front-back direction when the laser light from the light source 32 is reflected by the reflecting surface 34b (that is, in the case of the arrangement shown in FIG. 5).
  • the corners are formed to be substantially the same.
  • the third pair of reflecting surfaces 34C includes an angle formed between the reflecting surface 34c and the optical axis Ax when the laser light from the light source 32 is reflected by the reflecting surface 34c, and the laser light from the light source 32 is reflected by the reflecting surface 34i.
  • the angle formed between the reflecting surface 34i and the optical axis Ax at the time of reflection is substantially the same.
  • the fourth reflecting surface pair 34D is formed by an angle between the reflecting surface 34d and the optical axis Ax when the laser light from the light source 32 is reflected by the reflecting surface 34d, and the laser light from the light source 32 is reflected by the reflecting surface 34j.
  • the angle formed between the reflection surface 34j and the optical axis Ax at the time of reflection is substantially the same.
  • the fifth reflection surface pair 34E is formed by an angle between the reflection surface 34e and the optical axis Ax when the laser light from the light source 32 is reflected by the reflection surface 34e, and the laser light from the light source 32 is reflected by the reflection surface 34k.
  • the angle formed between the reflection surface 34k and the optical axis Ax at the time of reflection is substantially the same.
  • the sixth reflection surface pair 34F is formed such that the angles formed by the reflection surfaces 34f and 34l and the optical axis Ax by the laser light from the light source 32 are substantially the same. That is, each of the reflecting surfaces 34a to 34l of the rotating mirror 34 is formed such that a pair of diagonal reflecting surfaces are inclined surfaces having the same angle.
  • the light reflected by the pair of reflecting surfaces constituting the first reflecting surface pair 34A to the sixth reflecting surface pair 34F is applied to substantially the same position in the vertical direction in front of the vehicle. Further, it is possible to prevent the rotation of the rotating mirror 34 when the rotating mirror 34 is rotated in the rotation direction D by the motor 40.
  • the angle ⁇ a between the first reflecting surface pair 34A and the optical axis Ax is determined by the angle ⁇ a between the laser light from the light source 32 and the other reflecting surface.
  • the angles formed by the respective reflection surfaces of the other reflection surface pairs 34B to 34F and the optical axis Ax when reflected by the pairs 34B to 34F are different from each other. That is, the angle ⁇ a formed between the reflecting surfaces 34a and 34g and the optical axis Ax in the surface of the first reflecting surface pair 34A formed in the up-down direction and the front-rear direction is equal to each of the other reflecting surface pairs 34B to 34F and the optical axis Ax.
  • the angle ⁇ b between the reflection surface 34b and the optical axis Ax shown in FIG. 5 is formed to be slightly smaller than the angle ⁇ a between the reflection surface 34a and the optical axis Ax shown in FIG. That is, the angle ⁇ a shown in FIG. 4 is formed to be slightly obtuse than the angle ⁇ b shown in FIG.
  • the second reflecting surface pair 34B to the sixth reflecting surface pair 34F are formed so that the angle formed with the optical axis Ax is different from the other reflecting surface pairs.
  • each of the reflecting surface pairs and the optical axis Ax is The angle formed is small.
  • the light reflected by one pair of reflecting surfaces is applied to a position different from that of the other pair of reflecting surfaces in the vertical direction in front of the vehicle.
  • the light La reflected by the reflecting surface 34a (see FIG. 4) is irradiated above the light Lb reflected by the reflecting surface 34b.
  • a light distribution pattern P1 as shown in FIG. 6 is formed on the virtual vertical screen. Specifically, the lowermost line LA1 of the light distribution pattern P1 shown in FIG. 6 is formed by the light reflected by the first reflection surface pair 34A (reflection surfaces 34a and 34g). Further, a line LB1 is formed above the line LA1 by the light reflected by the second pair of reflection surfaces 34B (the reflection surfaces 34b and 34h).
  • the line LC1 is formed above the line LB1 by the light reflected by the third pair of reflection surfaces 34C (the reflection surfaces 34c and 34i).
  • the line LD1 is formed above the line LC1 by the light reflected by the fourth reflection surface pair 34D (reflection surfaces 34d and 34j).
  • the line LE1 is formed above the line LD1 by the light reflected by the fifth reflection surface pair 34E (the reflection surfaces 34e and 34k).
  • the line LF1 is formed above the line LE1 by the light reflected by the sixth reflection surface pair 34F (the reflection surfaces 34f and 34l). As described above, the light reflection direction is changed by the rotation of the rotating mirror 34, so that the light is divided into a plurality of stages and scanned in a line to form the light distribution pattern P1.
  • the light source control unit controls the turning on and off of the light source 32 so that the light source 32 is turned off at the timing when the boundary between the respective reflection surfaces 34a to 34l and the laser beam from the light source 32 intersect.
  • the light source 32 provided is relatively small, and the position where the light source 32 is disposed is also between the rotating mirror 34 and the plano-convex lens 36 and is shifted from the optical axis Ax. ing. Therefore, the length of the vehicle headlamp 10 in the vehicle front-rear direction is smaller than that in the case where the light source, the reflector, and the lens are arranged in a line on the optical axis as in a conventional projector type lamp unit. Can be shorter.
  • FIG. 7 shows a top view of the lamp unit 130 according to the first embodiment. 8 and 9 show side views of the lamp unit 130.
  • the lamp unit 130 includes a light source 32, a rotating mirror 134, a plano-convex lens 36 (an example of an optical member), and a phosphor 38 (an example of an optical member).
  • the rotating mirror 134 in the first embodiment includes a plurality of (six in this example) reflecting surfaces 134a to 134f arranged in parallel along the rotating direction D.
  • the reflecting surface 134 a (an example of a first reflecting surface) is a convex curved surface that is curved so as to protrude outward in a direction along the rotation axis R of the rotating mirror 134. Is formed.
  • the reflecting surface 134f is formed to be a convex curved surface that is curved so as to project outward in a direction along the rotation axis R.
  • the reflecting surfaces 134b and 134e are also formed so as to have convex curved surfaces that are curved so as to project outward in a direction along the rotation axis R. As illustrated in FIG.
  • the reflection surface 134c (an example of a second reflection surface) is formed to have a concave curved surface that is curved so as to be concave toward the rotation axis R in a direction along the rotation axis R. ing.
  • the reflecting surface 134d is also formed to have a concave curved surface that is curved so as to be concave toward the rotation axis R in the direction along the rotation axis R.
  • the reflecting surfaces 134a to 134f are not curved in the rotation direction D (as viewed from above) and are formed in a flat shape.
  • the laser light La reflected by the reflecting surface 134a which is a convex curved surface
  • the laser light reflected by the reflecting surfaces 134b, 134e, and 134f which are convex curved surfaces
  • the laser light Lc reflected by the reflecting surface 134c which is a concave curved surface
  • the laser light reflected by the reflecting surface 134d which is a concavely curved surface, is condensed in the vertical direction more than the diameter of the laser light emitted from the light source 32. Accordingly, the incident diameter (for example, the incident diameter xa shown in FIG. 8) when the laser light reflected by the reflecting surfaces 134a, 134b, 134e, and 134f, which are convex curved surfaces, enters the phosphor 38 has a concave curved shape.
  • the angle between the optical axis Ax and a virtual straight line ya (see FIG. 8) connecting both ends in the vertical direction of the reflection surface 134a is determined by the light source 32.
  • the angle formed by the optical axis Ax and a virtual straight line connecting both ends in the vertical direction of each of the other reflecting surfaces 134b to 134f when the laser light is reflected by the other reflecting surfaces 134b to 134f. See FIGS. 4 and 5).
  • the virtual straight line ya coincides with the boundary between the reflection surface 134a and the reflection surface 134b.
  • an angle formed by a virtual straight line connecting both ends of the reflecting surface 134b in the vertical direction and the optical axis Ax is formed to be slightly smaller than an angle formed by the virtual straight line ya of the reflecting surface 134a and the optical axis Ax.
  • the angle formed by a virtual straight line yc (see FIG. 9) connecting both ends of the reflecting surface 134c in the vertical direction and the optical axis Ax is slightly smaller than the angle formed by the virtual straight line of the reflecting surface 134b and the optical axis Ax. It is formed so that it becomes.
  • the reflection surface 134d, the reflection surface 134e, and the reflection surface 134f are formed in this order so that the angle formed between the optical axis Ax and a virtual straight line connecting the reflection surfaces in the vertical direction becomes smaller.
  • the laser beam reflected by one reflection surface is irradiated to a position different from the other reflection surfaces in the vertical direction in front of the vehicle.
  • the laser beam reflected by the reflecting surface 134b is irradiated above the laser beam La reflected by the reflecting surface 134a on the virtual vertical screen in front of the vehicle.
  • the laser light Lc reflected on the reflection surface 134c is irradiated on the virtual vertical screen above the laser light reflected on the reflection surface 134b.
  • FIG. 10 shows a light distribution pattern P2 formed on a virtual screen in front of the vehicle (for example, 25 mm in front) by the lamp unit 130 according to the first embodiment.
  • the light distribution pattern P2 includes a plurality of lines (LA2 to LF2) formed by the laser light.
  • the laser light emitted from the light source 32 is reflected by each of the reflecting surfaces 134a to 134f of the rotating mirror 134, and passes through the plano-convex lens 36 via the phosphor 38.
  • the rear focal point of the plano-convex lens 36 is set on the light exit surface of the phosphor 38, so that the light image on the light exit surface of the phosphor 38 is inverted upside down and illuminated forward.
  • the lowermost line LA2 of the light distribution pattern P2 shown in FIG. 10 is formed by the laser light reflected by the reflection surface 134a.
  • the line LB2 is formed above the line LA2 by the laser light reflected by the reflection surface 134b.
  • the line LC2 is formed above the line LB2 by the laser light reflected by the reflection surface 134c.
  • the line LD2 is formed above the line LC2 by the laser light reflected by the reflection surface 134d.
  • the line LE2 is formed above the line LD2 by the laser light reflected by the reflection surface 134e.
  • the line LF2 is formed above the line LE2 by the laser light reflected by the reflection surface 134f.
  • the incident diameter xa when the laser beam reflected by the reflecting surfaces 134a, 134b, 134e, and 134f, which are convex curved surfaces, enters the phosphor 38 is reflected by the reflecting surfaces 134c, 134d, which are concave curved surfaces.
  • the incident laser beam becomes larger than the incident diameter xb when the laser beam enters the phosphor 38. Therefore, the vertical width w2 of the third line LC2 and the fourth line LD2 from the bottom is the line LA2 of the first line, the line LB2 of the second line, the line LE2 of the fifth line, and the line LE2 of the sixth line from the bottom. It is smaller than the vertical width w1 of the eye line LF2.
  • the vertical width w1 of the first-stage line LA2, the second-stage line LB2, the fifth-stage line LE2, and the sixth-stage line LF2 from the bottom is the same as that of the reference embodiment shown in FIGS.
  • the width is larger than the vertical width of the lines LA1 to LF1 formed by the laser beams reflected by the planar reflecting surfaces 34a to 34l. This is because, as described above, the laser light reflected by the reflective surfaces 134a, 134b, 134e, and 134f, which are convex curved surfaces, is diffused in the vertical direction more than the diameter of the laser light emitted from the light source 32. It is.
  • the width w2 in the up-down direction of the third line LC2 and the fourth line LD2 from the bottom is the line formed by the laser light reflected by each of the reflecting surfaces 34a to 34l of the rotating mirror 34 of the reference embodiment. It becomes narrower than the vertical width of LA1 to LF1. This is because, as described above, the laser light reflected by the reflecting surfaces 134c and 134d, which are concave curved surfaces, is condensed in the vertical direction more than the diameter of the laser light emitted from the light source 32.
  • the adjacent lines LA2 to LF2 may be formed so as to overlap by a certain amount.
  • the amount of vertical overlap between the lines LA2 to LF2 is about 10% of the line width w1 (or the line width w2).
  • the overlap amount between the line LA2 and the line LB2 is preferably about 10% of the width w1 of the lines LA2 and LB2.
  • the overlap amount between the line LB2 and the line LC2 is preferably about 10% of the width w1 of the line LB2 or about 10% of the width w2 of the line LC2.
  • the amount of overlap between the line LC2 and the line LD2 is preferably about 10% of the width w2 of the lines LC2 and LD2.
  • the overlap amount between the line LD2 and the line LE2 is preferably about 10% of the width w2 of the line LD2 or about 10% of the width w1 of the line LE2.
  • the overlap amount between the line LE2 and the line LF2 is preferably about 10% of the width w1 of the lines LE2 and LF2.
  • the light source control unit controls the turning on and off of the light source 32 so that the light source 32 is turned off at the timing when the boundary between the reflection surfaces 134a to 134f and the light beam of the laser light from the light source 32 intersect.
  • the rotating mirror 134 is constituted by a polygon mirror having six surfaces, but is not limited to this.
  • a polygon mirror having 12 surfaces as in the reference embodiment and having a pair of diagonal reflection surfaces having the same curvature and the same inclination angle in the direction along the rotation axis R is used. You may.
  • the lines LA2 to LF2 are overlapped by the laser beams reflected by the pair of diagonal reflection surfaces.
  • a scanning optical system used for a vehicle headlamp it is required to control the light irradiation range and the light blocking range with high definition while improving the luminous intensity of the light distribution pattern.
  • the scanning optical system is adopted in an ADB (Adaptive Driving @ Beam) system, it is required to irradiate light to the vicinity limit of a surrounding vehicle to be shielded.
  • ADB Adaptive Driving @ Beam
  • a scanning optical system is used for drawing a road surface, it is required to precisely control a road irradiation range.
  • it is not practical to reduce the thickness of all the lines constituting the light distribution pattern because many light sources are required and the efficiency for forming a desired light distribution pattern is reduced.
  • the rotating mirror 134 forms the lines LA2, LB2, LE2, and LF2, which are lines on both sides in the vertical direction of the light distribution pattern P2.
  • (Reflection surfaces 134a, 134b, 134e, and 134f) (an example of a first reflection surface) and reflection surfaces 134c and 134d for forming lines LC2 and LD2, which are lines at the center in the vertical direction of the light distribution pattern P2 ( An example of a second reflection surface).
  • the curvatures of the reflecting surfaces 134a, 134b, 134e, 134f in the direction along the rotation axis R are different from the curvatures of the reflecting surfaces 134c, 134d in the direction along the rotation axis R.
  • the reflecting surfaces 134a, 134b, 134e, and 134f are formed so as to be convex curved surfaces protruding outward in a direction along the rotation axis R, and the reflecting surfaces 134c and 134d are formed along the rotation axis R. It is formed so as to have a concave curved surface that is concave inward in the direction.
  • the vertical diffusion angle of the laser light reflected by the reflecting surfaces 134a, 134b, 134e, and 134f changes the vertical angle of the laser light reflected by the reflecting surfaces 134c and 134d. It becomes wider than the diffusion angle.
  • the vertical width w2 of the central line LC2 and the line LD2 is smaller than the vertical width w1 of the line LA2, line LB2, line LE2, and line LF2 on both sides. can do.
  • the light distribution pattern P2 is obtained.
  • the light distribution pattern P2 can be precisely controlled in the central region in the vertical direction.
  • the rotation speed of the rotating mirror 134 is constant, the luminous intensity of the narrow lines LC2 and LD2 is higher than that of the wide lines LA2, LB2, LE2 and LF2. Therefore, it is possible to brighten only the central region in the light distribution pattern P2.
  • the width of the lines LC2 and LD2 at the center in the vertical direction is the same as the width of the light distribution pattern P1 formed by the rotating mirror 34 of the reference embodiment.
  • the width of each of the lines LA2, LB2, LE2, and LF2 other than the center in the vertical direction is wider than each of the lines LA1 to LF1 formed by the rotating mirror 34 of the reference embodiment, although the width is smaller than the width of each of the lines LA1 to LF1.
  • the reflecting surfaces 134a, 134b, 134e, and 134f of the rotating mirror 134 are formed so as to have a convex curved surface
  • the reflecting surfaces 134c and 134d are formed so as to have a concave curved surface.
  • All the reflecting surfaces may be formed as convex curved surfaces or concave curved surfaces, and the curvature of the convex curved surface or the concave curved surface may be different for each reflecting surface.
  • the radius of curvature of the reflecting surface (convex curved surface) for forming a narrow line is different from that for forming a wide line.
  • the curvature of the reflection surface (convex curved surface) for forming a narrow line is set to be smaller than the curvature of the reflection surface (convex curved surface) for forming a wide line. Is preferred.
  • the radius of curvature of the reflecting surface (concave curved surface) for forming a narrow line is equal to the reflecting surface for forming a wide line. It is preferable to set the radius of curvature to be smaller than the radius of curvature of the (concave curved surface).
  • the curvature of the reflection surface (concave curved surface) for forming a narrow line may be set to be larger than the curvature of the reflection surface (concave curved surface) for forming a wide line. preferable. Even with such a configuration, the vertical width can be made different for each line.
  • FIG. 11 shows a side view of a lamp unit 140 according to the first modification.
  • the lamp unit 140 includes a light source 32, a rotating mirror 144, a plano-convex lens 36, and a phosphor 38.
  • the rotating mirror 144 of the lamp unit 140 includes a plurality of (six in this example) reflecting surfaces 144a to 144f arranged in parallel along the rotating direction D, similarly to the rotating mirror 134 of the first embodiment. ing.
  • the reflecting surface 144a and the reflecting surface 144f are formed to be convex curved surfaces protruding outward in a direction along the rotation axis R, as in the first embodiment.
  • the reflecting surfaces 144c and 144d are also formed so as to be concave curved surfaces that are concave toward the rotation axis R, as in the first embodiment.
  • the reflecting surface 144b and the reflecting surface 144e are formed to be flat in the direction along the rotation axis R (see FIG. 11).
  • the angle formed by the optical axis Ax and a virtual straight line connecting both ends of the reflecting surface 144a in the up-down direction is different from that of the laser light from the light source 32.
  • the angle formed between the optical axis Ax and an imaginary straight line connecting both ends in the vertical direction of each of the other reflecting surfaces 144b to 144f when reflected by the reflecting surfaces 144b to 144f is formed to be different (FIG. 4). , See FIG. 5).
  • the angle formed between the reflection surface 144b and the optical axis Ax is formed to be slightly smaller than the angle formed between a virtual straight line connecting both ends of the reflection surface 144a in the vertical direction and the optical axis Ax.
  • the reflection surface 144c, the reflection surface 144d, the reflection surface 144e, and the reflection surface 144f are formed in this order in such a manner that the angle between the optical axis Ax and an imaginary straight line connecting both ends in the vertical direction of each reflection surface is reduced. ing.
  • the light reflected by one reflection surface is irradiated to a position different from the other reflection surfaces in the vertical direction in front of the vehicle.
  • the light reflected by the reflection surface 144b is irradiated above the light reflected by the reflection surface 144a on the virtual vertical screen in front of the vehicle.
  • the light reflected by the reflecting surface 144c is irradiated above the light reflected by the reflecting surface 144b on the virtual vertical screen.
  • FIG. 12 shows a light distribution pattern P3 formed forward of the vehicle by the lamp unit 140 according to the first modification.
  • the light distribution pattern P3 includes a plurality of lines (LA3 to LF3) formed by the laser light.
  • the laser light emitted from the light source 32 is reflected by each of the reflecting surfaces 144a to 144f of the rotating mirror 144, and passes through the plano-convex lens 36 via the phosphor 38.
  • the rear focal point of the plano-convex lens 36 is set on the light exit surface of the phosphor 38, so that the light image on the light exit surface of the phosphor 38 is inverted upside down and illuminated forward.
  • the lowermost line LA3 of the light distribution pattern P3 shown in FIG. 12 is formed by the laser light reflected by the reflection surface 144a.
  • the line LB3 is formed above the line LA3 by the laser light reflected by the reflection surface 144b.
  • the line LC3 is formed above the line LB3 by the laser light reflected by the reflection surface 144c.
  • the line LD3 is formed above the line LC3 by the laser light reflected by the reflection surface 144d.
  • the line LE3 is formed above the line LD3 by the laser light reflected by the reflection surface 144e.
  • the line LF3 is formed above the line LE3 by the laser light reflected by the reflection surface 144f.
  • the scanning lengths in the left and right directions of the lines LA3 to LF3 are all formed to be equal.
  • the vertical width w3 of the second lowermost line LB3 and the fifth lowermost line LE3 of the light distribution pattern P3 is the first lowermost (lowest) line LA3 and the six lowermost (topmost) cross-sections (uppermost). It becomes narrower than the vertical width w1 of the line LF3. Further, the vertical width w2 of the third lowermost line LC3 and the fourth lowermost line LD3 is smaller than the vertical width w3 of the second lowermost line LB3 and the fifth lowermost line LE3. .
  • the rotating mirror 144 of the lamp unit 140 is formed such that the reflecting surfaces 144a and 144f are convex curved surfaces in the direction along the rotation axis R, and the reflecting surfaces 144b and 144e are formed.
  • the reflecting surfaces 144c and 144d are formed to be concave curved surfaces in the direction along the rotation axis R.
  • the light distribution pattern P3 formed by the laser light reflected by each of the reflection surfaces 144a to 144f is formed from a plurality of lines LA3 to LF3 whose vertical width gradually decreases toward the center in the vertical direction. Be composed. According to this configuration, more precise control of the light distribution pattern becomes possible, and the luminous intensity can be improved toward the central region in the vertical direction of the light distribution pattern P3.
  • each of the reflecting surfaces 144a to 144f of the rotating mirror 144 is formed so as to be one of a convex curved surface, a flat surface, and a concave curved surface.
  • the reflection surface for forming a wide line may be formed to be flat, and the reflection surface for forming a narrow line may be formed to have a concave curved surface.
  • the reflection surface for forming a wide line may be formed to be a convex curved surface, and the reflection surface for forming a narrow line may be formed to be a flat surface.
  • the vertical width of the line forming the light distribution pattern can be made different as in the first modification. .
  • the control of turning on and off the light source at the boundary of each reflection surface, the number of reflection surfaces constituting the rotating mirror and their inclination angles, and which reflection surface forms each line of the light distribution pattern This is the same as in the case of the lamp unit 130 according to the first embodiment.
  • FIG. 13 shows a light distribution pattern P4 formed in front of the vehicle by the lamp unit according to the second modification.
  • the configuration is adopted in which lines are formed at different positions in the light distribution pattern by the laser beams reflected by the respective reflecting surfaces 134a to 134f of the rotating mirror 134, but the present invention is not limited to this example.
  • the arrangement is made as shown in FIG.
  • the light pattern P4 can be formed.
  • an angle formed between a virtual straight line connecting both ends in the vertical direction of the reflecting surface 134c and the optical axis Ax is an angle formed between a virtual straight line connecting both ends in the vertical direction of the reflecting surface 134b and the optical axis Ax. They are set to be substantially the same.
  • the angle formed by a virtual straight line connecting both ends in the vertical direction of the reflecting surface 134d and the optical axis Ax is substantially the same as the angle formed by a virtual straight line connecting both ends in the vertical direction of the reflecting surface 134e and the optical axis Ax.
  • the light distribution pattern P4 includes lines LA4, LB4, LE4, and LF4 having the same vertical width, and a line LC4 that is formed to partially overlap the line LB4 and has a narrower vertical width than the line LB4. And a line LD4 that is formed overlapping a part of the line LE4 and has a smaller vertical width than the line LE4.
  • the luminous intensity of a specific region of the light distribution pattern can be improved.
  • FIG. 14 shows a lamp unit 530 according to a third modification.
  • a rotating mirror (rotating reflector) 500 of a blade scan (registered trademark) method may be used instead of the polygon mirror 134 used in the above embodiment.
  • the rotating mirror 500 includes a plurality of (three in FIG. 14) blades 501a and a cylindrical rotating part 501b. Each blade 501a is provided around the rotating part 501b and functions as a reflecting surface.
  • the rotating mirror 500 is arranged so that its rotation axis R is oblique to the optical axis Ax.
  • the blade 501a has a shape twisted such that the angle formed between the optical axis Ax and the reflection surface changes in the circumferential direction around the rotation axis R.
  • scanning using light from the light source 32 can be performed.
  • At least one of the plurality of blades 501a has a shape different from that of the other blades 501a.
  • at least one blade 501a among the plurality of blades 501a is focused so that the laser light reflected by the blade 501a is condensed in the vertical direction more than the diameter of the laser light when emitted from the light source 32.
  • the shape is set.
  • the blade 501a different from the blade 501a has a shape such that the laser light reflected by the other blade 501a is diffused in the vertical direction more than the diameter of the laser light when emitted from the light source 32. Is set. Even when such a rotating mirror 500 is used, similarly to the above-described embodiment, the width of the lines forming the light distribution pattern in the vertical direction can be made different.
  • FIG. 15 shows a top view of a lamp unit 30A according to the second embodiment.
  • the lamp unit 30A according to the second embodiment includes a first light source 32A, a second light source 32B, a rotating mirror 34, a plano-convex lens 36, and a phosphor 38.
  • the first light source 32A is disposed obliquely forward left of the rotating mirror 34 in a top view shown in FIG. 15, as in the reference embodiment.
  • the second light source 32B is disposed diagonally forward right of the rotating mirror 34.
  • FIG. 16A shows a spot shape of light emitted from the first light source 32A and the first light source 32A
  • FIG. 16B shows a spot shape of light emitted from the second light source 32B and the second light source 32B.
  • the first light source 32A has a vertically long elliptical light emission surface 40A.
  • the spot 50A when the laser light emitted from the vertically elongated light emitting surface 40A is incident on the light incident surface of the phosphor 38 is formed as a vertically elongated ellipse. That is, the beam spot 50A has a flat shape whose minor axis is along the scanning direction of light in the light distribution pattern (the left-right direction in FIGS. 16A and 16B).
  • the second light source 32B is a light source of the same type as the first light source 32A, which is rotated by 90 degrees. That is, the second light source 32B has a horizontally long elliptical light emission surface 40B.
  • the spot 50B when the laser light emitted from the light emission surface 40B having the horizontally long ellipse enters the light incidence surface of the phosphor 38 is formed as a horizontally long ellipse. That is, the spot 50B has a flat shape whose major axis is along the scanning direction of light in the light distribution pattern (the left-right direction in FIGS. 16A and 16B).
  • the vertical spot diameter of the spot 50A formed by the laser light emitted from the first light source 32A and the spot 50B formed by the laser light emitted from the second light source 32B. are different from the spot diameter in the vertical direction.
  • FIG. 17 shows a light distribution pattern P5 formed forward of the vehicle by the lamp unit 30A according to the second embodiment.
  • the light distribution pattern P5 is a laser beam emitted from the first light source 32A or the second light source 32B, reflected by each of the reflecting surfaces 34a to 34l, and transmitted through the plano-convex lens 36 via the phosphor 38. It includes a plurality of lines formed by light.
  • a pair of reflecting surfaces of the rotating mirror 34 that reflects the laser light from the light emitting surface 40A of the first light source 32A, and a rotation that reflects the laser light from the light emitting surface 40B of the second light source 32B.
  • the reflection surface pair of the mirror 34 is different. That is, the light source control units of the first light source 32A and the second light source 32B transmit the laser light L1 emitted from the first light source 32A to the first reflection surface pair 34A, the second reflection surface pair 34B, the fifth reflection surface pair 34E, and The turning on and off of the first light source 32A is controlled so that the light is reflected by the sixth reflecting surface pair 34F (see FIG. 18).
  • the light source control unit controls the turning on / off of the second light source 32B so that the laser light L2 emitted from the second light source 32B is reflected by the third reflection surface pair 34C and the fourth reflection surface pair 34D. (See FIG. 19).
  • the lowermost line LA5 of the light distribution pattern P5 is formed by the laser light L1 emitted from the first light source 32A and reflected by the first pair of reflection surfaces 34A (reflection surfaces 34a and 34g).
  • a line LB5 located above the line LA5 is formed by the laser light L1 emitted from the first light source 32A and reflected by the second pair of reflection surfaces 34B (reflection surfaces 34b and 34h).
  • the uppermost sixth line LF5 of the light distribution pattern P5 and the fifth line LE5 positioned below the sixth line LF5 are also emitted from the first light source 32A and are coupled to the sixth reflection surface pair 34F (reflection surface).
  • the lines LA5, LB5, LE5, and LF5 are all formed by the laser light L1 emitted from the first light source 32A, the widths of the lines LA5, LB5, LE5, and LF5 are substantially the same.
  • the third line LC5 located above the second line LB5 is a laser beam emitted from the second light source 32B and reflected by the third pair of reflection surfaces 34C (the reflection surfaces 34c and 34i). It is formed by light L2.
  • the fourth line LD5 located above the third line LC5 is formed by the laser light L2 emitted from the second light source 32B and reflected by the fourth pair of reflection surfaces 34D (reflection surfaces 34d and 34j). . Since the lines LC5 and LD5 are formed by the laser light L2 emitted from the second light source 32B, the widths of the lines LC5 and LD5 are substantially the same.
  • the spot 50A of the laser beam emitted from the light emitting surface 40A of the first light source 32A has a vertically long elliptical shape. Therefore, the spot 50A has a large vertical diffusion angle, and can irradiate a wider range in the vertical direction. Thus, a change in luminous intensity at the end of each spot 50A can be reduced, and a relatively uniform light distribution pattern can be formed.
  • the spot 50B of the laser light emitted from the light emission surface 40B of the second light source 32B has a horizontally long elliptical shape. For this reason, the spot 50B has a smaller vertical diffusion angle than the spot 50A, and can irradiate a narrower range in the vertical direction.
  • the width is smaller than the vertical width of the lines LA5, LB5, LE5, and LF5 formed by the laser light emitted from the first light source 32A.
  • the vertical width of the lines LC5 and LD5 formed by the laser light emitted from the second light source 32B is reduced.
  • the spot is formed by the second light source 32B rather than the spot 50A formed by the first light source 32A.
  • the degree of overlap of light on the line is larger.
  • the luminous intensity of the lines LC5 and LD5 is higher than that of the lines LA5, LB5, LE5, and LF5. That is, in the light distribution pattern P5, the lines LC5 and LD5 which are the central regions in the vertical direction can be made brighter than the lines LA5, LB5, LE5 and LF5 which are the end regions in the vertical direction.
  • a scanning optical system used for a vehicle headlamp it is required to control the light irradiation range and the light blocking range with high definition while improving the luminous intensity of the light distribution pattern.
  • the scanning optical system is adopted in an ADB (Adaptive Driving @ Beam) system, it is required to irradiate light to the vicinity limit of a surrounding vehicle to be shielded.
  • ADB Adaptive Driving @ Beam
  • a scanning optical system is used for drawing a road surface, it is required to precisely control a road irradiation range.
  • it is not practical to reduce the thickness of all the lines constituting the light distribution pattern because many light sources are required and the efficiency for forming a desired light distribution pattern is reduced.
  • the lamp unit 30A (an example of a light irradiation device) according to the second embodiment includes the first light source 32A and the second light source 32B, and the first light source 32A and the second light source 32B. And a rotating mirror 34 for reflecting the laser light emitted from the mirror.
  • the reflection direction of the laser light emitted from the light sources 32A and 32B is displaced by the rotation of the rotating mirror 34, so that the laser light is divided into a plurality of stages in front of the vehicle, and is scanned in a line shape and distributed.
  • An optical pattern P5 is formed.
  • the diameter is different.
  • the first light source 32A (the light emission surface 40A) emits laser light such that the minor axis of the spot 50A is along the light scanning direction (left-right direction), while the second light source 32B (the light emission surface 40A).
  • the light emitting surface 40B) is configured to emit laser light such that the major axis of the spot 50B is along the scanning direction of the light.
  • the light emitted from the first light source 32A forms lines LA5, LB5, LE5, and line LF5 (an example of a first line) that constitute at least a part of the light distribution pattern P5.
  • lines LC5 and LD5 are formed by the light emitted from the second light source 32B.
  • the vertical widths of the lines LA5, LB5, LE5, and LF5 and the vertical widths of the lines LC5 and LD5 are determined by using the first light source 32A and the second light source 32B having substantially the same structure.
  • the width can be different.
  • precise control is possible in a region of the light distribution pattern P5 where high definition is required.
  • the manufacturing cost of the lamp unit 30A can be reduced and the manufacturing efficiency can be improved.
  • the light emitted from the first light source 32A and the second light source 32B is parallel light (for example, laser light), it is easy to precisely control the width of each line.
  • FIG. 20 is a side view showing the configuration of the lamp unit 30B according to the third embodiment.
  • the lamp unit 30B includes a light source 32, a rotating mirror 34, a plano-convex lens 36, a phosphor 38, and a sub-lens 60 disposed between the rotating mirror 34 and the phosphor 38.
  • the sub lens 60 is, for example, a biconvex lens.
  • the sub-lens 60 includes a light Lc emitted from the light source 32 and reflected by the third pair of reflection surfaces 34C (reflection surfaces 34c and 34i), and a fourth pair of reflection surfaces 34D emitted from the light source 32 (reflection surfaces 34d and 34j).
  • the light Lc reflected by the third pair of reflection surfaces 34C (reflection surfaces 34c and 34i) passes through the sub-lens 60, becomes substantially parallel to the optical axis Ax, and passes through the phosphor 38. Then, the light enters the plano-convex lens 36 (see FIG. 20). Then, the light Lc emitted from the plano-convex lens 36 is focused on the optical axis Ax side.
  • the light reflected by the fourth reflecting surface pair 34D (reflecting surfaces 34d, 34j) passes through the sub-lens 60 and becomes substantially parallel to the optical axis Ax.
  • the light passes through the phosphor 38 and enters the plano-convex lens 36. Then, the light emitted from the plano-convex lens 36 is focused on the optical axis Ax side. In addition, it is preferable that the light from the reflection surface pairs other than the third reflection surface pair 34C and the fourth reflection surface pair 34D is not transmitted through the sub-lens 60.
  • the first reflection surface pair 34A, The third reflecting surface pair 34C and the third reflecting surface pair 34C, The width of the lines LC5 and LD5 formed from the light reflected by the fourth reflecting surface pair 34D can be reduced. Therefore, according to the configuration of the third embodiment, the spot diameter of the laser beam on the light incident surface of the phosphor 38 can be made variable by using the single light source 32, and the line constituting the light distribution pattern P5 can be formed. Can vary in width.
  • the following configuration can be considered as a modification for changing the spot diameter of light by using a single light source.
  • a stop mechanism capable of changing the shape of the light exit surface of the light source may be provided.
  • the spot diameter of the light passing through the phosphor 38 or the plano-convex lens 36 may be changed by changing the shape of the light emitting surface according to the correspondence between the emitted light and the reflecting surfaces 34a to 34l. Good.
  • the shape of the light incident surface or the light exit surface of the plano-convex lens 36 may be changed to change the spot diameter of the light transmitted through the plano-convex lens 36.
  • the light reflected by the third reflection surface pair 34C and the fourth reflection surface pair 34D (reflection surfaces 34d and 34j) and emitted from the plano-convex lens 36 is collected on the optical axis Ax side. It is preferable to change the shape of the light incident surface and / or the light exit surface of the plano-convex lens 36.
  • a liquid crystal shade for blocking a part of the light from the light source 32 and forming a spot light distribution pattern may be provided between the rotating mirror 34 and the phosphor 38.
  • the liquid crystal shade includes a liquid crystal layer having a liquid crystal region in which liquid crystal is disposed and a non-liquid crystal region in which liquid crystal is not disposed. It is possible to change the size of the non-liquid crystal region.
  • the configuration of these modifications can also change the spot diameter of the laser beam, but requires a high response speed for switching between the light emitting surface of the light source and the liquid crystal region of the liquid crystal shade.
  • the configuration according to the third embodiment is more preferable.
  • a blade scan type rotating mirror (rotating reflector) 500 may be used (see FIG. 14). Also in the case where the rotating mirror 500 of FIG. 14 is used, similarly to the second embodiment and the third embodiment, the laser light emitted from the plurality of light sources 32A and 32B having different spot diameters is reflected by the rotating mirror 500 and is forwardly reflected. , The width of each line constituting the light distribution pattern P5 can be made different.
  • the light reflected by the pair of diagonally arranged reflecting surfaces is the same among the light distribution patterns P5 using the dodecahedral rotating mirror 34 when viewed from above.
  • the line is formed, it is not limited to this example.
  • one line may be formed by light reflected by one reflection surface.
  • the rotating mirror is formed as a hexahedron in a top view, and has six reflecting surfaces along the rotating direction.
  • a light distribution pattern P5 as shown in FIG. 17 may be formed by emitting laser beams having different spot diameters using a plurality of light sources having different diameters of light emission surfaces.
  • FIG. 21 shows a top view of a lamp unit 1030 according to the fourth embodiment.
  • the lamp unit 1030 according to the fourth embodiment includes a first light source 132A, a second light source 132B, a rotating mirror 34, a plano-convex lens 36, and a phosphor 38.
  • the first light source 132A is disposed diagonally forward right of the rotating mirror 34 in a top view shown in FIG. Therefore, the center direction of the horizontal diffusion angle Wa of the laser light emitted from the first light source 132A and reflected by the reflection surface 34a, that is, the direction of the laser light reflected at the center of the reflection surface 34a in the left and right direction ( 21 is slightly to the left of the optical axis Ax.
  • the second light source 132B is arranged diagonally forward left of the rotating mirror. Therefore, the center direction of the horizontal diffusion angle Wb of the laser light emitted from the second light source 132B and reflected by the reflection surface 34a, that is, the direction of the laser light reflected at the center of the reflection surface 34a in the left and right direction ( 22 is slightly to the right of the optical axis Ax.
  • the angle ⁇ a between the reflection surface pair 34A and the optical axis Ax is determined by the light source 132A and 132B.
  • the angle formed between each reflecting surface of the other pair of reflecting surfaces 34B to 34F and the optical axis Ax is different (FIG. 4). (See FIG. 5).
  • the angle ⁇ b between the reflection surface pair 34B and the optical axis Ax is formed to be slightly smaller than the angle ⁇ a between the reflection surface pair 34A and the optical axis Ax.
  • the reflection surface pair 34C, the reflection surface pair 34D, the reflection surface pair 34E, and the reflection surface pair 34F are formed in this order so that the angle formed between each reflection surface pair and the optical axis Ax becomes smaller.
  • the light reflected by one pair of reflecting surfaces is applied to a position different from that of the other pair of reflecting surfaces in the vertical direction in front of the vehicle.
  • the light reflected by the reflecting surface pair 34B is irradiated above the light reflected by the reflecting surface pair 34A in the light distribution pattern Pa shown in FIG. 23 and the light distribution pattern Pb shown in FIG.
  • the light reflected by the reflecting surface pair 34C is irradiated above the light reflected by the reflecting surface pair 34B.
  • FIG. 23 shows a right light distribution pattern Pa formed in front of the vehicle by a laser emitted from the first light source 132A of the lamp unit 130 according to the fourth embodiment
  • FIG. 24 shows a lamp unit according to the fourth embodiment.
  • the right light distribution pattern Pa includes a plurality of lines (LAa to LFa) formed by the laser light emitted from the first light source 132A.
  • the laser light emitted from the first light source 132A is reflected by each of the reflecting surfaces 34a to 34l of the rotating mirror 34, and passes through the plano-convex lens 36 via the phosphor 38.
  • the light source image on the light emitting surface of the phosphor 38 is inverted up and down, left and right, and the light distribution patterns Pa and Pb. Is formed.
  • the second line LBa is formed above the first line LAa by the laser light emitted from the first light source 132A and reflected by the reflection surface pair 34B (the reflection surfaces 34b and 34h).
  • the third line LCa is formed above the second line LBa by the laser light emitted from the first light source 132A and reflected by the reflection surface pair 34C (the reflection surfaces 34c and 34i).
  • the fourth line LDa is formed above the third line LCa by the laser light emitted from the first light source 132A and reflected by the reflection surface pair 34D (reflection surfaces 34d and 34j).
  • the fifth line LEa is formed above the fourth line LDa by the laser light emitted from the first light source 132A and reflected by the reflection surface pair 34E (the reflection surfaces 34e and 34k).
  • the sixth line LFa is formed above the fifth line LEa by the laser light emitted from the first light source 132A and reflected by the pair of reflection surfaces 34F (reflection surfaces 34f and 34l).
  • the left light distribution pattern Pb includes a plurality of lines (LAb to LFb) formed by the laser light emitted from the second light source 132B.
  • the laser light emitted from the second light source 132B is reflected by each of the reflecting surfaces 34a to 34l of the rotating mirror 34, and passes through the plano-convex lens 36 via the phosphor 38.
  • the lowermost first line LAb of the light distribution pattern Pb shown in FIG. 24 is formed by the laser light emitted from the second light source 132B and reflected by the reflection surface pair 34A (reflection surfaces 34a and 34g). Is done.
  • the second line LBb is formed above the first line LAb by the laser light emitted from the second light source 132B and reflected by the pair of reflecting surfaces 34B (the reflecting surfaces 34b and 34h).
  • the third line LCb is formed above the second line LBb by the laser light emitted from the second light source 132B and reflected by the reflection surface pair 34C (the reflection surfaces 34c and 34i).
  • the fourth line LDb is formed above the third line LCb by the laser light emitted from the second light source 132B and reflected by the reflection surface pair 34D (reflection surfaces 34d and 34j).
  • the fifth line LEb is formed above the fourth line LDb by the laser light emitted from the second light source 132B and reflected by the reflection surface pair 34E (the reflection surfaces 34e and 34k).
  • the sixth line LFb is formed above the fifth line LEb by the laser light emitted from the second light source 132B and reflected by the reflection surface pair 34F (reflection surfaces 34f and 34l).
  • the right side light distribution pattern Pa formed by the laser light emitted from the first light source 132A is formed such that the center in the left-right direction is closer to the right than the vertical axis VV of the virtual screen (FIG. 23). reference).
  • the light distribution pattern Pb formed by the laser light emitted from the second light source 132B is formed such that the center in the left-right direction is closer to the left than the vertical axis VV of the virtual screen ( See FIG. 24).
  • a light distribution pattern P6 shown in FIG. 25 is formed.
  • the light distribution pattern P6 shown in FIG. 25 is formed such that the right light distribution pattern Pa and the left light distribution pattern Pb overlap each other at the center in the left-right direction (that is, the scanning direction of the laser light) of each line.
  • the light source control unit turns on and off the light sources 132A and 132B so as to turn off the light sources 132A and 132B at the timing when the boundary between the reflection surfaces 34a to 34l and the light beam of the laser light from the light sources 132A and 132B intersect. It is preferable to control each.
  • the lamp unit 1030 (an example of a light irradiation device) according to the fourth embodiment includes the first light source 132A and the second light source 132B, and the laser emitted from the first light source 132A.
  • the rotating mirror 34 reflects the light (an example of the first light) and the laser light (an example of the second light) emitted from the second light source 132B. Then, the reflection direction of the laser light emitted from the light sources 132A and 132B is displaced by the rotation of the rotating mirror 34, so that the laser light is divided into a plurality of steps in front of the vehicle and scanned in a line, and the light distribution pattern P6 is formed. It is formed.
  • the light distribution pattern P6 includes a first light distribution pattern Pa formed by scanning the laser light emitted from the first light source 132A, and a second light distribution pattern formed by scanning the laser light emitted from the second light source 132B. Pb.
  • the light distribution pattern P6 is formed so that the first light distribution pattern Pa and the second light distribution pattern Pb partially overlap.
  • the first light distribution pattern Pa and the second light distribution pattern Pb are formed so as to overlap in a central region of the light distribution pattern P6 in the left-right direction (scanning direction of laser light). According to this configuration, for example, the central region in the light distribution pattern P6 can be made brighter than the peripheral region in the light distribution pattern P6 with a simple configuration.
  • the rotating mirror 34 is constituted by a polygon mirror having 12 surfaces, and the light reflected by a pair of diagonally arranged reflecting surfaces forms the same line in the light distribution pattern P6.
  • one line may be formed by light reflected by one reflection surface.
  • the rotating mirror is formed as a hexahedron in a top view, and has six reflecting surfaces along the rotating direction.
  • the first light source 132A and the second light source 132B of the same type are used, but the present invention is not limited to this example.
  • a light distribution pattern composed of a plurality of lines having different vertical widths may be formed.
  • a lamp unit 140 (an example of a first unit) includes a light source 142, a rotating mirror 144 (an example of a first mirror and a second mirror), a plano-convex lens 36, and a phosphor 38. It has.
  • the light source 142 is disposed at a position along the optical axis Ax in the up-down direction (for example, immediately below the optical axis Ax).
  • the lamp unit 140 is, for example, a lamp unit mounted on a right headlight.
  • a lamp unit (an example of a second unit) having the same configuration as the lamp unit 140 is also mounted on the left headlight.
  • the rotating mirror 144 includes reflecting surfaces 144 a, 144 c, 144 e, 144 g, 144 g, 144 i, and 144 k formed as six convex curved surfaces (an example of a convex portion) protruding outward from the rotating mirror 144, and rotation of the rotating mirror 144. It has reflecting surfaces 144b, 144d, 144f, 144h, 144j, and 144l formed as six concave curved surfaces (an example of concave portions) that are concave on the axis R side.
  • the convex reflecting surface 144a, the concave reflecting surface 144b, the convex reflecting surface 144c, the concave reflecting surface 144d, the convex reflecting surface 144e, the concave reflecting surface 144f, and the convex reflecting surface 144g are provided along the rotation direction D.
  • the concave reflecting surface 144h, the convex reflecting surface 144i, the concave reflecting surface 144j, the convex reflecting surface 144k, and the concave reflecting surface 144l are formed so that the convex reflecting surface and the concave reflecting surface are successively alternated. .
  • the laser light La emitted from the light source 142 and reflected at the vertex of the convex reflecting surface 144a travels in the left-right direction along the optical axis Ax.
  • the traveling direction of the reflected light gradually moves to the left from the optical axis Ax.
  • the laser light Lx1 reflected at the inflection point x1 between the convex reflection surface 144a and the concave reflection surface 144b travels toward the left end position of the laser light diffusion angle (diffusion area) in the left-right direction. (See FIG. 27).
  • the rotating mirror 144 is rotated from the position in FIG. 27 along the rotation direction D, the traveling direction of the reflected light is turned from the left end position and gradually moves to the right. Then, the laser light Lb reflected at the bottom point of the concave reflection surface 144b travels in the left-right direction along the optical axis Ax (see FIG. 28). As the rotating mirror 144 is further rotated from the position shown in FIG. 28 along the rotation direction D, the traveling direction of the reflected light gradually moves further rightward from the optical axis Ax.
  • the laser light Lx2 reflected at the inflection point x2 between the concave reflection surface 144b and the convex reflection surface 144c travels toward the right end position of the laser light diffusion angle (diffusion region) in the left-right direction. (See FIG. 29). Subsequently, as the rotating mirror 144 is further rotated from the position in FIG. 29 along the rotation direction D, the traveling direction of the reflected light is turned from the right end position and gradually moves to the left. Then, the laser beam Lc reflected at the vertex of the convex reflecting surface 144c is reflected in the left-right direction toward the direction along the optical axis Ax (see FIG. 30).
  • the angle formed between the convex reflection surface 144a and the optical axis Ax in the plane formed in the up-down direction and the front-back direction is
  • the laser light is reflected at the vertices of the other adjacent reflecting surfaces 144b and 144l
  • the angle formed between the other reflecting surfaces 144b and 144l and the optical axis Ax in the surface composed of the up-down direction and the front-back direction is different.
  • the angle formed by the surface at the bottom point of the concave reflecting surface 144b and the optical axis Ax is slightly smaller than the angle formed by the surface at the vertex of the convex reflecting surface 144a and the optical axis Ax.
  • the surface at the apex or bottom point of each reflecting surface and the optical axis Ax are arranged in that order. The angle formed is small.
  • the light reflected by the apex of the convex reflecting surface 144a is applied to a position different from the light reflected by the bottom points of the other reflecting surfaces 144b and 144l adjacent in the vertical direction in front of the vehicle.
  • the light reflected at the bottom point of the concave reflecting surface 144b is irradiated above the light reflected at the vertex of the convex reflecting surface 144a.
  • the light reflected at the apex of the convex reflecting surface 144c is irradiated above the light reflected at the bottom point of the concave reflecting surface 144b.
  • the concave reflecting surface 144h has an angle formed by the optical axis Ax and a surface formed in the vertical direction and the front-rear direction at the bottom point and a surface formed in the vertical direction and the front-rear direction at the bottom point of the concave reflecting surface 144f. Is formed so as to be the same as the angle formed by. As a result, the light reflected by the bottom point of the concave reflecting surface 144h is applied to the same position as the light reflected by the bottom point of the concave reflecting surface 144f in the vertical direction in front of the vehicle.
  • the angle formed between the surface at the vertex of the convex reflecting surface 144i and the optical axis Ax is the same as the angle formed between the surface at the vertex of the convex reflecting surface 144e and the optical axis Ax.
  • the light reflected by the apex of the convex reflecting surface 144i is applied to the same position as the light reflected by the apex of the convex reflecting surface 144e in the vertical direction in front of the vehicle.
  • the angle formed between the surface at the bottom point of the concave reflecting surface 144j and the optical axis Ax is the same as the angle formed between the surface at the bottom point of the concave reflecting surface 144d and the optical axis Ax.
  • the light reflected by the bottom point of the concave reflecting surface 144j is applied to the same position as the light reflected by the bottom point of the concave reflecting surface 144d in the vertical direction in front of the vehicle.
  • the angle formed by the surface at the vertex of the convex reflecting surface 144k and the optical axis Ax is formed to be the same as the angle formed by the surface at the vertex of the convex reflecting surface 144c and the optical axis Ax.
  • the light reflected by the apex of the convex reflecting surface 144k is applied to the same position as the light reflected by the apex of the convex reflecting surface 144c in the vertical direction in front of the vehicle.
  • the angle formed by the surface at the bottom point of the concave reflecting surface 144l and the optical axis Ax is the same as the angle formed by the surface at the bottom point of the concave reflecting surface 144b and the optical axis Ax.
  • the light reflected by the bottom point of the concave reflecting surface 144l is applied to the same position as the light reflected by the bottom point of the concave reflecting surface 144b in the vertical direction in front of the vehicle.
  • the boundary between the adjacent reflection surfaces is formed such that the angle of the inclined surface with respect to the optical axis Ax changes gradually.
  • a folded portion of the light distribution pattern P7 (PR, PL) described later can be formed without a feeling of strangeness.
  • FIG. 31 shows a light distribution pattern PR formed forward of the vehicle by the lamp unit 140 mounted on the right headlight.
  • the light distribution pattern PR is formed by reciprocating a line formed by the laser light so as to form a plurality of steps in the left-right direction.
  • the laser light emitted from the light source 142 is reflected by each of the reflecting surfaces 144a to 144l of the rotating mirror 144, and passes through the plano-convex lens 36 via the phosphor 38.
  • the starting point of the lowermost line LAR forming the light distribution pattern PR is formed by the laser light La reflected at the apex of the convex reflecting surface 144a.
  • the starting point of the line LAR is formed to be closer to the right than the vertical axis VV of the virtual screen.
  • the laser beam reflected from the vertex of the convex reflecting surface 144a to the inflection point x1 between the convex reflecting surface 144a and the concave reflecting surface 144b forms the line LAR from the starting point to the right end.
  • the laser beam Lx1 reflected at the inflection point x1 forms a folded portion of the line LAR and the line LBR formed above the line LAR at the right end position of the line LAR.
  • the line LBR is formed toward the left side from the folded portion with the line LAR by the laser light reflected from the inflection point x1 to the bottom point of the concave reflecting surface 144b.
  • the central portion of the line LBR in the left-right direction is formed by the laser beam Lb reflected at the bottom point of the concave reflecting surface 144b.
  • the laser beam reflected from the bottom point of the concave reflecting surface 144b to the inflection point x2 between the concave reflecting surface 144b and the convex reflecting surface 144c forms a line LBR from the center to the left end. .
  • the laser beam Lx2 reflected at the inflection point x2 forms a folded portion of the line LBR and the line LCR formed above the line LBR at the left end position of the line LBR.
  • the line LCR is formed rightward from the folded portion by the laser light reflected from the inflection point x2 to the vertex of the convex reflection surface 144c.
  • the laser light Lc reflected at the apex of the convex reflection surface 144c forms a central portion in the left-right direction of the line LCR.
  • the line LCR is formed from the center to the right end by the laser light reflected from the vertex of the convex reflecting surface 144c to the inflection point between the convex reflecting surface 144c and the concave reflecting surface 144d.
  • the laser light reflected in the order of the concave reflecting surface 144d, the convex reflecting surface 144e, the concave reflecting surface 144f, and the convex reflecting surface 144g causes the line LDR above the line LCR, the line LER above the line LDR, A line LFR above the line LER and a line LGR above the line LFR are formed by folding back, respectively.
  • the light distribution pattern is folded back from the line LGR to the lower line LFR by the laser light reflected near the inflection point between the convex reflecting surface 144g and the concave reflecting surface 144h.
  • the laser light reflected by the concave reflecting surface 144h, the convex reflecting surface 144i, the concave reflecting surface 144j, the convex reflecting surface 144k, and the concave reflecting surface 144l causes the line LFR, the line LER, the line LDR, the line LCR, and the line LBR.
  • Light is emitted in the order of
  • the laser light reflected near the inflection point between the concave reflecting surface 144l and the convex reflecting surface 144a causes the light distribution pattern to be folded from the line LBR to the lower line LAR, and the convex reflecting surface
  • the starting point of the line LAR is radiated again by the laser beam reflected by the vertex of 144a.
  • the laser light is reflected by each of the reflecting surfaces 144a to 144l in accordance with the rotation of the rotating mirror 144 along the rotation direction D, so that the laser light is irradiated to the front of the vehicle while being turned right and left.
  • a plurality of lines LAR to LGR forming the optical pattern PR are continuously formed in the vertical direction.
  • FIG. 32 shows a left light distribution pattern PL formed in front of the vehicle by a lamp unit 140 mounted on the left headlight.
  • the left light distribution pattern PL shown in FIG. 32 includes a plurality of lines LAL to LGL continuously arranged in the vertical direction.
  • the left side light distribution pattern PL is formed such that the center in the left-right direction is closer to the left than the vertical axis VV of the virtual screen.
  • the plurality of lines LAL to LGL are continuously formed in the up-down direction by irradiating the laser light toward the front of the vehicle while turning back in the left-right direction, similarly to the right light distribution pattern PR in FIG.
  • the light distribution pattern P7 shown in FIG. 33 is formed by overlapping the right light distribution pattern PR and the left light distribution pattern PL.
  • the light distribution pattern P7 shown in FIG. 33 is formed such that the right light distribution pattern PR and the left light distribution pattern PL overlap each other at the center of each line in the left-right direction.
  • the configuration according to the fifth embodiment includes the right lamp unit 140 having the light source 142 and the rotating mirror 144, and the left lamp unit 140 having the light source 142 and the rotating mirror 144.
  • the rotation direction of the rotating mirror 144 changes the reflection direction of the laser light, so that the laser light emitted from the light source 142 of each lamp unit 140 is divided into a plurality of stages and scanned in a line to form a light distribution pattern P7. Is formed.
  • the light distribution pattern P7 includes a right light distribution pattern PR and a left light distribution pattern PL, and is formed such that the right light distribution pattern PR and the left light distribution pattern PL overlap in a central region in the left-right direction.
  • the luminous intensity of the central region in the left-right direction of the light distribution pattern P7 can be formed higher than the luminous intensity of both end regions in the left-right direction.
  • the light source 32 (132A, 132B) is turned off at the boundary of each reflection surface of the rotating mirror 34 in order to prevent scattering of laser light.
  • the rotating mirror 144 formed to have a continuous curved shape when viewed from above, it is not necessary to turn off the light source 142 at the boundary between the convex reflecting surface and the concave reflecting surface. Therefore, the light distribution pattern P7 can be efficiently formed.
  • (Fourth modification) 34 and 35 show top views of a lamp unit 150 according to the fourth modification.
  • the lamp unit 150 includes a first light source 152A, a second light source 152B, a rotating mirror 144, a plano-convex lens 36, and a phosphor 38.
  • the lamp unit 150 is different from the lamp unit 140 of the fifth embodiment in which only one light source 142 is provided in that the lamp unit 150 includes two light sources 152A and 152B.
  • the first light source 152A is disposed obliquely right ahead of the rotating mirror 34 in a top view shown in FIG. Therefore, the direction (see FIG. 34) of the diffusion angle Wa1 in the left-right direction of the laser light emitted from the first light source 152A and reflected by each of the reflecting surfaces 144a to 144l of the rotating mirror 144 is determined by the light source 32 of the reference embodiment.
  • the laser beam emitted and reflected by the reflecting surface 34a is slightly rightward from the direction of the diffusion angle in the left-right direction (see FIG. 3).
  • the second light source 152B is disposed diagonally forward left of the rotating mirror. Therefore, the direction of the diffusion angle Wb2 in the left-right direction of the laser light emitted from the second light source 152B and reflected by each of the reflection surfaces 144a to 144l (see FIG. 35) is emitted from the light source 32 of the reference embodiment and reflected. It is slightly leftward from the direction of the diffusion angle of the laser light reflected on the surface 34a in the left-right direction (see FIG. 3).
  • the light distribution pattern formed by the laser light emitted from the first light source 152A is formed, for example, similarly to the right light distribution pattern PR of the fifth embodiment shown in FIG.
  • the light distribution pattern formed by the laser light emitted from the second light source 152B is formed, for example, similarly to the left light distribution pattern PL of the fifth embodiment shown in FIG.
  • the right light distribution pattern PR and the left light distribution pattern PL overlap each other at the center in the left-right direction of each line, so that a light distribution pattern similar to the light distribution pattern P7 shown in FIG. 33 can be formed. Therefore, according to the lamp unit 150 according to the fourth modification, the luminous intensity of the central region in the left-right direction of the light distribution pattern can be formed higher than the luminous intensity of both end regions in the left-right direction with a simple configuration.
  • a rotating mirror 500 of a blade scan type may be used (see FIG. 14).
  • the first light distribution pattern is formed by reflecting the laser light emitted from the first light source 132A from each blade 501a.
  • the laser light emitted from the second light source 132B can be reflected by each blade 501a to form a second light distribution pattern. Then, by making a part of the first light distribution pattern and the second light distribution pattern overlap, the overlapping area can be made brighter than other areas.
  • FIG. 36 shows a top view of a lamp unit 1130 according to the sixth embodiment.
  • FIG. 37 shows a top view of a rotating mirror 1134 included in the lamp unit 1130.
  • the lamp unit 1130 includes a light source 32, a rotating mirror 1134, a plano-convex lens 36, and a phosphor 38.
  • the rotating mirror 1134 in the sixth embodiment is composed of a plurality of (six in this example) reflecting surfaces 1134a to 1134f arranged in parallel along the rotation direction D.
  • the reflecting surfaces 1134a to 1134f are all formed in a planar shape.
  • a boundary portion B between the reflection surfaces 1134a to 1134f is formed as a convex curved surface protruding outward.
  • the reflection surface 1134a and the optical axis Ax of the surface formed in the up-down direction and the front-back direction are formed.
  • the angle formed is different from the angle formed between the other reflection surfaces 1134b to 1134f and the optical axis Ax when the laser light from the light source 32 is reflected by the other reflection surfaces 1134b to 1134f.
  • the angle between the reflection surface 1134b and the optical axis Ax is formed to be slightly smaller than the angle between the reflection surface 1134a and the optical axis Ax.
  • the reflection surface 1134c, the reflection surface 1134d, the reflection surface 1134e, and the reflection surface 1134f are formed in this order so that the angle formed between each reflection surface and the optical axis Ax becomes smaller.
  • the light reflected by one reflection surface is irradiated to a position different from the other reflection surfaces in the vertical direction in front of the vehicle.
  • light reflected on the reflection surface 1134b is irradiated above the light reflected on the reflection surface 1134a.
  • the light reflected by the reflecting surface 1134c is irradiated above the light reflected by the reflecting surface 1134b.
  • FIG. 38 is a top view illustrating a state where light emitted from the light source 32 of the lamp unit according to the comparative example is reflected at the boundary portion B1 of the rotating mirror 234.
  • FIG. 39 is a schematic diagram illustrating an example of a light distribution pattern P8 formed by the light reflected by the rotating mirror 234 in FIG.
  • the rotating mirror 234 according to the comparative example shown in FIG. 38 includes a plurality of (here, six) reflecting surfaces 234a to 234f.
  • a boundary portion B1 between the reflection surfaces 234a to 234f is not chamfered and is formed as an edge portion having a cornered boundary line.
  • the laser beam reflected at the boundary B1 of the rotating mirror 234 may be scattered in a plurality of directions as shown in FIG. 38 and reflected in an unintended direction.
  • spot light LS is generated at both left and right ends of each of the lines LA8 to LF8 of the light distribution pattern P8. Therefore, when using the rotating mirror 234 in which the boundary portion B1 is not chamfered, similarly to the reference embodiment, the laser light from the light source 32 is controlled so that the laser light emitted from the light source 32 is not reflected by the boundary portion B1. It is necessary to turn off the light source 32 at the timing when the light emission direction intersects the boundary portion B1. However, turning off the light source 32 at the timing at which the light is reflected at the boundary portion B1 between the respective reflection surfaces causes a loss of turning off the laser light, thereby lowering the light use efficiency.
  • FIG. 40 is a top view illustrating a state where light emitted from the light source 32 of the lamp unit 1130 according to the sixth embodiment is reflected at the boundary B of the rotating mirror 1134.
  • FIG. 41 is a schematic diagram illustrating an example of a light distribution pattern P9 formed by light reflected by the rotating mirror 1134 in FIG.
  • the boundary B between the adjacent reflecting surfaces 1134a to 1134f of the rotating mirror 1134 is formed as a chamfered curved surface. For this reason, as shown in FIG. 41, the laser light reflected at the boundary portion B is applied in a state where the laser light is diffused left and right at the center in the left-right direction.
  • the light is diffused and illuminated at the center (the irradiation area LT in FIG. 41) of each of the lines LA9 to LF9 in the light distribution pattern P9 in the left-right direction. That is, according to the configuration of the rotating mirror 1134, generation of spot light (light like the spot light LS in FIG. 39) is suppressed at both left and right ends of each of the lines LA9 to LF9 of the light distribution pattern P9. Can be. Therefore, it is not necessary to turn off the light source 32 even at the timing when the laser light emitted from the light source 32 is reflected at the boundary B of the rotating mirror 1134. Therefore, it is possible to prevent a decrease in the use efficiency of the laser light due to the light-off loss. Further, it is not necessary to control the turning on and off of the light source 32 at the boundary B between the reflecting surfaces 1134a to 1134f for the rotating mirror 1134 rotating at a high speed, so that the control of the light source 32 becomes easy.
  • the length along the rotation direction D of the plane constituting each of the reflecting surfaces 1134a to 1134f of the rotating mirror 1134 of the sixth embodiment shown in FIG. 40 is the reflecting surface 234a of the rotating mirror 234 of the comparative example shown in FIG. 234f is shorter than the length along the rotation direction D of the plane constituting ⁇ 234f. That is, the chamfered reflecting surfaces 1134a to 1134f of the rotating mirror 1134 of the sixth embodiment can be used to form each line as compared with the non-chamfered reflecting surfaces 234a to 234f of the rotating mirror 234 of the comparative example. Length becomes shorter. Therefore, the horizontal length of the lines LA9 to LF9 of the light distribution pattern P9 shown in FIG. 41 is shorter than the horizontal length of the lines LA8 to LF8 of the light distribution pattern P8 shown in FIG.
  • the boundary portion B may be chamfered, and for example, may be configured as a planar chamfer instead of a convex curved surface.
  • the boundary B is preferably formed as a surface that is continuously connected by a curved surface from the reflection surfaces on both sides (see FIG. 37). .
  • FIG. 42 is a top view illustrating an example of the rotating mirror 334 included in the lamp unit according to the fifth modification.
  • the rotating mirror 334 according to the fifth modified example includes a plurality of (six in this example) reflecting surfaces 334a to 334f arranged in parallel along the rotation direction D.
  • the reflecting surfaces 334a to 334f are all formed in a planar shape.
  • a boundary portion B1 between the reflection surface 334a and the reflection surface 334b is formed as a corner that is not chamfered.
  • a boundary portion B1 between the reflection surface 334a and the reflection surface 334f and a boundary portion B1 between the reflection surface 334e and the reflection surface 334f are also formed as corners that are not chamfered.
  • the boundary B between the reflection surfaces 334b and 334c, the boundary B between the reflection surfaces 334c and 334d, and the boundary B between the reflection surfaces 334d and 334e are: It is formed as a convex curved surface.
  • FIG. 43 is a schematic diagram illustrating a light distribution pattern P10 formed by the laser light reflected by the rotating mirror 334.
  • the laser light reflected at the boundary B1 between the reflecting surfaces 334a and 334b is scattered in a plurality of directions. Therefore, as shown in FIG. 43, the spot light LS is formed at least at a part of the left and right ends of the line LA10 and the line LB10 of the light distribution pattern P10. Similarly, the spot light LS is formed at least at a part of the left and right ends of the line LA10 and the line LF10 by the laser light reflected at the boundary B1 between the reflection surface 334a and the reflection surface 334f.
  • the spot light LS is formed at least at a part of the left and right ends of the line LE10 and the line LF10 by the laser light reflected at the boundary portion B1 between the reflection surface 334e and the reflection surface 334f.
  • the laser light reflected at the boundary B between the reflection surface 334b and the reflection surface 334c irradiates the central portion in the left-right direction with the diffused light over the line LB10 and the line LC10 of the light distribution pattern P10.
  • the laser beam reflected at the boundary B between the chamfered reflecting surfaces 334c and 334d irradiates the central portion in the left-right direction over the line LC10 and the line LD10 with diffused light.
  • the laser beam reflected at the boundary B between the chamfered reflecting surfaces 334d and 334e irradiates the central portion in the left-right direction over the line LD10 and the line LE10 with diffused light.
  • the line LC10 and the line LD10 formed in the central region in the vertical direction of the light distribution pattern P10 are irradiated with the diffused light LT reflected at the boundary portion B at the central portion in the horizontal direction, the line LC10 and the line LD10 have the lateral end. It is unlikely that spot light LS will be generated in the section (see FIG. 43).
  • the present modification it is possible to suppress the generation of the spot light LS on the line lines LC10 and LD10 at the center in the vertical direction in the light distribution pattern P10. Since the lines LC10 and LD10 are lines formed at positions corresponding to the oncoming vehicle, it is possible to prevent the spot light LS from causing glare on the oncoming vehicle.
  • the reflecting surfaces 334c and 334d of the rotating mirror 334 used to form the lines LC10 and LD10 (an example of a second line) at the center are sandwiched by a boundary B formed of a convex curved surface.
  • the reflection surfaces 334a and 334f of the rotating mirror 334 used to form the lines LA10 and LF10 (an example of a first line) on both sides are sandwiched between boundary portions B1 that are not chamfered. That is, the length along the rotation direction D of the plane forming the reflection surfaces 334a and 334f is longer than the length along the rotation direction D of the plane forming the reflection surfaces 334c and 334d.
  • the area of the reflection surface 334a usable for forming the line LA10 and the area of the reflection surface 334f usable for forming the line LF10 are determined by the reflection surface 334c sandwiched by the chamfered boundary portion B and the reflection surface 334c. It is set wider than the surface 334d. Therefore, although the spot light LS may be generated on the line LA10 and the line LF10 in some cases, the light use efficiency is increased, so that the luminous intensity can be improved more than the line LC10 and the line LD10.
  • the rotating mirror 334 according to the present modification, it is possible to prevent the occurrence of glare with respect to the oncoming vehicle, and to supplement the luminous intensity of the line at the center in the vertical direction with the luminous intensity of the lines at both sides. it can.
  • the lamp unit 2130 includes a light source 2132, a rotating mirror 2134, a plano-convex lens 36, and a phosphor 38.
  • the light source 2132 is disposed at a position along the optical axis Ax (for example, immediately below the optical axis Ax) in the vertical direction.
  • the reflecting surface of the rotating mirror 2134 in the seventh embodiment includes a plurality of (six in this example) convex portions 2134a to 2134f and a plurality of (six in this example) concave portions 2135a to 2135f in the rotation direction D of the rotating mirror 2134.
  • the convex portions 2134a to 2134f are each formed as a convex curved reflection surface that protrudes to the opposite side to the rotation axis R side.
  • the concave portions 2135a to 2135f are formed as concave curved reflection surfaces, each concave to the rotation axis R side.
  • the convex portions 2134a to 2134f are convex curved reflecting surfaces having the same curvature and the same shape.
  • the concave portions 2135a to 2135f are concave curved reflecting surfaces having the same curvature and the same shape.
  • the protrusions 2134a to 2134f and the recesses 2135a to 2135f are alternately arranged along the rotation direction D.
  • the boundary between adjacent convex portions and concave portions in the convex portions 2134a to 2134f and the concave portions 2135a to 2135f that is, the boundary where the convex curve is switched to the concave curve, and the boundary where the concave curve is switched to the convex curve.
  • the boundary is called an inflection point.
  • the boundary between the convex curve and the concave curve between the convex portion 2134a and the concave portion 2135a is called an inflection point aa
  • the boundary between the concave curve and the convex curve between the concave portion 2135a and the convex portion 2134b is called an inflection point ab
  • the boundary between the convex curve and the concave curve at the convex portion 2134f and the concave portion 2135f is called an inflection point ff
  • the boundary between the concave curve and the convex curve at the concave portion 2135f and the convex portion 2134a is called an inflection point fa.
  • the convex portion 2134a and the convex portion 2134d are arranged on diagonally opposite sides.
  • the convex portions 2134b and 2134e and the convex portions 2134c and 2134f are arranged on diagonally opposite sides.
  • the recesses 2135a to 2135f are arranged on diagonally opposite sides.
  • the recesses 2135b and 2135e and the recesses 2135c and 2135f are arranged on diagonally opposite sides.
  • FIG. 44 illustrates a state where the laser light emitted from the light source 2132 is reflected at the vertex T of the convex portion 2134a of the rotating mirror 2134.
  • the laser beam Lta reflected at the apex T of the projection 2134a is configured to travel in the same direction as the optical axis Ax in the left-right direction of the lamp unit 2130.
  • FIG. 45 shows that the rotating mirror 2134 rotates in the rotation direction D from the position shown in FIG. 44, and the laser light emitted from the light source 2132 is reflected between the vertex T of the convex portion 2134a of the rotating mirror 2134 and the inflection point aa.
  • FIG. 45 the laser light reflected between the apex T of the convex portion 2134a and the inflection point aa is a direction deviated leftward from the direction of the optical axis Ax by the angle WL1 in the left-right direction of the lamp unit 2130. It is configured to proceed.
  • FIG. 46 shows a state where the rotating mirror 2134 rotates in the rotation direction D from the position in FIG. 45, and the laser light emitted from the light source 2132 is reflected at the inflection point aa of the rotating mirror 2134.
  • the laser light reflected at the inflection point aa is configured to travel in the left and right directions of the lamp unit 2130 in a direction deviated leftward from the direction of the optical axis Ax by an angle WL2.
  • the angle WL2 formed between the traveling direction of the laser beam reflected at the change point aa and the optical axis Ax is determined by the relationship between the traveling direction of the laser beam reflected between the vertex T of the projection 2134a and the inflection point aa and the optical axis Ax. It becomes larger than the angle WL1 formed.
  • the angle WL2 between the traveling direction of the laser beam reflected at the inflection point aa and the optical axis Ax that is, the angle formed between the traveling direction of the laser beam reflected at the boundary where the convex curve is switched to the concave curve and the optical axis Ax Is the maximum angle when the traveling direction of the laser light deviates leftward from the optical axis Ax.
  • FIG. 47 shows that the rotating mirror 2134 rotates in the rotating direction D from the position shown in FIG. 46, and the laser light emitted from the light source 2132 is reflected between the inflection point aa of the rotating mirror 2134 and the bottom point S of the concave portion 2135a.
  • FIG. 47 the laser light reflected between the inflection point aa and the bottom point S of the concave portion 2135a has a direction deviated leftward from the direction of the optical axis Ax by an angle WL3 in the left-right direction of the lamp unit 2130. It is configured to proceed.
  • the angle WL3 between the traveling direction of the laser beam reflected between the inflection point aa and the bottom point S of the concave portion 2135a and the optical axis Ax is defined as the angle WL3 between the traveling direction of the laser beam reflected at the variation point aa and the optical axis Ax. It becomes smaller than the formed angle WL2.
  • FIG. 48 shows a state in which the rotating mirror 2134 is rotated in the rotating direction D from the position shown in FIG. .
  • the laser light Lsa reflected at the bottom point S of the concave portion 2135a is configured to travel in the same direction as the optical axis Ax in the left-right direction of the lamp unit 2130.
  • FIG. 49 shows that the rotating mirror 2134 is rotated in the rotating direction D from the position shown in FIG. 48, and the laser light emitted from the light source 2132 is reflected between the bottom point S of the concave portion 2135a of the rotating mirror 2134 and the inflection point ab.
  • the laser light reflected between the bottom point S of the concave portion 2135a and the inflection point ab is a direction deviated rightward from the direction of the optical axis Ax by an angle WR1 in the left-right direction of the lamp unit 2130. It is configured to proceed.
  • FIG. 50 shows a state in which the rotating mirror 2134 rotates in the rotation direction D from the position shown in FIG. 49, and the laser light emitted from the light source 2132 is reflected at the inflection point ab of the rotating mirror 2134.
  • the laser light reflected at the inflection point ab is configured to travel in a direction deviating rightward from the direction of the optical axis Ax by an angle WR2 in the left-right direction of the lamp unit 2130.
  • the angle WR2 formed between the traveling direction of the laser beam reflected at the change point ab and the optical axis Ax is equal to the angle between the traveling direction of the laser beam reflected between the bottom point S of the concave portion 2135a and the inflection point ab and the optical axis Ax.
  • the angle WR1 is larger than the angle WR1.
  • the angle WR2 between the traveling direction of the laser beam reflected at the inflection point ab and the optical axis Ax that is, the angle between the traveling direction of the laser beam reflected at the boundary where the concave curve is switched to the convex curve and the optical axis Ax Is the maximum angle when the traveling direction of the laser light deviates rightward from the optical axis Ax.
  • FIG. 51 shows that the rotating mirror 2134 is rotated in the rotating direction D from the position shown in FIG. 50, and the laser light emitted from the light source 2132 is reflected between the inflection point ab on the rotating mirror 2134 and the vertex T of the convex portion 2134b.
  • FIG. 51 the laser light reflected between the inflection point ab and the apex T of the convex portion 2134b is directed rightward from the direction of the optical axis Ax by an angle WR3 in the left-right direction of the lamp unit 2130. It is configured to proceed.
  • the angle WR3 formed between the traveling direction of the laser beam reflected between the inflection point ab and the vertex T of the convex portion 2134b and the optical axis Ax is defined as the angle WR3 between the traveling direction of the laser beam reflected at the variation point ab and the optical axis Ax.
  • the angle WR2 is smaller than the angle WR2.
  • the angle formed between the convex portion and the optical axis Ax is the laser beam from the light source 2132. Is reflected by one concave portion adjacent to the convex portion, and is formed so as to have a different angle from the concave portion and the optical axis Ax.
  • the angle formed between the concave portion 2135a and the optical axis Ax when the laser light from the light source 2132 is reflected by the adjacent concave portion 2135a is the convex portion when the laser light from the light source 2132 is reflected by the convex portion 2134a.
  • the convex portion 2134b, the concave portion 2135b, the convex portion 2134c, the concave portion 2135c, and the convex portion 2134d are formed in this order so that the angle between the surface at the vertex of each reflection surface and the optical axis Ax becomes smaller.
  • the laser beam Lta reflected by the apex T of the convex portion 2134a is applied to a position different from the laser beam Lsa reflected by the bottom point S of the concave portion 2135a adjacent in the vertical direction in front of the vehicle.
  • the laser beam Lsa reflected at the bottom point S of the concave portion 2135a is irradiated above the laser beam Lta reflected at the vertex T of the convex portion 2134a in the light distribution pattern P11 shown in FIG.
  • the laser light Ltb reflected at the apex T of the convex portion 2134b is irradiated above the laser light Lsa reflected at the bottom point S of the concave portion 2135a.
  • the angle between the optical axis Ax and the surface formed in the vertical and longitudinal directions at the bottom point of the concave portion 2135d is the angle formed between the surface formed in the vertical direction and the front and rear direction of the concave portion 2135c and the optical axis Ax It is formed so as to be the same as.
  • the laser light Lsd reflected by the bottom point of the concave portion 2135d is applied to the same position as the laser beam Lsc reflected by the bottom point of the concave portion 2135c in the vertical direction in front of the vehicle.
  • the angle formed by the surface at the vertex of the convex portion 2134e and the optical axis Ax is the same as the angle formed by the surface at the vertex of the convex portion 2134c and the optical axis Ax.
  • the laser light Lte reflected by the apex of the convex portion 2134e is applied to the same position as the laser light Ltc reflected by the apex of the convex portion 2134c in the up-down direction ahead of the vehicle.
  • the angle formed by the surface at the bottom point of the recess 2135e and the optical axis Ax is the same as the angle formed by the surface at the bottom point of the recess 2135b and the optical axis Ax.
  • the laser beam Lse reflected by the bottom point of the concave portion 2135e is applied to the same position as the laser beam Lsb reflected by the bottom point of the concave portion 2135b in the vertical direction in front of the vehicle.
  • the angle formed by the surface at the vertex of the convex portion 2134f and the optical axis Ax is the same as the angle formed by the surface at the vertex of the convex portion 2134b and the optical axis Ax.
  • the laser beam Ltf reflected by the vertex of the convex portion 2134f is irradiated to the same position as the laser beam Ltb reflected by the vertex of the convex portion 2134b in the up-down direction in front of the vehicle.
  • the angle formed between the surface at the bottom point of the concave portion 2135f and the optical axis Ax is the same as the angle formed between the surface at the bottom point of the concave portion 2135a and the optical axis Ax.
  • the boundary between the adjacent convex portion and concave portion is formed such that the angle of the inclined surface with respect to the optical axis Ax changes gradually. Thereby, a folded portion of the light distribution pattern P6 described later can be formed without a feeling of strangeness.
  • FIG. 52 is a diagram in which the light distribution pattern P11 formed in front of the vehicle by the lamp unit 2130 according to the seventh embodiment is observed from the vehicle side.
  • the light distribution pattern P11 includes a plurality of lines (L11 to L17) formed by the laser light.
  • the laser light emitted from the light source 2132 is reflected by the convex portions 2134a to 2134f and the concave portions 2135a to 2135f of the rotating mirror 2134, and passes through the plano-convex lens 36 via the phosphor 38.
  • the rear focal point of the plano-convex lens 36 is set near the light emission surface of the phosphor 38, so that the light source image on the light emission surface of the phosphor 38 is vertically and horizontally inverted.
  • a light distribution pattern P11 is formed.
  • the lowermost first line L11 of the light distribution pattern P11 shown in FIG. 52 is formed by the laser light reflected from the inflection point fa on the protrusion 2134a through the vertex T to the inflection point aa.
  • the laser beam Lta reflected at the apex T of the convex portion 2134a is applied to the central portion of the lowermost first line L11.
  • the laser light reflected from the inflection point fa to the inflection point aa through the vertex T is scanned from the left end of the first line L11 to the right end through the center.
  • the second line L12 is formed above the first line L11 by the laser beam passing through the bottom point S from the inflection point aa in the concave portion 2135a and reflected at the inflection point ab.
  • the laser beam Laa reflected at the inflection point aa between the convex portion 2134a and the concave portion 2135a is reflected at a folded portion between the first line L11 and the second line L12 disposed above the first line L11. Irradiated.
  • the laser beam Lsa reflected at the bottom point S of the concave portion 2135a is applied to the center of the second line L12.
  • the laser light reflected at the inflection point ab from the inflection point aa through the bottom point S is scanned from the right end of the second line L12 to the left end through the center.
  • a third line L13 is formed above the second line L12 by the laser beam passing through the vertex T from the inflection point ab on the protrusion 2134b and reflected at the inflection point bb.
  • the laser light Ltb reflected at the apex T of the convex portion 2134b is applied to the center of the second line L13.
  • the laser beam reflected from the inflection point bb from the inflection point ab through the vertex T is scanned from the left end of the third line L13 to the right end through the center.
  • a fourth line L14 is formed above the third line L13 by the laser beam that passes through the bottom point S from the inflection point bb in the concave portion 2135b and is reflected at the inflection point bc.
  • the laser beam Lsb reflected at the bottom point S of the concave portion 2135b is applied to the center of the fourth line L14. In this way, the laser beam reflected at the inflection point bc from the inflection point bb through the bottom point S is scanned from the right end of the fourth line L14 through the center to the left end.
  • the fifth line L15 is formed above the fourth line L14 by the laser beam that passes through the vertex T from the inflection point bc on the projection 2134c and is reflected at the inflection point cc.
  • the laser beam Ltc reflected at the vertex T of the convex portion 2134c is applied to the center of the fifth line L15.
  • the laser beam reflected at the inflection point cc from the inflection point bc through the vertex T is scanned from the left end of the fifth line L15 to the right end through the center.
  • the sixth line L16 is formed above the fifth line L15 by the laser beam passing through the bottom point S from the inflection point cc in the concave portion 2135c and reflected at the inflection point cd.
  • the laser light Lsc reflected at the bottom point S of the concave portion 2135c is applied to the center of the sixth line L16.
  • the laser light reflected from the inflection point cd from the inflection point cc through the bottom point S is scanned from the right end to the left end of the sixth line L16 through the center.
  • the seventh line L17 is formed above the sixth line L16 by the laser beam that passes through the vertex T from the inflection point cd on the protrusion 2134d and is reflected at the inflection point dd.
  • the laser beam Ltd reflected at the apex T of the convex portion 2134d is applied to the center of the seventh line L17.
  • the laser light reflected at the inflection point dd from the inflection point cd through the vertex T is scanned from the left end of the seventh line L17 through the center to the right end.
  • the sixth line L16 below the seventh line L17 is formed by the laser light that has passed through the bottom point S from the inflection point dd in the concave portion 2135d and has been reflected at the inflection point de.
  • the laser light Lsd reflected at the bottom point S of the recess 2135d is applied to the center of the sixth line L16, that is, the same position as the laser light Lsc reflected at the bottom point S of the recess 2135c.
  • the laser beam reflected at the inflection point de from the inflection point dd through the bottom point S is scanned from the right end to the left end of the sixth line L16 through the center.
  • the fifth line L15 below the sixth line L16 is formed by the laser beam that passes through the vertex T from the inflection point de on the convex portion 2134e and is reflected at the inflection point ee.
  • the laser beam Lte reflected at the vertex T of the convex portion 2134e is applied to the center of the fifth line L15, that is, the same position as the laser beam Ltc reflected at the vertex T of the convex portion 2134c.
  • the laser beam reflected at the inflection point ee from the inflection point de through the vertex T is scanned from the left end of the fifth line L15 to the right end through the center.
  • the fourth line L14 below the fifth line L15 is formed by the laser beam passing through the bottom point S from the inflection point ee in the concave portion 2135e and reflected at the inflection point ef.
  • the laser beam Lse reflected at the bottom point S of the recess 2135e is applied to the center of the fourth line L14, that is, the same position as the laser beam Lsb reflected at the bottom point S of the recess 2135b.
  • the laser beam that has passed through the bottom point S from the inflection point ee and has been reflected at the inflection point ef is scanned from the right end of the fourth line L14 through the center to the left end.
  • the third line L13 below the fourth line L14 is formed by the laser beam that passes through the vertex T from the inflection point ef on the convex portion 2134f and is reflected at the inflection point ff.
  • the laser beam Ltf reflected at the vertex T of the convex portion 2134f is applied to the center of the third line L13, that is, the same position as the laser beam Ltb reflected at the vertex T of the convex portion 2134b.
  • the laser beam reflected at the inflection point ff from the inflection point ef through the vertex T is scanned from the left end of the third line L13 through the center to the right end.
  • the second line L12 below the third line L13 is formed by the laser beam passing through the bottom point S from the inflection point ff in the concave portion 2135f and reflected at the inflection point fa.
  • the laser beam Lsf reflected at the bottom point S of the recess 2135f is applied to the center of the second line L12, that is, the same position as the laser beam Lsa reflected at the bottom point S of the recess 2135a.
  • the laser light reflected from the inflection point fa from the inflection point ff through the bottom point S is scanned from the right end of the second line L12 to the left end through the center.
  • the laser light reflected from the inflection point fa on the convex portion 2134a through the apex T to the inflection point aa is the lower first line of the light distribution pattern P11 below the second line L12.
  • the first line L11 is formed by scanning from the left end of L11 to the right end through the center.
  • the rotating mirror when configured by a polygon mirror in which a planar reflecting surface is arranged in a polygonal shape in a top view, when laser light from a light source is reflected at a boundary between the reflecting surfaces, the laser The light may be scattered to form an inappropriate light distribution. Therefore, in order to prevent the scattering of the laser light, it is conceivable to control the turning on and off of the light source such that the light source is turned off at the timing when the boundary between the respective reflection surfaces and the light beam of the laser light from the light source intersect. .
  • the timing of turning off the light source corresponds to the timing of forming both ends in the left-right direction of the light distribution pattern.
  • the light source is turned off at this timing, there is a disadvantage that a loss of turning off the laser light occurs when forming both ends of the light distribution pattern in the left-right direction.
  • the rotating mirror 2134 of the lamp unit 2130 according to the seventh embodiment is composed of the convex portions 2134a to 2134f and the concave portions 2135a to 2135f. That is, the convexly curved reflecting surfaces 2134a to 2134f and the concavely curved reflecting surfaces 2135a to 2135f are arranged alternately and continuously along the rotation direction D. According to this configuration, since no edge portion is generated at the boundary (inflection point) between each convex portion and the concave portion, the laser light reflected at the boundary between the convex portion and the concave portion is not scattered.
  • One round trip scanning line in the left-right direction (scanning direction of laser light) of the light distribution pattern P11 can be formed by the laser light reflected by one adjacent convex part and one concave part. This makes it possible to continuously form one reciprocating line without turning off the light source at both ends of each scanning line.
  • the angle (the angle of the inclined surface) formed between the convex portion and the concave portion and the optical axis Ax is, for example, from the convex portion 2134a to the concave portion 2135a, the convex portion 2134b, the concave portion 2135b, the convex portion 2134c, the concave portion 2135c, and the convex portion 2134d. It is configured to gradually decrease.
  • the angle (the angle of the inclined surface) formed between the convex portion and the concave portion and the optical axis Ax gradually changes from the convex portion 2134d to the concave portion 2135d, the convex portion 2134e, the concave portion 2135e, the convex portion 2134f, the concave portion 2135f, and the convex portion 2134a. It is configured to be large. For this reason, when the scanning of the laser beam in the left and right direction of the light distribution pattern P11 by the rotating mirror 2134 is scanned rightward from the left end and reaches the right end, the scanning is shifted upward by one step, and this time from the right end to the left. It is possible to scan in the direction. In addition, after scanning the uppermost line of the light distribution pattern P11, it is possible to sequentially scan the lowermost line from the line one step below the uppermost line. For this reason, a uniform light distribution pattern P11 can be formed by continuous continuous scanning between each scanning line.
  • FIG. 53 is a schematic diagram illustrating an example of a light distribution pattern P12 formed in front of the vehicle by the optical unit in FIG. 2 in the eighth embodiment.
  • the control device specifies the rotation angle (the position in the circumferential direction) of the rotating mirror 34 based on information acquired by a sensor provided in the motor 40.
  • the control device makes the luminous intensity of the central portion CR of the light distribution pattern P12 higher than the luminous intensity of a portion other than the central portion CR (for example, the left and right ends of the light distribution pattern P12) based on the specified rotation angle of the rotating mirror 34.
  • the control device controls the light output to 100% when the light hits the center of the reflection surfaces 34a to 34l.
  • the control device controls the output of the light when the light from the light source 32 hits a portion other than the center of the reflection surfaces 34a to 34l to 80%.
  • the front center of the vehicle can be mainly illuminated.
  • the control device can also increase the light output of the light source 32. For example, in a case where the light output of the light source 32 in the normal state is 80%, when the light hits the central portion of the reflection surfaces 34a to 34l, the control device controls the light output of the light source 32 to 100%. In this manner, the luminous intensity of the central portion CR of the light distribution pattern P12 may be higher than the luminous intensity of portions other than the central portion CR.
  • the control device can increase or decrease the light output even when the light from the light source 32 does not hit the central portion or the central portion of the reflection surfaces 34a to 34l. For this reason, in the vehicle including the vehicle headlamp 10 according to the eighth embodiment, emphasis is placed on a specific pedestrian, a target object, or the like based on information obtained from a sensor such as a LIDAR provided in the vehicle. The light can be radiated.
  • FIGS. 54 to 58 are top views showing the configuration of the lamp unit 1140 according to the ninth embodiment.
  • the lamp unit 1140 includes a light source 1142, a rotating mirror 1144, a plano-convex lens 36, and a phosphor 38.
  • the light source 1142 is disposed at a position along the optical axis Ax (for example, immediately below the optical axis Ax) in the vertical direction.
  • the light source 1142 can be turned on and off by a control device (not shown) similar to the control device according to the first embodiment.
  • the rotating mirror 1144 includes six reflecting curved surfaces (an example of a convex portion) that protrude outward from the rotating mirror 1144. It has reflecting surfaces 1144b, 1144d, 1144f, 1144h, 1144j, and 1144l formed as six concave curved surfaces (an example of concave portions) that are concave on the axis R side. Specifically, along the rotation direction D, the convex reflective surface 1144a, the concave reflective surface 1144b, the convex reflective surface 1144c, the concave reflective surface 1144d, the convex reflective surface 1144e, the concave reflective surface 1144f, and the convex reflective surface 1144g are provided.
  • a concave reflecting surface 1144h, a convex reflecting surface 1144i, a concave reflecting surface 1144j, a convex reflecting surface 1144k, and a concave reflecting surface 1144l are formed so that the convex reflecting surface and the concave reflecting surface are alternately continuous. .
  • the laser light La emitted from the light source 1142 and reflected at the apex of the convex reflecting surface 1144a travels in the left-right direction along the optical axis Ax.
  • the traveling direction of the reflected light gradually moves to the left from the optical axis Ax.
  • the laser light Lx1 reflected at the inflection point x1 between the convex reflection surface 1144a and the concave reflection surface 1144b travels toward the left end position of the laser light diffusion angle (diffusion region) in the left-right direction. (See FIG. 55).
  • the rotating mirror 1144 is rotated from the position in FIG. 55 along the rotation direction D, the traveling direction of the reflected light is turned from the left end position and gradually moves to the right. Then, the laser beam Lb reflected at the bottom point of the concave reflecting surface 1144b travels in the left-right direction along the optical axis Ax (see FIG. 56). As the rotating mirror 1144 is further rotated from the position shown in FIG. 56 along the rotation direction D, the traveling direction of the reflected light gradually moves further rightward from the optical axis Ax.
  • the laser light Lx2 reflected at the inflection point x2 between the concave reflection surface 1144b and the convex reflection surface 1144c travels toward the right end position of the laser light diffusion angle (diffusion region) in the left-right direction. (See FIG. 57). Subsequently, as the rotating mirror 1144 is further rotated from the position in FIG. 57 along the rotation direction D, the traveling direction of the reflected light is turned from the right end position and gradually moves to the left. Then, the laser light Lc reflected at the vertex of the convex reflecting surface 1144c is reflected in the left-right direction in the direction along the optical axis Ax (see FIG. 58).
  • the angle formed between the convex reflecting surface 1144a and the optical axis Ax in the plane formed in the up-down direction and the front-back direction is
  • the laser light is reflected at the vertices or bottom points of the other reflecting surfaces 1144b to 1144l
  • the angle formed between the other reflecting surfaces 1144b to 1144l and the optical axis Ax in the surface formed in the up-down direction and the front-back direction is different. Is formed.
  • the angle formed by the surface at the bottom point of the concave reflecting surface 1144b and the optical axis Ax is formed to be slightly smaller than the angle formed by the surface at the vertex of the convex reflecting surface 1144a and the optical axis Ax.
  • the convex reflecting surface 1144c, the concave reflecting surface 1144d, the convex reflecting surface 1144e, the concave reflecting surface 1144f, and the convex reflecting surface 1144g the surface at the vertex or bottom point of each reflecting surface and the optical axis Ax The angle formed is small.
  • the light reflected by the vertices of the convex reflecting surface 1144a is applied to a position different from the light reflected by the vertices of the other reflecting surfaces 1144b to 1144l in the vertical direction in front of the vehicle.
  • the light reflected at the bottom point of the concave reflecting surface 1144b is irradiated above the light reflected at the apex of the convex reflecting surface 1144a.
  • the light reflected at the vertex of the convex reflecting surface 1144c is irradiated above the light reflected at the bottom point of the concave reflecting surface 1144b.
  • the concave reflection surface 1144h has an angle formed by the optical axis Ax and a surface formed in the vertical direction and the front-rear direction at the bottom point and a surface formed in the vertical direction and the front-rear direction at the bottom point of the concave reflection surface 1144f. Is formed so as to be the same as the angle formed by. As a result, the light reflected by the bottom point of the concave reflecting surface 1144h is applied to the same position as the light reflected by the bottom point of the concave reflecting surface 1144f in the vertical direction in front of the vehicle.
  • the angle formed by the surface at the vertex of the convex reflecting surface 1144i and the optical axis Ax is the same as the angle formed by the surface at the vertex of the convex reflecting surface 1144e and the optical axis Ax.
  • the light reflected by the apex of the convex reflecting surface 1144i is applied to the same position as the light reflected by the apex of the convex reflecting surface 1144e in the up-down direction in front of the vehicle.
  • the angle formed by the surface at the bottom point of the concave reflecting surface 1144j and the optical axis Ax is the same as the angle formed by the surface at the bottom point of the concave reflecting surface 1144d and the optical axis Ax.
  • the light reflected by the bottom point of the concave reflecting surface 1144j is applied to the same position as the light reflected by the bottom point of the concave reflecting surface 1144d in the vertical direction in front of the vehicle.
  • the angle formed by the surface at the vertex of the convex reflecting surface 1144k and the optical axis Ax is the same as the angle formed by the surface at the vertex of the convex reflecting surface 1144c and the optical axis Ax.
  • the light reflected by the convex reflecting surface 1144k is applied to the same position as the light reflected by the convex reflecting surface 1144c in the up-down direction in front of the vehicle.
  • the angle formed by the surface at the bottom point of the concave reflecting surface 1144l and the optical axis Ax is the same as the angle formed by the surface at the bottom point of the concave reflecting surface 1144b and the optical axis Ax.
  • the light reflected by the concave reflecting surface 1144l is applied to the same position as the light reflected by the concave reflecting surface 1144b in the vertical direction in front of the vehicle.
  • the boundary between the adjacent reflection surfaces is formed such that the angle of the inclined surface with respect to the optical axis Ax changes gradually. Thereby, a folded portion of the light distribution pattern P13 described later can be formed without a sense of discomfort.
  • FIG. 59 is a schematic diagram of a light distribution pattern P13 formed in front of the vehicle by the optical unit in FIG. As shown in FIG. 59, the light distribution pattern P13 is formed by reciprocating a line formed by laser light so as to form a plurality of steps in the left-right direction.
  • the laser light emitted from the light source 1142 is reflected by each of the reflecting surfaces 1144a to 1144l of the rotating mirror 1144, and passes through the plano-convex lens 36 via the phosphor 38.
  • the light source image on the light emitting surface of the phosphor 38 is inverted vertically and horizontally to form the light distribution pattern P13. Is done.
  • the starting point of the lowermost line LA13 forming the light distribution pattern P13 is formed by the laser beam La reflected at the vertex of the convex reflecting surface 1144a.
  • the starting point of the line LA13 is formed on the vertical axis VV of the virtual screen.
  • the laser beam reflected from the vertex of the convex reflecting surface 1144a to the inflection point x1 between the convex reflecting surface 1144a and the concave reflecting surface 1144b forms the line LA13 from the starting point to the right end.
  • the laser beam Lx1 reflected at the inflection point x1 forms a folded portion of the line LA13 and the line LB13 formed above the line LA13 at the right end position of the line LA13.
  • the line LB13 is formed to the left from the turn of the line LA13 by the laser beam reflected from the inflection point x1 to the bottom point of the concave reflecting surface 1144b. Then, the laser beam Lb reflected at the bottom point of the concave reflecting surface 1144b forms a central portion of the line LB13 in the left-right direction. Subsequently, the line LB13 is formed from the center to the left end by the laser light reflected from the bottom point of the concave reflecting surface 1144b to the inflection point x2 between the concave reflecting surface 1144b and the convex reflecting surface 1144c. .
  • the laser beam Lx2 reflected at the inflection point x2 forms a folded portion between the line LB13 and the line LC13 formed above the line LB13 at the left end position of the line LB13.
  • the line LC13 is formed rightward from the folded portion by the laser light reflected from the inflection point x2 to the vertex of the convex reflection surface 1144c.
  • the laser beam Lc reflected at the vertex of the convex reflection surface 1144c forms a central portion of the line LC13 in the left-right direction.
  • the line LC13 is formed from the center to the right end by the laser light reflected from the vertex of the convex reflecting surface 1144c to the inflection point between the convex reflecting surface 1144c and the concave reflecting surface 1144d.
  • the line LD13 above the line LC13, the line LE13 above the line LD13, A line LF13 above the line LE13 and a line LG13 above the line LF13 are respectively formed by being folded back.
  • the light distribution pattern is folded back from the line LG13 to the lower line LF13 by the laser light reflected near the inflection point between the convex reflecting surface 1144g and the concave reflecting surface 1144h.
  • the laser light reflected by the concave reflecting surface 1144h, the convex reflecting surface 1144i, the concave reflecting surface 1144j, the convex reflecting surface 1144k, and the concave reflecting surface 1144l generates the line LF13, the line LE13, the line LD13, the line LC13, and the line LB13.
  • Light is emitted in the order of
  • the laser light reflected near the inflection point between the concave reflecting surface 1144l and the convex reflecting surface 1144a causes the light distribution pattern to be folded from the line LB13 to the lower line LA13, and the convex reflecting surface
  • the start point of the lowermost line LA13 is irradiated again by the laser beam reflected by the vertex of 1144a.
  • the laser light is reflected by each of the reflecting surfaces 1144a to 1144l in accordance with the rotation of the rotating mirror 1144 along the rotation direction D, so that the laser light is irradiated to the front of the vehicle while being turned right and left.
  • a plurality of lines LA13 to LG13 constituting the optical pattern P13 are continuously formed in the vertical direction.
  • FIG. 60 is a schematic diagram showing an example of the light distribution pattern P13 when the output of light emitted from the light source 1142 is constant.
  • the light intensity at the left end LE and the right end RE of the light distribution pattern P13 is higher than the light intensity at other portions. This is because, when the light from the light source 1142 hits the inflection point between the convex reflecting surface and the concave reflecting surface and the vicinity thereof, the scanning speed becomes relatively slow, and the irradiation time of the light at the left end LE and the right end RE becomes long. Because it becomes. As a result, light accumulation occurs at the left end LE and the right end RE. For this reason, in the left end LE and the right end RE, a sense of incongruity occurs in visibility as compared with other portions.
  • the control device controls the light output to be weaker than other portions (for example, the central portion CR13). .
  • the control device controls the output of the light source when irradiating the inflection point between the convex reflection surface and the concave reflection surface and the vicinity thereof with light to about 20%.
  • the luminous intensity at the left end LE and the right end RE of the light distribution pattern P13 is equal to or less than the luminous intensity in other portions. Therefore, no light accumulation occurs at the left end LE and the right end RE. As a result, a sense of incongruity in visibility at the left end LE and the right end RE is less likely to occur.
  • the optical unit according to the ninth embodiment contributes to a reduction in power consumption of the light source 1142.
  • the control device can increase or decrease the light output even when the light from the light source 1142 does not hit the inflection point between the convex reflecting surface and the concave reflecting surface. For example, the control device sets the light output when the light from the light source 1142 hits the inflection point between the convex reflecting surface and the concave reflecting surface to 30%, and the light output when it hits the vertices of the reflecting surfaces 1144a to 1144l. Is controlled to 100%, and the light output at the time of striking other parts is controlled to 70%. Then, the luminous intensity of the central portion CR13 becomes higher than the luminous intensity of the other portions (for example, the left end LE and the right end RE). Thus, the control device can freely control the adjustment of the luminous intensity of the line. For this reason, in the vehicle equipped with the vehicle headlamp 10 according to the ninth embodiment, emphasis is placed on a specific pedestrian or an object based on information obtained from a sensor such as a LIDAR provided in the vehicle. The light can be radiated.
  • the control device can increase or decrease the light output based on the position information of the vehicle including the vehicle headlamp 10 according to the present embodiment. For example, when the control device determines that the vehicle is traveling on a highway from the position information of the vehicle acquired by the GPS included in the vehicle, the light is focused on a central portion in front of the vehicle. .
  • the output of the light emitted from the light source 1142 can be freely changed.
  • the luminous intensity can be more finely adjusted, for example, by increasing the luminous intensity at a portion to be mainly irradiated with light.
  • a blade scan type rotating mirror (rotating reflector) 500 may be used (see FIG. 14).
  • the control device controls the light output of the light source 32 as described in the eighth embodiment.
  • the light irradiation device using the rotating mirror 500 instead of the polygon mirror 34 can further finely adjust the light intensity, for example, by increasing the light intensity of a portion to be irradiated with light.
  • the control device uniformly controls the light output of all of the lines LA12 to LF12 of the light distribution pattern P12 or all of the lines LA13 to LF13 of the light distribution pattern P13.
  • the control device may control the light output so that only one line has a different light intensity from the other lines, or may control the light output so that the light intensity differs for each line.
  • the light reflected by a pair of diagonally arranged reflecting surfaces uses the dodecahedral rotating mirror 34 in a top view, and the light reflected by the same line in the light distribution pattern is used. Is formed, but is not limited to this example.
  • one line may be formed by light reflected by one reflection surface.
  • the rotating mirror is formed as a hexahedron in a top view, and has six reflecting surfaces along the rotating direction.
  • a high beam lamp unit 3030 As shown in FIGS. 61 to 64, a high beam lamp unit 3030 according to the tenth embodiment includes a light source 32, a rotating mirror 3034 as a reflector, and a flat lens as a projection lens disposed in front of the rotating mirror 3034. It has a convex lens 36 and a phosphor 38 disposed between the rotating mirror 3034 and the plano-convex lens 36.
  • the rotating mirror 3034 includes a dish-shaped member 341, a plurality of columns 342, and a plurality of reflectors 343 (an example of an annular mirror).
  • the rotating mirror 3034 is rotatably connected to a motor 40 as a driving source.
  • the rotating mirror 3034 is rotated by the motor 40 in the rotation direction D about the rotation axis R.
  • the rotation axis R of the rotation mirror 3034 is oblique to the optical axis Ax (see FIG. 63). For this reason, scanning using the light of the light source 32 becomes possible.
  • the plurality of reflectors 343 are substantially square plate-like members.
  • the plurality of reflection plates 343 are arranged in a polygonal annular shape to form an annular mirror.
  • the surface facing the inside of the annularly arranged reflecting plate 343 is formed as a reflecting surface by aluminum evaporation or the like.
  • twelve reflectors 343a to 343l are arranged (see FIG. 62).
  • the dish member 341 is substantially circular.
  • the bottom surface of the dish member 341 is larger than the top surface and the bottom surface of the motor 40.
  • the plurality of columns 342 are thin rod-shaped members extending in the up-down direction.
  • twelve columns 342 are arranged.
  • the plurality of columns 342 are arranged so as to extend downward from an edge between the plurality of reflectors 343.
  • the plurality of columns 342 are arranged at regular intervals on the circumference of the dish-shaped member 341.
  • any one of the supports 342 is located diagonally to any one of the edges between the reflectors 343.
  • the reflecting surface 344a and the reflecting surface 344g located on the diagonally opposite side of the reflecting surface 344a are combined with the first reflecting surface pair 344A.
  • the reflecting surface 344b and the reflecting surface 344h located on the diagonally opposite side of the reflecting surface 344b are defined as a second reflecting surface pair 344B.
  • the reflecting surface 344c and the reflecting surface 344i located on the diagonally opposite side of the reflecting surface 344c are referred to as a third reflecting surface pair 344C.
  • the reflecting surface 344d and the reflecting surface 344j located on the diagonally opposite side of the reflecting surface 344d are defined as a fourth reflecting surface pair 344D.
  • the reflecting surface 344e and the reflecting surface 344k on the diagonally opposite side of the reflecting surface 344e are referred to as a fifth reflecting surface pair 344E.
  • the reflecting surface 344f and the reflecting surface 344l located diagonally opposite to the reflecting surface 344f are referred to as a sixth reflecting surface pair 344F.
  • the first reflecting surface pair 344A is a surface formed in the up-down direction and the front-back direction when the laser light from the light source 32 is reflected by the reflecting surface 344a (that is, in the case of the arrangement shown in FIGS. 62 and 63).
  • the corners are formed to be substantially the same.
  • the second pair of reflecting surfaces 344B is a surface formed in the up-down direction and the front-back direction when the laser light from the light source 32 is reflected by the reflecting surface 344b (that is, in the case of the arrangement shown in FIG. 64).
  • the corners are formed to be substantially the same.
  • the third reflecting surface pair 344C is formed by an angle between the reflecting surface 344c and the optical axis Ax when the laser light from the light source 32 is reflected by the reflecting surface 344c, and the laser light from the light source 32 is reflected by the reflecting surface 344i.
  • the angle formed between the reflecting surface 344i and the optical axis Ax when the light is reflected is substantially the same.
  • the fourth reflecting surface pair 344D is formed by an angle between the reflecting surface 344d and the optical axis Ax when the laser light from the light source 32 is reflected by the reflecting surface 344d, and the laser light from the light source 32 is reflected by the reflecting surface 344j.
  • the angle formed between the reflection surface 344j and the optical axis Ax at the time of reflection is substantially the same.
  • the fifth reflection surface pair 344E is formed by an angle between the reflection surface 344e and the optical axis Ax when the laser light from the light source 32 is reflected by the reflection surface 344e, and the laser light from the light source 32 is reflected by the reflection surface 344k.
  • the angle formed between the reflection surface 344k and the optical axis Ax at the time of reflection is substantially the same.
  • the sixth reflecting surface pair 344F includes an angle formed by the reflecting surface 344f and the optical axis Ax when the laser light from the light source 32 is reflected by the reflecting surface 344f, and a reflecting surface 344l when reflected by the reflecting surface 344l.
  • each of the reflecting surfaces 344a to 344l of the rotating mirror 3034 is formed such that a pair of diagonal reflecting surfaces are inclined at the same angle. Accordingly, the light reflected by the pair of reflecting surfaces constituting the first reflecting surface pair 344A to the sixth reflecting surface pair 344F is applied to substantially the same position in the vertical direction in front of the vehicle. In addition, blurring of the rotating mirror 3034 when the rotating mirror 3034 is rotated in the rotation direction D by the motor 40 can be prevented.
  • the angle ⁇ a formed between the first reflecting surface pair 344A and the optical axis Ax is the angle ⁇ a between the laser light from the light source 32 and the other reflecting surface.
  • the angles formed by the reflection surfaces of the other reflection surface pairs 344B to 344F and the optical axis Ax when reflected by the pairs 344B to 344F are different from each other.
  • the angle ⁇ b between the reflection surface 344b and the optical axis Ax shown in FIG. 64 is formed to be slightly smaller than the angle ⁇ a between the reflection surface 344a and the optical axis Ax shown in FIG.
  • each reflecting surface pair and the optical axis Ax are formed so that the angle formed by them becomes smaller.
  • the light reflected by one pair of reflecting surfaces is applied to a position different from that of the other pair of reflecting surfaces in the vertical direction in front of the vehicle.
  • the light Lb reflected by the reflection surface 344b is irradiated below the light La reflected by the reflection surface 344a.
  • the light reflected by each of the reflecting surfaces 344a to 344l of the rotating mirror 3034 configured as described above and transmitted through the plano-convex lens 36 via the phosphor 38 is at a predetermined position in front of the vehicle (for example, 25 m ahead of the vehicle).
  • a light distribution pattern P1 as shown in FIG. 6 of the reference embodiment is formed on the virtual vertical screen. Specifically, the light reflected by the first pair of reflection surfaces 344A (reflection surfaces 344a and 344g) forms the first line LA1 at the bottom of the light distribution pattern P1 shown in FIG.
  • the second line LB1 is formed above the first line LA1 by the light reflected by the second pair of reflection surfaces 344B (reflection surfaces 344b and 344h).
  • the third line LC1 is formed above the second line LB1 by the light reflected by the third pair of reflection surfaces 344C (reflection surfaces 344c and 344i).
  • the fourth line LD1 is formed above the third line LC1 by the light reflected by the fourth pair of reflection surfaces 344D (reflection surfaces 344d and 344j).
  • the fifth line LE1 is formed above the fourth line LD1 by the light reflected by the fifth reflection surface pair 344E (the reflection surfaces 344e and 344k).
  • the sixth line LF1 is formed above the fifth line LE1 by the light reflected by the sixth pair of reflection surfaces 344F (reflection surfaces 344f and 344l). As described above, the light reflection direction is changed by the rotation of the rotating mirror 3034, so that the light is divided into a plurality of stages and scanned in a line to form the light distribution pattern P1.
  • the light source 32 provided is relatively small, and the position where the light source 32 is disposed is between the rotating mirror 3034 and the plano-convex lens 36 and is shifted from the optical axis Ax. ing. Therefore, the length of the vehicle headlamp 10 in the vehicle front-rear direction is smaller than that in the case where the light source, the reflector, and the lens are arranged in a line on the optical axis as in a conventional projector type lamp unit. Can be shorter.
  • the distance from the reflecting surface to the phosphor 38 is DL1.
  • the distance from the reflection surface 344a to the phosphor 38 is DL2.
  • the optical unit having the above configuration since light is reflected by the inner reflecting surfaces 344a to 344l, the distance from the reflecting surface to the phosphor 38 is smaller than when light is reflected by the outer surface of the reflecting plate 343. The distance becomes longer. Therefore, the optical unit can be reduced in size while preventing the scanning range on the phosphor 38 from being narrowed. As described above, according to the above configuration, it is possible to provide a light irradiation device that can reduce the size of the optical unit without reducing the scanning range on the phosphor 38.
  • the optical unit 3030 does not include the phosphor 38, according to the optical unit having the above configuration, light is reflected by the reflection surfaces 344a to 344l inside the annular mirror 3034.
  • the distance from the reflection surface to the light exit surface (projection lens 36 or clear cover) of the optical unit is longer than when the light is reflected on the side surface. Therefore, the optical unit can be reduced in size while preventing the diffusion width of the light distribution pattern from being reduced.
  • the laser light from the light source 32 is reflected at the boundary between the reflection surfaces 344a to 344l, the laser light may be scattered and an inappropriate light distribution may be formed.
  • the laser light emitted from the light source 32 hits the support 342.
  • the laser beam emitted from the light source 32 does not hit the edge located diagonally to the support 342. That is, when the rotating mirror 3034 rotates, there occurs a point in time at which the plurality of columns 342 are arranged so as to be aligned with the edge between the plurality of reflection plates 343 and the emission direction of the laser light emitted from the light source 32. At this time, the laser light emitted from the light source 32 does not hit the edge. For this reason, there is no possibility that the laser light from the light source 32 is scattered at the boundary between the respective reflection surfaces 344a to 344l and an inappropriate light distribution is formed.
  • FIG. 65 is a top view of the lamp unit 3130 according to the eleventh embodiment.
  • FIG. 66 is a side view of the optical unit according to the eleventh embodiment.
  • FIG. 67 is a side view showing a state where the rotating mirror 3134 is rotated in the optical unit according to the eleventh embodiment.
  • the lamp unit 3130 according to the eleventh embodiment includes a first light source 3132A, a second light source 3132B, a rotating mirror 3134, a plano-convex lens 36, and a phosphor 38.
  • the rotating mirror 3134 further includes reflecting surfaces 345a to 345l provided outside the reflecting plate 343.
  • the lamp unit 3130 of the eleventh embodiment is different from the lamp unit of the tenth embodiment in that two light sources are provided and the rotating mirror 3134 is further provided with outer reflecting surfaces 345a to 345l. It is different from the unit 3030.
  • the first light source 3132A is located at the same height as the dish-shaped member 341.
  • the first light source 3132A faces the reflection surfaces 344a to 344l located behind the rotation axis R of the rotation mirror 3134.
  • the second light source 3132B faces the reflection surfaces 345a to 345l located in front of the rotation axis R of the rotation mirror 3134. Therefore, the laser light emitted from the first light source 3132A can pass between the plurality of columns 342. On the other hand, the laser light emitted from the second light source 3132B does not pass between the plurality of columns 342.
  • the reflection surface 345a and the reflection surface 345g located on the diagonally opposite side of the reflection surface 345a are connected to the first reflection surface pair 345A.
  • the reflection surface 345b and the reflection surface 345h located on the diagonally opposite side of the reflection surface 345b are defined as a second reflection surface pair 345B.
  • the reflecting surface 345c and the reflecting surface 345i located on the diagonally opposite side of the reflecting surface 345c are defined as a third reflecting surface pair 345C.
  • the reflecting surface 345d and the reflecting surface 345j located on the diagonally opposite side of the reflecting surface 345d are defined as a fourth reflecting surface pair 345D.
  • the reflecting surface 345e and the reflecting surface 345k located on the diagonally opposite side of the reflecting surface 345e are referred to as a fifth reflecting surface pair 345E.
  • the reflecting surface 345f and the reflecting surface 345l on the diagonally opposite side of the reflecting surface 345f are referred to as a sixth reflecting surface pair 345F.
  • the laser light when the laser light is emitted from the first light source 3132A at the position shown in FIG. 65, the laser light passes between the columns 342 and is reflected by the inner reflecting surface 344a. The laser light reflected by the reflecting surface 344a hits the phosphor 38.
  • the scanning range at this time is S2.
  • the laser light is emitted from the second light source 3132B at the position shown in FIG. 65
  • the laser light is reflected by the outer reflecting surface 345g without passing between the columns 342.
  • the laser light reflected by the reflection surface 345g hits the phosphor 38.
  • the scanning range at this time is S1.
  • the distance DL2 from the inner reflecting surface 344a to the phosphor 38 is longer than the distance DL1 from the outer reflecting surface 345g to the phosphor 38. Therefore, the scanning range S2 is wider than the scanning range S1.
  • the inner reflecting surfaces 344a to 344l and the outer reflecting surfaces 345a to 345l are formed at desired angles.
  • the first pair of reflecting surfaces 344A and 345A are in the vertical direction when the laser light from the first light source 3132A is reflected by the inner reflecting surface 344a (that is, in the case of the arrangement shown in FIGS. 65 and 66).
  • the angle formed between the reflection surface 345g and the virtual line Ay parallel to the optical axis Ax is substantially the same.
  • the second pair of reflecting surfaces 344B and 345B are in the vertical direction when the laser light from the first light source 3132A is reflected by the inner reflecting surface 344b (that is, in the case of the arrangement shown in FIG. 67).
  • the angle formed between the reflection surface 345h and the virtual line Ay is substantially the same.
  • the third pair of reflecting surfaces 344C and 345C are formed by an angle between the reflecting surface 344c and the optical axis Ax when the laser light from the first light source 3132A is reflected by the inner reflecting surface 344c, and a laser from the second light source 3132B.
  • the angle formed between the reflection surface 345i and the virtual line Ay when the light is reflected by the outer reflection surface 345i is formed to be substantially the same.
  • the fourth pair of reflecting surfaces 344D and 345D are formed by an angle between the reflecting surface 344d and the optical axis Ax when the laser light from the first light source 3132A is reflected by the inner reflecting surface 344d, and a laser from the second light source 3132B.
  • the angle formed between the reflection surface 345j and the virtual line Ay when the light is reflected by the outer reflection surface 345j is formed to be substantially the same.
  • the fifth pair of reflecting surfaces 344E and 345E are formed by an angle formed between the reflecting surface 344e and the optical axis Ax when the laser light from the first light source 3132A is reflected by the inner reflecting surface 344e, and a laser beam from the second light source 3132B.
  • the angle formed between the reflection surface 345k and the imaginary line Ay when the light is reflected by the outer reflection surface 345k is formed to be substantially the same.
  • the sixth pair of reflecting surfaces 344F and 345F are formed by the angle between the reflecting surface 344f and the optical axis Ax when the laser light from the first light source 3132A is reflected by the inner reflecting surface 344f, and the laser from the second light source 3132B.
  • the angle formed between the reflection surface 345l and the imaginary line Ay when the light is reflected by the outer reflection surface 345l is formed to be substantially the same.
  • the angle ⁇ a between the first reflecting surface pair 345A and the imaginary line Ay is equal to the angle ⁇ a of the laser light from the second light source 3132B.
  • the angle formed between each reflection surface of the other reflection surface pairs 345B to 345F and the virtual line Ay when reflected by the other reflection surface pairs 345B to 345F is different.
  • the angle ⁇ b between the reflection surface 344b and the optical axis Ax shown in FIG. 67 is formed to be slightly smaller than the angle ⁇ a between the reflection surface 344a and the optical axis Ax shown in FIG.
  • each reflecting surface pair and the virtual line Ay are formed so that the angle formed by them becomes smaller.
  • the light reflected by one pair of reflecting surfaces is applied to a position different from that of the other pair of reflecting surfaces in the vertical direction in front of the vehicle.
  • the light Ld reflected by the reflection surface 345h is irradiated below the light Lc reflected by the reflection surface 345g.
  • FIG. 68 shows a light distribution pattern P14 formed in front of the vehicle by a laser emitted from the second light source 3132B of the lamp unit 3130 according to the eleventh embodiment.
  • the light distribution pattern formed by the laser light emitted from the first light source 3132A is the same as the light distribution pattern P1 (see FIG. 6) in the tenth embodiment, and the description is omitted.
  • the light distribution pattern P14 includes a plurality of lines (LA14 to LF14) formed by the laser light emitted from the second light source 3132B.
  • the laser light emitted from the second light source 3132B is reflected by each of the reflecting surfaces 345a to 345l of the rotating mirror 3134, and passes through the plano-convex lens 36 via the phosphor 38.
  • the lowermost first line LA14 of the light distribution pattern P14 shown in FIG. 68 is formed by the laser light emitted from the second light source 3132B and reflected by the pair of reflection surfaces 345A (reflection surfaces 345a and 345g). Is done.
  • the second line LB14 is formed above the first line LA14 by the laser light emitted from the second light source 3132B and reflected by the pair of reflection surfaces 345B (reflection surfaces 345b and 345h).
  • the third line LC14 is formed above the second line LB14 by the laser light emitted from the second light source 3132B and reflected by the pair of reflection surfaces 345C (the reflection surfaces 345c and 345i).
  • the fourth line LD14 is formed above the third line LC14 by the laser light emitted from the second light source 3132B and reflected by the pair of reflection surfaces 345D (reflection surfaces 345d and 345j).
  • the fifth line LE14 is formed above the fourth line LD14 by the laser light emitted from the second light source 3132B and reflected by the pair of reflection surfaces 345E (reflection surfaces 345e and 345k).
  • the sixth line LF14 is formed above the fifth line LE14 by the laser light emitted from the second light source 3132B and reflected by the pair of reflection surfaces 345F (the reflection surfaces 345f and 345l).
  • the light reflection direction is changed by the rotation of the rotating mirror 3134, so that the light is divided into a plurality of stages and scanned in a line to form the light distribution pattern P14.
  • the light distribution pattern P1 (see FIG. 6) formed by the laser light emitted from the first light source 3132A is longer in the horizontal direction than the light distribution pattern P14 formed by the laser light emitted from the second light source 3132B. . This is because the scanning range S2 is wider than the scanning range S1.
  • the light distribution pattern P14 formed by the laser light emitted from the second light source 3132B is formed at a position slightly higher in the vertical direction than the light distribution pattern P1 formed by the laser light emitted from the first light source 3132A. You. Although the light distribution pattern P14 partially overlaps the light distribution pattern P1, the first line LA14 is formed at a position higher than the first line LA1 in the vertical direction. This is because the light reflected by the outer reflecting surfaces 345a to 345l is parallel to the light reflected by the inner reflecting surfaces 344a to 344l at a position lower than the light reflected by the inner reflecting surfaces 344a to 344l. First, the light goes straight toward the phosphor 38.
  • Either the first light source 3132A or the second light source 3132B may be turned on, or both may be turned on. When both are turned on, the light distribution pattern P1 and the light distribution pattern P14 overlap. Therefore, the overlapping portion has a higher luminous intensity than the non-overlapping portion. As described above, the light distribution pattern P1 and the light distribution pattern P14 may be overlapped with each other at a place where the luminous intensity is to be increased. Note that the magnitude of the output of the first light source 3132A and the magnitude of the output of the second light source 3132B may be the same or different.
  • the light source control unit controls the turning on and off of the second light source 3132B so that the second light source 3132B is turned off at the timing when the boundary between the reflection surfaces 345a to 345l and the light beam of the laser light from the second light source 3132B intersect. Is preferred.
  • the scanning range on the phosphor 38 can be adjusted more freely.
  • the boundary surfaces between the reflection plates 343 related to the rotating mirrors 3034 and 3134 are discontinuous, but the present invention is not limited to this example.
  • the boundary surface between the reflection plates 343 may be a continuous surface.
  • the reflecting surfaces 344a to 344l and the reflecting surfaces 345a to 345l are substantially rectangular, but are not limited to this example. For example, they may be circular or polygonal.
  • the twelve columns 342 are arranged, but the present invention is not limited to this example.
  • the number of struts 342 may be more or less than twelve.
  • first light source 3132A and second light source 3132B are used, but the present invention is not limited to this example.
  • a light distribution pattern composed of a plurality of lines having different vertical widths may be formed.
  • the twelve reflectors 343 are used when viewed from above, and light reflected by a pair of reflecting surfaces arranged diagonally is the same among light distribution patterns.
  • the line is formed, it is not limited to this example.
  • one line may be formed by light reflected by one reflection surface.
  • the rotating mirror is formed as a hexahedron in a top view, and includes six reflecting plates 343 along the rotating direction.
  • the present invention has been described with reference to the above embodiments.
  • the present invention is not limited to the above embodiments, and the configurations of the embodiments are appropriately combined or replaced. These are also included in the present invention. Further, it is also possible to appropriately change the combination and the order of processing in each embodiment based on the knowledge of those skilled in the art, and to add various modifications such as design changes to each embodiment. An embodiment to which is added can also be included in the scope of the present invention.
  • the lamp unit is described as being mounted on the vehicle headlamp, but is not limited to this example.
  • the optical unit including the light source and the rotating mirror as described above can be applied to components of a sensor unit (for example, a laser radar, a LiDAR, a visible light camera, an infrared camera, etc.) mounted on a vehicle. . Also in this case, by changing the curvature of each reflecting surface of the rotating mirror in the direction along the rotation axis, precise control of the scanning range and improvement in sensor sensitivity can be achieved.
  • the reflecting surface of the rotating mirror such that the reflecting surface curved in a convex shape and the reflecting surface curved in a concave shape are arranged alternately continuously along the rotation direction, for example, the sensor range Since there is no need to turn off the light source at both ends, the sensor sensitivity can be improved. Further, by forming the boundary of the reflecting surface of the rotating mirror into a chamfered shape, for example, it is not necessary to turn off the light source at both ends of the sensor range, and it is possible to suppress the generation of spot light, thereby improving the sensor sensitivity. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

光照射装置(130)は、光源(32)と、光源(32)から出射された光を反射させる回転可能なミラー(134)と、を備えている。ミラー(134)の回転によって光の反射方向が変位することで、光が複数の段に分かれてライン状に走査されて配光パターンが形成される。配光パターンは、第一のラインと第二のラインを含み、第一のラインの幅は、第二のラインの幅と異なっている。

Description

光照射装置
 本発明は、光照射装置に関する。
 近年、光源から出射した光を車両前方に反射し、その反射光で車両前方の領域を走査することで所定の配光パターンを形成する装置が考案されている。例えば、発光素子からなる複数の光源と、回転軸を中心に一方向に回転しながら複数の光源から出射した光を反射面において反射して所望の配光パターンを形成するブレードスキャン(登録商標)方式の回転リフレクタと、を備えた光学ユニットが知られている(特許文献1参照)。当該光学ユニットにおいて、複数の光源は、各光源から出射した光が回転リフレクタの反射面の異なる位置で反射するように配置されている。
日本国特開2015-26628号公報
 回転リフレクタに代えて、ポリゴンミラーを用いる光学ユニットも知られている。このような光学ユニットにおいて、配光パターンの制御には改善の余地がある。
 また、ポリゴンミラーを用いる光学ユニットは小型化が進んでいる。それに伴い、ポリゴンミラーと光学ユニットから光が出る面(光出射面)との間隔も狭まってきている。その結果、配光パターンの拡散幅が狭くなる。このようなポリゴンミラーを備えた光照射装置は、この点で改善の余地がある。
 そこで、本発明は、配光パターンの精緻な制御が可能な光照射装置を提供することを目的とする。
 また、本発明は、簡便な構成で、配光パターンの一部を他の部分よりも明るくすることが可能な光照射装置を提供することを目的とする。
 また、本発明は、光源の消灯ロスに起因する効率の低下を防止可能な光照射装置を提供することを目的とする。
 また、本発明は、配光パターンにおける光度の調整が可能な光照射装置を提供することを目的とする。
 また、本発明は、配光パターンの拡散幅を狭めることなく、光学ユニットを小型化することができる光照射装置を提供することを目的とする。
 上記課題を解決するために、本発明に係る光照射装置は、
 光源と、
 前記光源から出射された光を反射させる回転可能なミラーと、
を備え、
 前記ミラーの回転によって前記光の反射方向が変位することで、前記光が複数の段に分かれてライン状に走査されて配光パターンを形成する、光照射装置であって、
 前記配光パターンは、第一のラインと第二のラインを含み、
 前記第一のラインの幅は、前記第二のラインの幅と異なっている。
 上記構成によれば、配光パターンの精緻な制御が可能となる。
 また、本発明に係る光照射装置において、
 前記ミラーは、前記第一のラインを形成するための第一の反射面と、前記第一の反射面に対して前記ミラーの回転方向に沿って並列され、前記第二のラインを形成するための第二の反射面と、を少なくとも有し、
 前記第一の反射面の前記ミラーの回転軸に沿った方向の曲率が、前記第二の反射面の前記回転軸に沿った方向の曲率と異なっていてもよい。
 上記構成によれば、第一のラインの幅と第二のラインの幅とを簡便な構成で異ならせることができる。
 また、本発明に係る光照射装置において、
 前記第一の反射面は前記方向において凸状に湾曲した面から構成され、前記第二の反射面は前記方向において凹状に湾曲した面から構成されていてもよい。
 また、本発明に係る光照射装置において、
 前記第一の反射面および前記第二の反射面は、前記方向において凸状に湾曲した面からそれぞれ構成されていてもよい。
 また、本発明に係る光照射装置において、
 前記第一の反射面および前記第二の反射面は、前記方向において凹状に湾曲した面からそれぞれ構成されていてもよい。
 また、本発明に係る光照射装置において、
 前記第一の反射面は前記方向において凸状に湾曲した面から構成され、前記第二の反射面は前記方向において平面から構成されていてもよい。
 また、本発明に係る光照射装置において、
 前記第一の反射面は前記方向において平面から構成され、前記第二の反射面は前記方向において凹状に湾曲した面から構成されていてもよい。
 これらの構成によれば、第一の反射面および第二の反射面を上記のように構成することで、第一のラインの幅と第二のラインの幅とを容易に異ならせることができる。
 また、本発明に係る光照射装置において、
 前記第一の反射面の前記ミラーの回転軸に対する傾斜角が、前記第二の反射面の前記回転軸に対する傾斜角と異なっていてもよい。
 上記構成によれば、第一のラインと第二のラインとを配光パターン内の異なる領域に形成することができる。
 また、本発明に係る光照射装置において、
 前記第二のラインは、複数の前記第一のラインの間に配置され、
 前記第二のラインの幅は、複数の前記第一のラインの幅よりも狭くてもよい。
 特に精緻な制御が必要な配光パターンの上下方向中央領域において、ラインの幅を狭くすることが好ましい。また、ミラーの回転速度が一定である場合には幅の狭いラインの方が光度が高くなるため、配光パターン内で所定の領域のみを明るくすることが可能となる。
 また、本発明に係る光照射装置は、
 前記ミラーにより反射された前記光を透過する光学部材をさらに備え、
 前記第一の反射面および前記第二の反射面の前記曲率に応じて前記光学部材に入射される前記光の入射径が異なっていてもよい。
 上記構成によれば、光学部材へ入射する際の光の入射径を異ならせることで、配光パターン内での第一のラインの幅と第二のラインの幅とを異ならせることができる。
 また、本発明に係る光照射装置において、
 前記ミラーは、ポリゴンミラーとして構成されていてもよい。
 前記ミラーは、ポリゴンミラーであることが好ましい。
 また、上記課題を解決するために、本発明に係る光照射装置は、
 光源と、
 前記光源から出射された光を反射させる回転可能なミラーと、
を備え、
 前記ミラーの回転によって前記光の反射方向が変位することで、前記光が複数の段に分かれてライン状に走査されて配光パターンを形成する、光照射装置であって、
 前記配光パターンは、第一のラインと第二のラインを含み、
 前記第一のラインを形成するために前記光源から出射される前記光のスポット径と、前記第二のラインを形成するために前記光源から出射される前記光のスポット径と、が異なっている。
 上記構成によれば、装置前方に照射される配光パターンを構成する第一のラインの幅(太さ)と第二のラインの幅とを異ならせることができるため、配光パターンの精緻な制御が可能となる。
 また、本発明に係る光照射装置において、
 前記光源は、前記第一のラインを形成するための第一の光源と、前記第二のラインを形成するための第二の光源とを含み、
 前記第一の光源から出射される前記光のスポット径と、前記第二の光源から出射される前記光のスポット径とが異なっていてもよい。
 上記構成によれば、簡便な構成により、第一のラインの幅と第二のラインの幅とを異ならせることができる。
 また、本発明に係る光照射装置において、
 前記光のスポット形状は、扁平形状であり、
 前記第一のラインを形成する場合に、前記扁平形状の短径が前記光の走査方向に沿うように、前記光を照射し、
 前記第二のラインを形成する場合に、前記扁平形状の長径が前記光の走査方向に沿うように、前記光を照射するように構成されていてもよい。
 上記構成によれば、例えば、扁平形状の光出射面を備えた同一構成の複数の光源を用いて、幅の異なるラインを形成することができる。そのため、製品コストを低減させることができる。
 また、本発明に係る光照射装置において、
 前記光源から出射された光は平行光であってもよい。
 上記構成によれば、ラインの幅を精緻に制御しやすい。
 また、本発明に係る光照射装置において、
 前記第二のラインの幅は、前記第一のラインの幅よりも狭くてもよい。
 上記構成によれば、ミラーの回転速度が一定である場合には幅の狭いラインの方が光度が高くなるため、配光パターン内で所定の領域のみを明るくすることが可能となる。
 また、本発明に係る光照射装置において、
 前記第二のラインは、複数の前記第一のラインの間に配置されていてもよい。
 上記構成によれば、特に、配光パターンの全体領域のうち細かい制御の必要な中央部分のラインを狭くすることで、配光パターンの制御を効果的に行うことができる。
 また、上記課題を解決するために、本発明に係る光照射装置は、
 第一光源と、
 第二光源と、
 前記第一光源から出射された第一光と前記第二光源から出射された第二光とをそれぞれ反射させる回転可能なミラーと、を備え、
 前記ミラーの回転によって前記第一光および前記第二光の反射方向が変位することで、前記第一光および前記第二光がそれぞれ複数の段に分かれてライン状に走査されて配光パターンを形成する、光照射装置であって、
 前記配光パターンは、前記第一光の走査により形成される第一配光パターンと、前記第二光の走査により形成される第二配光パターンとを含み、
 前記第一配光パターンと前記第二配光パターンの一部が重複するように形成されている。
 上記構成によれば、簡便な構成で、配光パターンの一部を他の部分よりも明るくすることができる。そのため、配光パターンの精緻な制御が容易となる。
 また、本発明に係る光照射装置において、
 前記第一配光パターンと前記第二配光パターンとが前記前記第一光および前記第二光の走査方向における中央領域において重複するように形成されていてもよい。
 上記構成によれば、配光パターンの中央領域を他の部分よりも明るくすることができる。
 また、本発明に係る光照射装置において、
 前記ミラーの反射面は、前記ミラーの回転方向において、少なくとも一つの凸部と、少なくとも一つの凹部とが連続的につながるように構成され、
 前記第一配光パターンは、前記第一光が前記第一光の走査方向において往復するように走査されることで形成され、
 前記第二配光パターンは、前記第二光が前記第二光の走査方向において往復するように走査されることで形成され、
 前記第一配光パターンと前記第二配光パターンの一部が前記第一光および前記第二光の前記走査方向における中央領域において重複するように形成されていてもよい。
 上記構成によれば、反射面の凸部と凹部との境界で光源を消灯させる必要がないため、中央部が明るい配光パターンを効率よく形成することができる。
 また、上記課題を解決するために、本発明に係る光照射装置は、
 第一光源と、前記第一光源から出射された第一光を反射させる回転可能な第一ミラーと、を有する第一ユニットと、
 第二光源と、前記第二光源から出射された第二光を反射させる回転可能な第二ミラーと、を有する第二ユニットと、を備え、
 前記第一ミラーおよび第二ミラーの回転によって前記第一光および前記第二光の反射方向がそれぞれ変位することで、前記第一光および前記第二光がそれぞれ複数の段に分かれてライン状に走査されて配光パターンを形成する、光照射装置であって、
 前記配光パターンは、前記第一光の走査により形成される第一配光パターンと、前記第二光の走査により形成される第二配光パターンとを含み、
 前記第一配光パターンと前記第二配光パターンの一部が重複するように形成されている。
 上記構成によれば、簡便な構成で、一対のユニットにより形成される配光パターンの一部を他の部分よりも明るくすることができる。そのため、配光パターンの精緻な制御が容易となる。
 また、本発明に係る光照射装置において、
 前記第一ミラーの反射面は、前記第一ミラーの回転方向において、少なくとも一つの凸部と、少なくとも一つの凹部とが連続的につながるように構成され、
 前記第二ミラーの反射面は、前記第二ミラーの回転方向において、少なくとも一つの凸部と、少なくとも一つの凹部とが連続的につながるように構成され、
 前記第一配光パターンは、前記第一光が走査方向において往復するように走査されることで形成され、
 前記第二配光パターンは、前記第二光が走査方向において往復するように走査されることで形成され、
 前記第一配光パターンと前記第二配光パターンの一部が前記第一光および前記第二光の前記走査方向における中央領域において重複するように形成されていてもよい。
 上記構成によれば、凸部と凹部との境界で光源を消灯させる必要がないため、中央部が明るい配光パターンを効率よく形成することができる。
 また、本発明に係る光照射装置において、
 前記第一ミラーおよび前記第二ミラーは、ポリゴンミラーとして構成されていてもよい。
 前記第一ミラーおよび前記第二ミラーとしては、ポリゴンミラーを用いることが好ましい。
 また、上記課題を解決するために、本発明に係る光照射装置は、
 光源と、
 前記光源から出射された光を反射させる回転可能なミラーと、
を備え、
 前記ミラーの回転によって前記光の反射方向が変位することで、前記光が複数の段に分かれてライン状に走査されて配光パターンを形成する、光照射装置であって、
 前記ミラーは、前記ミラーの回転方向において連続する複数の反射面を有し、
 前記複数の反射面のうち少なくとも一つ反射面と当該少なくとも一つの反射面と隣接する反射面との間の境界部が面取りされている。
 上記構成によれば、反射面間の境界部において光源を消灯する必要がなくなる。これにより、光源の消灯ロスに起因する光の利用効率の低下を防止することができ、また、光源の点消灯の制御が容易となる。
 また、本発明に係る光照射装置において、
 前記複数の反射面のうちすべての反射面間の境界部が面取りされていてもよい。
 上記構成によれば、配光パターンを構成するすべてのラインの両端部において光源を消灯する必要がない。そのため、配光パターンを形成するための光の利用効率の低下をさらに防止することができる。
 また、本発明に係る光照射装置において、
 前記複数の反射面のうち一部の反射面間の境界部が面取りされている一方で、他の反射面間の境界部が面取りされていなくてもよい。
 上記構成によれば、配光パターンの少なくとも一部の光度を維持しつつ、光の利用効率の低下を防止することができる。
 また、本発明に係る光照射装置において、
 前記配光パターンは、複数の第一のラインと、第二のラインとを含み、
 前記複数の第一のラインは、面取りされていない境界部で挟まれた反射面で反射された光により形成され、
 前記第二のラインは、面取りされている境界部で挟まれた反射面で反射された光により形成され、
 前記第二のラインは前記複数の第一のラインの間に配置されていてもよい。
 上記構成によれば、面取りされている反射面で反射された光により、対向車に対応する位置に形成される第二のラインを形成することで、対向車に対するグレアを防止することができる。また、面取りされていない反射面で反射された光により、対向車の存在しない位置に形成される第一のラインを形成することで、配光パターンの光度の維持を図ることができる。
 また、上記課題を解決するために、本発明に係る光照射装置は、
 光源と、
 前記光源から出射された光を反射させる回転可能なミラーと、
を備え、
 前記ミラーの回転によって前記光の反射方向が変位することで、前記光が複数の段に分かれてライン状に走査されて配光パターンを形成する、光照射装置であって、
 前記ミラーの反射面は、前記ミラーの回転方向において、少なくとも一つの凸部と、少なくとも一つの凹部とが連続的につながるように構成されている。
 上記構成によれば、配光パターンを構成する各ラインの両端部を形成する際に光源を消灯する必要がなくなる。これにより、消灯ロスに起因する効率の低下を防止し、また、光源の点消灯の制御が容易となる。
 また、本発明に係る光照射装置において、
 一つの凸部と前記一つの凸部に隣接する一つの凹部とにより反射された光によって、前記配光パターンのうち前記光の走査方向における一往復のラインが形成されてもよい。
 上記構成によれば、ラインの両端部において光源を消灯することなく、連続的に一往復のラインを形成することができる。
 また、本発明に係る光照射装置において、
 前記反射面は、複数の前記凸部と複数の前記凹部を含み、
 前記凸部と前記凹部とが、前記回転方向に沿って交互に配置されていてもよい。
 上記構成によれば、配光パターンの全体領域にわたって均一な光を照射することができる。
 また、上記課題を解決するために、本発明に係る光照射装置は、
 光源と、
 前記光源から出射された光を反射させる回転可能なミラーと、
を備え、
 前記ミラーの回転によって前記光の反射方向が変位することで、前記光が複数の段に分かれてライン状に走査される、光照射装置であって、
 一つのラインにおいて、前記光源から出射される前記光の出力を変化させる。
 上記構成に係る光照射装置によれば、一つのラインにおいて、光源から出射される光の出力が変化する。
 このように、上記構成によれば、配光パターンにおける光度の調整が可能な光照射装置を提供することができる。
 また、本発明に係る光照射装置は、
 前記光の走査方向が往復するように構成されてもよい。
 また、本発明に係る光照射装置は、
 前記ラインの走査方向の中央で、他の部分より前記光の出力が大きくなるように前記出力を変化させてもよい。
 また、上記課題を解決するために、本発明に係る光照射装置は、
 光源と、
 前記光源から出射された光を反射させる回転可能なミラーと、
を備え、
 前記ミラーの回転によって前記光の反射方向が変位することで、前記光が複数の段に分かれてライン状に走査される、光照射装置であって、
 前記ミラーは環状ミラーであり、
 前記環状ミラーの内側面により、前記光が反射される。
 上記構成に係る光照射装置によれば、環状ミラーの内側面で光が反射されるので、ミラーの外側面で光が反射される場合と比べて、反射面から当該光照射装置の光出射面までの距離が長くなる。このため、配光パターンの拡散幅が狭まってしまうことを防ぎつつ、光学ユニットを小型化させることができる。
 また、本発明に係る光照射装置は、
 前記環状ミラーの外側面によっても前記光が反射されてもよい。
 また、本発明に係る光照射装置は、
 前記光源は、前記内側面に前記光を照射するための第一の光源と、前記外側面に前記光を照射するための第二の光源と、を含んでもよい。
 上記構成に係る光照射装置によれば、より自在に配光パターンの拡散幅を調整することができる。
 また、上記構成に係る光照射装置によれば、二つの配光パターンを重ねることで、配光パターンの一部分の光度を高くすることができる。
 また、本発明に係る光照射装置は、
 前記ミラーを回転させるためのモータと、
 前記モータによって前記ミラーを支えるための支柱と、をさらに備え、
 前記ミラーは、複数の反射面から構成され、
 前記複数の反射面間のエッジと、前記支柱とが、前記光源から出射される光の出射方向において直線上に並ぶように配置されている。
 上記構成に係る光照射装置は、反射面間のエッジと、ミラーを支えるための支柱とが、光の出射方向において直線上に並んでいる。このため、光源から出射された光の効率低下を防ぐことができる。
 また、本発明に係る光照射装置は、
 前記内側面により反射された光を透過する光学部材をさらに備えてもよい。
 また、本発明に係る光照射装置において、
 前記光学部材は、蛍光体と投影レンズとを含み、
 前記蛍光体は、前記ミラーと前記投影レンズとの間に配置され、
 前記内側面により反射された光は、前記蛍光体上に走査され、
 前記蛍光体から出射された光は、前記投影レンズを透過して出射される。
 上記構成に係る光照射装置によれば、ミラーの外側で光が反射される場合と比べて、光を反射させる回転可能なミラーの面と、蛍光体との間隔を長くすることができる。それにより、光学ユニットを小型化することができる。
 本発明によれば、配光パターンの精緻な制御が可能な光照射装置を提供することができる。
 また、本発明によれば、簡便な構成で、配光パターンの一部を他の部分よりも明るくすることが可能な光照射装置を提供することができる。
 また、本発明によれば、光源の消灯ロスに起因する効率の低下を防止可能な光照射装置を提供することができる。
 また、本発明によれば、配光パターンにおける光度の調整が可能な光照射装置を提供することができる。
 また、本発明によれば、配光パターンの拡散幅を狭めることなく、光学ユニットを小型化することができる光照射装置を提供することができる。
車両用前照灯の水平断面図である。 参考実施形態に係る光学ユニットの構成を模式的に示した斜視図である。 図2の光学ユニットの上面図である。 図2の光学ユニットの側面図である。 図4の光学ユニットにおいて回転ミラーが回転した状態を示す側面図である。 図2の光学ユニットにより車両前方に形成される配光パターンの一例を示す模式図である。 第一実施形態に係る光学ユニットの上面図である。 図7の光学ユニットの側面図である。 図7の光学ユニットにおいて回転ミラーが図8の状態から回転した状態を示す上面図である。 図7の光学ユニットにより車両前方に形成される配光パターンの一例を示す模式図である。 第一変形例に係る光学ユニットの側面図である。 図11の光学ユニットにより車両前方に形成される配光パターンの一例を示す模式図である。 第二変形例に係る光学ユニットにより車両前方に形成される配光パターンの一例を示す模式図である。 第三変形例に係る光学ユニットの側面図である。 第二実施形態に係る光学ユニットの上面図である。 図15の光学ユニットが備える第一光源のスポット径を示す模式図である。 図15の光学ユニットが備える第二光源のスポット径を示す模式図である。 図15の光学ユニットにより車両前方に形成される配光パターンの一例を示す模式図である。 図15の光学ユニットにおいて、第一光源から光が出射された状態を示す上面図である。 図15の光学ユニットにおいて、第二光源から光が出射された状態を示す上面図である。 第三実施形態に係る光学ユニットの側面図である。 第四実施形態に係る光学ユニットであって、第一光源から光が出射された状態を示す上面図である。 図21の光学ユニットにおいて第二光源から光が出射された状態を示す上面図である。 図21の光学ユニットにおいて、第一光源から出射された光により車両前方に形成される配光パターンの一例を示す模式図である。 図21の光学ユニットにおいて、第二光源から出射された光により車両前方に形成される配光パターンの一例を示す模式図である。 図23の配光パターンと図24の配光パターンとが重畳された配光パターンの一例を示す模式図である。 第五実施形態に係る光学ユニットを示す上面図である。 図26の光学ユニットにおいて回転ミラーが回転した状態を示す上面図である。 図26の光学ユニットにおいて回転ミラーがさらに回転した状態を示す上面図である。 図26の光学ユニットにおいて回転ミラーがさらに回転した状態を示す上面図である。 図26の光学ユニットにおいて回転ミラーがさらに回転した状態を示す上面図である。 右側前照灯に搭載された図26の光学ユニットにより車両前方に形成される配光パターンの一例を示す模式図である。 左側前照灯に搭載された図26の光学ユニットにより車両前方に形成される配光パターンの一例を示す模式図である。 図31の配光パターンと図32の配光パターンとが重畳された配光パターンの一例を示す模式図である。 第四変形例に係る光学ユニットであって、第一光源から光が出射された状態を示す上面図である。 図34の光学ユニットにおいて第二光源から光が出射された状態を示す上面図である。 第六実施形態に係る光学ユニットの上面図である。 図36の光学ユニットが備える回転ミラーの上面図である。 境界部が面取りされていない回転ミラーの境界部で光源からの光が反射された状態を示す上面図である。 図38の回転ミラーにより反射された光で形成された配光パターンの一例を示す模式図である。 図37に示す境界部が面取りされた回転ミラーの境界部で光源からの光が反射された状態を示す上面図である。 図36および図37の回転ミラーにより反射された光で形成された配光パターンの一例を示す模式図である。 第五変形例に係る光学ユニットが備える回転ミラーの一例を示す上面図である。 図42の回転ミラーにより反射された光で形成された配光パターンの一例を示す模式図である。 第七実施形態に係る光学ユニットの上面図である。 図44の光学ユニットにおいて回転ミラーが回転した状態を示す上面図である。 図45の光学ユニットにおいて回転ミラーがさらに回転した状態を示す上面図である。 図46の光学ユニットにおいて回転ミラーがさらに回転した状態を示す上面図である。 図47の光学ユニットにおいて回転ミラーがさらに回転した状態を示す上面図である。 図48の光学ユニットにおいて回転ミラーがさらに回転した状態を示す上面図である。 図49の光学ユニットにおいて回転ミラーがさらに回転した状態を示す上面図である。 図50の光学ユニットにおいて回転ミラーがさらに回転した状態を示す上面図である。 第七実施形態の光学ユニットにより車両前方に形成される配光パターンの一例を示す模式図である。 第八実施形態に係る光学ユニットにより車両前方に形成される配光パターンの一例を示す模式図である。 第九実施形態に係る光学ユニットを示す上面図である。 図54の光学ユニットにおいて回転ミラーが回転した状態を示す上面図である。 図54の光学ユニットにおいて回転ミラーがさらに回転した状態を示す上面図である。 図54の光学ユニットにおいて回転ミラーがさらに回転した状態を示す上面図である。 図54の光学ユニットにおいて回転ミラーがさらに回転した状態を示す上面図である。 図54の光学ユニットにより車両前方に形成される配光パターンの一例を示す模式図である。 図54の光学ユニットに係る光源から出射される光の出力が一定である場合における配光パターンの一例を示す模式図である。 第十実施形態に係る光学ユニットの構成を模式的に示した斜視図である。 図61の光学ユニットの上面図である。 図61の光学ユニットの側面図である。 図61の光学ユニットにおいて回転ミラーが回転した状態を示す側面図である。 第十一実施形態に係る光学ユニットの上面図である。 第十一実施形態に係る光学ユニットの側面図である。 第十一実施形態に係る光学ユニットにおいて回転ミラーが回転した状態を示す側面図である。 第十一実施形態に係る光学ユニットにより車両前方に形成される配光パターンの一例を示す模式図である。
 以下、本発明を実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述される全ての特徴やその組合せは、必ずしも発明の本質的なものであるとは限らない。
 なお、本実施形態における、「左右方向」、「前後方向」、「上下方向」とは、図1に示す車両用前照灯について、説明の便宜上、設定された相対的な方向である。「前後方向」とは、「前方向」および「後方向」を含む方向である。「左右方向」とは、「左方向」および「右方向」を含む方向である。「上下方向」とは、「上方向」および「下方向」を含む方向である。
 本発明の光学ユニット(光照射装置の一例)は、種々の車両用灯具に用いることができる。はじめに、後述する各実施形態に係る光学ユニットを搭載可能な車両用前照灯の概略について説明する。
[車両用前照灯]
 図1は、車両用前照灯の水平断面図である。図2は、図1の車両用前照灯に搭載された光学ユニットの構成を模式的に示した斜視図である。図3は、光学ユニットの上面図であり、図4および5は光学ユニットの側面図である
 図1に示す車両用前照灯10は、自動車の前端部の右側に搭載される右側前照灯であり、左側に搭載される前照灯と左右対称である以外は同じ構造である。そのため、以下では、右側の車両用前照灯10について詳述し、左側の車両用前照灯については説明を省略する。
 図1に示すように、車両用前照灯10は、前方に向かって開口した凹部を有するランプボディ12を備えている。ランプボディ12は、その前面開口が透明な前面カバー14によって覆われて灯室16が形成されている。灯室16は、2つのランプユニット20,30が車幅方向に並んで配置された状態で収容される空間として機能する。
 これらランプユニット20,30のうち車幅方向の内側、すなわち、右側の車両用前照灯10において図1に示す下側に配置されたランプユニット20は、ロービームを照射するように構成されている。一方、これらランプユニット20,30のうち車幅方向の外側、すなわち、右側の車両用前照灯10において図1に示す上側に配置されたランプユニット30は、レンズ36を備えたランプユニットであり、可変ハイビームを照射するように構成されている。
 ロービーム用のランプユニット20は、リフレクタ22と、例えばLEDからなる光源24とを有している。リフレクタ22およびLED光源24は、図示しない既知の手段、例えば、エイミングスクリューとナットを使用した手段によりランプボディ12に対して傾動自在に支持されている。
(参考実施形態)
 参考実施形態に係るハイビーム用のランプユニット30は、図2~図5に示すように、光源32と、リフレクタとしての回転ミラー34と、回転ミラー34の前方に配置された投影レンズとしての平凸レンズ36と、回転ミラー34と平凸レンズ36との間に配置された蛍光体38と、を備えている。
 光源32としては、例えば、レーザ光源(レーザダイオード(LD))を用いることができる。レーザ光源の代わりに、LEDやEL素子などの半導体発光素子を光源として用いることも可能である。光源32は、不図示の光源制御部により、点消灯の制御が可能となっている。特に後述する配光パターンの制御には、点消灯が短時間に精度よく行える光源を用いることが好ましい。光源制御部は、例えば、少なくとも一つの電子制御ユニット(ECU:Electronic Control Unit)により構成されている。電子制御ユニットは、1以上のプロセッサと1以上のメモリを含む少なくとも一つのマイクロコントローラと、トランジスタ等のアクティブ素子及びパッシブ素子を含むその他電子回路を含んでもよい。プロセッサは、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)及び/又はGPU(Graphics Processing Unit)である。メモリは、ROM(Read Only Memory)と、RAM(Random Access Memory)を含む。ROMには、ランプユニット30の制御プログラムが記憶されてもよい。光源制御部は、車両用前照灯10を備える車両に含まれるLIDAR等のセンサから得られる車両周辺情報や、後述するモータ40に備わるセンサから得られるミラー位置情報に基づき、光源32から出射される光の出力を制御することができる。
 平凸レンズ36の形状は、要求される配光パターンや照度分布などの配光特性に応じて適宜選択すればよいが、非球面レンズや自由曲面レンズが用いられる。平凸レンズ36の後方焦点は、例えば、蛍光体38の光出射面近傍に設定される。これにより、蛍光体38の光出射面の光像が上下反転して前方へ照射されることになる。
 蛍光体38は、例えば、光源32から出射された青色レーザ光で励起されることによって黄色光を発する蛍光体粉末が混合された樹脂材料により構成されている。青色レーザ光と黄色蛍光が混色して蛍光体38から出射されたレーザ光は白色光となる。
 回転ミラー34は、駆動源としてのモータ40に回転自在に接続されている。回転ミラー34は、モータ40により回転軸Rを中心に回転方向Dに回転する。回転ミラー34の回転軸Rは、光軸Axに対して斜めになっている(図4参照)。回転ミラー34は、回転方向Dに沿って配置された複数(本例では12面)の反射面34a~34lから構成されている。回転ミラー34の各反射面34a~34lは、光源32から出射した光を回転しながら反射する。これにより、図4に示すように光源32の光を用いた走査が可能となる。回転ミラー34は、例えば、12面の反射面を多角形状に構成したポリゴンミラーである。
 ここで、反射面34a~34hのうち、反射面34aと、当該反射面34aと対角線上の反対側に位置する反射面34gとを、第一反射面対34Aとする。反射面34bと、当該反射面34bと対角線上の反対側に位置する反射面34hとを、第二反射面対34Bとする。反射面34cと、当該反射面34cと対角線上の反対側に位置する反射面34iとを、第三反射面対34Cとする。反射面34dと、当該反射面34dと対角線上の反対側に位置する反射面34jとを、第四反射面対34Dとする。反射面34eと、当該反射面34eと対角線上の反対側に位置する反射面34kとを、第五反射面対34Eとする。反射面34fと、当該反射面34fと対角線上の反対側に位置する反射面34lとを、第六反射面対34Fとする。
 第一反射面対34Aは、光源32からのレーザ光が反射面34aで反射されるときの(すなわち、図3および図4に示すような配置関係の場合の)上下方向および前後方向からなる面における反射面34aと光軸Axとの成す角θaと、光源32からのレーザ光が反射面34gで反射されるときの上下方向および前後方向からなる面における反射面34gと光軸Axとの成す角が略同一となるように形成されている。同様に、第二反射面対34Bは、光源32からのレーザ光が反射面34bで反射されるときの(すなわち、図5に示すような配置関係の場合の)上下方向および前後方向からなる面における反射面34bと光軸Axとの成す角θbと、光源32からのレーザ光が反射面34hで反射されるときの上下方向および前後方向からなる面における反射面34hと光軸Axとの成す角が略同一となるように形成されている。第三反射面対34Cは、光源32からのレーザ光が反射面34cで反射されるときの反射面34cと光軸Axとの成す角と、光源32からのレーザ光が反射面34iで反射されるときの反射面34iと光軸Axとの成す角が略同一となるように形成されている。第四反射面対34Dは、光源32からのレーザ光が反射面34dで反射されるときの反射面34dと光軸Axとの成す角と、光源32からのレーザ光が反射面34jで反射されるときの反射面34jと光軸Axとの成す角が略同一となるように形成されている。第五反射面対34Eは、光源32からのレーザ光が反射面34eで反射されるときの反射面34eと光軸Axとの成す角と、光源32からのレーザ光が反射面34kで反射されるときの反射面34kと光軸Axとの成す角が略同一となるように形成されている。第六反射面対34Fは、光源32からのレーザ光が反射面34f,34lと光軸Axとの成す角が互いに略同一となるように形成されている。すなわち、回転ミラー34の各反射面34a~34lは、対角線上にある一対の反射面同士が同じ角度の傾斜面となるように形成されている。これにより、第一反射面対34A~第六反射面対34Fをそれぞれ構成する一対の反射面により反射された光は、車両前方の上下方向において略同一の位置に照射される。また、回転ミラー34がモータ40により回転方向Dに回転する際の回転ミラー34のブレを防止することができる。
 また、光源32からのレーザ光が第一反射面対34Aで反射されるときの当該第一反射面対34Aと光軸Axとの成す角θaは、光源32からのレーザ光が他の反射面対34B~34Fで反射されるときの他の反射面対34B~34Fの各反射面と光軸Axとの成す角とは異なるように形成されている。すなわち、第一反射面対34Aにおける上下方向および前後方向からなる面における反射面34a,34gと光軸Axとの成す角θaは、他の反射面対34B~34Fの各反射面と光軸Axとの成す角とは異なるように形成されている。例えば、図5に示す反射面34bと光軸Axとの成す角θbは、図4に示す反射面34aと光軸Axとの成す角θaよりもやや小さくなるように形成されている。すなわち、図4に示す角θaは図5に示す角θbよりもやや鈍角となるように形成されている。同様に、第二反射面対34B~第六反射面対34Fについても、他の反射面対とは光軸Axとの成す角が異なるように形成されている。すなわち、第二反射面対34B、第三反射面対34C、第四反射面対34D、第五反射面対34E、第六反射面対34Fの順で、各反射面対と光軸Axとの成す角が小さくなるように形成されている。これにより、一の反射面対により反射された光は、車両前方の上下方向において他の反射面対とは異なる位置に照射される。例えば、反射面34aにより反射された光La(図4参照)は、反射面34bにより反射された光Lbよりも上方に照射される。
 上記のように構成された回転ミラー34の各反射面34a~34lにより反射されて蛍光体38を介して平凸レンズ36を透過した光は、車両前方の所定位置(例えば、車両の25m前方)の仮想鉛直スクリーン上において図6に示すような配光パターンP1を形成する。具体的には、第一反射面対34A(反射面34a,34g)で反射された光により、図6に示す配光パターンP1のうち最下部のラインLA1が形成される。また、第二反射面対34B(反射面34b,34h)で反射された光により、ラインLA1の上側にラインLB1が形成される。第三反射面対34C(反射面34c,34i)で反射された光により、ラインLB1の上側にラインLC1が形成される。第四反射面対34D(反射面34d,34j)で反射された光により、ラインLC1の上側にラインLD1が形成される。第五反射面対34E(反射面34e,34k)で反射された光により、ラインLD1の上側にラインLE1が形成される。第六反射面対34F(反射面34f,34l)で反射された光により、ラインLE1の上側にラインLF1が形成される。このように、回転ミラー34の回転によって光の反射方向が変位することで、光が複数の段に分かれてライン状に走査されて配光パターンP1が形成される。
 なお、各反射面34a~34lの間の境界で光源32からのレーザ光が反射されると、レーザ光が散乱して不適切な配光が形成されるおそれがある。そのため、光源制御部は、各反射面34a~34l間の境界と光源32からのレーザ光の光線が交差するタイミングでは光源32を消灯するように、光源32の点消灯を制御することが好ましい。
 また、参考実施形態に係るランプユニット30においては、備えている光源32は比較的小さく、光源32が配置されている位置も回転ミラー34と平凸レンズ36との間であって光軸Axよりずれている。そのため、従来のプロジェクタ方式のランプユニットのように、光源とリフレクタとレンズとが光軸上に一列に配列されている場合と比較して、車両用前照灯10の車両前後方向の長さを短くすることができる。
(第一実施形態)
 図7は、第一実施形態に係るランプユニット130の上面図を示す。図8および図9は、ランプユニット130の側面図を示す。
 図7に示すようにランプユニット130は、光源32と、回転ミラー134と、平凸レンズ36(光学部材の一例)と、蛍光体38(光学部材の一例)と、を備えている。
 第一実施形態における回転ミラー134は、回転方向Dに沿って並列して配置される複数(本例では6面)の反射面134a~134fから構成されている。
 図8に示すように、反射面134a(第一の反射面の一例)は、回転ミラー134の回転軸Rに沿った方向において外向きに突出するように湾曲した凸状湾曲面となるように形成されている。同様に、図9に示すように、反射面134fは、回転軸Rに沿った方向において外向きに突出するように湾曲した凸状湾曲面となるように形成されている。図示は省略するが、反射面134b,134eについても、回転軸Rに沿った方向において外向きに突出するように湾曲した凸状湾曲面となるように形成されている。また、図9に示すように、反射面134c(第二の反射面の一例)は、回転軸Rに沿った方向において回転軸R側に凹むように湾曲した凹状湾曲面となるように形成されている。同様に、図8に示すように、反射面134dについても、回転軸Rに沿った方向において回転軸R側に凹むように湾曲した凹状湾曲面となるように形成されている。
 なお、図7に示すように、反射面134a~134fは、回転方向Dにおいて(上面視において)は湾曲しておらず、平面状に形成されている。
 このため、凸状湾曲面である反射面134aで反射されたレーザ光Laは、光源32から出射されたときのレーザ光の径よりも上下方向において拡散する(図8参照)。同様に、凸状湾曲面である反射面134b,134e,134fで反射されたレーザ光は、光源32から出射されたときのレーザ光の径よりも上下方向において拡散する。一方、凹状湾曲面である反射面134cで反射されたレーザ光Lcは、光源32から出射されたときのレーザ光の径よりも上下方向において集光する(図9参照)。同様に、凹状湾曲面である反射面134dで反射されたレーザ光は、光源32から出射されたときのレーザ光の径よりも上下方向において集光する。これにより、凸状湾曲面である反射面134a,134b,134e,134fで反射されたレーザ光が蛍光体38に入射したときの入射径(例えば、図8に示す入射径xa)は、凹状湾曲面である反射面134c,134dで反射されたレーザ光が蛍光体38に入射したときの入射径(例えば、図9に示す入射径xb)よりも大きくなる。
 また、光源32からのレーザ光が反射面134aで反射されるときの反射面134aの上下方向における両端部を繋いだ仮想直線ya(図8参照)と光軸Axとの成す角は、光源32からのレーザ光が他の反射面134b~134fで反射されるときの他の反射面134b~134fの各々の上下方向における両端部を繋いだ仮想直線と光軸Axとの成す角とは異なるように形成されている(図4,図5参照)。なお、図8の例においては、仮想直線yaは、反射面134aと反射面134bの境界線と一致している。例えば、反射面134bの上下方向の両端部を繋いだ仮想直線と光軸Axとの成す角は、反射面134aの仮想直線yaと光軸Axとの成す角よりもやや小さくなるように形成されている。また、反射面134cの上下方向の両端部を繋いだ仮想直線yc(図9参照)と光軸Axとの成す角は、反射面134bの仮想直線と光軸Axとの成す角よりもやや小さくなるように形成されている。同様に、反射面134d、反射面134e、反射面134fの順で、各反射面の上下方向を繋ぐ仮想直線と光軸Axとの成す角が小さくなるように形成されている。これにより、一の反射面により反射されたレーザ光は、車両前方の上下方向において他の反射面とは異なる位置に照射される。例えば、反射面134bで反射されたレーザ光は、車両前方の仮想鉛直スクリーン上において反射面134aで反射されたレーザ光Laよりも上方に照射される。また、反射面134cで反射されたレーザ光Lcは、仮想鉛直スクリーン上において反射面134bで反射されたレーザ光よりも上方に照射される。
 図10は、第一実施形態に係るランプユニット130により車両前方(例えば、25mm前方)の仮想スクリーン上に形成される配光パターンP2を示す。
 図10に示すように、配光パターンP2は、レーザ光により形成される複数のライン(LA2~LF2)を含んでいる。光源32から出射されたレーザ光は、回転ミラー134の各反射面134a~134fにより反射され、蛍光体38を介して平凸レンズ36を透過する。参考実施形態と同様に、平凸レンズ36の後方焦点は、蛍光体38の光出射面上に設定されるため、蛍光体38の光出射面の光像が上下反転して前方へ照射される。
 具体的には、反射面134aで反射されたレーザ光により、図10に示す配光パターンP2のうち最下部のラインLA2が形成される。また、反射面134bで反射されたレーザ光により、ラインLA2の上側にラインLB2が形成される。反射面134cで反射されたレーザ光により、ラインLB2の上側にラインLC2が形成される。反射面134dで反射されたレーザ光により、ラインLC2の上側にラインLD2が形成される。反射面134eで反射されたレーザ光により、ラインLD2の上側にラインLE2が形成される。反射面134fで反射されたレーザ光により、ラインLE2の上側にラインLF2が形成される。
 上述の通り、凸状湾曲面である反射面134a,134b,134e,134fで反射したレーザ光が蛍光体38に入射したときの入射径xaは、凹状湾曲面である反射面134c,134dで反射したレーザ光が蛍光体38に入射したときの入射径xbよりも大きくなる。そのため、下から三段目のラインLC2と四段目のラインLD2における上下方向の幅w2は、下から一段目のラインLA2、二段目のラインLB2、五段目のラインLE2、および六段目のラインLF2における上下方向の幅w1よりも狭くなる。
 なお、下から一段目のラインLA2、二段目のラインLB2、五段目のラインLE2、および六段目のラインLF2における上下方向の幅w1は、図4や図5に示す参考実施形態の回転ミラー34において回転軸Rに沿った方向において平面状の各反射面34a~34lで反射されたレーザ光により形成されるラインLA1~LF1の上下方向の幅よりも広くなる。これは、上述の通り、凸状湾曲面である反射面134a,134b,134e,134fで反射されたレーザ光は、光源32から出射されたときのレーザ光の径よりも上下方向において拡散するためである。また、下から三段目のラインLC2および四段目のラインLD2における上下方向の幅w2は、参考実施形態の回転ミラー34の各反射面34a~34lで反射されたレーザ光により形成されるラインLA1~LF1の上下方向の幅よりも狭くなる。これは、上述の通り、凹状湾曲面である反射面134c,134dで反射したレーザ光は、光源32から出射されたときのレーザ光の径よりも上下方向において集光するためである。
 隣り合うラインLA2~LF2同士は、一定量重なって形成されていてもよい。この場合、例えば、ラインLA2~LF2同士の上下方向の重なり量は、ライン幅w1(またはライン幅w2)の10%程度である。具体的には、例えば、ラインLA2とラインLB2との重なり量は、ラインLA2,LB2の幅w1の10%程度であることが好ましい。ラインLB2とラインLC2との重なり量は、ラインLB2の幅w1の10%程度、またはラインLC2の幅w2の10%程度であることが好ましい。ラインLC2とラインLD2との重なり量は、ラインLC2,LD2の幅w2の10%程度であることが好ましい。ラインLD2とラインLE2との重なり量は、ラインLD2の幅w2の10%程度、またはラインLE2の幅w1の10%程度であることが好ましい。ラインLE2とラインLF2との重なり量は、ラインLE2,LF2の幅w1の10%程度であることが好ましい。
 なお、各反射面134a~134fの間の境界では、上記参考実施形態と同様にレーザ光が散乱して不適切な配光が形成されるおそれがある。そのため、光源制御部は、各反射面134a~134f間の境界と光源32からのレーザ光の光線が交差するタイミングでは光源32を消灯するように、光源32の点消灯を制御することが好ましい。
 また、本例においては回転ミラー134を6面から成るポリゴンミラーで構成しているがこれに限定されない。例えば、参考実施形態のように12面を有し、対角線上にある一対の反射面同士が回転軸Rに沿った方向において同じ曲率、および同じ傾斜角となるようなポリゴンミラーで構成するようにしてもよい。これにより、各ラインLA2~LF2は、対角線上にある一対の反射面で反射されたレーザ光により重複して形成される。
 ところで、車両用前照灯に用いられるスキャン光学系においては、配光パターンの光度を向上させつつ、光照射範囲および遮光範囲を高精細に制御することが求められている。例えば、スキャン光学系をADB(Adaptive Driving Beam)システムに採用した場合には、遮光対象となる周辺車両の近傍限界まで光を照射することが求められている。また、スキャン光学系を路面描画に用いる場合には、路面照射範囲を精緻に制御することが求められている。しかしながら、配光パターンを構成するすべてのラインを細くしようとすると、多くの光源が必要となったり、所望の配光パターンを形成するための効率が落ちるため、現実的ではない。
 これに対して、上記第一実施形態に係るランプユニット130によれば、回転ミラー134が、配光パターンP2の上下方向の両側部のラインであるラインLA2,LB2,LE2,LF2を形成するための反射面134a,134b,134e,134f(第一の反射面の一例)と、配光パターンP2の上下方向の中央部のラインであるラインLC2,LD2を形成するための反射面134c,134d(第二の反射面の一例)と、を有している。そして、反射面134a,134b,134e,134fの回転軸Rに沿った方向の曲率が、反射面134c,134dの回転軸Rに沿った方向の曲率と異なっている。具体的には、反射面134a,134b,134e,134fは回転軸Rに沿った方向において外向きに突出した凸状湾曲面となるように形成され、反射面134c,134dは回転軸Rに沿った方向において内側に凹んだ凹状湾曲面となるように形成されている。このため、ランプユニット130の構成によれば、反射面134a,134b,134e,134fで反射したレーザ光の上下方向への拡散角が、反射面134c,134dで反射したレーザ光の上下方向への拡散角よりも広くなる。これにより、図10に示すように、中央部のラインLC2とラインLD2における上下方向の幅w2を、両側部のラインLA2、ラインLB2、ラインLE2、およびラインLF2における上下方向の幅w1よりも狭くすることができる。
 このようにラインLC2,LD2(第二のラインの一例)の上下幅を、ラインLA2,LB2,LE2,LF2(第一のラインの一例)の上下幅よりも狭くすることにより、配光パターンP2の上下方向の中央領域において配光パターンP2の精緻な制御が可能となる。また、回転ミラー134の回転速度が一定である場合には幅の狭いラインLC2,LD2の方が幅の広いラインLA2,LB2,LE2,LF2よりも光度が高くなる。そのため、配光パターンP2内で中央領域のみを明るくすることが可能となる。なお、本実施形態の回転ミラー134により形成される配光パターンP2のうち、上下方向の中央部のラインLC2,LD2の幅は、参考実施形態の回転ミラー34により形成される配光パターンP1の各ラインLA1~LF1の幅よりも狭くなるが、上下方向の中央部以外のラインLA2,LB2,LE2,LF2の幅は参考実施形態の回転ミラー34により形成される各ラインLA1~LF1よりも広くなる。そのため、本実施形態の構成によれば、参考実施形態の配光パターンP1と同様の上下幅を備えつつ、中央領域について細かな制御が可能となる配光パターンP2を形成することができる。
 なお、上記の実施形態においては、回転ミラー134の反射面134a,134b,134e,134fは凸状湾曲面となるように形成され、反射面134c,134dは凹状湾曲面となるように形成されているが、この例に限られない。すべての反射面を凸状湾曲面または凹状湾曲面として形成され、反射面毎に凸状湾曲面または凹状湾曲面の曲率を異ならせるようにしてもよい。例えば、すべての反射面が凸状湾曲面として形成される場合には、幅の狭いラインを形成するための反射面(凸状湾曲面)の曲率半径が、幅の太いラインを形成するための反射面(凸状湾曲面)の曲率半径よりも大きくなるように設定することが好ましい。すなわち、幅の狭いラインを形成するための反射面(凸状湾曲面)の曲率が、幅の太いラインを形成するための反射面(凸状湾曲面)の曲率よりも小さくなるように設定することが好ましい。また、すべての反射面が凹状湾曲面として形成される場合には、幅の狭いラインを形成するための反射面(凹状湾曲面)の曲率半径が、幅の太いラインを形成するための反射面(凹状湾曲面)の曲率半径よりも小さくなるように設定することが好ましい。すなわち、幅の狭いラインを形成するための反射面(凹状湾曲面)の曲率が、幅の太いラインを形成するための反射面(凹状湾曲面)の曲率よりも大きくなるように設定することが好ましい。このような構成によっても、ラインごとに上下幅を異ならせることができる。
 次に、第一実施形態に係るランプユニット130の変形例について説明する。
(第一変形例)
 図11は、第一変形例に係るランプユニット140の側面図を示す。
 図11に示すようにランプユニット140は、光源32と、回転ミラー144と、平凸レンズ36と、蛍光体38と、を備えている。
 ランプユニット140の回転ミラー144は、第一実施形態の回転ミラー134と同様に、回転方向Dに沿って並列して配置された複数(本例では6面)の反射面144a~144fで構成されている。本変形例では、反射面144aおよび反射面144fは、第一実施形態と同様に、回転軸Rに沿った方向において外向きに突出する凸状湾曲面となるように形成されている。また、反射面144cおよび反射面144dも、第一実施形態と同様に、回転軸R側に凹んだ凹状湾曲面となるように形成されている。一方で、反射面144bおよび反射面144eは、回転軸Rに沿った方向において平面となるように形成されている(図11参照)。
 また、光源32からのレーザ光が反射面144aで反射されるときの反射面144aの上下方向の両端部を繋ぐ仮想直線と光軸Axとの成す角は、光源32からのレーザ光が他の反射面144b~144fで反射されるときの他の反射面144b~144fの各々の上下方向の両端部を繋ぐ仮想直線と光軸Axとの成す角とは異なるように形成されている(図4,図5参照)。例えば、反射面144bと光軸Axとの成す角は、反射面144aの上下方向の両端部を繋ぐ仮想直線と光軸Axとの成す角よりもやや小さくなるように形成されている。同様に、反射面144c、反射面144d、反射面144e、反射面144fの順で、各反射面の上下方向の両端部を繋ぐ仮想直線と光軸Axとの成す角が小さくなるように形成されている。これにより、一の反射面により反射された光は、車両前方の上下方向において他の反射面とは異なる位置に照射される。例えば、反射面144bで反射された光は、車両前方の仮想鉛直スクリーン上において反射面144aで反射された光よりも上方に照射される。また、反射面144cで反射された光は、仮想鉛直スクリーン上において反射面144bで反射された光よりも上方に照射される。
 図12は、第一変形例に係るランプユニット140により車両前方に形成される配光パターンP3を示す。
 図12に示すように、配光パターンP3は、レーザ光により形成される複数のライン(LA3~LF3)を含んでいる。光源32から出射されたレーザ光は、回転ミラー144の各反射面144a~144fにより反射され、蛍光体38を介して平凸レンズ36を透過する。参考実施形態と同様に、平凸レンズ36の後方焦点は、蛍光体38の光出射面上に設定されるため、蛍光体38の光出射面の光像が上下反転して前方へ照射される。
 具体的には、反射面144aで反射されたレーザ光により、図12に示す配光パターンP3のうち最下部のラインLA3が形成される。また、反射面144bで反射されたレーザ光により、ラインLA3の上側にラインLB3が形成される。反射面144cで反射されたレーザ光により、ラインLB3の上側にラインLC3が形成される。反射面144dで反射されたレーザ光により、ラインLC3の上側にラインLD3が形成される。反射面144eで反射されたレーザ光により、ラインLD3の上側にラインLE3が形成される。反射面144fで反射されたレーザ光により、ラインLE3の上側にラインLF3が形成される。そして、ラインLA3~LF3における左右方向への走査の長さは、全て等しくなるように形成されている。
 配光パターンP3のうち下から二段目のラインLB3および下から五段目のラインLE3の上下幅w3は、下から一段目(最下部)のラインLA3および下から六断面(最上部)のラインLF3の上下幅w1よりも狭くなる。また、下から三段目のラインLC3および下から四段目のラインLD3の上下幅w2は、下から二段目のラインLB3および下から五段目のラインLE3の上下幅w3よりも狭くなる。
 このように、第一変形例に係るランプユニット140の回転ミラー144は、反射面144a,144fが回転軸Rに沿った方向において凸状湾曲面となるように形成され、反射面144b,144eが回転軸Rに沿った方向において平面となるように形成され、反射面144c,144dが回転軸Rに沿った方向において凹状湾曲面となるように形成されている。これにより、各反射面144a~144fで反射されたレーザ光により形成される配光パターンP3は、上下方向の中央部に向かうにつれて上下幅が段階的に狭くなるような複数のラインLA3~LF3から構成される。この構成によれば、配光パターンのさらに精緻な制御が可能となり、且つ、配光パターンP3の上下方向の中央領域に向かうにつれて光度を向上させることができる。
 上記の第一変形例においては、回転ミラー144の各反射面144a~144fは、それぞれ、凸状湾曲面と、平面と、凹状湾曲面とのいずれかとなるように形成されているが、この例に限られない。幅の太いラインを形成するための反射面を平面となるように形成し、幅の狭いラインを形成するための反射面を凹状湾曲面となるように形成してもよい。また、幅の太いラインを形成するための反射面を凸状湾曲面となるように形成し、幅の狭いラインを形成するための反射面を平面となるように形成してもよい。このように、複数の反射面を凸状または凹状湾曲面と平面とを組み合わせて構成することで、第一変形例と同様に、配光パターンを形成するラインの上下幅を異ならせることができる。
 なお、第一変形例において、各反射面の境界における光源の点消灯の制御、回転ミラーを構成する反射面の数およびその傾斜角度、および配光パターンの各ラインをどの反射面によって形成するか等については、第一実施形態に係るランプユニット130の場合と同様である。
(第二変形例)
 図13は、第二変形例に係るランプユニットにより車両前方に形成される配光パターンP4を示す。
 上記の実施形態においては、回転ミラー134の各反射面134a~134fで反射されたレーザ光により配光パターンの異なる位置にラインが形成される構成を採用しているがこの例に限られない。例えば、回転ミラー134の複数の反射面134a~134fのうち少なくとも二つの反射面で反射された光により、上下方向における一部のラインを重複して走査することで、図13に示すように配光パターンP4を形成することができる。この場合、例えば、反射面134cの上下方向の両端部を繋ぐ仮想直線と光軸Axとの成す角は、反射面134bの上下方向の両端部を繋ぐ仮想直線と光軸Axとの成す角と略同一となるように設定される。また、反射面134dの上下方向の両端部を繋ぐ仮想直線と光軸Axとの成す角は、反射面134eの上下方向の両端部を繋ぐ仮想直線と光軸Axとの成す角と略同一となるように設定される。これにより、配光パターンP4は、同一の上下幅を有するラインLA4,LB4,LE4,LF4と、ラインLB4の一部に重複して形成されてラインLB4よりも狭い上下幅を有するラインLC4と、ラインLE4の一部に重複して形成されてラインLE4よりも狭い上下幅を有するラインLD4とから構成される。このように、配光パターンP4を形成する複数のラインLA4~LF4のうち少なくとも一部のラインを他のラインと重複して形成することで、配光パターンのさらに精緻な制御が可能となり、且つ、配光パターンの特定の領域の光度を向上させることができる。
(第三変形例)
 図14は、第三変形例に係るランプユニット530を示す。
 図14に示すように、上記実施形態で用いたポリゴンミラー134の代わりに、ブレードスキャン(登録商標)方式の回転ミラー(回転リフレクタ)500を用いてもよい。回転ミラー500は、複数枚(図14では3枚)のブレード501aと、筒状の回転部501bとを備えている。各ブレード501aは、回転部501bの周囲に設けられており、反射面として機能する。回転ミラー500は、その回転軸Rが光軸Axに対して斜めになるように配置されている。
 ブレード501aは、回転軸Rを中心とする周方向に向かうにつれて、光軸Axと反射面とが成す角が変化するように捩られた形状を有している。これにより、ポリゴンミラー134と同様に、光源32の光を用いた走査が可能となる。
 複数枚のブレード501aのうち少なくとも一つのブレード501aは、その形状が他のブレード501aの形状とは異なっている。例えば、複数枚のブレード501aのうち少なくとも一つのブレード501aは、当該ブレード501aで反射されたレーザ光が光源32から出射されたときのレーザ光の径よりも上下方向において集光するように、その形状が設定される。一方、当該ブレード501aとは別のブレード501aは、当該別のブレード501aで反射されたレーザ光が光源32から出射されたときのレーザ光の径よりも上下方向において拡散するように、その形状が設定される。このような回転ミラー500を用いた場合も、上記実施形態と同様に、配光パターンを形成するラインの上下方向の幅を異ならせることができる。
(第二実施形態)
 図15は、第二実施形態に係るランプユニット30Aの上面図を示している。
 図15に示すように第二実施形態に係るランプユニット30Aは、第一光源32Aと、第二光源32Bと、回転ミラー34と、平凸レンズ36と、蛍光体38と、を備えている。
 第一光源32Aは、参考実施形態と同様に、図15に示す上面視において、回転ミラー34の左斜め前方に配置されている。これに対して、第二光源32Bは、回転ミラー34の右斜め前方に配置されている。
 図16Aは、第一光源32Aおよび第一光源32Aから出射された光のスポット形状を示し、図16Bは、第二光源32Bおよび第二光源32Bから出射される光のスポット形状を示している。
 図16Aに示すように、第一光源32Aは、縦長楕円形状の光出射面40Aを有している。これにより、縦長楕円形状の光出射面40Aから出射されたレーザ光が蛍光体38の光入射面に入射したときのスポット50Aは縦長楕円形状として形成される。すなわち、ビームスポット50Aは、その短径が配光パターンにおける光の走査方向(図16A、図16Bにおける左右方向)に沿うような扁平形状となる。
 一方、図16Bに示すように、第二光源32Bは、第一光源32Aと同一種類の光源を、90度回転させて配置したものである。すなわち、第二光源32Bは、横長楕円形状の光出射面40Bを有している。これにより、横長楕円形状の光出射面40Bから出射されたレーザ光が蛍光体38の光入射面に入射したときのスポット50Bは横長楕円形状として形成される。すなわち、スポット50Bは、その長径が配光パターンにおける光の走査方向(図16A、図16Bにおける左右方向)に沿うような扁平形状となる。このように、本実施形態においては、第一光源32Aから出射されたレーザ光で形成されるスポット50Aの上下方向のスポット径と、第二光源32Bから出射されたレーザ光で形成されるスポット50Bの上下方向のスポット径とが異なっている。
 図17は、第二実施形態に係るランプユニット30Aにより車両前方に形成される配光パターンP5を示している。
 図17に示すように、配光パターンP5は、第一光源32Aまたは第二光源32Bから出射されて、各反射面34a~34lにより反射され、蛍光体38を介して平凸レンズ36を透過したレーザ光により形成される複数のラインを含んでいる。
 本実施形態においては、第一光源32Aの光出射面40Aからのレーザ光が反射される回転ミラー34の反射面対と、第二光源32Bの光出射面40Bからのレーザ光が反射される回転ミラー34の反射面対とを異ならせている。すなわち、第一光源32Aおよび第二光源32Bの光源制御部は、第一光源32Aから出射されたレーザ光L1を第一反射面対34A、第二反射面対34B、第五反射面対34Eおよび第六反射面対34Fで反射させるように、第一光源32Aの点消灯を制御する(図18参照)。これに対して、光源制御部は、第二光源32Bから出射されたレーザ光L2を第三反射面対34Cおよび第四反射面対34Dで反射させるように、第二光源32Bの点消灯を制御する(図19参照)。
 これにより、配光パターンP5のうち最下部のラインLA5は、第一光源32Aから出射されて第一反射面対34A(反射面34a,34g)で反射されたレーザ光L1により形成される。同様に、ラインLA5の上側に位置するラインLB5は、第一光源32Aから出射されて第二反射面対34B(反射面34b,34h)で反射されたレーザ光L1により形成される。また、配光パターンP5のうち最上部の第六ラインLF5および第六ラインLF5の下側に位置する第五ラインLE5についても、第一光源32Aから出射されて第六反射面対34F(反射面34f,34l)および第五反射面対34E(反射面34e,34k)でそれぞれ反射されたレーザ光L1により形成される。これらのラインLA5,LB5,LE5,LF5は、いずれも第一光源32Aから出射されたレーザ光L1により形成されるため、各ラインLA5,LB5,LE5,LF5の幅は略同一である。
 一方、第二ラインLB5の上側に位置する第三ラインLC5は、図19に示すように、第二光源32Bから出射されて第三反射面対34C(反射面34c,34i)で反射されたレーザ光L2により形成される。同様に、第三ラインLC5の上側に位置する第四ラインLD5は、第二光源32Bから出射されて第四反射面対34D(反射面34d,34j)で反射されたレーザ光L2により形成される。これらのラインLC5,LD5は、いずれも第二光源32Bから出射されたレーザ光L2により形成されるため、各ラインLC5,LD5の幅は略同一である。
 上述の通り、第一光源32Aの光出射面40Aから出射されたレーザ光のスポット50Aは縦長楕円形状となる。このため、スポット50Aは、上下拡散角度が大きく、上下方向においてより広い範囲を照射することができる。これにより、各スポット50Aの端部での光度変化を緩和することができ、比較的均一な配光パターンを形成することができる。
 一方で、第二光源32Bの光出射面40Bから出射されたレーザ光のスポット50Bは横長楕円形状となる。このため、スポット50Bは、スポット50Aに比べて上下拡散角度が小さく、上下方向においてより狭い範囲を照射することができる。図17に示すように、ランプユニット30Aにより形成される配光パターンP5においては、第一光源32Aから出射されたレーザ光により形成されるラインLA5,LB5,LE5,LF5の上下方向の幅よりも、第二光源32Bから出射されたレーザ光により形成されるラインLC5,LD5の上下方向の幅が狭くなる。
 また、回転ミラー34の回転方向Dに沿った回転の速度が一定であるとすると、図17に示すように、第一光源32Aにより形成されるスポット50Aよりも、第二光源32Bにより形成されるスポット50Bの方が、ライン上での光の重なり度合いが大きくなる。これにより、ラインLA5,LB5,LE5,LF5よりもラインLC5,LD5の光度が高くなる。すなわち、配光パターンP5のうち上下方向の中央領域であるラインLC5,LD5を、上下方向の端部領域であるラインLA5,LB5,LE5,LF5よりも、明るくすることができる。
 ところで、車両用前照灯に用いられるスキャン光学系においては、配光パターンの光度を向上させつつ、光照射範囲および遮光範囲を高精細に制御することが求められている。例えば、スキャン光学系をADB(Adaptive Driving Beam)システムに採用した場合には、遮光対象となる周辺車両の近傍限界まで光を照射することが求められている。また、スキャン光学系を路面描画に用いる場合には、路面照射範囲を精緻に制御することが求められている。しかしながら、配光パターンを構成するすべてのラインを細くしようとすると、多くの光源が必要となったり、所望の配光パターンを形成するための効率が落ちるため、現実的ではない。
 これに対して、上記において説明したように、第二実施形態に係るランプユニット30A(光照射装置の一例)は、第一光源32Aおよび第二光源32Bと、第一光源32Aおよび第二光源32Bから出射されたレーザ光を反射させる回転ミラー34と、を備えている。このランプユニット30Aは、回転ミラー34の回転によって光源32A,32Bから出射されたレーザ光の反射方向が変位することで、車両前方においてレーザ光が複数の段に分かれてライン状に走査されて配光パターンP5を形成する。ここで、第一光源32Aから出射されたレーザ光L1により形成されるスポット50Aの上下方向のスポット径と、第二光源32Bから出射されたレーザ光L2により形成されるスポット50Bの上下方向のスポット径とが異なっている。具体的には、第一光源32A(の光出射面40A)は、スポット50Aの短径が光の走査方向(左右方向)に沿うようなレーザ光を出射する一方で、第二光源32B(の光出射面40B)は、スポット50Bの長径が光の走査方向に沿うようなレーザ光を出射するように構成されている。本例においては、第一光源32Aから出射された光により、配光パターンP5の少なくとも一部を構成するラインLA5,LB5,LE5,ラインLF5(第一のラインの一例)が形成される。一方で、第二光源32Bから出射された光によりラインLC5,LD5(第二のラインの一例)が形成される。
 この構成によれば、互いに略同一の構造を備えた第一光源32Aと第二光源32Bとを用いて、ラインLA5,LB5,LE5,LF5の上下方向の幅とラインLC5,LD5の上下方向の幅とを異ならせることができる。これにより、配光パターンP5のうち高精細化が求められている領域において、精緻な制御が可能となる。また、第一光源32Aおよび第二光源32Bとして同一種類の光源を用いることができるため、ランプユニット30Aの製造コストの低減や製造効率の向上を図ることができる。
 また、本実施形態においては、幅の広いライン(ラインLA5,LB5,LE5,LF5)の間に幅の狭いライン(ラインLC5,LD5)を配置することで、配光パターンP5のうち特に高精細化が求められている中央部分のラインを細く、且つ、明るくすることができる。これにより、配光パターンP5の制御を効果的に行うことができる。
 また、本実施形態においては、第一光源32Aおよび第二光源32Bから出射された光は平行光(例えば、レーザ光)であるため、各ラインの幅を精緻に制御しやすい。
(第三実施形態)
 図20は、第三実施形態に係るランプユニット30Bの構成を示す側面図である。
 図20に示すように、ランプユニット30Bは、光源32、回転ミラー34、平凸レンズ36、蛍光体38に加えて、回転ミラー34と蛍光体38との間に配置されたサブレンズ60を備えている。サブレンズ60は、例えば両凸レンズである。サブレンズ60は、光源32から出射されて第三反射面対34C(反射面34c,34i)で反射される光Lcと、光源32から出射されて第四反射面対34D(反射面34d,34j)で反射される光とが透過される位置に配置されている。これにより、第三反射面対34C(反射面34c,34i)で反射された光Lcは、サブレンズ60を透過することで、光軸Axに対して略平行光となって蛍光体38を透過し、平凸レンズ36へ入射する(図20参照)。そして、平凸レンズ36から出射された光Lcは、光軸Ax側へ集光する。同様に、図示は省略するが、第四反射面対34D(反射面34d,34j)で反射された光は、サブレンズ60を透過することで、光軸Axに対して略平行光となって蛍光体38を透過し、平凸レンズ36へ入射する。そして、平凸レンズ36から出射された当該光は、光軸Ax側へ集光する。なお、第三反射面対34Cおよび第四反射面対34D以外の反射面対からの光は、サブレンズ60を透過しないように構成されていることが好ましい。
 このように、回転ミラー34と蛍光体38との間にサブレンズ60を備えたランプユニット30Bの構成によれば、第二実施形態の配光パターンP5と同様に、第一反射面対34A、第二反射面対34B、第五反射面対34Eおよび第六反射面対34Fでそれぞれ反射された光から形成されるラインLA5,LB5,LE5,LF5の幅よりも、第三反射面対34Cおよび第四反射面対34Dでそれぞれ反射された光から形成されるラインLC5,LD5の幅を狭くすることができる。したがって、第三実施形態の構成によれば、単一の光源32を用いて、蛍光体38の光入射面におけるレーザ光のスポット径を可変とすることができ、配光パターンP5を構成するラインの幅を異ならせることができる。
 なお、単一の光源を用いて光のスポット径を可変するための変形例として以下の構成が考えられる。
 例えば、光源の光出射面の形状を変更可能な絞り機構を設けてもよい。この場合、出射光と反射面34a~34lとの対応関係に応じて光出射面の形状を変更することで、蛍光体38や平凸レンズ36を透過する光のスポット径を変化させるようにしてもよい。
 また、平凸レンズ36の光入射面または光出射面の形状を変化させて、平凸レンズ36を透過した後の光のスポット径を変化させるようにしてもよい。この場合は、例えば、第三反射面対34Cおよび第四反射面対34D(反射面34d,34j)で反射されて平凸レンズ36から出射される光が光軸Ax側に集光されるように、平凸レンズ36の光入射面および/または光出射面の形状を変化させることが好ましい。
 また、サブレンズ60に代えて、光源32からの光の一部を遮蔽してスポット配光パターンを形成するための液晶シェードを回転ミラー34と蛍光体38との間に設けてもよい。図示は省略するが、液晶シェードは、液晶の配置された液晶領域と、液晶の配置されていない非液晶領域とを有する液晶層を備えており、回転ミラーの用いる反射面に応じて液晶領域と非液晶領域との大きさを変化させることが可能である。
 これらの変形例の構成によっても、レーザ光のスポット径を変化させることができるが、光源の光出射面や液晶シェードの液晶領域の切替えの反応速度(レスポンス)の速さが必要とされることを考慮すると、第三実施形態に係る構成がより好ましい。
 第二実施形態及び第三実施形態で用いたポリゴンミラー34の代わりに、ブレードスキャン方式の回転ミラー(回転リフレクタ)500を用いてもよい(図14参照)。図14の回転ミラー500を用いた場合も、第二実施形態及び第三実施形態と同様に、スポット径の異なる複数の光源32A,32Bから出射されたレーザ光を回転ミラー500で反射させて前方に照射することで、配光パターンP5を構成する各ラインの幅を異ならせることができる。
 上記の第二実施形態及び第三実施形態においては、上面視において12面体の回転ミラー34を用い、対角線上に配置された一対の反射面により反射された光が配光パターンP5のうち同一のラインを形成しているが、この例に限られない。例えば、1つの反射面により反射された光により1つのラインを形成するようにしてもよい。この場合は、例えば、配光パターンが6つのラインから構成されるとすると、回転ミラーは、上面視において6面体として形成され、回転方向に沿って6つの反射面を備えることとなる。
 上記の第二実施形態においては、同一種類の第一光源32Aおよび第二光源32Bを用いているが、この例に限られない。光出射面の径が互いに異なる複数の光源を用いて、異なるスポット径のレーザ光をそれぞれ出射することで、図17に示すような配光パターンP5を形成してもよい。
(第四実施形態)
 図21は、第四実施形態に係るランプユニット1030の上面図を示している。
 図21に示すように、第四実施形態に係るランプユニット1030は、第一光源132Aと、第二光源132Bと、回転ミラー34と、平凸レンズ36と、蛍光体38と、を備えている。
 第一光源132Aは、図21に示す上面視において、回転ミラー34の右斜め前方に配置されている。そのため、第一光源132Aから出射されて反射面34aで反射されたレーザ光の左右方向への拡散角度Waの中心方向、すなわち、反射面34aの左右方向における中心で反射されたレーザ光の方向(図21参照)は、光軸Axよりもやや左寄りとなる。
 一方、第二光源132Bは、回転ミラー34の左斜め前方に配置されている。そのため、第二光源132Bから出射されて反射面34aで反射されたレーザ光の左右方向への拡散角度Wbの中心方向、すなわち、反射面34aの左右方向における中心で反射されたレーザ光の方向(図22参照)は、光軸Axよりもやや右寄りとなる。
 また、光源132A,132Bからのレーザ光が反射面対34A(反射面34a,34g)で反射されるときの当該反射面対34Aと光軸Axとの成す角θaは、光源132A,132Bからのレーザ光が他の反射面対34B~34Fで反射されるときの他の反射面対34B~34Fの各反射面と光軸Axとの成す角とは異なるように形成されている(図4,図5参照)。例えば、反射面対34Bと光軸Axとの成す角θbは、反射面対34Aと光軸Axとの成す角θaよりもやや小さくなるように形成されている。同様に、反射面対34C、反射面対34D、反射面対34E、反射面対34Fの順で、各反射面対と光軸Axとの成す角が小さくなるように形成されている。これにより、一の反射面対により反射された光は、車両前方の上下方向において他の反射面対とは異なる位置に照射される。例えば、反射面対34Bで反射された光は、図23に示す配光パターンPaおよび図24に示す配光パターンPbにおいて、反射面対34Aで反射された光よりも上方に照射される。また、反射面対34Cで反射された光は、反射面対34Bで反射された光よりも上方に照射される。
 図23は、第四実施形態に係るランプユニット130の第一光源132Aから出射されたレーザにより車両前方に形成される右側配光パターンPaを示し、図24は、第四実施形態に係るランプユニット130の第二光源132Bから出射されたレーザにより車両前方に形成される左側配光パターンPbを示している。
 図23に示すように、右側配光パターンPaは、第一光源132Aから出射されたレーザ光により形成される複数のライン(LAa~LFa)を含んでいる。第一光源132Aから出射されたレーザ光は、回転ミラー34の各反射面34a~34lにより反射され、蛍光体38を介して平凸レンズ36を透過する。本例では、平凸レンズ36の後方焦点は、蛍光体38の光出射面上に設定されているため、蛍光体38の光出射面上の光源像が上下左右反転して配光パターンPa,Pbが形成される。
 具体的には、第一光源132Aから出射され反射面対34A(反射面34a,34g)で反射されたレーザ光により、図23に示す配光パターンPaのうち最下部の第一ラインLAaが形成される。また、第一光源132Aから出射され反射面対34B(反射面34b,34h)で反射されたレーザ光により、第一ラインLAaの上側に第二ラインLBaが形成される。第一光源132Aから出射され反射面対34C(反射面34c,34i)で反射されたレーザ光により、第二ラインLBaの上側に第三ラインLCaが形成される。第一光源132Aから出射され反射面対34D(反射面34d,34j)で反射されたレーザ光により、第三ラインLCaの上側に第四ラインLDaが形成される。第一光源132Aから出射され反射面対34E(反射面34e,34k)で反射されたレーザ光により、第四ラインLDaの上側に第五ラインLEaが形成される。第一光源132Aから出射され反射面対34F(反射面34f,34l)で反射されたレーザ光により、第五ラインLEaの上側に第六ラインLFaが形成される。
 図24に示すように、左側配光パターンPbは、第二光源132Bから出射されたレーザ光により形成される複数のライン(LAb~LFb)を含んでいる。第二光源132Bから出射されたレーザ光は、回転ミラー34の各反射面34a~34lにより反射され、蛍光体38を介して平凸レンズ36を透過する。
 具体的には、第二光源132Bから出射され反射面対34A(反射面34a,34g)で反射されたレーザ光により、図24に示す配光パターンPbのうち最下部の第一ラインLAbが形成される。また、第二光源132Bから出射され反射面対34B(反射面34b,34h)で反射されたレーザ光により、第一ラインLAbの上側に第二ラインLBbが形成される。第二光源132Bから出射され反射面対34C(反射面34c,34i)で反射されたレーザ光により、第二ラインLBbの上側に第三ラインLCbが形成される。第二光源132Bから出射され反射面対34D(反射面34d,34j)で反射されたレーザ光により、第三ラインLCbの上側に第四ラインLDbが形成される。第二光源132Bから出射され反射面対34E(反射面34e,34k)で反射されたレーザ光により、第四ラインLDbの上側に第五ラインLEbが形成される。第二光源132Bから出射され反射面対34F(反射面34f,34l)で反射されたレーザ光により、第五ラインLEbの上側に第六ラインLFbが形成される。
 第一光源132Aから出射されたレーザ光により形成される右側配光パターンPaは、その左右方向の中央部が仮想スクリーンの垂直軸V-Vよりも右寄りとなるように形成されている(図23参照)。一方で、第二光源132Bから出射されたレーザ光により形成される配光パターンPbは、その左右方向の中央部が仮想スクリーンの垂直軸V-Vよりも左寄りとなるように形成されている(図24参照)。これらの配光パターンPaおよび配光パターンPbを重畳させることで、図25に示す配光パターンP6が形成される。図25に示す配光パターンP6は、右側配光パターンPaと左側配光パターンPbとが各ラインの左右方向(すなわち、レーザ光の走査方向)における中央部において重複するように形成されている。
 なお、各反射面34a~34lの間の境界では、上記の参考実施形態と同様にレーザ光が散乱して不適切な配光が形成されるおそれがある。そのため、光源制御部は、各反射面34a~34l間の境界と光源132A,132Bからのレーザ光の光線が交差するタイミングでは光源132A,132Bを消灯するように、光源132A,132Bの点消灯をそれぞれ制御することが好ましい。
 ところで、上述のように、配光パターンを構成するすべてのラインの光度を高くしようとすると、多くの光源が必要となったり、所望の配光パターンを形成するための効率が落ちたりするため、現実的ではない。
 これに対して、上記において説明したように、第四実施形態に係るランプユニット1030(光照射装置の一例)は、第一光源132Aおよび第二光源132Bと、第一光源132Aから出射されたレーザ光(第一光の一例)と第二光源132Bから出射されたレーザ光(第二光の一例)とをそれぞれ反射させる回転ミラー34と、を備えている。そして、回転ミラー34の回転によって光源132A,132Bから出射されたレーザ光の反射方向が変位することで、車両前方においてレーザ光が複数の段に分かれてライン状に走査されて配光パターンP6が形成される。配光パターンP6は、第一光源132Aから出射されたレーザ光の走査により形成される第一配光パターンPaと、第二光源132Bから出射されたレーザの走査により形成される第二配光パターンPbとを含んでいる。そして、第一配光パターンPaと第二配光パターンPbの一部が重複するように配光パターンP6が形成されている。具体的には、配光パターンP6の左右方向(レーザ光の走査方向)における中央領域にて第一配光パターンPaと第二配光パターンPbとが重複するように形成されている。この構成によれば、簡便な構成で、例えば、配光パターンP6における中央領域を配光パターンP6における周辺領域よりも明るくすることができる。
 なお、本例においては回転ミラー34を12面から成るポリゴンミラーで構成し、対角線上に配置された一対の反射面により反射された光が配光パターンP6のうち同一のラインを形成しているが、この例に限られない。例えば、1つの反射面により反射された光により1つのラインを形成するようにしてもよい。この場合は、例えば、配光パターンが6つのラインから構成されるとすると、回転ミラーは、上面視において6面体として形成され、回転方向に沿って6つの反射面を備えることとなる。
 上記の第四実施形態においては、同一種類の第一光源132Aおよび第二光源132Bを用いているが、この例に限られない。光出射面の径が互いに異なる複数の光源を用いて、異なるスポット径のレーザ光をそれぞれ出射することで、上下幅の異なる複数のラインから構成された配光パターンを形成してもよい。
(第五実施形態)
 図26~30は、第五実施形態に係るランプユニット140の構成を示す上面図である。
 図26~30に示すように、ランプユニット140(第一ユニットの一例)は、光源142と、回転ミラー144(第一ミラー、第二ミラーの一例)と、平凸レンズ36と、蛍光体38とを備えている。光源142は、上下方向において、光軸Axに沿った位置(例えば、光軸Axの真下)に配置されている。なお、ランプユニット140は、例えば、右側前照灯に搭載されたランプユニットである。左側前照灯にもランプユニット140と同様の構成のランプユニット(第二ユニットの一例)が搭載される。
 回転ミラー144は、回転ミラー144の外方向に突出した6つの凸状湾曲面(凸部の一例)として形成された反射面144a,144c,144e,144g,144i,144kと、回転ミラー144の回転軸R側に凹んだ6つの凹状湾曲面(凹部の一例)として形成された反射面144b,144d,144f,144h,144j,144lとを有している。具体的には、回転方向Dに沿って、凸状反射面144a、凹状反射面144b、凸状反射面144c、凹状反射面144d、凸状反射面144e、凹状反射面144f、凸状反射面144g、凹状反射面144h、凸状反射面144i、凹状反射面144j、凸状反射面144k、凹状反射面144lの順で凸状反射面と凹状反射面とが交互に連続するように形成されている。
 このように構成された回転ミラー144において、例えば、光源142から出射されて凸状反射面144aの頂点で反射されたレーザ光Laは、左右方向において光軸Axに沿った方向に向かって進行する(図26参照)。回転ミラー144が図26の位置から回転方向Dに沿って回転されていくにつれて、反射光の進行方向は光軸Axから左側へ徐々に移動する。そして、凸状反射面144aと凹状反射面144bとの間の変曲点x1で反射されたレーザ光Lx1は、左右方向におけるレーザ光の拡散角度(拡散領域)の左端の位置に向かって進行する(図27参照)。続けて、回転ミラー144が図27の位置から回転方向Dに沿って回転されていくにつれて、反射光の進行方向が左端位置から折り返されて、右側へ徐々に移動する。そして、凹状反射面144bの底点で反射されたレーザ光Lbは、左右方向において光軸Axに沿った方向に向かって進行する(図28参照)。回転ミラー144が図28の位置から回転方向Dに沿ってさらに回転されていくにつれて、反射光の進行方向は光軸Axからさらに右側へ徐々に移動する。そして、凹状反射面144bと凸状反射面144cとの間の変曲点x2で反射されたレーザ光Lx2は、左右方向におけるレーザ光の拡散角度(拡散領域)の右端の位置に向かって進行する(図29参照)。続けて、回転ミラー144が図29の位置から回転方向Dに沿ってさらに回転されていくにつれて、反射光の進行方向が右端位置から折り返されて、左側へ徐々に移動する。そして、凸状反射面144cの頂点で反射されたレーザ光Lcは、左右方向において光軸Axに沿った方向に向けて反射される(図30参照)。
 また、光源142からのレーザ光が凸状反射面144aの頂点で反射されるときの上下方向および前後方向からなる面における凸状反射面144aと光軸Axとの成す角は、光源142からのレーザ光が隣り合う他の反射面144b,144lの頂点で反射されるときの上下方向および前後方向からなる面における他の反射面144b,144lと光軸Axとの成す角とは異なるように形成されている。例えば、凹状反射面144bの底点における面と光軸Axとの成す角は、凸状反射面144aの頂点における面と光軸Axとの成す角よりもやや小さくなるように形成されている。同様に、凸状反射面144c、凹状反射面144d、凸状反射面144e、凹状反射面144f、凸状反射面144gの順で、各反射面の頂点または底点における面と光軸Axとの成す角が小さくなるように形成されている。これにより、凸状反射面144aの頂点により反射された光は、車両前方の上下方向において隣り合う他の反射面144b,144lの底点により反射された光とは異なる位置に照射される。例えば、凹状反射面144bの底点で反射された光は、凸状反射面144aの頂点で反射された光よりも上方に照射される。また、凸状反射面144cの頂点で反射された光は、凹状反射面144bの底点で反射された光よりも上方に照射される。
 また、凹状反射面144hは、その底点における上下方向および前後方向にからなる面と光軸Axとの成す角が凹状反射面144fの底点における上下方向および前後方向からなる面と光軸Axとの成す角と同一となるように形成されている。これにより、凹状反射面144hの底点により反射された光は、車両前方の上下方向において凹状反射面144fの底点により反射された光と同一の位置に照射される。同様に、凸状反射面144iの頂点における面と光軸Axとの成す角は、凸状反射面144eの頂点における面と光軸Axとの成す角と同一となるように形成されている。これにより、凸状反射面144iの頂点により反射された光は、車両前方の上下方向において凸状反射面144eの頂点により反射された光と同一の位置に照射される。凹状反射面144jの底点における面と光軸Axとの成す角は、凹状反射面144dの底点における面と光軸Axとの成す角と同一となるように形成されている。これにより、凹状反射面144jの底点により反射された光は、車両前方の上下方向において凹状反射面144dの底点により反射された光と同一の位置に照射される。凸状反射面144kの頂点における面と光軸Axとの成す角は、凸状反射面144cの頂点における面と光軸Axとの成す角と同一となるように形成されている。これにより、凸状反射面144kの頂点により反射された光は、車両前方の上下方向において凸状反射面144cの頂点により反射された光と同一の位置に照射される。凹状反射面144lの底点における面と光軸Axとの成す角は、凹状反射面144bの底点における面と光軸Axとの成す角と同一となるように形成されている。これにより、凹状反射面144lの底点により反射された光は、車両前方の上下方向において凹状反射面144bの底点により反射された光と同一の位置に照射される。
 なお、隣接する反射面の境界は、光軸Axに対する傾斜面の角度が緩やかに変化するように形成されていることが好ましい。これにより、後述する配光パターンP7(PR,PL)の折り返し部分を違和感なく形成することができる。
 図31は、右側前照灯に搭載されたランプユニット140により車両前方に形成される配光パターンPRを示す。
 図31に示すように、配光パターンPRは、レーザ光により形成されるラインが左右方向において複数の段を形成するように往復されることにより形成される。光源142から出射されたレーザ光は、回転ミラー144の各反射面144a~144lにより反射され、蛍光体38を介して平凸レンズ36を透過する。
 具体的には、凸状反射面144aの頂点で反射されたレーザ光Laにより、配光パターンPRを形成する最下部のラインLARの始点が形成される。ラインLARの始点は、仮想スクリーンの垂直軸V-Vよりも右寄りとなるように形成されている。続けて、凸状反射面144aの頂点から凸状反射面144aと凹状反射面144bとの間の変曲点x1まで反射されたレーザ光により、ラインLARが始点から右端に向けて形成される。そして、変曲点x1で反射されたレーザ光Lx1により、ラインLARの右端位置においてラインLARと当該ラインLARの上側に形成されるラインLBRとの折り返し部分が形成される。続けて、変曲点x1から凹状反射面144bの底点まで反射されたレーザ光により、ラインLBRがラインLARとの折り返し部分から左側に向けて形成される。そして、凹状反射面144bの底点で反射されたレーザ光Lbにより、ラインLBRの左右方向における中央部が形成される。続けて、凹状反射面144bの底点から凹状反射面144bと凸状反射面144cとの間の変曲点x2まで反射されたレーザ光により、ラインLBRが中央部から左端に向けて形成される。そして、変曲点x2で反射されたレーザ光Lx2により、ラインLBRの左端位置においてラインLBRと当該ラインLBRの上側に形成されるラインLCRとの折り返し部分が形成される。続けて、変曲点x2から凸状反射面144cの頂点まで反射されたレーザ光により、ラインLCRが折り返し部分から右側に向けて形成される。そして、凸状反射面144cの頂点で反射されたレーザ光Lcにより、ラインLCRの左右方向における中央部が形成される。続けて、凸状反射面144cの頂点から凸状反射面144cと凹状反射面144dとの間の変曲点まで反射されたレーザ光により、ラインLCRが中央部から右端に向けて形成される。
 同様に、凹状反射面144d、凸状反射面144e、凹状反射面144f、凸状反射面144gの順で反射されたレーザ光により、ラインLCRの上側のラインLDR、ラインLDRの上側のラインLER、ラインLERの上側のラインLFR、ラインLFRの上側のラインLGRがそれぞれ折り返されて形成される。
 また、凸状反射面144gと凹状反射面144hとの間の変曲点付近で反射されたレーザ光によりラインLGRから下側のラインLFRへと配光パターンが折り返される。そして、凹状反射面144h、凸状反射面144i、凹状反射面144j、凸状反射面144k、凹状反射面144lにより反射されたレーザ光により、ラインLFR、ラインLER、ラインLDR、ラインLCR、ラインLBRの順で光が照射される。最後に、凹状反射面144lと凸状反射面144aとの間の変曲点付近で反射されたレーザ光により、ラインLBRから下側のラインLARへと配光パターンが折り返され、凸状反射面144aの頂点により反射されたレーザ光によりラインLARの始点が再び照射される。
 このように、回転ミラー144の回転方向Dに沿った回転に伴って各反射面144a~144lによりレーザ光が反射されることにより、レーザ光が左右方向に折り返されながら車両前方に照射され、配光パターンPRを構成する複数のラインLAR~LGRが上下方向に連続的に形成される。
 図32は、左側前照灯に搭載されたランプユニット140により車両前方に形成される左側配光パターンPLを示す。
 図32に示す左側配光パターンPLは、上下方向に連続して配置された複数のラインLAL~LGLを含む。左側配光パターンPLはその左右方向の中央部が仮想スクリーンの垂直軸V-Vよりも左寄りとなるように形成されている。複数のラインLAL~LGLは、図31の右側配光パターンPRと同様に、レーザ光が左右方向に折り返されながら車両前方に照射されることで、上下方向に連続的に形成される。
 右側配光パターンPRおよび左側配光パターンPLを重複させることで、図33に示す配光パターンP7が形成される。図33に示す配光パターンP7は、右側配光パターンPRと左側配光パターンPLとが各ラインの左右方向における中央部において重複するように形成されている。
 以上説明したように、第五実施形態に係る構成では、光源142および回転ミラー144を有する右側ランプユニット140と、光源142および回転ミラー144を有する左側ランプユニット140と、を備え、各ランプユニット140の回転ミラー144の回転によってレーザ光の反射方向がそれぞれ変位することで、各ランプユニット140の光源142から出射されたレーザ光がそれぞれ複数の段に分かれてライン状に走査されて配光パターンP7が形成される。配光パターンP7は、右側配光パターンPRと、左側配光パターンPLとを含み、右側配光パターンPRと左側配光パターンPLとが左右方向の中央領域において重複するように形成されている。この構成によれば、配光パターンP7の左右方向における中央領域の光度を左右方向における両端領域の光度よりも高く形成することができる。
 ところで、参考実施形態および第四実施形態の構成においては、レーザ光の散乱を防止するため、回転ミラー34の各反射面の境界で光源32(132A,132B)を消灯させている。これに対して、上面視において連続的な曲面形状となるように形成された回転ミラー144の構成では、凸状反射面と凹状反射面との境界で光源142を消灯させる必要がない。そのため、配光パターンP7を効率よく形成することができる。
 次に、第五実施形態に係るランプユニット140の変形例について説明する。
(第四変形例)
 図34および図35は、第四変形例に係るランプユニット150の上面図を示す。
 図34および図35に示すようにランプユニット150は、第一光源152Aと、第二光源152Bと、回転ミラー144と、平凸レンズ36と、蛍光体38と、を備えている。ランプユニット150は、2つの光源152A,152Bを備えている点で、1つの光源142のみを備えている第五実施形態のランプユニット140と相違する。
 第一光源152Aは、図34に示す上面視において、回転ミラー34の右斜め前方に配置されている。そのため、第一光源152Aから出射されて回転ミラー144の各反射面144a~144lで反射されたレーザ光の左右方向への拡散角度Wa1の方向(図34参照)は、参考実施形態の光源32から出射されて反射面34aで反射されたレーザ光の左右方向への拡散角度の方向(図3参照)よりもやや右寄りとなる。
 一方、第二光源152Bは、回転ミラー34の左斜め前方に配置されている。そのため、第二光源152Bから出射されて各反射面144a~144lで反射されたレーザ光の左右方向への拡散角度Wb2の方向(図35参照)は、参考実施形態の光源32から出射されて反射面34aで反射されたレーザ光の左右方向への拡散角度の方向(図3参照)よりもやや左寄りとなる。
 第一光源152Aから出射されたレーザ光により形成される配光パターンは、例えば、図31に示す第五実施形態の右側配光パターンPRと同様に形成される。一方、第二光源152Bから出射されたレーザ光により形成される配光パターンは、例えば、図32に示す第五実施形態の左側配光パターンPLと同様に形成される。そして、右側配光パターンPRと左側配光パターンPLとが各ラインの左右方向における中央部において重複することで、図33に示す配光パターンP7と同様の配光パターンが形成可能である。
 よって、第四変形例に係るランプユニット150によれば、簡便な構成で、配光パターンの左右方向における中央領域の光度を左右方向における両端領域の光度よりも高く形成することができる。
 第四実施形態及び第五実施形態で用いたポリゴンミラー34の代わりに、ブレードスキャン方式の回転ミラー500を用いてもよい(図14参照)。図14の回転ミラー500を用いた場合も、第四実施形態及び第五実施形態と同様に、第一光源132Aから出射されたレーザ光を各ブレード501aより反射して第一配光パターンを形成するとともに、第二光源132Bから出射されたレーザ光を各ブレード501aにより反射して第二配光パターンを形成することができる。そして、第一配光パターンと第二配光パターンとの一部が重複するようにすることで、その重複領域をそれ以外の領域よりも明るくすることができる。
(第六実施形態)
 図36は、第六実施形態に係るランプユニット1130の上面図を示す。図37は、ランプユニット1130が備える回転ミラー1134の上面図を示す。
 図36に示すように、ランプユニット1130は、光源32と、回転ミラー1134と、平凸レンズ36と、蛍光体38と、を備えている。
 図37に示すように、第六実施形態における回転ミラー1134は、回転方向Dに沿って並列して配置される複数(本例では6面)の反射面1134a~1134fから構成されている。反射面1134a~1134fは、全て平面状に形成されている。各反射面1134a~1134fの間の境界部Bは、外向きに突出する凸状湾曲面として形成されている。
 また、図4および図5に示す参考実施形態と同様に、光源32からのレーザ光が反射面1134aで反射されるときの上下方向および前後方向からなる面における反射面1134aと光軸Axとの成す角は、光源32からのレーザ光が他の反射面1134b~1134fで反射されるときの他の各反射面1134b~1134fと光軸Axとの成す角とは異なるように形成されている。例えば、反射面1134bと光軸Axとの成す角は、反射面1134aと光軸Axとの成す角よりもやや小さくなるように形成されている。同様に、反射面1134c、反射面1134d、反射面1134e、反射面1134fの順で、各反射面と光軸Axとの成す角が小さくなるように形成されている。これにより、一の反射面により反射された光は、車両前方の上下方向において他の反射面とは異なる位置に照射される。例えば、反射面1134bで反射された光は、反射面1134aで反射された光よりも上方に照射される。また、反射面1134cで反射された光は、反射面1134bで反射された光よりも上方に照射される。
 図38は、比較例に係るランプユニットの光源32から出射された光が、回転ミラー234の境界部B1で反射された状態を示す上面図である。図39は、図38の回転ミラー234により反射された光で形成された配光パターンP8の一例を示す模式図である。
 図38に示す比較例に係る回転ミラー234は、複数(ここでは6つ)の反射面234a~234fを備えている。各反射面234a~234fの間の境界部B1は、面取りされておらず、角のある境界線を有するエッジ部として形成されている。
 このような回転ミラー234の境界部B1にて反射されたレーザ光は、図38に示すように複数の方向へ散乱し、意図しない方向へ反射してしまう場合がある。これにより、図39に示すように、配光パターンP8の各ラインLA8~LF8の左右方向の両端部においてスポット光LSが発生する可能性がある。そのため、境界部B1が面取りされていない回転ミラー234を用いる場合には、参考実施形態と同様に、光源32から出射されたレーザ光が境界部B1で反射されないように、光源32からのレーザ光の出射方向が境界部B1と交差するタイミングにおいて光源32を消灯させる必要がある。しかしながら、このように各反射面の境界部B1で光が反射されるタイミングで光源32を消灯することで、レーザ光の消灯ロスが生じ、光の利用効率が下がるという不具合がある。
 図40は、第六実施形態に係るランプユニット1130の光源32から出射された光が、回転ミラー1134の境界部Bで反射された状態を示す上面図である。図41は、図40の回転ミラー1134により反射された光で形成された配光パターンP9の一例を示す模式図である。
 図40に示すように、第六実施形態に係る回転ミラー1134によれば、回転ミラー1134の隣接する反射面1134a~1134fの間の境界部Bが面取りされた湾曲面として形成されている。そのため、図41に示すように、境界部Bで反射されたレーザ光は、左右方向の中央部において左右に拡散された状態で照射される。これにより、配光パターンP9の各ラインLA9~LF9の左右方向の中央部(図41の照射領域LT)に光が拡散照射される。すなわち、回転ミラー1134の構成によれば、配光パターンP9の各ラインLA9~LF9の左右方向の両端部においてスポット光(図39のスポット光LSのような光)が発生することを抑制することができる。このため、光源32から出射されたレーザ光が回転ミラー1134の境界部Bで反射されるタイミングにおいても光源32を消灯する必要がない。したがって、消灯ロスに起因するレーザ光の利用効率の低下を防止することができる。また、高速で回転している回転ミラー1134に対して、各反射面1134a~1134fの境界部Bにおける光源32の点消灯の制御が不要となるため、光源32の制御が容易となる。
 なお、図40に示す第六実施形態の回転ミラー1134の各反射面1134a~1134fを構成する平面の回転方向Dに沿った長さは、図38に示す比較例の回転ミラー234の反射面234a~234fを構成する平面の回転方向Dに沿った長さよりも短い。すなわち、第六実施形態の回転ミラー1134の面取りされた反射面1134a~1134fは、比較例の回転ミラー234の面取りされていない反射面234a~234fに比べて、各ラインを形成するために利用可能な長さが短くなる。そのため、図41に示す配光パターンP9のラインLA9~LF9の左右方向の長さは、図39に示す配光パターンP8のラインLA8~LF8の左右方向の長さよりも短くなる。
 境界部Bは、面取りされていればよく、例えば、凸状湾曲面に代えて平面的な面取り部として構成してもよい。ただし、境界部Bにおいて反射されたレーザ光による迷光をできる限り防止するため、境界部Bは両側の反射面から曲面で連続的につながるような面として形成されることが好ましい(図37参照)。
(第五変形例)
 図42は、第五変形例に係るランプユニットが備える回転ミラー334の一例を示す上面図である。
 図42に示すように、第五変形例に係る回転ミラー334は、回転方向Dに沿って並列して配置される複数(本例では6面)の反射面334a~334fで構成されている。反射面334a~334fは、全て平面状に形成されている。反射面334aと反射面334bとの間の境界部B1は、面取りされていない角部として形成されている。同様に、反射面334aと反射面334fとの間の境界部B1および反射面334eと反射面334fとの間の境界部B1も、面取りされていない角部として形成されている。一方で、反射面334bと反射面334cとの間の境界部B、反射面334cと反射面334dとの間の境界部B、および反射面334dと反射面334eとの間の境界部Bは、凸状湾曲面として形成されている。
 図43は、回転ミラー334により反射されたレーザ光で形成された配光パターンP10を示す模式図である。
 反射面334aと反射面334bとの境界部B1で反射されたレーザ光は、複数の方向へ散乱する。そのため、図43に示すように、配光パターンP10のラインLA10およびラインLB10の左右方向の端部の少なくとも一部においてスポット光LSが形成される。同様に、反射面334aと反射面334fとの境界部B1で反射されたレーザ光により、ラインLA10およびラインLF10の左右方向の端部の少なくとも一部においてスポット光LSが形成される。また、反射面334eと反射面334fとの境界部B1で反射されたレーザ光により、ラインLE10およびラインLF10の左右方向の端部の少なくとも一部においてスポット光LSが形成される。このようなスポット光LSの形成を防止するためには、光源32から出射されるレーザ光の出射方向が、面取りされていない境界部B1と交差するタイミングにおいては、光源32を消灯させることが好ましい。
 一方、反射面334bと反射面334cとの境界部Bで反射されたレーザ光により、配光パターンP10のラインLB10とラインLC10にまたがって左右方向の中央部に拡散光が照射される。同様に、面取りされている反射面334cと反射面334dとの境界部Bで反射されたレーザ光により、ラインLC10とラインLD10にまたがって左右方向の中央部に拡散光が照射される。また、面取りされている反射面334dと反射面334eとの境界部Bで反射されたレーザ光により、ラインLD10とラインLE10にまたがって左右方向の中央部に拡散光が照射される。このため、配光パターンP10の上下方向中央領域に形成されるラインLC10およびラインLD10は、その左右方向の中央部に境界部Bで反射された拡散光LTが照射されるものの、左右方向の端部においてはスポット光LSが発生する可能性は低い(図43参照)。
 このように、本変形例によれば、配光パターンP10のうち上下方向の中央部のラインラインLC10,LD10上でのスポット光LSの発生を抑制することができる。ラインLC10,LD10は、対向車に対応する位置に形成されるラインであるため、スポット光LSにより対向車に対してグレアが生じることを防止することができる。
 また、中央部のラインLC10,LD10(第二のラインの一例)を形成するために用いられる回転ミラー334の反射面334c,334dは、凸状湾曲面からなる境界部Bで挟まれている一方で、両側部のラインLA10,LF10(第一のラインの一例)を形成するために用いられる回転ミラー334の反射面334a,334fは、面取りされていない境界部B1で挟まれている。すなわち、反射面334a,334fを構成する平面の回転方向Dに沿った長さは、反射面334c,334dを構成する平面の回転方向Dに沿った長さよりも長い。すなわち、ラインLA10を形成するために利用可能な反射面334aの面積やラインLF10を形成するために利用可能な反射面334fの面積は、面取りされた境界部Bで挟まれた反射面334cや反射面334dよりも広く設定されている。そのため、ラインLA10およびラインLF10については、当該ライン上にスポット光LSが発生する場合があるものの、光の利用効率が上がるため、ラインLC10やラインLD10よりも光度を向上させることができる。したがって、本変形例に係る回転ミラー334の構成によれば、対向車に対するグレアの発生を防止することができるととともに、上下方向中央部のラインの光度を両側部のラインの光度により補うことができる。
(第七実施形態)
 図44~図51は、第七実施形態に係るランプユニット2130の上面図を示す。
 図44~図51に示すようにランプユニット2130は、光源2132と、回転ミラー2134と、平凸レンズ36と、蛍光体38と、を備えている。光源2132は、上下方向において、光軸Axに沿った位置(例えば、光軸Axの真下)に配置されている。
 第七実施形態における回転ミラー2134の反射面は、回転ミラー2134の回転方向Dにおいて複数(本例では6個)の凸部2134a~2134fと複数(本例では6個)の凹部2135a~2135fとが連続的につながるように構成されている。凸部2134a~2134fは、各々が回転軸R側とは反対側に突出する凸状湾曲反射面として形成されている。また、凹部2135a~2135fは、各々が回転軸R側に凹んだ凹状湾曲反射面として形成されている。凸部2134a~2134fは、同じ曲率を有する同形状の凸状湾曲反射面である。凹部2135a~2135fは、同じ曲率を有する同形状の凹状湾曲反射面である。
 凸部2134a~2134fと凹部2135a~2135fとは、回転方向Dに沿って交互に配置されている。以下の説明において、凸部2134a~2134fと凹部2135a~2135fとにおける隣り合う凸部と凹部との境界、すなわち凸状湾曲から凹状湾曲へと切替わる境界および凹状湾曲から凸状湾曲へと切替わる境界のことを「変曲点」という。例えば、凸部2134aと凹部2135aとにおける凸状湾曲と凹状湾曲の境界を変曲点aa、凹部2135aと凸部2134bとにおける凹状湾曲と凸状湾曲の境界を変曲点abという。また、凸部2134fと凹部2135fにおける凸状湾曲と凹状湾曲の境界を変曲点ff、凹部2135fと凸部2134aにおける凹状湾曲と凸状湾曲の境界を変曲点faという。
 凸部2134a~2134fのうち、凸部2134aと凸部2134dとは対角線上の反対側に配置されている。同様に、凸部2134bと凸部2134e、凸部2134cと凸部2134fとは対角線上の反対側に配置されている。また、凹部2135a~2135fのうち、凹部2135aと凹部2135dとは対角線上の反対側に配置されている。同様に、凹部2135bと凹部2135e、凹部2135cと凹部2135fとは対角線上の反対側に配置されている。
 図44は、光源2132から出射されたレーザ光が回転ミラー2134の凸部2134aにおける頂点Tで反射したときの様子を示している。図44に示すように、凸部2134aの頂点Tで反射したレーザ光Ltaは、ランプユニット2130の左右方向において光軸Axと略同じ方向へ進行するように構成されている。
 図45は、回転ミラー2134が図44の位置から回転方向Dへ回転して、光源2132から出射されたレーザ光が回転ミラー2134における凸部2134aの頂点Tと変曲点aaとの間で反射したときの様子を示している。図45に示すように、凸部2134aの頂点Tと変曲点aaとの間で反射したレーザ光は、ランプユニット2130の左右方向において光軸Axの方向から左方向に角度WL1だけ外れた方向に進行するように構成されている。
 図46は、回転ミラー2134が図45の位置から回転方向Dへ回転して、光源2132から出射されたレーザ光が回転ミラー2134の変曲点aaで反射したときの様子を示している。図46に示すように、変曲点aaで反射したレーザ光は、ランプユニット2130の左右方向において光軸Axの方向から左方向に角度WL2だけ外れた方向に進行するように構成されている。変更点aaで反射したレーザ光の進行方向と光軸Axとの成す角度WL2は、凸部2134aの頂点Tと変曲点aaとの間で反射したレーザ光の進行方向と光軸Axとの成す角度WL1よりも大きくなる。変曲点aaで反射したレーザ光の進行方向と光軸Axとのなす角度WL2、すなわち凸状湾曲から凹状湾曲へと切替わる境界で反射したレーザ光の進行方向と光軸Axとの成す角度が、レーザ光の進行方向が光軸Axから左方向に外れた場合の最大角度になる。
 図47は、回転ミラー2134が図46の位置から回転方向Dへ回転して、光源2132から出射されたレーザ光が回転ミラー2134における変曲点aaと凹部2135aの底点Sとの間で反射したときの様子を示している。図47に示すように、変曲点aaと凹部2135aの底点Sとの間で反射したレーザ光は、ランプユニット2130の左右方向において光軸Axの方向から左方向に角度WL3だけ外れた方向に進行するように構成されている。変曲点aaと凹部2135aの底点Sとの間で反射したレーザ光の進行方向と光軸Axとの成す角度WL3は、変更点aaで反射したレーザ光の進行方向と光軸Axとの成す角度WL2よりも小さくなる。
 図48は、回転ミラー2134が図47の位置から回転方向Dへ回転して、光源2132から出射されたレーザ光が回転ミラー2134の凹部2135aにおける底点Sで反射したときの様子を示している。図48に示すように、凹部2135aの底点Sで反射したレーザ光Lsaは、ランプユニット2130の左右方向において光軸Axと略同じ方向へ進行するように構成されている。
 図49は、回転ミラー2134が図48の位置から回転方向Dへ回転して、光源2132から出射されたレーザ光が回転ミラー2134における凹部2135aの底点Sと変曲点abとの間で反射したときの様子を示している。図49に示すように、凹部2135aの底点Sと変曲点abとの間で反射したレーザ光は、ランプユニット2130の左右方向において光軸Axの方向から右方向に角度WR1だけ外れた方向に進行するように構成されている。
 図50は、回転ミラー2134が図49の位置から回転方向Dへ回転して、光源2132から出射されたレーザ光が回転ミラー2134の変曲点abで反射したときの様子を示している。図50に示すように、変曲点abで反射したレーザ光は、ランプユニット2130の左右方向において光軸Axの方向から右方向に角度WR2だけ外れた方向に進行するように構成されている。変更点abで反射したレーザ光の進行方向と光軸Axとの成す角度WR2は、凹部2135aの底点Sと変曲点abとの間で反射したレーザ光の進行方向と光軸Axとの成す角度WR1よりも大きくなる。変曲点abで反射したレーザ光の進行方向と光軸Axとの成す角度WR2、すなわち凹状湾曲から凸状湾曲へと切替わる境界で反射したレーザ光の進行方向と光軸Axとの成す角度が、レーザ光の進行方向が光軸Axから右方向に外れた場合の最大角度になる。
 図51は、回転ミラー2134が図50の位置から回転方向Dへ回転して、光源2132から出射されたレーザ光が回転ミラー2134における変曲点abと凸部2134bの頂点Tとの間で反射したときの様子を示している。図51に示すように、変曲点abと凸部2134bの頂点Tとの間で反射したレーザ光は、ランプユニット2130の左右方向において光軸Axの方向から右方向に角度WR3だけ外れた方向に進行するように構成されている。変曲点abと凸部2134bの頂点Tとの間で反射したレーザ光の進行方向と光軸Axとの成す角度WR3は、変更点abで反射したレーザ光の進行方向と光軸Axとの成す角度WR2よりも小さくなる。
 なお、図示は省略するが、回転ミラー2134が図51の位置から回転方向Dへ回転して、光源2132から出射されたレーザ光が凸部2134bの頂点Tで反射すると、図44に示す凸部2134aの頂点Tで反射した場合と同様にレーザ光は光軸Axと略同じ方向へ進行する。そして、凸部2134bの頂点Tから凹部2135bを通って次の凸部2134cの頂点Tに達するまでの反射面により、上述した図44から図51に至るまでの一連のレーザ光の反射が繰り返される。
 このように、一つの凸部とその凸部に隣接する一つの凹部とにより反射されたレーザ光によって、ランプユニット2130の左右方向における一往復を走査する走査ラインが形成される。
 図4及び図5に示す参考実施形態と同様に、光源2132からのレーザ光が一つの凸部で反射されるときの当該凸部と光軸Axとの成す角は、光源2132からのレーザ光が当該凸部と隣り合う一つの凹部で反射されるときの当該凹部と光軸Axとの成す角と異なるように形成されている。例えば、光源2132からのレーザ光が隣り合う凹部2135aで反射されるときの凹部2135aと光軸Axとの成す角は、光源2132からのレーザ光が凸部2134aで反射されるときの当該凸部2134aと光軸Axとの成す角よりもやや小さくなるように形成されている。同様に、凸部2134b、凹部2135b、凸部2134c、凹部2135c、凸部2134dの順で、各反射面の頂点における面と光軸Axとの成す角が小さくなるように形成されている。これにより、凸部2134aの頂点Tにより反射されたレーザ光Ltaは、車両前方の上下方向において隣り合う凹部2135aの底点Sにより反射されたレーザ光Lsaとは異なる位置に照射される。例えば、凹部2135aの底点Sで反射されたレーザ光Lsaは、図52に示す配光パターンP11において、凸部2134aの頂点Tで反射されたレーザ光Ltaよりも上方に照射される。また、凸部2134bの頂点Tで反射されたレーザ光Ltbは、凹部2135aの底点Sで反射されたレーザ光Lsaよりも上方に照射される。
 また、凹部2135dは、その底点における上下方向および前後方向にからなる面と光軸Axとの成す角が凹部2135cの底点における上下方向および前後方向からなる面と光軸Axとの成す角と同一となるように形成されている。これにより、凹部2135dの底点により反射されたレーザ光Lsdは、車両前方の上下方向において凹部2135cの底点により反射されたレーザ光Lscと同一の位置に照射される。同様に、凸部2134eの頂点における面と光軸Axとの成す角は、凸部2134cの頂点における面と光軸Axとの成す角と同一となるように形成されている。これにより、凸部2134eの頂点により反射されたレーザ光Lteは、車両前方の上下方向において凸部2134cの頂点により反射されたレーザ光Ltcと同一の位置に照射される。また、凹部2135eの底点における面と光軸Axとの成す角は、凹部2135bの底点における面と光軸Axとの成す角と同一となるように形成されている。これにより、凹部2135eの底点により反射されたレーザ光Lseは、車両前方の上下方向において凹部2135bの底点により反射されたレーザ光Lsbと同一の位置に照射される。また、凸部2134fの頂点における面と光軸Axとの成す角は、凸部2134bの頂点における面と光軸Axとの成す角と同一となるように形成されている。これにより、凸部2134fの頂点により反射されたレーザ光Ltfは、車両前方の上下方向において凸部2134bの頂点により反射されたレーザ光Ltbと同一の位置に照射される。また、凹部2135fの底点における面と光軸Axとの成す角は、凹部2135aの底点における面と光軸Axとの成す角と同一となるように形成されている。これにより、凹部2135fの底点により反射されたレーザ光Lsfは、車両前方の上下方向において凹部2135aの底点により反射されたレーザ光Lsaと同一の位置に照射される。
 なお、隣接する凸部と凹部との境界は、光軸Axに対する傾斜面の角度が緩やかに変化するように形成されていることが好ましい。これにより、後述する配光パターンP6の折り返し部分を違和感なく形成することができる。
 図52は、第七実施形態に係るランプユニット2130により車両前方に形成される配光パターンP11を車両側から観察した図である。
 図52に示すように、配光パターンP11は、レーザ光により形成される複数のライン(L11~L17)を含んでいる。光源2132から出射されたレーザ光は、回転ミラー2134の凸部2134a~2134fおよび凹部2135a~2135fにより反射され、蛍光体38を介して平凸レンズ36を透過する。本例では、参考実施形態と同様に、平凸レンズ36の後方焦点は、蛍光体38の光出射面近傍に設定されているため、蛍光体38の光出射面上の光源像が上下左右反転して配光パターンP11が形成される。
 具体的には、凸部2134aにおける変曲点faから頂点Tを通り変曲点aaまで反射されたレーザ光により、図52に示す配光パターンP11のうち最下部の第一ラインL11が形成される。ここで、凸部2134aの頂点Tで反射されたレーザ光Ltaは、最下部の第一ラインL11の中央部に照射される。このように、変曲点faから頂点Tを通り変曲点aaまで反射されたレーザ光は、第一ラインL11の左端部から中央部を通り右端部へ向けて走査される。
 続いて、凹部2135aにおける変曲点aaから底点Sを通り変曲点abにおいて反射されたレーザ光により、第一ラインL11の上側に第二ラインL12が形成される。ここで、凸部2134aと凹部2135aとの間の変曲点aaで反射されたレーザ光Laaは、第一ラインL11と第一ラインL11の上側に配置される第二ラインL12との折り返し部分に照射される。また、凹部2135aの底点Sで反射されたレーザ光Lsaは、第二ラインL12の中央部に照射される。このように、変曲点aaから底点Sを通り変曲点abにおいて反射されたレーザ光は、第二ラインL12の右端部から中央部を通り左端部へ向けて走査される。
 続いて、凸部2134bにおける変曲点abから頂点Tを通り変曲点bbにおいて反射されたレーザ光により、第二ラインL12の上側に第三ラインL13が形成される。ここで、凸部2134bの頂点Tで反射されたレーザ光Ltbは、第二ラインL13の中央部に照射される。このように、変曲点abから頂点Tを通り変曲点bbにおいて反射されたレーザ光は、第三ラインL13の左端部から中央部を通り右端部へ向けて走査される。
 続いて、凹部2135bにおける変曲点bbから底点Sを通り変曲点bcにおいて反射されたレーザ光により、第三ラインL13の上側に第四ラインL14が形成される。ここで、凹部2135bの底点Sで反射されたレーザ光Lsbは、第四ラインL14の中央部に照射される。このように、変曲点bbから底点Sを通り変曲点bcにおいて反射されたレーザ光は、第四ラインL14の右端部から中央部を通り左端部へ向けて走査される。
 続いて、凸部2134cにおける変曲点bcから頂点Tを通り変曲点ccにおいて反射されたレーザ光により、第四ラインL14の上側に第五ラインL15が形成される。ここで、凸部2134cの頂点Tで反射されたレーザ光Ltcは、第五ラインL15の中央部に照射される。このように、変曲点bcから頂点Tを通り変曲点ccにおいて反射されたレーザ光は、第五ラインL15の左端部から中央部を通り右端部へ向けて走査される。
 続いて、凹部2135cにおける変曲点ccから底点Sを通り変曲点cdにおいて反射されたレーザ光により、第五ラインL15の上側に第六ラインL16が形成される。ここで、凹部2135cの底点Sで反射されたレーザ光Lscは、第六ラインL16の中央部に照射される。このように、変曲点ccから底点Sを通り変曲点cdにおいて反射されたレーザ光は、第六ラインL16の右端部から中央部を通り左端部へ向けて走査される。
 続いて、凸部2134dにおける変曲点cdから頂点Tを通り変曲点ddにおいて反射されたレーザ光により、第六ラインL16の上側に第七ラインL17が形成される。ここで、凸部2134dの頂点Tで反射されたレーザ光Ltdは、第七ラインL17の中央部に照射される。このように、変曲点cdから頂点Tを通り変曲点ddにおいて反射されたレーザ光は、第七ラインL17の左端部から中央部を通り右端部へ向けて走査される。
 続いて、凹部2135dにおける変曲点ddから底点Sを通り変曲点deにおいて反射されたレーザ光により、第七ラインL17の下側の第六ラインL16が形成される。ここで、凹部2135dの底点Sで反射されたレーザ光Lsdは、第六ラインL16の中央部、すなわち、凹部2135cの底点Sで反射されたレーザ光Lscと同一の位置に照射される。このように、変曲点ddから底点Sを通り変曲点deにおいて反射されたレーザ光は、第六ラインL16の右端部から中央部を通り左端部へ向けて走査される。
 続いて、凸部2134eにおける変曲点deから頂点Tを通り変曲点eeにおいて反射されたレーザ光により、第六ラインL16の下側の第五ラインL15が形成される。ここで、凸部2134eの頂点Tで反射されたレーザ光Lteは、第五ラインL15の中央部、すなわち、凸部2134cの頂点Tで反射されたレーザ光Ltcと同一の位置に照射される。このように、変曲点deから頂点Tを通り変曲点eeにおいて反射されたレーザ光は、第五ラインL15の左端部から中央部を通り右端部へ向けて走査される。
 続いて、凹部2135eにおける変曲点eeから底点Sを通り変曲点efにおいて反射されたレーザ光により、第五ラインL15の下側の第四ラインL14が形成される。ここで、凹部2135eの底点Sで反射されたレーザ光Lseは、第四ラインL14の中央部、すなわち、凹部2135bの底点Sで反射されたレーザ光Lsbと同一の位置に照射される。このように、変曲点eeから底点Sを通り変曲点efにおいて反射されたレーザ光は、第四ラインL14の右端部から中央部を通り左端部へ向けて走査される。
 続いて、凸部2134fにおける変曲点efから頂点Tを通り変曲点ffにおいて反射されたレーザ光により、第四ラインL14の下側の第三ラインL13が形成される。ここで、凸部2134fの頂点Tで反射されたレーザ光Ltfは、第三ラインL13の中央部、すなわち、凸部2134bの頂点Tで反射されたレーザ光Ltbと同一の位置に照射される。このように、変曲点efから頂点Tを通り変曲点ffにおいて反射されたレーザ光は、第三ラインL13の左端部から中央部を通り右端部へ向けて走査される。
 続いて、凹部2135fにおける変曲点ffから底点Sを通り変曲点faにおいて反射されたレーザ光により、第三ラインL13の下側の第二ラインL12が形成される。ここで、凹部2135fの底点Sで反射されたレーザ光Lsfは、第二ラインL12の中央部、すなわち、凹部2135aの底点Sで反射されたレーザ光Lsaと同一の位置に照射される。このように、変曲点ffから底点Sを通り変曲点faにおいて反射されたレーザ光は、第二ラインL12の右端部から中央部を通り左端部へ向けて走査される。
 そして、再び、凸部2134aにおける変曲点faから頂点Tを通り変曲点aaまで反射されたレーザ光が、第二ラインL12の下側であって配光パターンP11の最下部の第一ラインL11の左端部から中央部を通り右端部へ向けて走査されることで、第一ラインL11が形成される。
 ところで、例えば、回転ミラーが上面視において平面状の反射面を多角形状に配置したポリゴンミラーで構成されている場合、各反射面の間の境界で光源からのレーザ光が反射されると、レーザ光が散乱して不適切な配光が形成されるおそれがある。そこで、このレーザ光の散乱を防止するために、各反射面の間の境界と光源からのレーザ光の光線が交差するタイミングで光源を消灯するように光源の点消灯を制御することが考えられる。この光源を消灯するタイミングは、配光パターンの左右方向における両端部を形成するタイミングに相当する。しかしながら、このタイミングで光源を消灯すると、配光パターンの左右方向の両端部を形成する際のレーザ光の消灯ロスが生じるという不具合がある。
 これに対して、上記第七実施形態に係るランプユニット2130の回転ミラー2134は、凸部2134a~2134fと凹部2135a~2135fにより構成されている。すなわち、凸状に湾曲した反射面2134a~2134fと凹状に湾曲した反射面2135a~2135fとが回転方向Dに沿って連続的に交互に配置されている。この構成によれば各凸部と凹部との境界(変曲点)にエッジ部が発生しないので、凸部と凹部との境界で反射するレーザ光が散乱することがない。このため、配光パターンP11を構成する各ラインL11~L17の左右方向における両端部を形成する際に光源2132を消灯する必要がなくなる。したがって、消灯ロスに起因するレーザ光の利用効率の低下を防止することができる。また、高速で回転している回転ミラー2134に対して反射面の境界領域における光源2132の点消灯の制御をなくすことができるので光源2132の制御が容易となる。
 また、隣接する一つの凸部と一つの凹部とにより反射されたレーザ光によって配光パターンP11の左右方向(レーザ光の走査方向)における一往復の走査ラインを形成することができる。これにより、各走査ラインの両端部において光源を消灯することなく、一往復のラインを連続的に形成することができる。
 また、凸部2134a~2134fと凹部2135a~2135fとが回転方向Dに沿って交互に配置されているので、配光パターンP11の全体領域にわたって均一なレーザ光を照射することができる。
 また、凸部および凹部と光軸Axとの成す角(傾斜面の角度)が、例えば、凸部2134aから凹部2135a、凸部2134b、凹部2135b、凸部2134c、凹部2135c、凸部2134dの順に少しずつ小さくなるように構成されている。さらに、凸部および凹部と光軸Axとの成す角(傾斜面の角度)が、凸部2134dから凹部2135d、凸部2134e、凹部2135e、凸部2134f、凹部2135f、凸部2134aの順に少しずつ大きくななるように構成されている。このため、回転ミラー2134による配光パターンP11の左右方向へのレーザ光の走査を左端部から右方向に走査して右端部まで達したら、走査を上方向に一段ずらして今度は右端部から左方向に向けて走査することが可能である。また、配光パターンP11の最上部のラインを走査したら、今度は最上部のラインの一段下のラインから順に下側のラインへと走査することが可能である。このため、各走査ライン間において切れ目のない連続的な走査により均一な配光パターンP11を形成することができる。
(第八実施形態)
 図53は、第八実施形態において、図2の光学ユニットにより車両前方に形成される配光パターンP12の一例を示す模式図である。制御装置は、モータ40に備わるセンサが取得した情報に基づき、回転ミラー34の回転角度(周方向の位置)を特定する。制御装置は、当該特定された回転ミラー34の回転角度に基づき、配光パターンP12の中央部分CRの光度を中央部分CR以外の部分(例えば、配光パターンP12の左右端)の光度よりも高くするように制御する。例えば、当該制御装置は、光が反射面34a~34lの中央部に当たるときの光の出力を100%に制御する。一方、当該制御装置は、光源32の光が反射面34a~34lの中央部以外の部分に当たるときの光の出力を80%に制御する。これにより、第八実施形態に係る車両用前照灯10を備える車両においては、当該車両の前方中央を重点的に照らすことができる。
 制御装置は、光源32の光の出力を強めることもできる。例えば、通常時における光源32の光の出力が80%である場合において、光が反射面34a~34lの中央部に当たるとき、当該制御装置は、光源32の光の出力を100%に制御する。このようにして、配光パターンP12の中央部分CRの光度を中央部分CR以外の部分の光度よりも高くしてもよい。
 制御装置は、光源32の光が反射面34a~34lの中央部又は当該中央部に当たるとき以外においても、光の出力を強める又は弱めることができる。このため、第八実施形態に係る車両用前照灯10を備える車両においては、当該車両が備えるLIDAR等のセンサから得られた情報に基づき、ある特定の歩行者や対象物等に対して重点的に光を照射することができる。
(第九実施形態)
 図54~58は、第九実施形態に係るランプユニット1140の構成を示す上面図である。
 図54~58に示すように、ランプユニット1140は、光源1142と、回転ミラー1144と、平凸レンズ36と、蛍光体38とを備えている。光源1142は、上下方向において、光軸Axに沿った位置(例えば、光軸Axの真下)に配置されている。光源1142は、第一実施形態に係る制御装置と同様の制御装置(図示せず)により、点消灯の制御が可能となっている。
 回転ミラー1144は、回転ミラー1144の外方向に突出した6つの凸状湾曲面(凸部の一例)として形成された反射面1144a,1144c,1144e,1144g,1144i,1144kと、回転ミラー1144の回転軸R側に凹んだ6つの凹状湾曲面(凹部の一例)として形成された反射面1144b,1144d,1144f,1144h,1144j,1144lとを有している。具体的には、回転方向Dに沿って、凸状反射面1144a、凹状反射面1144b、凸状反射面1144c、凹状反射面1144d、凸状反射面1144e、凹状反射面1144f、凸状反射面1144g、凹状反射面1144h、凸状反射面1144i、凹状反射面1144j、凸状反射面1144k、凹状反射面1144lの順で凸状反射面と凹状反射面とが交互に連続するように形成されている。
 このように構成された回転ミラー1144において、例えば、光源1142から出射されて凸状反射面1144aの頂点で反射されたレーザ光Laは、左右方向において光軸Axに沿った方向に向かって進行する(図54参照)。回転ミラー1144が図54の位置から回転方向Dに沿って回転されていくにつれて、反射光の進行方向は光軸Axから左側へ徐々に移動する。そして、凸状反射面1144aと凹状反射面1144bとの間の変曲点x1で反射されたレーザ光Lx1は、左右方向におけるレーザ光の拡散角度(拡散領域)の左端の位置に向かって進行する(図55参照)。続けて、回転ミラー1144が図55の位置から回転方向Dに沿って回転されていくにつれて、反射光の進行方向が左端位置から折り返されて、右側へ徐々に移動する。そして、凹状反射面1144bの底点で反射されたレーザ光Lbは、左右方向において光軸Axに沿った方向に向かって進行する(図56参照)。回転ミラー1144が図56の位置から回転方向Dに沿ってさらに回転されていくにつれて、反射光の進行方向は光軸Axからさらに右側へ徐々に移動する。そして、凹状反射面1144bと凸状反射面1144cとの間の変曲点x2で反射されたレーザ光Lx2は、左右方向におけるレーザ光の拡散角度(拡散領域)の右端の位置に向かって進行する(図57参照)。続けて、回転ミラー1144が図57の位置から回転方向Dに沿ってさらに回転されていくにつれて、反射光の進行方向が右端位置から折り返されて、左側へ徐々に移動する。そして、凸状反射面1144cの頂点で反射されたレーザ光Lcは、左右方向において光軸Axに沿った方向に向けて反射される(図58参照)。
 また、光源1142からのレーザ光が凸状反射面1144aの頂点で反射されるときの上下方向および前後方向からなる面における凸状反射面1144aと光軸Axとの成す角は、光源1142からのレーザ光が他の反射面1144b~1144lの頂点または底点で反射されるときの上下方向および前後方向からなる面における他の反射面1144b~1144lと光軸Axとの成す角とは異なるように形成されている。例えば、凹状反射面1144bの底点における面と光軸Axとの成す角は、凸状反射面1144aの頂点における面と光軸Axとの成す角よりもやや小さくなるように形成されている。同様に、凸状反射面1144c、凹状反射面1144d、凸状反射面1144e、凹状反射面1144f、凸状反射面1144gの順で、各反射面の頂点または底点における面と光軸Axとの成す角が小さくなるように形成されている。これにより、凸状反射面1144aの頂点により反射された光は、車両前方の上下方向において他の反射面1144b~1144lの頂点により反射された光とは異なる位置に照射される。例えば、凹状反射面1144bの底点で反射された光は、凸状反射面1144aの頂点で反射された光よりも上方に照射される。また、凸状反射面1144cの頂点で反射された光は、凹状反射面1144bの底点で反射された光よりも上方に照射される。
 また、凹状反射面1144hは、その底点における上下方向および前後方向にからなる面と光軸Axとの成す角が凹状反射面1144fの底点における上下方向および前後方向からなる面と光軸Axとの成す角と同一となるように形成されている。これにより、凹状反射面1144hの底点により反射された光は、車両前方の上下方向において凹状反射面1144fの底点により反射された光と同一の位置に照射される。同様に、凸状反射面1144iの頂点における面と光軸Axとの成す角は、凸状反射面1144eの頂点における面と光軸Axとの成す角と同一となるように形成されている。これにより、凸状反射面1144iの頂点により反射された光は、車両前方の上下方向において凸状反射面1144eの頂点により反射された光と同一の位置に照射される。凹状反射面1144jの底点における面と光軸Axとの成す角は、凹状反射面1144dの底点における面と光軸Axとの成す角と同一となるように形成されている。これにより、凹状反射面1144jの底点により反射された光は、車両前方の上下方向において凹状反射面1144dの底点により反射された光と同一の位置に照射される。凸状反射面1144kの頂点における面と光軸Axとの成す角は、凸状反射面1144cの頂点における面と光軸Axとの成す角と同一となるように形成されている。これにより、凸状反射面1144kにより反射された光は、車両前方の上下方向において凸状反射面1144cにより反射された光と同一の位置に照射される。凹状反射面1144lの底点における面と光軸Axとの成す角は、凹状反射面1144bの底点における面と光軸Axとの成す角と同一となるように形成されている。これにより、凹状反射面1144lにより反射された光は、車両前方の上下方向において凹状反射面1144bにより反射された光と同一の位置に照射される。
 なお、隣接する反射面の境界は、光軸Axに対する傾斜面の角度が緩やかに変化するように形成されていることが好ましい。これにより、後述する配光パターンP13の折り返し部分を違和感なく形成することができる。
 図59は、図54の光学ユニットにより車両前方に形成される配光パターンP13の模式図である。
 図59に示すように、配光パターンP13は、レーザ光により形成されるラインが左右方向において複数の段を形成するように往復されることにより形成される。光源1142から出射されたレーザ光は、回転ミラー1144の各反射面1144a~1144lにより反射され、蛍光体38を介して平凸レンズ36を透過する。本例では、平凸レンズ36の後方焦点は、蛍光体38の光出射面上に設定されているため、蛍光体38の光出射面上の光源像が上下左右反転して配光パターンP13が形成される。
 具体的には、凸状反射面1144aの頂点で反射されたレーザ光Laにより、配光パターンP13を形成する最下部のラインLA13の始点が形成される。ラインLA13の始点は、仮想スクリーンの垂直軸V-V上に形成されている。続けて、凸状反射面1144aの頂点から凸状反射面1144aと凹状反射面1144bとの間の変曲点x1まで反射されたレーザ光により、ラインLA13が始点から右端に向けて形成される。そして、変曲点x1で反射されたレーザ光Lx1により、ラインLA13の右端位置においてラインLA13と当該ラインLA13の上側に形成されるラインLB13との折り返し部分が形成される。続けて、変曲点x1から凹状反射面1144bの底点まで反射されたレーザ光により、ラインLB13がラインLA13との折り返し部分から左側に向けて形成される。そして、凹状反射面1144bの底点で反射されたレーザ光Lbにより、ラインLB13の左右方向における中央部が形成される。続けて、凹状反射面1144bの底点から凹状反射面1144bと凸状反射面1144cとの間の変曲点x2まで反射されたレーザ光により、ラインLB13が中央部から左端に向けて形成される。そして、変曲点x2で反射されたレーザ光Lx2により、ラインLB13の左端位置においてラインLB13と当該ラインLB13の上側に形成されるラインLC13との折り返し部分が形成される。続けて、変曲点x2から凸状反射面1144cの頂点まで反射されたレーザ光により、ラインLC13が折り返し部分から右側に向けて形成される。そして、凸状反射面1144cの頂点で反射されたレーザ光Lcにより、ラインLC13の左右方向における中央部が形成される。続けて、凸状反射面1144cの頂点から凸状反射面1144cと凹状反射面1144dとの間の変曲点まで反射されたレーザ光により、ラインLC13が中央部から右端に向けて形成される。
 同様に、凹状反射面1144d、凸状反射面1144e、凹状反射面1144f、凸状反射面1144gの順で反射されたレーザ光により、ラインLC13の上側のラインLD13、ラインLD13の上側のラインLE13、ラインLE13の上側のラインLF13、ラインLF13の上側のラインLG13がそれぞれ折り返されて形成される。
 また、凸状反射面1144gと凹状反射面1144hとの間の変曲点付近で反射されたレーザ光によりラインLG13から下側のラインLF13へと配光パターンが折り返される。そして、凹状反射面1144h、凸状反射面1144i、凹状反射面1144j、凸状反射面1144k、凹状反射面1144lにより反射されたレーザ光により、ラインLF13、ラインLE13、ラインLD13、ラインLC13、ラインLB13の順で光が照射される。最後に、凹状反射面1144lと凸状反射面1144aとの間の変曲点付近で反射されたレーザ光により、ラインLB13から下側のラインLA13へと配光パターンが折り返され、凸状反射面1144aの頂点により反射されたレーザ光により最下部のラインLA13の始点が再び照射される。
 このように、回転ミラー1144の回転方向Dに沿った回転に伴って各反射面1144a~1144lによりレーザ光が反射されることにより、レーザ光が左右方向に折り返されながら車両前方に照射され、配光パターンP13を構成する複数のラインLA13~LG13が上下方向に連続的に形成される。
 図60は、光源1142から出射される光の出力が一定である場合における配光パターンP13の一例を示す模式図である。図60に示すように、光源1142から出射される光の出力が一定である場合、配光パターンP13の左端LE及び右端REにおける光度は、他の部分における光度と比べて高くなる。これは、光源1142の光が凸状反射面と凹状反射面との間の変曲点及びその近傍に当たると、走査速度が相対的に遅くなり、左端LE及び右端REにおける光の照射時間が長くなるからである。この結果、左端LE及び右端REに光溜まりが生じる。このため、左端LE及び右端REにおいては、他の部分と比べて、視認性に違和感が生じる。
 光源1142の光が凸状反射面と凹状反射面との間の変曲点及びその近傍に当たるとき、制御装置は、光の出力が他の部分(例えば中央部分CR13)より弱くなるように制御する。例えば、制御装置は、凸状反射面と凹状反射面との間の変曲点及びその近傍へ光を照射する際の光源の出力を20%程度に制御する。この場合、配光パターンP13の左端LE及び右端REにおける光度は、他の部分における光度と同程度またはそれ以下となる。このため、左端LE及び右端REに光溜まりは生じない。この結果、左端LE及び右端REにおける視認性の違和感は生じにくくなる。
 さらにこの場合、光源1142の光が凸状反射面と凹状反射面との間の変曲点に当たるときの光源1142の消費電力は小さくなる。このため、第九実施形態の光学ユニットは、光源1142の消費電力の低減に寄与する。
 制御装置は、光源1142の光が凸状反射面と凹状反射面との間の変曲点に当たるとき以外においても、光の出力を強める又は弱めることができる。例えば、制御装置は、光源1142の光が凸状反射面と凹状反射面との間の変曲点に当たるときの光の出力を30%に、反射面1144a~1144lの頂点に当たるときの光の出力を100%に、これら以外の部分に当たるときの光の出力を70%に制御する。そうすると、中央部分CR13の光度は、他の部分(例えば、左端LE及び右端RE)の光度と比べて高くなる。このように、当該制御装置はラインの光度の調整を自在に制御することができる。このため、第九実施形態に係る車両用前照灯10を備える車両においては、当該車両が備えるLIDAR等のセンサから得られた情報に基づき、ある特定の歩行者や対象物等に対して重点的に光を照射することができる。
 さらに、第八実施形態及び第九実施形態において、制御装置は、本実施形態に係る車両用前照灯10を備える車両の位置情報に基づき、光の出力を強める又は弱めることができる。例えば、当該車両が備えるGPSにより取得された車両の位置情報から、制御装置が、当該車両が高速道路を走行していると判断した場合、光は車両前方の中央部分に重点的に照射される。
 第八実施形態及び第九実施形態に係る光照射装置によれば、光源1142から出射される光の出力を自在に変化させることができる。このため、光を重点的に照射したい箇所の光度を高くするなど、光度をより細やかに調整することができる。
 上記第八及び第九実施形態で用いたポリゴンミラー34の代わりに、ブレードスキャン方式の回転ミラー(回転リフレクタ)500を用いてもよい(図14参照)。制御装置は、第八実施形態で説明したように、光源32の光の出力を制御する。このため、ポリゴンミラー34の代わりに回転ミラー500を用いた光照射装置についても、光を重点的に照射したい箇所の光度を高くするなど、光度をより細やかに調整することができる。
 上記の第八実施形態及び第九実施形態において、制御装置は、配光パターンP12のラインLA12~LF12の全て、または配光パターンP13のラインLA13~LF13の全てについて、光の出力を一律に制御しているがこの例に限られない。制御装置は、一つのラインだけ、他のラインと光度が異なるように光の出力を制御してもよいし、ラインごとに光度を異なるように光の出力を制御させてもよい。
 上記の第八実施形態及び第九実施形態においては、上面視において12面体の回転ミラー34を用い、対角線上に配置された一対の反射面により反射された光が配光パターンのうち同一のラインを形成しているが、この例に限られない。例えば、1つの反射面により反射された光により1つのラインを形成するようにしてもよい。この場合は、例えば、配光パターンが6つのラインから構成されるとすると、回転ミラーは、上面視において6面体として形成され、回転方向に沿って6つの反射面を備えることとなる。
(第十実施形態)
 第十実施形態に係るハイビーム用のランプユニット3030は、図61~図64に示すように、光源32と、リフレクタとしての回転ミラー3034と、回転ミラー3034の前方に配置された投影レンズとしての平凸レンズ36と、回転ミラー3034と平凸レンズ36との間に配置された蛍光体38と、を備えている。
 図61に示されるように、回転ミラー3034は、皿状部材341と、複数の支柱342と、複数の反射板343(環状ミラーの一例)と、を含む。回転ミラー3034は、駆動源としてのモータ40に回転自在に接続されている。回転ミラー3034は、モータ40により回転軸Rを中心に回転方向Dに回転する。回転ミラー3034の回転軸Rは、光軸Axに対して斜めになっている(図63参照)。このため、光源32の光を用いた走査が可能となる。
 複数の反射板343は略四角形の板状の部材である。複数の反射板343は、多角形状の環状に連なって環状ミラーを構成している。環状に連なった反射板343の内側を向いた面は、アルミ蒸着等で、反射面として形成されている。本実施形態では、12枚の反射板343a~343lが配置されている(図62参照)。
 皿状部材341は略円形である。皿状部材341の底面はモータ40の上面及び底面よりも大きい。複数の支柱342は、上下方向に延びる細い棒状部材である。本実施形態では、12本の支柱342が配置されている。複数の支柱342は、複数の反射板343間のエッジから下方向に延びるように配置されている。複数の支柱342は、皿状部材341の周上に一定の間隔で配置されている。すなわち、複数の支柱342間には隙間が形成されている。このため、光源32から照射された光は、複数の支柱342の間を通過することができる。光源32から照射されたレーザ光は、回転ミラー3034の回転軸Rに対して後方に位置し、反射板343a~343lの内側に設けられた反射面344a~344lによって反射される(図62参照)。反射されたレーザ光は、蛍光体38上に走査される。各支柱342において、支柱342のいずれか一つは、反射板343間のエッジのいずれか一つと対角線上に位置する。
 ここで、反射板343の内側に設けられた反射面344a~344lのうち、反射面344aと、当該反射面344aと対角線上の反対側に位置する反射面344gとを、第一反射面対344Aとする。反射面344bと、当該反射面344bと対角線上の反対側に位置する反射面344hとを、第二反射面対344Bとする。反射面344cと、当該反射面344cと対角線上の反対側に位置する反射面344iとを、第三反射面対344Cとする。反射面344dと、当該反射面344dと対角線上の反対側に位置する反射面344jとを、第四反射面対344Dとする。反射面344eと、当該反射面344eと対角線上の反対側に位置する反射面344kとを、第五反射面対344Eとする。反射面344fと、当該反射面344fと対角線上の反対側に位置する反射面344lとを、第六反射面対344Fとする。
 第一反射面対344Aは、光源32からのレーザ光が反射面344aで反射されるときの(すなわち、図62および図63に示すような配置関係の場合の)上下方向および前後方向からなる面における反射面344aと光軸Axとの成す角θaと、光源32からのレーザ光が反射面344gで反射されるときの上下方向および前後方向からなる面における反射面344gと光軸Axとの成す角が略同一となるように形成されている。同様に、第二反射面対344Bは、光源32からのレーザ光が反射面344bで反射されるときの(すなわち、図64に示すような配置関係の場合の)上下方向および前後方向からなる面における反射面344bと光軸Axとの成す角θbと、光源32からのレーザ光が反射面344hで反射されるときの上下方向および前後方向からなる面における反射面344hと光軸Axとの成す角が略同一となるように形成されている。第三反射面対344Cは、光源32からのレーザ光が反射面344cで反射されるときの反射面344cと光軸Axとの成す角と、光源32からのレーザ光が反射面344iで反射されるときの反射面344iと光軸Axとの成す角が略同一となるように形成されている。第四反射面対344Dは、光源32からのレーザ光が反射面344dで反射されるときの反射面344dと光軸Axとの成す角と、光源32からのレーザ光が反射面344jで反射されるときの反射面344jと光軸Axとの成す角が略同一となるように形成されている。第五反射面対344Eは、光源32からのレーザ光が反射面344eで反射されるときの反射面344eと光軸Axとの成す角と、光源32からのレーザ光が反射面344kで反射されるときの反射面344kと光軸Axとの成す角が略同一となるように形成されている。第六反射面対344Fは、光源32からのレーザ光が反射面344fで反射されるときの反射面344fと光軸Axとの成す角と、反射面344lで反射されるときの反射面344lと光軸Axとの成す角が互いに略同一となるように形成されている。すなわち、回転ミラー3034の各反射面344a~344lは、対角線上にある一対の反射面同士が同じ角度の傾斜面となるように形成されている。これにより、第一反射面対344A~第六反射面対344Fをそれぞれ構成する一対の反射面により反射された光は、車両前方の上下方向において略同一の位置に照射される。また、回転ミラー3034がモータ40により回転方向Dに回転する際の回転ミラー3034のブレを防止することができる。
 また、光源32からのレーザ光が第一反射面対344Aで反射されるときの当該第一反射面対344Aと光軸Axとの成す角θaは、光源32からのレーザ光が他の反射面対344B~344Fで反射されるときの他の反射面対344B~344Fの各反射面と光軸Axとの成す角とは異なるように形成されている。例えば、図64に示す反射面344bと光軸Axとの成す角θbは、図63に示す反射面344aと光軸Axとの成す角θaよりもやや小さくなるように形成されている。同様に、第二反射面対344B、第三反射面対344C、第四反射面対344D、第五反射面対344E、第六反射面対344Fの順で、各反射面対と光軸Axとの成す角が小さくなるように形成されている。これにより、一の反射面対により反射された光は、車両前方の上下方向において他の反射面対とは異なる位置に照射される。例えば、反射面344bにより反射された光Lbは、反射面344aにより反射された光Laよりも下方に照射される。
 上記のように構成された回転ミラー3034の各反射面344a~344lにより反射されて蛍光体38を介して平凸レンズ36を透過した光は、車両前方の所定位置(例えば、車両の25m前方)の仮想鉛直スクリーン上において、参考実施形態の図6に示すような配光パターンP1を形成する。具体的には、第一反射面対344A(反射面344a,344g)で反射された光により、図6に示す配光パターンP1のうち最下部の第一ラインLA1が形成される。また、第二反射面対344B(反射面344b,344h)で反射された光により、第一ラインLA1の上側に第二ラインLB1が形成される。第三反射面対344C(反射面344c,344i)で反射された光により、第二ラインLB1の上側に第三ラインLC1が形成される。第四反射面対344D(反射面344d,344j)で反射された光により、第三ラインLC1の上側に第四ラインLD1が形成される。第五反射面対344E(反射面344e,344k)で反射された光により、第四ラインLD1の上側に第五ラインLE1が形成される。第六反射面対344F(反射面344f,344l)で反射された光により、第五ラインLE1の上側に第六ラインLF1が形成される。このように、回転ミラー3034の回転によって光の反射方向が変位することで、光が複数の段に分かれてライン状に走査されて配光パターンP1が形成される。
 また、本実施形態に係るランプユニット3030においては、備えている光源32は比較的小さく、光源32が配置されている位置も回転ミラー3034と平凸レンズ36との間であって光軸Axよりずれている。そのため、従来のプロジェクタ方式のランプユニットのように、光源とリフレクタとレンズとが光軸上に一列に配列されている場合と比較して、車両用前照灯10の車両前後方向の長さを短くすることができる。
 また、図62に示すような配置関係において、仮に、光源32からのレーザ光が、反射板343の外側面によって反射された場合、反射面から蛍光体38までの距離はDL1となる。一方、光源32からのレーザ光が、反射面344aによって反射される場合、反射面344aから蛍光体38までの距離はDL2となる。反射面344a~344lから蛍光体38までの距離が長い方が、走査範囲は広くなる。そのため、光源32からのレーザ光が反射面344aによって反射される場合の走査範囲S2は、光源32からのレーザ光が反射板343の外側面によって反射された場合の走査範囲S1よりも広い。
 上記構成に係る光学ユニットによれば、内側の反射面344a~344lで光が反射されるので、反射板343の外側面で光が反射される場合と比べて、反射面から蛍光体38までの距離が長くなる。このため、蛍光体38上での走査範囲が狭まってしまうことを防ぎつつ、光学ユニットを小型化させることができる。
 このように、上記構成によれば、蛍光体38上での走査範囲を狭めることなく、光学ユニットを小型化することができる光照射装置を提供することができる。
 なお、ランプユニット3030が、蛍光体38を含んでいない場合においても、上記構成に係る光学ユニットによれば、環状ミラー3034の内側の反射面344a~344lで光が反射されるので、ミラーの外側面で光が反射される場合と比べて、反射面から当該光学ユニットの光出射面(投影レンズ36又はクリアカバー)までの距離が長くなる。このため、配光パターンの拡散幅が狭まってしまうことを防ぎつつ、光学ユニットを小型化させることができる。
 なお、各反射面344a~344lの間の境界で光源32からのレーザ光が反射されると、レーザ光が散乱して不適切な配光が形成されるおそれがある。ただし、第十実施形態では、いずれかのエッジが、光源32から照射されるレーザ光の進行方向上に位置するとき、光源32から照射されるレーザ光は、支柱342に当たる。このため、光源32から照射されるレーザ光は、当該支柱342と対角線上に位置するエッジには当たらない。すなわち、回転ミラー3034が回転すると、複数の支柱342は、複数の反射板343間のエッジと、光源32から射出されるレーザ光の射出方向において直線上に並ぶように配置される時点が生じる。このとき、光源32から照射されるレーザ光はエッジに当たらない。このため、各反射面344a~344lの間の境界で光源32からのレーザ光が散乱して不適切な配光が形成されるおそれがない。
(第十一実施形態)
 図65は、第十一実施形態に係るランプユニット3130の上面図を示している。図66は、第十一実施形態に係る光学ユニットの側面図である。図67は、第十一実施形態に係る光学ユニットにおいて回転ミラー3134が回転した状態を示す側面図である。図65に示すように、第十一実施形態に係るランプユニット3130は、第一光源3132Aと、第二光源3132Bと、回転ミラー3134と、平凸レンズ36と、蛍光体38と、を備えている。回転ミラー3134は、反射板343の外側に設けられた反射面345a~345lをさらに備えている。このように、光源を二つ備えている点と、回転ミラー3134が外側の反射面345a~345lをさらに備えている点で、第十一実施形態のランプユニット3130は、第十実施形態のランプユニット3030と異なっている。
 図65~67に示されるように、第一光源3132Aは、皿状部材341と同程度の高さに位置する。第一光源3132Aは、回転ミラー3134の回転軸Rの後方に位置する反射面344a~344lに向いている。第二光源3132Bは、回転ミラー3134の回転軸Rの前方に位置する反射面345a~345lに向いている。このため、第一光源3132Aから照射されたレーザ光は、複数の支柱342の間を通過することができる。一方、第二光源3132Bから照射されたレーザ光は、複数の支柱342の間を通過しない。
 ここで、反射板343の外側に設けられた反射面345a~345lのうち、反射面345aと、当該反射面345aと対角線上の反対側に位置する反射面345gとを、第一反射面対345Aとする。反射面345bと、当該反射面345bと対角線上の反対側に位置する反射面345hとを、第二反射面対345Bとする。反射面345cと、当該反射面345cと対角線上の反対側に位置する反射面345iとを、第三反射面対345Cとする。反射面345dと、当該反射面345dと対角線上の反対側に位置する反射面345jとを、第四反射面対345Dとする。反射面345eと、当該反射面345eと対角線上の反対側に位置する反射面345kとを、第五反射面対345Eとする。反射面345fと、当該反射面345fと対角線上の反対側に位置する反射面345lとを、第六反射面対345Fとする。
 例えば、図65に示す位置において、第一光源3132Aからレーザ光が照射されると、レーザ光は支柱342の間を通過し、内側の反射面344aで反射される。反射面344aで反射されたレーザ光は、蛍光体38に当たる。このときの走査範囲はS2となる。
 一方、図65に示す位置において、第二光源3132Bからレーザ光が照射されると、レーザ光は支柱342の間を通過することなく、外側の反射面345gによって反射される。反射面345gによって反射されたレーザ光は、蛍光体38に当たる。このときの走査範囲はS1となる。内側の反射面344aから蛍光体38までの距離DL2は、外側の反射面345gから蛍光体38までの距離DL1よりも長い。このため、走査範囲S2は走査範囲S1よりも広い。
 内側の反射面344a~344lと外側の反射面345a~345lは、それぞれ所望の角度となるように形成されている。第一反射面対344A,345Aは、第一光源3132Aからのレーザ光が内側の反射面344aで反射されるときの(すなわち、図65および図66に示すような配置関係の場合の)上下方向および前後方向からなる面における反射面344aと光軸Axとの成す角θaと、第二光源3132Bからのレーザ光が外側の反射面345gで反射されるときの上下方向および前後方向からなる面における反射面345gと光軸Axに平行な仮想線Ayとの成す角が略同一となるように形成されている。同様に、第二反射面対344B,345Bは、第一光源3132Aからのレーザ光が内側の反射面344bで反射されるときの(すなわち、図67に示すような配置関係の場合の)上下方向および前後方向からなる面における反射面344bと光軸Axとの成す角θbと、第二光源3132Bからのレーザ光が外側の反射面345hで反射されるときの上下方向および前後方向からなる面における反射面345hと仮想線Ayとの成す角が略同一となるように形成されている。第三反射面対344C,345Cは、第一光源3132Aからのレーザ光が内側の反射面344cで反射されるときの反射面344cと光軸Axとの成す角と、第二光源3132Bからのレーザ光が外側の反射面345iで反射されるときの反射面345iと仮想線Ayとの成す角が略同一となるように形成されている。第四反射面対344D,345Dは、第一光源3132Aからのレーザ光が内側の反射面344dで反射されるときの反射面344dと光軸Axとの成す角と、第二光源3132Bからのレーザ光が外側の反射面345jで反射されるときの反射面345jと仮想線Ayとの成す角が略同一となるように形成されている。第五反射面対344E,345Eは、第一光源3132Aからのレーザ光が内側の反射面344eで反射されるときの反射面344eと光軸Axとの成す角と、第二光源3132Bからのレーザ光が外側の反射面345kで反射されるときの反射面345kと仮想線Ayとの成す角が略同一となるように形成されている。第六反射面対344F,345Fは、第一光源3132Aからのレーザ光が内側の反射面344fで反射されるときの反射面344fと光軸Axとの成す角と、第二光源3132Bからのレーザ光が外側の反射面345lで反射されるときの反射面345lと仮想線Ayとの成す角が互いに略同一となるように形成されている。
 また、第二光源3132Bからのレーザ光が第一反射面対345Aで反射されるときの当該第一反射面対345Aと仮想線Ayとの成す角θaは、第二光源3132Bからのレーザ光が他の反射面対345B~345Fで反射されるときの他の反射面対345B~345Fの各反射面と仮想線Ayとの成す角とは異なるように形成されている。例えば、図67に示す反射面344bと光軸Axとの成す角θbは、図66に示す反射面344aと光軸Axとの成す角θaよりもやや小さくなるように形成されている。同様に、第二反射面対345B、第三反射面対345C、第四反射面対345D、第五反射面対345E、第六反射面対345Fの順で、各反射面対と仮想線Ayとの成す角が小さくなるように形成されている。これにより、一の反射面対により反射された光は、車両前方の上下方向において他の反射面対とは異なる位置に照射される。例えば、反射面345hにより反射された光Ldは、反射面345gにより反射された光Lcよりも下方に照射される。
 図68は、第十一実施形態に係るランプユニット3130の第二光源3132Bから出射されたレーザにより車両前方に形成される配光パターンP14を示している。
 第一光源3132Aから出射されたレーザ光により形成される配光パターンは、第十実施形態における配光パターンP1(図6参照)と同じであるので、説明を省略する。
 図68に示すように、配光パターンP14は、第二光源3132Bから出射されたレーザ光により形成される複数のライン(LA14~LF14)を含んでいる。第二光源3132Bから出射されたレーザ光は、回転ミラー3134の各反射面345a~345lにより反射され、蛍光体38を介して平凸レンズ36を透過する。
 具体的には、第二光源3132Bから出射され反射面対345A(反射面345a,345g)で反射されたレーザ光により、図68に示す配光パターンP14のうち最下部の第一ラインLA14が形成される。また、第二光源3132Bから出射され反射面対345B(反射面345b,345h)で反射されたレーザ光により、第一ラインLA14の上側に第二ラインLB14が形成される。第二光源3132Bから出射され反射面対345C(反射面345c,345i)で反射されたレーザ光により、第二ラインLB14の上側に第三ラインLC14が形成される。第二光源3132Bから出射され反射面対345D(反射面345d,345j)で反射されたレーザ光により、第三ラインLC14の上側に第四ラインLD14が形成される。第二光源3132Bから出射され反射面対345E(反射面345e,345k)で反射されたレーザ光により、第四ラインLD14の上側に第五ラインLE14が形成される。第二光源3132Bから出射され反射面対345F(反射面345f,345l)で反射されたレーザ光により、第五ラインLE14の上側に第六ラインLF14が形成される。このように、回転ミラー3134の回転によって光の反射方向が変位することで、光が複数の段に分かれてライン状に走査されて配光パターンP14が形成される。
 第一光源3132Aから出射されたレーザ光により形成される配光パターンP1(図6参照)は、水平方向において、第二光源3132Bから出射されたレーザ光により形成される配光パターンP14よりも長い。これは、走査範囲S2が走査範囲S1よりも広いためである。
 第二光源3132Bから出射されたレーザ光により形成される配光パターンP14は、垂直方向において、第一光源3132Aから出射されたレーザ光により形成される配光パターンP1よりもやや高い位置に形成される。配光パターンP14と配光パターンP1とは一部が重複しているものの、第一ラインLA14は、垂直方向において、第一ラインLA1よりも高い位置に形成される。これは、外側の反射面345a~345lで反射される光は、内側の反射面344a~344lで反射される光よりも下方の位置で、内側の反射面344a~344lで反射される光と平行に、蛍光体38に向かって直進するためである。
 第一光源3132Aと第二光源3132Bは、どちらか一方のみをON状態にしてもよいし、どちらもON状態にしてもよい。どちらもON状態にした場合、配光パターンP1と配光パターンP14が重複する。このため、当該重複部分は、重複しない部分よりも、光度が高い。このように、光度を高くしたい箇所について、配光パターンP1と配光パターンP14とを重ねてもよい。尚、第一光源3132Aの出力の大きさと第二光源3132Bの出力の大きさは、同じであってもよいし、異なっていてもよい。
 なお、外側の反射面345a~345lの間の境界では、レーザ光が散乱して不適切な配光が形成されるおそれがある。そのため、光源制御部は、反射面345a~345l間の境界と第二光源3132Bからのレーザ光の光線が交差するタイミングでは第二光源3132Bを消灯するように、第二光源3132Bの点消灯を制御することが好ましい。
 上記構成に係る光学ユニットによれば、より自在に蛍光体38上での走査範囲を調整することができる。
 上記の第十実施形態及び第十一実施形態においては、回転ミラー3034,3134に係る反射板343同士の境界面は不連続であるが、この例に限られない。例えば、反射板343同士の境界面は連続面であってもよい。
 上記の第十実施形態及び第十一実施形態においては、反射面344a~344l及び反射面345a~345lは略四角形であるが、この例に限られない。例えば、これらは円形や多角形であってもよい。
 上記の第十実施形態及び第十一実施形態においては、12本の支柱342が配置されているが、この例に限られない。支柱342は12本より多くても少なくてもよい。
 上記の第十一実施形態においては、同一種類の第一光源3132Aおよび第二光源3132Bを用いているが、この例に限られない。光出射面の径が互いに異なる複数の光源を用いて、異なるスポット径のレーザ光をそれぞれ出射することで、上下幅の異なる複数のラインから構成された配光パターンを形成してもよい。
 上記の第十実施形態及び第十一実施形態においては、上面視において12枚の反射板343を用い、対角線上に配置された一対の反射面により反射された光が配光パターンのうち同一のラインを形成しているが、この例に限られない。例えば、1つの反射面により反射された光により1つのラインを形成するようにしてもよい。この場合は、例えば、配光パターンが6つのラインから構成されるとすると、回転ミラーは、上面視において6面体として形成され、回転方向に沿って6枚の反射板343を備えることとなる。
 以上、本発明を上述の各実施の形態を参照して説明したが、本発明は上述の各実施の形態に限定されるものではなく、各実施の形態の構成を適宜組み合わせたものや置換したものについても本発明に含まれるものである。また、当業者の知識に基づいて各実施の形態における組合せや処理の順番を適宜組み替えることや各種の設計変更等の変形を各実施の形態に対して加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうる。
 上記の各実施形態においては、ランプユニットが車両用前照灯に搭載されたものとして説明しているが、この例に限られない。上記で説明したような光源や回転ミラー等を備えた光学ユニットを、車両に搭載されるセンサユニット(例えば、レーザレーダやLiDAR、可視光線カメラ、赤外線カメラ等)の構成部品に適用することもできる。この場合も、回転ミラーの各反射面の回転軸に沿った方向の曲率を異ならせることで、走査範囲の精緻な制御や、センサ感度の向上を達成することができる。また、凸状に湾曲した反射面と凹状に湾曲した反射面とが回転方向に沿って連続的に交互に配置されているように回転ミラーの反射面を構成することで、例えば、センサ範囲の両端部において光源を消灯する必要がなくなるため、センサ感度を向上させることができる。また、回転ミラーの反射面の境界部を面取りされた形状とすることで、例えば、センサ範囲の両端部において光源を消灯する必要がなく、スポット光の発生を抑制できるため、センサ感度を向上させることができる。
 本出願は、2018年9月25日出願の日本特許出願2018-179107号、2018年9月25日出願の日本特許出願2018-179108号、2018年9月25日出願の日本特許出願2018-179109号、2018年9月25日出願の日本特許出願2018-179110号、2018年9月25日出願の日本特許出願2018-179111号、2018年9月25日出願の日本特許出願2018-179112号および2018年9月25日出願の日本特許出願2018-179113号に基づくものであり、その内容はここに参照として取り込まれる。

Claims (41)

  1.  光源と、
     前記光源から出射された光を反射させる回転可能なミラーと、
    を備え、
     前記ミラーの回転によって前記光の反射方向が変位することで、前記光が複数の段に分かれてライン状に走査されて配光パターンを形成する、光照射装置であって、
     前記配光パターンは、第一のラインと第二のラインを含み、
     前記第一のラインの幅は、前記第二のラインの幅と異なっている、光照射装置。
  2.  前記ミラーは、前記第一のラインを形成するための第一の反射面と、前記第一の反射面に対して前記ミラーの回転方向に沿って並列され、前記第二のラインを形成するための第二の反射面と、を少なくとも有し、
     前記第一の反射面の前記ミラーの回転軸に沿った方向の曲率が、前記第二の反射面の前記回転軸に沿った方向の曲率と異なっている、請求項1に記載の光照射装置。
  3.  前記第一の反射面は前記方向において凸状に湾曲した面から構成され、前記第二の反射面は前記方向において凹状に湾曲した面から構成されている、請求項2に記載の光照射装置。
  4.  前記第一の反射面および前記第二の反射面は、前記方向において凸状に湾曲した面からそれぞれ構成されている、請求項2に記載の光照射装置。
  5.  前記第一の反射面および前記第二の反射面は、前記方向において凹状に湾曲した面からそれぞれ構成されている、請求項2に記載の光照射装置。
  6.  前記第一の反射面は前記方向において凸状に湾曲した面から構成され、前記第二の反射面は前記方向において平面から構成されている、請求項2に記載の光照射装置。
  7.  前記第一の反射面は前記方向において平面から構成され、前記第二の反射面は前記方向において凹状に湾曲した面から構成されている、請求項2に記載の光照射装置。
  8.  前記第一の反射面の前記ミラーの回転軸に対する傾斜角が、前記第二の反射面の前記回転軸に対する傾斜角と異なっている、請求項2から7のいずれか一項に記載の光照射装置。
  9.  前記第二のラインは、複数の前記第一のラインの間に配置され、
     前記第二のラインの幅は、複数の前記第一のラインの幅よりも狭い、請求項8に記載の光照射装置。
  10.  前記ミラーにより反射された前記光を透過する光学部材をさらに備え、
     前記第一の反射面および前記第二の反射面の前記曲率に応じて前記光学部材に入射される前記光の入射径が異なっている、請求項2から9のいずれか一項に記載の光照射装置。
  11.  前記ミラーは、ポリゴンミラーとして構成されている、請求項1から10のいずれか一項に記載の光照射装置。
  12.  光源と、
     前記光源から出射された光を反射させる回転可能なミラーと、
    を備え、
     前記ミラーの回転によって前記光の反射方向が変位することで、前記光が複数の段に分かれてライン状に走査されて配光パターンを形成する、光照射装置であって、
     前記配光パターンは、第一のラインと第二のラインを含み、
     前記第一のラインを形成するために前記光源から出射される前記光のスポット径と、前記第二のラインを形成するために前記光源から出射される前記光のスポット径と、が異なっている、光照射装置。
  13.  前記光源は、前記第一のラインを形成するための第一の光源と、前記第二のラインを形成するための第二の光源とを含み、
     前記第一の光源から出射される前記光のスポット径と、前記第二の光源から出射される前記光のスポット径とが異なっている、請求項12に記載の光照射装置。
  14.  前記光のスポット形状は、扁平形状であり、
     前記第一のラインを形成する場合に、前記扁平形状の短径が前記光の走査方向に沿うように、前記光を照射し、
     前記第二のラインを形成する場合に、前記扁平形状の長径が前記光の走査方向に沿うように、前記光を照射するように構成されている、請求項12又は13に記載の光照射装置。
  15.  前記光源から出射された光は平行光である、請求項12から14のいずれか一項に記載の光照射装置。
  16.  前記第二のラインは、前記第一のラインの幅よりも狭い、請求項12から15のいずれか一項に記載の光照射装置。
  17.  前記第二のラインは、複数の前記第一のラインの間に配置されている、請求項12から16のいずれか一項に記載の光照射装置。
  18.  第一光源と、
     第二光源と、
     前記第一光源から出射された第一光と前記第二光源から出射された第二光とをそれぞれ反射させる回転可能なミラーと、を備え、
     前記ミラーの回転によって前記第一光および前記第二光の反射方向が変位することで、前記第一光および前記第二光がそれぞれ複数の段に分かれてライン状に走査されて配光パターンを形成する、光照射装置であって、
     前記配光パターンは、前記第一光の走査により形成される第一配光パターンと、前記第二光の走査により形成される第二配光パターンとを含み、
     前記第一配光パターンと前記第二配光パターンの一部が重複するように形成されている、光照射装置。
  19.  前記第一配光パターンと前記第二配光パターンとが前記前記第一光および前記第二光の走査方向における中央領域において重複するように形成されている、請求項18に記載の光照射装置。
  20.  前記ミラーの反射面は、前記ミラーの回転方向において、少なくとも一つの凸部と、少なくとも一つの凹部とが連続的につながるように構成され、
     前記第一配光パターンは、前記第一光が前記第一光の走査方向において往復するように走査されることで形成され、
     前記第二配光パターンは、前記第二光が前記第二光の走査方向において往復するように走査されることで形成され、
     前記第一配光パターンと前記第二配光パターンの一部が前記第一光および前記第二光の前記走査方向における中央領域において重複するように形成されている、請求項18又は19に記載の光照射装置。
  21.  前記ミラーは、ポリゴンミラーとして構成されている、請求項18から20のいずれか一項に記載の光照射装置。
  22.  第一光源と、前記第一光源から出射された第一光を反射させる回転可能な第一ミラーと、を有する第一ユニットと、
     第二光源と、前記第二光源から出射された第二光を反射させる回転可能な第二ミラーと、を有する第二ユニットと、を備え、
     前記第一ミラーおよび第二ミラーの回転によって前記第一光および前記第二光の反射方向がそれぞれ変位することで、前記第一光および前記第二光がそれぞれ複数の段に分かれてライン状に走査されて配光パターンを形成する、光照射装置であって、
     前記配光パターンは、前記第一光の走査により形成される第一配光パターンと、前記第二光の走査により形成される第二配光パターンとを含み、
     前記第一配光パターンと前記第二配光パターンの一部が重複するように形成されている、光照射装置。
  23.  前記第一ミラーの反射面は、前記第一ミラーの回転方向において、少なくとも一つの凸部と、少なくとも一つの凹部とが連続的につながるように構成され、
     前記第二ミラーの反射面は、前記第二ミラーの回転方向において、少なくとも一つの凸部と、少なくとも一つの凹部とが連続的につながるように構成され、
     前記第一配光パターンは、前記第一光が走査方向において往復するように走査されることで形成され、
     前記第二配光パターンは、前記第二光が走査方向において往復するように走査されることで形成され、
     前記第一配光パターンと前記第二配光パターンの一部が前記第一光および前記第二光の前記走査方向における中央領域において重複するように形成されている、請求項22に記載の光照射装置。
  24.  前記第一ミラーおよび前記第二ミラーは、ポリゴンミラーとして構成されている、請求項22又は23に記載の光照射装置。
  25.  光源と、
     前記光源から出射された光を反射させる回転可能なミラーと、
    を備え、
     前記ミラーの回転によって前記光の反射方向が変位することで、前記光が複数の段に分かれてライン状に走査されて配光パターンを形成する、光照射装置であって、
     前記ミラーは、前記ミラーの回転方向において連続する複数の反射面を有し、
     前記複数の反射面のうち少なくとも一つ反射面と当該少なくとも一つの反射面と隣接する反射面との間の境界部が面取りされている、光照射装置。
  26.  前記複数の反射面のうちすべての反射面間の境界部が面取りされている、請求項25に記載の光照射装置。
  27.  前記複数の反射面のうち一部の反射面間の境界部が面取りされている一方で、他の反射面間の境界部が面取りされていない、請求項25に記載の光照射装置。
  28.  前記配光パターンは、複数の第一のラインと、第二のラインとを含み、
     前記複数の第一のラインは、面取りされていない境界部で挟まれた反射面で反射された光により形成され、
     前記第二のラインは、面取りされている境界部で挟まれた反射面で反射された光により形成され、
     前記第二のラインは前記複数の第一のラインの間に配置されている、請求項27に記載の光照射装置。
  29.  前記ミラーは、ポリゴンミラーとして構成されている、請求項25から28のいずれか一項に記載の光照射装置。
  30.  光源と、
     前記光源から出射された光を反射させる回転可能なミラーと、
    を備え、
     前記ミラーの回転によって前記光の反射方向が変位することで、前記光が複数の段に分かれてライン状に走査されて配光パターンを形成する、光照射装置であって、
     前記ミラーの反射面は、前記ミラーの回転方向において、少なくとも一つの凸部と、少なくとも一つの凹部とが連続的につながるように構成されている、光照射装置。
  31.  一つの凸部と前記一つの凸部に隣接する一つの凹部とにより反射された光によって、前記配光パターンのうち前記光の走査方向における一往復のラインが形成される、請求項30に記載の光照射装置。
  32.  前記反射面は、複数の前記凸部と複数の前記凹部を含み、
     前記凸部と前記凹部とが、前記回転方向に沿って交互に配置されている、請求項30又は31に記載の光照射装置。
  33.  光源と、
     前記光源から出射された光を反射させる回転可能なミラーと、
    を備え、
     前記ミラーの回転によって前記光の反射方向が変位することで、前記光が複数の段に分かれてライン状に走査され、
     前記ライン状に走査された前記光によって配光パターンを形成する、光照射装置であって、
     前記配光パターンにおける少なくとも一つのラインにおいて、前記光源から出射される前記光の出力を変化させる、光照射装置。
  34.  前記光の走査方向が往復するように構成されている、請求項33に記載の光照射装置。
  35.  前記ラインの走査方向の中央で、他の部分より前記光の出力が大きくなるように前記出力を変化させる、請求項33又は34に記載の光照射装置。
  36.  光源と、
     前記光源から出射された光を反射させる回転可能なミラーと、
    を備え、
     前記ミラーの回転によって前記光の反射方向が変位することで、前記光が複数の段に分かれてライン状に走査される、光照射装置であって、
     前記ミラーは環状ミラーであり、
     前記環状ミラーの内側面により、前記光が反射される、光照射装置。
  37.  前記環状ミラーの外側面によっても前記光が反射される、請求項36に記載の光照射装置。
  38.  前記光源は、前記内側面に前記光を照射するための第一の光源と、前記外側面に前記光を照射するための第二の光源と、を含む、請求項36又は37に記載の光照射装置。
  39.  前記ミラーを回転させるためのモータと、
     前記モータによって前記ミラーを支えるための支柱と、をさらに備え、
     前記ミラーは、複数の反射面から構成され、
     前記複数の反射面間のエッジと、前記支柱とが、前記光源から出射される光の出射方向において直線上に並ぶように配置されている、請求項36から38のいずれか一項に記載の光照射装置。
  40.  前記内側面により反射された光を透過する光学部材をさらに備える、請求項36から39のいずれか一項に記載の光照射装置。
  41.  前記光学部材は、蛍光体と投影レンズとを含み、
     前記蛍光体は、前記ミラーと前記投影レンズとの間に配置され、
     前記内側面により反射された光は、前記蛍光体上に走査され、
     前記蛍光体から出射された光は、前記投影レンズを透過して出射される、請求項40に記載の光照射装置。
PCT/JP2019/033128 2018-09-25 2019-08-23 光照射装置 WO2020066402A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020548191A JPWO2020066402A1 (ja) 2018-09-25 2019-08-23 光照射装置

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2018-179111 2018-09-25
JP2018179107 2018-09-25
JP2018-179107 2018-09-25
JP2018-179113 2018-09-25
JP2018179110 2018-09-25
JP2018179108 2018-09-25
JP2018179111 2018-09-25
JP2018179112 2018-09-25
JP2018179113 2018-09-25
JP2018-179112 2018-09-25
JP2018179109 2018-09-25
JP2018-179110 2018-09-25
JP2018-179109 2018-09-25
JP2018-179108 2018-09-25

Publications (1)

Publication Number Publication Date
WO2020066402A1 true WO2020066402A1 (ja) 2020-04-02

Family

ID=69905672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033128 WO2020066402A1 (ja) 2018-09-25 2019-08-23 光照射装置

Country Status (3)

Country Link
JP (1) JPWO2020066402A1 (ja)
CN (1) CN110939918B (ja)
WO (1) WO2020066402A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021115658A1 (de) 2021-06-17 2022-12-22 Audi Aktiengesellschaft Beleuchtungseinrichtung für ein Kraftfahrzeug, Kraftfahrzeug

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03127191A (ja) * 1989-10-12 1991-05-30 Tokyo Electric Co Ltd 光走査装置
JP2000180769A (ja) * 1998-12-18 2000-06-30 Ricoh Co Ltd ポリゴンミラー
JP2003262808A (ja) * 2002-03-07 2003-09-19 Hitachi Ltd 光学ユニット及びそれを用いた映像表示装置
JP2011157022A (ja) * 2010-02-03 2011-08-18 Sharp Corp 前照灯および移動体
CN104344308A (zh) * 2013-07-30 2015-02-11 法雷奥照明公司 具有改进的扫描装置的照明系统
JP2017140887A (ja) * 2016-02-08 2017-08-17 シャープ株式会社 照明装置

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB440293A (en) * 1934-11-20 1935-12-24 Andrew Lumisden Strange Improvements in and connected with anti-dazzle devices for vehicle headlamps
GB1216965A (en) * 1969-07-24 1970-12-23 Ford Motor Co Motor vehicle headlamps
DE2306185A1 (de) * 1973-02-08 1974-08-15 Agfa Gevaert Ag Verfahren und vorrichtung zur kompensation des pyramidenfehlers eines spiegelrades
US4889418A (en) * 1986-03-31 1989-12-26 Hughes Aircraft Company Rotating cylindrical beam splitter
JPH01321581A (ja) * 1988-06-24 1989-12-27 Fujitsu Ltd バーコード用光学読み取り装置
US5574592A (en) * 1992-12-24 1996-11-12 Fuji Electric Co., Ltd. Rotatable polygon mirror
US5886805A (en) * 1996-11-30 1999-03-23 Samsung Electro-Mechanics Co., Ltd. Optical scanning device and a synchronizing signal detecting method thereof
JPH11289495A (ja) * 1998-04-03 1999-10-19 Sony Corp 画像入力装置
CN2399598Y (zh) * 1999-10-26 2000-10-04 卢洋溢 聚光扫描灯
CN1237744C (zh) * 2001-06-20 2006-01-18 浙江大学 数字地面广播传输中的信号传输方法
CN1184292C (zh) * 2002-05-08 2005-01-12 天津马华科贸有限公司 一种汽油增效剂
CN2779493Y (zh) * 2005-01-05 2006-05-10 巨豪实业股份有限公司 具有弧形曲面的条码阅读装置多面反射镜
US8325406B2 (en) * 2007-02-08 2012-12-04 Panasonic Corporation Planar lighting apparatus and liquid crystal display device using the same
CN201096984Y (zh) * 2007-11-02 2008-08-06 云南民族大学 一种曲面反射式扫描器
JP5072613B2 (ja) * 2008-01-18 2012-11-14 キヤノン株式会社 光走査装置及びそれを用いた画像形成装置
CN101900296B (zh) * 2010-08-30 2012-06-27 珠海晟源同泰电子有限公司 匀光聚束反光器的设计方法
JP5309234B2 (ja) * 2012-02-27 2013-10-09 京セラドキュメントソリューションズ株式会社 光走査装置及びこれを用いた画像形成装置
DE102012223610B4 (de) * 2012-12-18 2023-06-29 Bayerische Motoren Werke Aktiengesellschaft Beleuchtungsvorrichtung für ein Kraftfahrzeug sowie Kraftfahrzeug mit einer Beleuchtungsvorrichtung
TWI546492B (zh) * 2012-12-26 2016-08-21 鴻海精密工業股份有限公司 車燈模組
DE102013106533A1 (de) * 2013-06-21 2014-12-24 Jenoptik Optical Systems Gmbh Scaneinrichtung
WO2015045946A1 (ja) * 2013-09-24 2015-04-02 株式会社小糸製作所 光学ユニット
KR101484238B1 (ko) * 2013-10-29 2015-01-16 현대자동차 주식회사 자동차의 헤드 램프
AT515790B1 (de) * 2014-06-11 2015-12-15 Zizala Lichtsysteme Gmbh Beleuchtungsvorrichtung für ein Kraftfahrzeug sowie Fahrzeugscheinwerfer mit Beleuchtungsvorrichtung
US10309606B2 (en) * 2016-05-27 2019-06-04 Koito Manufacturing Co., Ltd. Vehicle lamp
EP3301500B1 (fr) * 2016-09-29 2023-09-06 Valeo Vision Système d'éclairage de véhicule automobile et véhicule automobile
JP6951076B2 (ja) * 2016-10-14 2021-10-20 株式会社小糸製作所 光学ユニット
JP6935185B2 (ja) * 2016-10-20 2021-09-15 株式会社小糸製作所 車両用前照灯
CN207635268U (zh) * 2017-05-31 2018-07-20 长城汽车股份有限公司 车辆灯具远近光匹配调节装置及车辆灯具
CN207778317U (zh) * 2017-11-08 2018-08-28 湖州奥驿汽车服务有限公司 车灯角度调整机构
CN210921231U (zh) * 2018-09-25 2020-07-03 株式会社小糸制作所 光照射装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03127191A (ja) * 1989-10-12 1991-05-30 Tokyo Electric Co Ltd 光走査装置
JP2000180769A (ja) * 1998-12-18 2000-06-30 Ricoh Co Ltd ポリゴンミラー
JP2003262808A (ja) * 2002-03-07 2003-09-19 Hitachi Ltd 光学ユニット及びそれを用いた映像表示装置
JP2011157022A (ja) * 2010-02-03 2011-08-18 Sharp Corp 前照灯および移動体
CN104344308A (zh) * 2013-07-30 2015-02-11 法雷奥照明公司 具有改进的扫描装置的照明系统
JP2017140887A (ja) * 2016-02-08 2017-08-17 シャープ株式会社 照明装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021115658A1 (de) 2021-06-17 2022-12-22 Audi Aktiengesellschaft Beleuchtungseinrichtung für ein Kraftfahrzeug, Kraftfahrzeug
DE102021115658B4 (de) 2021-06-17 2023-01-26 Audi Aktiengesellschaft Beleuchtungseinrichtung für ein Kraftfahrzeug, Kraftfahrzeug

Also Published As

Publication number Publication date
CN110939918B (zh) 2022-05-10
CN110939918A (zh) 2020-03-31
JPWO2020066402A1 (ja) 2021-08-30

Similar Documents

Publication Publication Date Title
JP6581588B2 (ja) 車両用前照灯
JP4944872B2 (ja) 自動車用ヘッドライト
JP5253888B2 (ja) 車両用照明灯具
CN100585269C (zh) 具有非对称准直器的led准直器元件
US7866863B2 (en) Vehicle lamp
JP2001057103A (ja) 車両用前照灯
CN100494772C (zh) 车辆用灯具
EP3205929B1 (en) Optical scanning device
US20200080701A1 (en) Optical unit
WO2020066402A1 (ja) 光照射装置
US6913377B2 (en) Projection-type vehicular headlamp
JP2007234562A (ja) 車両用前照灯の灯具ユニット
WO2020066603A1 (ja) 光照射装置
CN210831805U (zh) 光照射装置
CN210921231U (zh) 光照射装置
WO2020066406A1 (ja) 光照射装置
CN210831803U (zh) 光照射装置
CN210801010U (zh) 光照射装置
CN210831792U (zh) 光照射装置
JP2018177090A (ja) 光学ユニット
CN210831806U (zh) 光照射装置
CN210801011U (zh) 光照射装置
CN211060023U (zh) 光照射装置
JP2018092762A (ja) 車両用灯具
CN210801009U (zh) 光照射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867115

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020548191

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19867115

Country of ref document: EP

Kind code of ref document: A1