WO2020066010A1 - 固体高分子形燃料電池の触媒担体用炭素材料及びその製造方法 - Google Patents

固体高分子形燃料電池の触媒担体用炭素材料及びその製造方法 Download PDF

Info

Publication number
WO2020066010A1
WO2020066010A1 PCT/JP2018/036548 JP2018036548W WO2020066010A1 WO 2020066010 A1 WO2020066010 A1 WO 2020066010A1 JP 2018036548 W JP2018036548 W JP 2018036548W WO 2020066010 A1 WO2020066010 A1 WO 2020066010A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon material
carbon
catalyst carrier
catalyst
fuel cell
Prior art date
Application number
PCT/JP2018/036548
Other languages
English (en)
French (fr)
Inventor
孝 飯島
健一郎 田所
正孝 日吉
晋也 古川
智子 小村
一嘉 正木
広幸 林田
若菜 多田
Original Assignee
日本製鉄株式会社
日鉄ケミカル&マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社, 日鉄ケミカル&マテリアル株式会社 filed Critical 日本製鉄株式会社
Priority to EP18934998.8A priority Critical patent/EP3858481B1/en
Priority to CA3114566A priority patent/CA3114566A1/en
Priority to PCT/JP2018/036548 priority patent/WO2020066010A1/ja
Priority to CN201880098159.8A priority patent/CN112867564B/zh
Priority to JP2020547873A priority patent/JP7110377B2/ja
Priority to US17/280,134 priority patent/US20210344019A1/en
Publication of WO2020066010A1 publication Critical patent/WO2020066010A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/618Surface area more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • B01J35/69Pore distribution bimodal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to a carbon material for a catalyst carrier of a polymer electrolyte fuel cell and a method for producing the same.
  • the basic structure (unit cell) of a general polymer electrolyte fuel cell is a membrane electrode assembly (hereinafter referred to as a membrane electrode assembly) in which a catalyst layer serving as an anode and a cathode is disposed on both outer sides of a proton conductive electrolyte membrane.
  • MEA Membrane Electrode ⁇ ⁇ Assembly
  • a gas diffusion layer disposed outside the catalyst layer with the membrane electrode assembly interposed therebetween
  • separator further disposed outside the gas diffusion layer.
  • a polymer electrolyte fuel cell is configured by stacking a required number of unit cells to achieve a required output.
  • an oxidizing gas such as oxygen or air is supplied to the cathode side from the gas passages of the separators disposed on the anode side and the cathode side, respectively.
  • a fuel such as hydrogen is supplied to the anode side.
  • the supplied oxidizing gas and fuel (which may be referred to as “reaction gases”) are supplied to the catalyst layer via the gas diffusion layer, respectively, and the chemical reaction occurring in the anode catalyst layer and the cathode catalyst layer are performed.
  • the work is extracted by utilizing the energy difference (potential difference) between the reaction and the chemical reaction that takes place.
  • a porous carbon material is usually used as a catalyst carrier from the viewpoint of electron conductivity, chemical stability, and electrochemical stability.
  • Pt or a Pt alloy which can be used in a strongly acidic environment and has high reaction activity for both an oxidation reaction and a reduction reaction is mainly used as a catalyst metal.
  • the catalyst metal since the above oxidation reaction and reduction reaction generally occur on the catalyst metal, it is necessary to increase the specific surface area per mass in order to increase the utilization rate of the catalyst metal. Therefore, particles having a size of about several nm are usually used as the catalyst metal.
  • the catalyst carrier supporting such catalyst metal particles As for the catalyst carrier supporting such catalyst metal particles, the number of sites for adsorbing and supporting the catalyst metal particles having a diameter of about several nm is increased in order to increase the supporting capacity as a carrier. Therefore, it is necessary that the porous carbon material has a large specific surface area. In addition, a porous carbon material having a large mesopore volume with a pore diameter of 2 to 50 nm, that is, a large mesopore volume is required so that the above-mentioned catalyst metal particles are supported in a highly dispersed state as much as possible. .
  • porous carbon material having a relatively large specific surface area and a mesopore volume and having a dendritic structure in which branches are three-dimensionally developed
  • Vulcan XC-72 manufactured by CABOT and Lion EC600JD and Lion EC300 are used.
  • Attempts have also been made to develop a porous carbon material having a more preferable specific surface area and mesopore volume as a carbon material for a catalyst carrier, and also having a more suitable dendritic structure.
  • Patent Literature 1 proposes a carbon material for a catalyst carrier capable of preparing a catalyst for a polymer electrolyte fuel cell having a low rate of decrease in the amount of current over a long period of time and excellent durability.
  • Patent Document 1 discloses a step of preparing a solution containing a metal or a metal salt, a step of blowing acetylene gas into the solution to generate a dendritic carbon nanostructure composed of metal acetylide, Heating the carbon nanostructure at 60 to 80 ° C. to produce a metal-encapsulated dendritic carbon nanostructure in which a metal is included in the dendritic carbon nanostructure; Heating the material to 160 to 200 ° C.
  • This porous carbon material has a pore diameter of 1 to 20 nm and an integrated pore volume of 0.2 to 1.5 cc / g determined by analyzing the nitrogen adsorption isotherm by the Dollimore-Heal method, and has a BET specific surface area of 200 to 1.5 cc / g. Having 1300 m 2 / g
  • Patent Document 2 proposes a carrier carbon material capable of preparing a catalyst for a polymer electrolyte fuel cell capable of exhibiting high battery performance under high humidification conditions. Specifically, Patent Document 2 discloses an acetylide generation step of blowing acetylene gas into an aqueous ammoniacal solution containing a metal or a metal salt to generate metal acetylide, and heating the metal acetylide at a temperature of 60 to 80 ° C. A first heat treatment step of preparing a metal particle-containing intermediate by heating the metal particle-containing intermediate at a temperature of 120 to 200 ° C.
  • a porous carbon material prepared by a production method comprising a third heat treatment step of performing a heat treatment at 2100 ° C. to obtain a carrier carbon material.
  • This porous carbon material has a predetermined hydrogen content, a BET specific surface area of 600 to 1500 m 2 / g, and a peak intensity (l D ) in the range of 1200 to 1400 cm -1 in a D-band obtained from Raman spectroscopy. And a relative intensity ratio (I D / I G ) between the G-band and a peak intensity (I G ) in the range of 1500 to 1700 cm -1 .
  • Patent Document 3 proposes a carbon material for a catalyst carrier capable of preparing a catalyst for a polymer electrolyte fuel cell capable of exhibiting excellent durability against potential fluctuations while maintaining high power generation performance.
  • Patent Document 3 discloses an acetylide generating step in which acetylene gas is blown into an aqueous ammoniacal solution containing a metal or a metal salt to generate metal acetylide, and the metal acetylide is heated at a temperature of 40 to 80 ° C.
  • Porous carbon material prepared by the manufacturing method comprising are proposed.
  • This porous carbon material has a specific surface area S A of mesopores having a pore diameter of 2 to 50 nm determined by analyzing the nitrogen adsorption isotherm in the adsorption process by the Dollimore-Heal method, from 600 to 1600 m 2 / g.
  • the specific pore area S 2-10 of the mesopores having a pore diameter of 2 nm or more and less than 10 nm among the mesopores is 400 to 1100 m 2 / g
  • the pore volume V 2-10 is 0.4 to 1.6 cc / g
  • the specific pore area S 10-50 of the mesopores having a pore diameter of 10 nm or more and 50 nm or less is 20 to 150 m 2 / g.
  • Having a specific pore volume V 2-10 of 0.4 to 1.6. cc / g, and a specific pore area S 2 of pores having a pore diameter of less than 2 nm obtained by analyzing a nitrogen adsorption isotherm in the adsorption process by the Horvath-Kawazoe method is 250 to 550 m 2 / g. .
  • Patent Document 4 discloses a catalyst for a polymer electrolyte fuel cell which has excellent durability against repeated load fluctuations such as start / stop and excellent power generation performance under low humidification operation conditions.
  • Possible carbon materials for catalyst carriers have been proposed.
  • Patent Document 4 discloses a porous carbon material having a dendritic carbon nanostructure prepared through a self-decomposition explosion reaction using a metal acetylide as an intermediate [trade name: ESCARBON manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.] ) (Registered trademark) -MCND] as a raw material, and then subjected to a graphitization treatment, followed by an oxidation treatment using hydrogen peroxide, nitric acid, a submerged plasma apparatus, etc., to obtain a carbon material for a catalyst carrier.
  • a porous carbon material having a dendritic carbon nanostructure prepared through a self-decomposition explosion reaction using a metal acetylide as an intermediate [trade name: ESCARB
  • the carbon material for a catalyst carrier has an oxygen content O ICP of 0.1 to 3.0% by mass, and a residual oxygen amount O 1200 ° C. of 0.1 ° C. after heat treatment at 1200 ° C. in an inert gas (or vacuum) atmosphere of 0.1%. 1.51.5% by mass, BET specific surface area of 300 to 1500 m 2 / g, half-width ⁇ G of G-band detected in the range of 1550 to 1650 cm ⁇ 1 of Raman spectrum, 30 to 70 cm ⁇ 1 , and inertness
  • the residual hydrogen amount H 1200 ° C. remaining after heat treatment at 1200 ° C. in a gas (or vacuum) atmosphere is 0.005 to 0.080 mass%.
  • Patent Document 1 WO 2014/129597 A1
  • Patent Document 2 WO 2015/088025 A1
  • Patent Document 3 WO 2015/141810 A1
  • Patent Document 4 WO 2016/133132 A1
  • Non-patent document 1 Atsushi Nishikata (2009). "Corrosion Deterioration Problem of Polymer Electrolyte Fuel Cell", “Materials and Environment”, 58, 288-293.
  • the carbon materials for catalyst carriers described in Patent Documents 1 to 4 described above all have a relatively large specific surface area, a high density of catalytic metals carried on the carrier (particle number density), and the absolute amount thereof is low.
  • the catalyst metal particles can be increased, and the catalyst metal particles can be easily carried in a small, high-density, and uniform (homogeneous) manner. Therefore, these carbon materials for a catalyst carrier exhibit predetermined power generation characteristics when preparing a catalyst for a polymer electrolyte fuel cell.
  • the inventors of the present invention have studied the further improvement of the power generation characteristics, it has been found that there is room for improvement in terms of the dispersibility (uniformity) of the catalyst metal.
  • the presence of the graphitized material is one of the causes of deteriorating the uniformity (uniformity) of the carrier surface. Further, the inventors of the present disclosure quantitatively evaluate how the graphitized material mixed into such a carbon material for a catalyst carrier is generated and mixed, and the degree of the generation and mixing is quantitatively evaluated. As a result of diligent efforts to find a method that can reduce it as much as possible and to find a method that can reduce it as much as possible, the following findings were obtained.
  • acetylene gas is blown into an aqueous ammoniacal solution containing silver nitrate to generate silver acetylide.
  • an acetylene gas is blown so that the acetylene introduced into the reaction system is slightly excessive in consideration of the molar ratio between silver nitrate and acetylene reacting in the reaction system.
  • excess acetylene gas is adsorbed on the generated silver acetylide.
  • the graphitized substance thus produced inactivates the surface of the carbon material for the catalyst carrier, that is, the catalyst metal particles are hardly supported on the inactive surface having high crystallinity, and the dispersibility (uniformity) of the catalyst metal particles is reduced. That led to a decline.
  • treatment with nitric acid as an oxidizing agent is also performed. To remove silver from the body). Since the treatment time with this nitric acid is as short as one hour and heating is not performed, the oxidizing power of nitric acid is not high, and it is not enough to remove carbon (soot) having low aromaticity that has been found in the present case. It is.
  • Patent Document 2 discloses a method of removing silver by contacting concentrated sulfuric acid with a carbon material intermediate at 200 ° C. This method uses hot concentrated sulfuric acid to functionalize carbon ( It aims to remove silver while suppressing carbon consumption. Therefore, it is not possible to remove carbon (soot) having low aromaticity, whose presence has been ascertained. In addition, the carbon (soot) having a low aromaticity generated in this way becomes non-porous massive carbon in the subsequent heat treatment step, and the pore wall and the like are not constrained and the shape is restricted. Is a carbon that does not have Patent Literatures 1 to 4 do not predict that graphite (graphitized material) which freely grows and develops crystallinity for that purpose will be obtained.
  • thermogravimetric analysis under air atmosphere (carbon oxidation consumption test) Due to the presence of the graphitized material having high crystallinity and low porosity, the weight loss curve (differential thermogravimetric curve, DTG) immediately before burning out has a lower flank than the skeleton-forming carbon of the carbon material for the catalyst support. Also found that it had many components that were difficult to burn (hardly oxidatively depleted), and that it was strongly correlated with the supportability of the catalytic metal particles.
  • An object of the present disclosure is to have good catalytic metal loading characteristics (that is, uniform catalytic metal particle loading), excellent power generation characteristics, and excellent fuel efficiency.
  • An object of the present invention is to provide a carbon material for a catalyst carrier suitable for producing a catalyst for a polymer electrolyte fuel cell having excellent durability as a battery.
  • a carbon material for a catalyst carrier of a polymer electrolyte fuel cell which is a porous carbon material and simultaneously satisfies the following (1), (2), (3) and (4).
  • a differential thermogravimetric curve obtained by thermogravimetric analysis when the temperature is raised at 10 ° C./min in an air atmosphere, the intensity at 750 ° C. (I 750 ) and the peak intensity near 690 ° C. (I peak) ) (I 750 / I peak ) is 0.10 or less.
  • the BET specific surface area determined by BET analysis of a nitrogen gas adsorption isotherm is 400 to 1500 m 2 / g.
  • the integrated pore volume V 2-10 with a pore diameter of 2 to 10 nm determined by analysis of the nitrogen gas adsorption isotherm using the Dollimore-Heal method is 0.4 to 1.5 mL / g.
  • the nitrogen gas adsorption amount V macro at a relative pressure of 0.95 to 0.99 is 300 to 1200 cc (STP) / g.
  • a method for producing a carbon material for a catalyst carrier of a polymer electrolyte fuel cell A silver acetylide generation step of blowing acetylene gas into a reaction solution comprising an aqueous solution of silver nitrate ammonia to synthesize silver acetylide, A decomposition step of causing the silver acetylide to undergo a self-decomposition explosion reaction to obtain a carbon material intermediate; Contacting the carbon material intermediate with dilute nitric acid to remove silver from the carbon material intermediate; A cleaning treatment step of contacting the carbon material intermediate from which silver has been removed with an oxidizing agent solution to clean the carbon material intermediate; A heat treatment step of heating the purified carbon material intermediate in a vacuum or an inert gas atmosphere at a temperature of 1400 to 2200 ° C.
  • a method for producing a carbon material for a catalyst carrier of a polymer electrolyte fuel cell wherein at least one selected from the group consisting of a permanganate solution and a hydrogen peroxide solution is used as the oxidant solution.
  • a solid polymer having excellent catalytic metal loading characteristics that is, uniform loading of catalytic metal particles), excellent power generation characteristics, and excellent durability as a fuel cell It is possible to provide a carbon material for a catalyst carrier suitable for producing a catalyst for a fuel cell.
  • FIG. 1 is an explanatory view (photograph) showing a graphitized product (in a white dotted line) confirmed when the carbon material for a catalyst carrier of Experimental Example 27 was observed by TEM.
  • FIG. 2A is an explanatory diagram illustrating how to determine I 750 and I peak , respectively, when obtaining the intensity ratio (I 750 / I peak ) of the present disclosure.
  • FIG. 2B is an explanatory diagram illustrating a method of obtaining the remaining weight ratio (%) according to the present disclosure.
  • FIG. 3A is a graph showing a differential thermogravimetric curve [relationship between temperature and weight loss ( ⁇ g / min)] in thermogravimetric analysis of Experimental Examples 1 to 4, 23, and 27 to 28 of the present disclosure.
  • FIG. 1 is an explanatory view (photograph) showing a graphitized product (in a white dotted line) confirmed when the carbon material for a catalyst carrier of Experimental Example 27 was observed by TEM.
  • FIG. 2A is an explanatory diagram illustrating how to
  • FIG. 3B is an enlarged view showing the strength appearing at a temperature of 750 ° C. as a residual weight ratio (%) in thermogravimetric analysis (TGA) used for obtaining the graph of FIG. 3A.
  • FIG. 4A is an explanatory view (photograph) showing the dendritic structure confirmed when the carbon material for a catalyst carrier of Experimental Example 1 is observed by SEM (the bar at the lower left in the figure indicates 1 ⁇ m).
  • FIG. 4B is an explanatory view (photograph) showing the dendritic structure confirmed when the carbon material for a catalyst carrier of Experimental Example 1 is observed by SEM (the bar at the lower left in the figure indicates 5 ⁇ m).
  • FIG. 4 is an explanatory diagram illustrating a method for measuring a branch diameter of a carbon material for a catalyst carrier according to the present disclosure.
  • the carbon material for a catalyst carrier of the polymer electrolyte fuel cell according to the present disclosure is a porous carbon material that simultaneously satisfies the following (1), (2), (3) and (4).
  • the carbon material for a catalyst carrier of the polymer electrolyte fuel cell according to the present disclosure is a porous carbon material that simultaneously satisfies the following (1), (2), (3) and (4).
  • (1) In a differential thermogravimetric curve (DTG) obtained by thermogravimetric analysis when the temperature is raised at 10 ° C./min in an air atmosphere, the intensity at 750 ° C. (I 750 ) and the peak intensity near 690 ° C. It I peak) and the intensity ratio of (I 750 / I peak) is 0.10 or less.
  • the BET specific surface area determined by BET analysis of a nitrogen gas adsorption isotherm is 400 to 1500 m 2 / g.
  • the integrated pore volume V 2-10 with a pore diameter of 2 to 10 nm determined by analysis of the nitrogen gas adsorption isotherm using the Dollimore-Heal method is 0.4 to 1.5 mL / g.
  • the nitrogen gas adsorption amount V macro at a relative pressure of 0.95 to 0.99 is 300 to 1200 cc (STP) / g.
  • the carbon material for a catalyst carrier according to the present disclosure is, as described above, a non-porous massive carbon (graphitized material) that is considered to inhibit the dispersibility (uniformity) of the supported catalyst metal. Is suppressed as much as possible.
  • thermogravimetric analysis is used as a method for expressing the amount of the graphitized material.
  • the specific method of the thermogravimetric analysis is as follows. That is, a sample was placed in a thermogravimetric analyzer, and the weight loss at a temperature rise rate of 10 ° C./min was measured in an air atmosphere, and the weight loss curve (TGA) obtained thereby was differentiated with time. To obtain a differential thermogravimetric curve (DTG).
  • I peak a very strong peak appearing in the vicinity of 690 ° C. (in the present disclosure, this intensity is represented as “I peak ”) is the combustion of the skeleton-forming carbon of the carbon material for the catalyst support.
  • I 750 a portion that appears so as to rise (at a tail) at 750 ° C. on the higher temperature side (in the present disclosure, this strength is referred to as “I 750 ”) is defined as combustion of graphitized material. .
  • the relative intensity ratio (I 750 / I peak ) expresses that the amount of the graphitized material is small.
  • the graphitized material is assumed to be extremely small in the carbon material for the catalyst support, and to be a graphitic material having improved crystallinity as compared with the skeleton-forming carbon. (Hardly oxidative depletion).
  • the differential thermogravimetric curve (DTG) in this analysis can represent those peaks or intensities with good reproducibility
  • the supporting property of the catalytic metal particles is understood as will be understood from the examples described later. It is found from the fact that a good correlation can be taken with the decrease (decrease in the uniformity of the particle diameter). Here, a very strong peak appearing near 690 ° C.
  • a peak near 690 ° C. means a peak having a maximum value of DTG whose peak apex appears in a range of 690 ⁇ 50 ° C.
  • the carbon material for a catalyst carrier of the present disclosure is preferably such that the generation and mixing of such a graphitized product is suppressed as much as possible in view of the catalytic metal loading characteristics (uniformity of loading of the catalytic metal particles). Therefore, it is required that the intensity (I 750 ) of the graphitized material is as small as possible as compared with the peak intensity (I peak ) of the skeleton-forming carbon, that is, the intensity ratio (I 750 / I peak ) is 0.10 or less. .
  • the intensity ratio (I 750 / I peak ) is preferably 0.09 or less, more preferably 0.08 or less. Note that the intensity ratio (I 750 / I peak ) is most preferably as close to zero as possible (that is, the lower limit of the intensity ratio (I 750 / I peak ) is most preferably 0). However, since the non-combustible (poorly oxidizable and depletable) component is derived not only from carbon (soot) having low aromaticity but also from structural change in the process of high-temperature firing, the intensity ratio (I 750 / I peak ) May be 0.001 or more.
  • the strength ratio (I 750 / I peak ) exceeds 0.10 and increases, the content of the graphitized material contained in the carbon material increases, and the catalytic metal fine particles are uniformly supported on the surface of the carbon material as the carrier. It may be difficult. Further, the catalyst particles supported on the graphitized material have a weak interaction with the surface of the carbon material, and may easily fall off and aggregate. As a result, in a fuel cell use environment, the particle diameter of the catalyst metal fine particles may increase.
  • the intensity ratio (I 750 / I peak ) is a value measured by a measurement method described in Examples described later.
  • the catalyst carrier carbon material for such disclosure the above (2) as, BET specific surface area as determined by BET analysis of nitrogen sorption isotherms 400 ⁇ 1500 m 2 / g, preferably 500 meters 2 / g and 1400 m 2 / g or less.
  • BET specific surface area 400 m 2 / g or more, preferably 500 m 2 / g or more
  • the catalyst metal particles of several nm are kept in a well-dispersed state, that is, the distance between the catalyst metal particles is kept at a certain value or more. Particles are supported in a state where they can exist alone.
  • the BET specific surface area is less than 400 m 2 / g, the distance between the catalyst particles becomes short, and it may be difficult to carry the catalyst metal fine particles with high density and uniformity. As a result, the effective area of the catalytic metal particles is reduced, and the characteristics of the fuel cell are significantly reduced. Further, when the thickness exceeds 1500 m 2 / g, the number of edge portions in the porous carbon material increases, so that there is a possibility that the durability is likely to decrease due to a substantial decrease in crystallinity.
  • the BET specific surface area is a value measured by a measurement method described in Examples described later.
  • the carbon material for a catalyst carrier of the present disclosure has an integrated pore volume V of a pore diameter of 2 to 10 nm obtained by analyzing the nitrogen gas adsorption isotherm using the Dollimore-Heal method. It is necessary that 2-10 is 0.4 to 1.5 mL / g, preferably 0.5 to 1.0 mL / g.
  • a pore diameter of 2 to 10 nm catalytic metal fine particles usually adjusted to a few nm in diameter are dispersed in the pores in a highly dispersed state, which contributes favorably from the viewpoint of catalyst utilization.
  • the average pore size is small because the volume is small with respect to the pore area.
  • platinum fine particles as a catalyst metal are supported in the fine pores, the gap between the fine pores and the platinum fine particles becomes small, so that gas diffusion may be reduced and large current characteristics may be reduced.
  • V 2-10 exceeds 1.5 mL / g, the skeleton as the carbon material for the carrier becomes thin, and the oxidation resistance decreases.
  • the stirring required for preparing the catalyst layer ink liquid for preparing the catalyst layer may easily break the skeleton of the carbon material for a carrier, and may not be able to exhibit the properties derived from the shape.
  • the integrated pore volume V 2-10 is a value measured by a measurement method described in Examples described later.
  • the residual weight ratio of the graphitized material at 750 ° C. is preferably 3% or less, more preferably 2% or less. It is most preferable that the mixed amount of the graphitized material (remaining weight ratio) is as close to zero as possible (that is, the lower limit of the mixed amount of the graphitized material (remaining weight ratio) is most preferably 0).
  • the mixed amount of the graphitized material (remaining weight ratio) It may be 0.01 or more.
  • the mixed amount (remaining weight ratio) of the graphitized product is determined by measuring the abundance of the graphitized product separately from the above-mentioned strength ratio (I 750 / I peak ) by measuring the residual amount of the graphitized product at 750 ° C. in thermogravimetric analysis (TGA). It is obtained by focusing on the weight. Specifically, as shown in FIG.
  • the mixture amount (remaining weight ratio) of the graphitized material is a value measured by a measurement method described in Examples described later.
  • G detected in the Raman spectrum of 1550 to 1650 cm ⁇ 1.
  • the band half width ⁇ G is preferably 50 to 70 cm ⁇ 1 , more preferably 50 to 65 cm ⁇ 1 .
  • This ⁇ G is said to represent the expansion of the carbon network surface of the carbon material. If ⁇ G is less than 50 cm ⁇ 1 , the carbon network surface is too wide and the edge amount of the carbon network surface forming pore walls decreases, There is a tendency that the characteristics of carrying the catalytic metal fine particles on the pore walls are reduced.
  • ⁇ G exceeds 70 cm ⁇ 1
  • the carbon mesh surface is narrow, and the edge amount of the carbon mesh surface that is easily oxidized and consumed increases, so that the durability tends to decrease.
  • the half-width ⁇ G of the G-band is a value measured by a measurement method described in Examples described later.
  • the relative pressure in the nitrogen gas adsorption isotherm as described in the above (4) is the nitrogen gas adsorption amount V macro adsorbed between 0.95 and 0.99 needs to be 300-1200 cc (STP) / g, preferably 300-800 cc (STP) / g.
  • the nitrogen gas adsorption amount V macro between the relative pressures of 0.95 to 0.99 indicates the size of the macropores formed by the gaps between the primary particles. When this value is in the above range, the three-dimensional tree structure of the carbon material is highly developed.
  • the supply of the raw material gas (H 2 , O 2 ) in the polymer electrolyte fuel cell is reduced, and the generated H 2 O is not discharged. (A situation in which the battery reaction is hindered) can be avoided. That is, it is preferable because a fuel cell having good large current characteristics can be formed.
  • V macro is too large, the amount of carbon contained when the catalyst layer is formed decreases, and it becomes difficult to maintain the shape of the catalyst layer.
  • the nitrogen gas adsorption amount V macro is a value measured by a measurement method described in Examples described later.
  • carbon (soot) having low aromaticity contained in a carbon material intermediate obtained by self-decomposing and exploding silver acetylide is used. It must be removed as much as possible. Therefore, instead of silver removal using concentrated nitric acid, which has been generally adopted until now, for example, first, for example. After selectively dissolving only silver using dilute nitric acid having a concentration of 5 to 30% by mass, carbon (soot) having low aromaticity is removed using a predetermined oxidizing agent solution. By performing the two-stage treatment as described above, carbon (soot) having low aromaticity can be efficiently removed.
  • a predetermined oxidizing agent solution at least one selected from the group consisting of an aqueous solution of permanganate and an aqueous solution of hydrogen peroxide because of its high oxidizing power is exemplified.
  • the present disclosure can be performed in the same manner as the conventional method.
  • a carbon material intermediate is recovered by a self-decomposing explosion reaction at a temperature (decomposition step), and the recovered carbon material intermediate is contacted with a predetermined oxidizing agent solution after removing silver with dilute nitric acid (silver removal step). Then, the carbon material intermediate is cleaned (cleaning process step), and the cleaned carbon material intermediate is heated at a temperature of 1400 to 2200 ° C. (preferably 1800 to 2100 ° C.) in a vacuum or an inert gas atmosphere. It can be manufactured by performing a treatment (a heat treatment step).
  • a heat treatment step a heat treatment
  • the silver acetylide generation step is not particularly limited as long as it is a known method.
  • a method of generating silver acetylide by contacting an aqueous solution of silver nitrate and acetylene molecules described in Patent Document 1 can be used.
  • the method of contacting the acetylene gas is not particularly limited, and examples thereof include a method of passing an acetylene gas through an aqueous silver nitrate solution, and more specifically, a method of blowing an acetylene gas into an aqueous silver nitrate solution.
  • aqueous silver nitrate solution it is preferable to stir the aqueous silver nitrate solution when the aqueous silver nitrate solution is in contact with the acetylene gas.
  • Stirring may be performed using a general stirring blade, or may be performed using a stirrer such as a magnet stirrer.
  • silver acetylide can be obtained as a bulky precipitate of white crystals.
  • the obtained silver acetylide is decomposed by heating to obtain a carbon material intermediate.
  • silver acetylide explodes on a nanoscale and phase-separates into silver and carbon.
  • silver forms nano-sized particles, or is gasified by heat of reaction to produce a surface portion. Spouts.
  • carbon has a structure with high aromaticity because three acetylene-based compounds such as acetylene molecules are easily collected to form a benzene ring. Further, since silver forms nanoparticles, the carbon phase from which silver has been removed becomes a porous structure.
  • the heating of silver acetylide can be performed, for example, as follows.
  • the obtained precipitate of silver acetylide is heated at, for example, 40 ° C. or more and 100 ° C. or less under a reduced pressure atmosphere.
  • the solvent remaining in the silver acetylide can be removed, the thermal energy of the explosion is prevented from being spent on the sensible heat of the phase transition of the solvent to the gas phase, and the decomposition of the silver acetylide is made more efficient.
  • silver acetylide does not decompose (this heat treatment is referred to as “first heat treatment” in the present disclosure).
  • the formed carbon material intermediate is heated at, for example, 140 ° C. to 400 ° C.
  • silver acetylide By heating silver acetylide to such a relatively high temperature, silver acetylide explodes and decomposes on a nanoscale, and silver and carbon respectively form nanostructures.
  • a composite material containing silver and carbon is obtained.
  • the basic structure of the carbon phase portion of the composite material is mainly composed of several layers of graphene by polycyclic aromatic formation using an acetylene-based compound as described above.
  • the carbon material from which silver particles have been removed has a large specific surface area and a high porosity (in the present disclosure, This heat treatment is referred to as “second heat treatment”).
  • the carbon material intermediate is brought into contact with dilute nitric acid to remove silver from the carbon material intermediate.
  • dilute nitric acid for example, a diluted nitric acid aqueous solution having a concentration of 5 to 30% by mass is used.
  • the treatment with dilute nitric acid is performed, for example, at a liquid temperature of 15 to 60 ° C. and a treatment time of 0.5 to 2 hours.
  • the predetermined oxidizing agent solution at least one selected from the group consisting of a permanganate solution and a hydrogen peroxide solution is used because of its high oxidizing power.
  • a permanganate solution for example, a 1N aqueous solution of potassium permanganate, a 1N aqueous solution of sodium permanganate, or the like is used.
  • a hydrogen peroxide solution for example, a hydrogen peroxide solution having a concentration of 15 to 60% by mass is used.
  • the treatment with a predetermined oxidizing agent solution is performed at a liquid temperature of 25 to 80 ° C.
  • the carbon material intermediate that has been cleaned in the above-mentioned washing treatment step is heat-treated at a temperature of 1400 to 2200 ° C., preferably 1800 to 2100 ° C. in a vacuum or an inert gas atmosphere to obtain a carbon material for a catalyst carrier.
  • a temperature of 1400 to 2200 ° C. preferably 1800 to 2100 ° C. in a vacuum or an inert gas atmosphere.
  • crystals of the carbon material for a catalyst carrier can be developed.
  • the crystallinity of the carbon material for a catalyst carrier can be adjusted and controlled by the temperature.
  • the carbon material for a catalyst carrier When used as a catalyst carrier for an electrode of a polymer electrolyte fuel cell, it is at a relatively high temperature, for example, about 80 ° C., and is strongly acidic at a pH of 1 or less and 1.3 V vs. SHE. Exposure to high potential environment. In such an environment, carbon in the porous carbon material is easily oxidized and consumed. Therefore, when the porous carbon material is used as a catalyst carrier, it is considered that it is important to enhance the crystallinity in this step (in the present disclosure, this heat treatment step is referred to as “third step”). Heat treatment ”).
  • Carbon (soot) with low aromaticity has a low melting temperature and is presumed to be easily graphitizable carbon. It is known that graphitization of many graphitizable carbons rapidly progresses from around 2000 ° C. [Tetsuo Iwashita, Introduction to New Carbon Materials (edited by the Society of Carbon Materials) (1996) pp. 24-31. ], It is considered that carbon (soot) having low aromaticity also shows the same crystallization behavior. Therefore, the temperature of the heat treatment step is preferably 2200 ° C or lower, more preferably 2100 ° C or lower. In addition, when the temperature of the heat treatment step exceeds 2200 ° C., rapid crystallization of highly aromatic carbon also starts.
  • the lower limit of the temperature in the heat treatment step needs to be 1400 ° C. or higher from the viewpoint of improving the durability ( ⁇ G) of the obtained carbon material for a catalyst carrier.
  • the lower limit of the temperature in the heat treatment step is preferably 1800 ° C. or higher.
  • the holding time of the heat treatment step is preferably from 0.5 to 10 hours, more preferably from 1 to 8 hours, from the viewpoint of suppressing crystallization of highly aromatic carbon and improving the durability of the carbon material for a catalyst carrier. It is.
  • the heat treatment step is not particularly limited, but can be performed, for example, under a reduced pressure atmosphere or an inert gas atmosphere, and is preferably performed under an inert gas atmosphere. Although it does not specifically limit as an inert gas, For example, nitrogen, argon, etc. can be used.
  • the carbon material for a catalyst carrier according to the present disclosure is preferably composed of a dendritic carbon nanostructure having a three-dimensional tree-like structure in which a rod-shaped body or a cyclic body is three-dimensionally branched.
  • This carbon material for a catalyst carrier has not only the same or better BET specific surface area and durability than conventional dendritic carbon nanostructures of this type, but also the dispersibility of the catalyst metal as described above. Highly crystalline and non-porous graphitized material which is considered to inhibit (uniformity) is removed as much as possible. Therefore, the reaction gas is diffused without resistance into the catalyst layer prepared using the dendritic carbon nanostructure as a catalyst carrier, and the water generated in the catalyst layer (produced water) is discharged without delay. Thus, a polymer electrolyte fuel cell having excellent durability as a fuel cell can be obtained, in which small pores are formed and the utilization rate of the catalyst metal is less likely to decrease.
  • the dendritic carbon nanostructure refers to, for example, a dendritic structure branched at a branch diameter of 10 nm or more and several 100 nm or less (for example, 500 nm or less (preferably 200 nm or less)).
  • the branch diameter is measured as follows. Using a scanning electron microscope (SEM; SU-9000, manufactured by Hitachi High-Technologies), SEM images of 5 visual fields (size 2.5 ⁇ m ⁇ 2 ⁇ m) were observed at a magnification of 100,000 times, and 20 positions were observed on the image of each visual field. Are measured, and the average value of the measured values at a total of 100 locations is defined as the value of the branch diameter.
  • SEM scanning electron microscope
  • the branch diameter to be measured is the branch diameter of the central part (the middle part of the branched branches) between two adjacent branch points for the target branch (see FIG. 4A.
  • D is the branch diameter).
  • the method for measuring the branch diameter will be described with reference to FIG. FIG. 5 shows one branch of interest.
  • the branch point BP1 and the branch point BP2 that branch off from the branch of interest are specified.
  • the thickness (width) of the branch is measured at a position where the specified branch point BP1 and the branch point BP2 are connected and a vertical bisector BC connecting the branch point BP1 and the branch point BP2 is formed.
  • the thickness (width) of the measured branch is the branch diameter D per location.
  • thermogravimetric analysis [strength ratio (I 750 / I peak ), remaining weight ratio of graphitized material (%)], BET specific surface area (m 2 / g) of the carbon material for catalyst carrier prepared in the following experimental examples , A cumulative pore volume V 2-10 with a pore diameter of 2 to 10 nm, a nitrogen gas adsorption amount V macro [cc (STP) / g], and a G-band detected in a Raman spectrum of 1550 to 1650 cm ⁇ 1 .
  • the measurement of the half width ⁇ G (cm ⁇ 1 ) and the yield (%) were performed as follows.
  • a part of the obtained carbon material for a catalyst carrier was observed using a transmission electron microscope (TEM) and a scanning electron microscope (SEM).
  • thermogravimetric / indicative heat measuring device EXSTAR TG / DTA7200, manufactured by Hitachi High-Technologies Corporation
  • the obtained weight loss curve was differentiated with time to obtain a differential thermogravimetric curve (DTG). Then, the peak intensity (I peak ) appearing around 690 ° C.
  • thermogravimetric analysis TGA
  • TGA thermogravimetric analysis
  • the sample was set on a laser Raman spectrophotometer (Model NRS-3100 manufactured by JASCO Corporation), excitation laser: 532 nm, laser power: 10 mW (sample irradiation power: 1.1 mW), microscopic arrangement: Backscattering, slit: 100 ⁇ m ⁇ 100 ⁇ m, objective lens: ⁇ 100, spot diameter: 1 ⁇ m, exposure time: 30 sec, observation wave number: 2000 to 300 cm ⁇ 1 , and the number of integration: 6 times. It determined each 1580 cm -1 FWHM of G- band called graphite appearing near ⁇ G (cm -1) from the spectrum, and the average value and the measured value.
  • a laser Raman spectrophotometer Model NRS-3100 manufactured by JASCO Corporation
  • Example 1 (2) Silver acetylide formation step To 25 g of silver nitrate, 110 g of a 25% by mass aqueous ammonia solution was added and dissolved. After 110 g of water was further added, dry nitrogen was blown to remove residual oxygen. Next, an acetylene gas was blown at a flow rate of 73.5 mL / min for 22 minutes while stirring the solution and applying vibration by immersing the ultrasonic vibrator. This precipitated a silver acetylide solid in the solution. Next, the obtained precipitate was filtered with a membrane filter. At the time of filtration, the precipitate was washed with methanol, and a small amount of methanol was added to impregnate the precipitate with methanol.
  • a nanoscale explosion reaction occurs in the container, and the silver contained therein is ejected, and a silver-containing nanostructure (carbon material intermediate) having a large number of ejection holes formed on the surface and inside, Obtained as a composite material containing silver and carbon.
  • Step 150 g of a 30% by mass aqueous hydrogen peroxide solution is added to the carbon material intermediate from which silver has been removed, and the mixture is treated at a treatment temperature (liquid temperature) of 60 ° C. under a nitrogen stream for 4 hours to obtain an aromatic residue.
  • the low carbon (soot) and the like were removed to obtain a purified carbon material intermediate.
  • the purified carbon material intermediate is treated at 140 ° C. in an air atmosphere for 2 hours to remove moisture and dried, and then heat-treated at 1100 ° C. for 2 hours in an argon flow to obtain a porous material.
  • a carbon material As a carbon material.
  • the carbon material for a catalyst carrier of Experimental Example 1 prepared as described above was subjected to thermogravimetric analysis [strength ratio (I 750 / I peak ), remaining weight ratio (%)], and BET specific surface area by the method described above. (m 2 / g), integrated pore volume V 2-10 with a pore diameter of 2 to 10 nm, nitrogen gas adsorption amount V macro [cc (STP) / g], and Raman spectroscopy within 1550 to 1650 cm -1
  • the half-width ⁇ G (cm ⁇ 1 ) of the G-band to be measured was measured. Table 1 shows the results.
  • Example 29 Except that the silver removing step and the washing treatment step were changed to the nitric acid treatment step as described below, a carbon material for a catalyst carrier was prepared in the same procedure as in Experimental Example 1, and evaluated by the same method. Table 3 shows the results.
  • Example 31 A carbon material for a catalyst carrier was prepared in the same procedure as in Experimental Example 1, except that the washing treatment step was changed to the treatment with an aqueous solution of potassium permanganate as described below, and they were evaluated by the same method. Table 4 shows the results.
  • the nitric acid was removed using a centrifugal separator, and further, in order to sufficiently remove the remaining nitric acid, the carbon material intermediate after the centrifugation was dispersed again in pure water, and the resultant was centrifuged again. To separate the carbon material intermediate (solid) from the liquid. By performing such washing operation twice, nitric acid was removed to obtain a carbon material intermediate from which silver was removed. Further, 150 g of a 0.4N aqueous potassium permanganate solution is added to the carbon material intermediate from which silver has been removed, and the mixture is treated at a treatment temperature (liquid temperature) of 80 ° C. for 4 hours in a nitrogen stream to leave residual low aromatic carbon ( Soot) was removed.
  • a treatment temperature liquid temperature
  • the potassium permanganate aqueous solution was removed from the carbon material intermediate using a centrifuge. Further, in order to sufficiently remove the remaining potassium permanganate aqueous solution, the carbon material intermediate after the centrifugation is dispersed again in pure water, and the resultant is again subjected to a centrifugal separator, and the carbon material intermediate ( Solid) was separated from the liquid. By performing such a washing operation twice, the aqueous solution of potassium permanganate was removed.
  • Example 33 In the same procedure as in Experimental Example 31, except that the concentration of the aqueous solution of potassium permanganate in the aqueous permanganate treatment step was changed to 1.0 N, the treatment temperature was changed to 60 ° C., and the treatment time was changed to 3 hours. Each carbon material for a catalyst carrier was prepared and evaluated by the same method. Table 4 shows the results.
  • Example 34 In the same procedure as in Experimental Example 31, except that the concentration of the aqueous solution of potassium permanganate in the aqueous permanganate treatment step was changed to 3.0 N, the treatment temperature was changed to 40 ° C., and the treatment time was changed to 5 hours. Each carbon material for a catalyst carrier was prepared and evaluated by the same method. Table 4 shows the results.
  • a catalyst for a polymer electrolyte fuel cell supporting a catalyst metal was prepared as follows, and the evaluation of the supporting property of the catalyst metal was performed. Then, a catalyst layer ink liquid is prepared using the obtained catalyst, a catalyst layer is formed using the catalyst layer ink liquid, and a membrane electrode assembly (MEA) is further formed using the formed catalyst layer. : Membrane Electrode Assembly), and the manufactured MEA was assembled in a fuel cell, and a power generation test was performed using a fuel cell measuring device.
  • a power generation test was performed using a fuel cell measuring device.
  • the solid material thus obtained is vacuum-dried at 90 ° C., crushed in a mortar, and then heat-treated at 200 ° C. for 1 hour in an argon atmosphere containing 5% by volume of hydrogen to produce a carbon material carrying platinum catalyst particles. did.
  • the amount of platinum supported on the platinum-supported carbon material was adjusted so as to be 40% by mass with respect to the total mass of the catalyst-supporting carbon material and the platinum particles, and inductively coupled plasma emission spectroscopy (ICP-AES: Inductively Coupled Plasma-Atomic Emission Spectrometry).
  • the average particle diameter of the platinum particles was estimated from the half width of the platinum (111) peak in the powder X-ray diffraction spectrum of the obtained catalyst using an X-ray diffractometer (RINT TTR III manufactured by Rigaku) according to Scherrer's formula. .
  • Ethanol was further added to each of the catalyst layer ink solutions having a solid content concentration of 1.0% by mass thus prepared to prepare a spray coating catalyst layer ink solution having a platinum concentration of 0.5% by mass.
  • the spray conditions were adjusted so that the mass per layer unit area (hereinafter, referred to as “platinum weight”) was 0.2 mg / cm 2, and the spray coating catalyst layer ink was spread on a Teflon (registered trademark) sheet. After spraying, a drying treatment was performed at 120 ° C. for 60 minutes in argon to form a catalyst layer.
  • an MEA membrane electrode assembly
  • a 6 cm-square electrolyte membrane was cut out from a Nafion membrane (NR211 manufactured by Dupont). Further, each of the anode and cathode catalyst layers applied on the Teflon (registered trademark) sheet was cut into a square having a side of 2.5 cm with a cutter knife. The electrolyte membrane is sandwiched between the thus-cut anode and cathode catalyst layers so that the catalyst layers are in contact with each other across the center of the electrolyte membrane and are not shifted from each other. / Cm 2 for 10 minutes, and then cooled to room temperature. Carefully peel off only the Teflon sheet on both the anode and cathode to prepare a catalyst layer-electrolyte membrane assembly in which the anode and cathode catalyst layers are fixed to the electrolyte membrane. did.
  • a pair of square carbon papers having a size of 2.5 cm on a side was cut out from carbon paper (35BC manufactured by SGL Carbon Co., Ltd.), and the anode and cathode catalyst layers were cut between these carbon papers.
  • the MEA was manufactured by pressing the catalyst layer-electrolyte membrane assembly at 120 ° C. and 50 kg / cm 2 for 10 minutes so that the above values did not match.
  • the basis weight of each component of the catalyst metal component, the carbon material, and the electrolyte material in each manufactured MEA was determined by the difference between the mass of the Teflon sheet with the catalyst layer before pressing and the mass of the Teflon sheet peeled after pressing.
  • the mass of the catalyst layer fixed on the membrane (electrolyte membrane) was determined and calculated from the mass ratio of the composition of the catalyst layer.
  • the MEAs manufactured using the carbon materials for catalyst carriers according to the respective experimental examples were incorporated into cells, respectively, set in a fuel cell measuring device, and the performance of the fuel cells was evaluated in the following procedure.
  • the cathode side is air as an oxidizing gas
  • the anode side is pure hydrogen as a reaction gas
  • the pressure is adjusted by a back pressure valve provided downstream of the cell so that the utilization is 40% and 70%, respectively.
  • a back pressure of 0.05 MPa The cell temperature was set at 80 ° C., and the oxidizing gas and the reactive gas to be supplied were bubbled with distilled water kept at 60 ° C. in a humidifier for both the cathode and the anode, and the humidification was performed in a low humidified state.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

多孔質炭素材料であって、(1)空気雰囲気下で10℃/分で昇温したときの熱重量分析により得られる微分熱重量曲線(DTG)において、750℃における強度(I750)と690℃近傍のピーク強度(Ipeak)との強度比(I750/Ipeak)が0.10以下であること、(2)窒素ガス吸着等温線のBET解析により求められるBET比表面積が400~1500m/gであること、(3)窒素ガス吸着等温線のDollimore-Heal法を用いた解析により求められる細孔径2~10nmの積算細孔容積V2-10が0.4~1.5mL/gであること、及び(4)窒素ガス吸着等温線において、相対圧0.95~0.99における窒素ガス吸着量Vmacroが300~1200cc(STP)/gであることを同時に満たす固体高分子形燃料電池の触媒担体用炭素材料及びその製造方法である。

Description

固体高分子形燃料電池の触媒担体用炭素材料及びその製造方法
 本開示は、固体高分子形燃料電池の触媒担体用炭素材料及びその製造方法に関する。
 近年、100℃以下の低温で作動可能な固体高分子形燃料電池が注目され、車両用駆動電源や定置型発電装置として開発及び実用化が進められている。そして、一般的な固体高分子形燃料電池の基本構造(単位セル)は、プロトン伝導性の電解質膜を挟んでその両外側にそれぞれアノード及びカソードとなる触媒層が配置された膜電極接合体(MEA:Membrane Electrode Assembly)と、この膜電極接合体を挟んでそれぞれ触媒層の外側に配置されたガス拡散層と、更にこれらガス拡散層の外側に配置されたセパレーターとからなる構造を有している。そして、通常、固体高分子形燃料電池は、必要な出力を達成するために必要な数の単位セルをスタックすることにより構成されている。
 そして、このような固体高分子形燃料電池の単位セルにおいては、アノード側とカソード側にそれぞれ配されたセパレーターのガス流路から、カソード側には酸素や空気等の酸化性ガスを、また、アノード側には水素等の燃料をそれぞれ供給する。これら供給された酸化性ガス及び燃料(これらを「反応ガス」ということがある。)を、それぞれガス拡散層を介して触媒層まで供給し、アノードの触媒層で起こる化学反応とカソードの触媒層で起こる化学反応との間のエネルギー差(電位差)を利用して仕事を取り出している。例えば、燃料として水素ガスが、また、酸化性ガスとして酸素ガスが使用される場合には、アノードの触媒層で起こる化学反応〔酸化反応:H→2H+2e(E=0V)〕と、カソードの触媒層で起こる化学反応〔還元反応:O+4H+4e→2HO(E=1.23V)〕とのエネルギー差(電位差)を仕事として取り出している。
 ここで、上記のような触媒層を形成して化学反応を生起させる触媒については、通常、触媒担体としては電子伝導性、化学的安定性、電気化学的安定性の観点から多孔質炭素材料が用いられる。また、触媒金属としては強酸性環境下での使用が可能であって酸化反応及び還元反応に対して共に高い反応活性を示すPt又はPt合金が主として用いられている。そして、触媒金属については、一般に上記の酸化反応及び還元反応が触媒金属上で起きるので、この触媒金属の利用率を高めるためには、質量当りの比表面積を大きくすることが必要になる。そのため、通常、触媒金属として数nm程度の大きさの粒子が用いられている。
 そして、このような触媒金属の粒子を担持する触媒担体については、担体としての担持能力を高めるために、すなわち、上記の数nm程度の触媒金属粒子を吸着して担持するためのサイトを多くするために、比表面積の大きな多孔質炭素材料であることが必要である。それと共に、上記の触媒金属粒子を可及的に高分散状態で担持するように、細孔直径2~50nmのメソ孔の容積、すなわちメソ孔容積の大きな多孔質炭素材料であることが求められる。そして、それと同時に、アノード及びカソードとなる触媒層を形成した際には、この触媒層中に供給された反応ガスを抵抗なく拡散させ、また、この触媒層中で生成した水(生成水)を遅滞なく排出させるために、この触媒層中に反応ガスの拡散や生成水の排出に適した微細孔が形成される必要がある。
 そこで、従来においては、比較的大きな比表面積及びメソ孔容積を有し、同時に、立体的に枝が発達した樹状構造を持つ多孔質炭素材料として、例えばCABOT社製バルカンXC-72、およびライオン社製EC600JD及びライオン社製EC300が用いられている。また、触媒担体用炭素材料としてより好適な比表面積及びメソ孔容積を有すると共に、より好適な樹状構造を持つ多孔質炭素材料を開発するための試みも行われている。近年、特に注目され始めたものとして、3次元的に分岐した3次元樹状構造を持つ銀アセチリド等の金属アセチリドを中間体として製造され、この3次元樹状構造を維持した樹状炭素ナノ構造体がある。この樹状炭素ナノ構造体については、これまでにも幾つかの提案がされている。
 例えば、特許文献1には、長期に亘って電流量の低下率が低く、耐久性に優れた固体高分子形燃料電池用の触媒を調製可能な触媒担体用炭素材料が提案されている。
 具体的には、特許文献1には、金属又は金属塩を含む溶液を準備する工程と、前記溶液にアセチレンガスを吹き込んで金属アセチリドからなる樹状の炭素ナノ構造体を生成させる工程と、この炭素ナノ構造体を60~80℃で加熱して前記樹状の炭素ナノ構造体中に金属が内包された金属内包樹状炭素ナノ構造物を作製する工程と、この金属内包樹状炭素ナノ構造物を160~200℃に加熱して金属を噴出させ、樹状の炭素メソポーラス構造体を作製する工程と、この炭素メソポーラス構造体を減圧雰囲気下又は不活性ガス雰囲気下で1600~2200℃に加熱する工程とからなる製造方法で調製された多孔質炭素材料が提案されいる。この多孔質炭素材料は、窒素吸着等温線をDollimore-Heal法で解析して求められる細孔径1~20nm及び積算細孔容積0.2~1.5cc/gを有すると共に、BET比表面積200~1300m/gを有する
 また、特許文献2には、高加湿条件下で高い電池性能を発揮し得る固体高分子形燃料電池用触媒を調製可能な担体炭素材料が提案されている。
 具体的には、特許文献2には、金属又は金属塩を含むアンモニア性水溶液中にアセチレンガスを吹き込んで金属アセチリドを生成させるアセチリド生成工程と、前記金属アセチリドを60~80℃の温度で加熱して金属粒子内包中間体を作成する第1の加熱処理工程と、前記金属粒子内包中間体を120~200℃の温度で加熱してこの金属粒子内包中間体から金属粒子を噴出させ、炭素材料中間体を得る第2の加熱処理工程と、前記炭素材料中間体を熱濃硫酸と接触させてこの炭素材料中間体を清浄化する洗浄処理工程と、更に清浄化された炭素材料中間体を1000~2100℃で加熱処理して担体炭素材料を得る第3の加熱処理工程とからなる製造方法で調製された多孔質炭素材料が提案されている。この多孔質炭素材料は、所定の水素含有量を有すると共に、BET比表面積600~1500m/g、及びラマン分光スペクトルから得られるD-バンド1200~1400cm-1の範囲のピーク強度(l)とG-バンド1500~1700cm-1の範囲のピーク強度(l)との相対強度比(l/l)1.0~2.0を有する。
 更に、特許文献3には、高い発電性能を維持しつつ電位変動に対して優れた耐久性を発現し得る固体高分子形燃料電池用触媒を調製可能な触媒担体用炭素材料が提案されている。
 具体的には、特許文献3には、金属又は金属塩を含むアンモニア性水溶液中にアセチレンガスを吹き込んで金属アセチリドを生成させるアセチリド生成工程と、前記金属アセチリドを40~80℃の温度で加熱して金属粒子内包中間体を作成する第1の加熱処理工程と、前記金属粒子内包中間体を圧密成形し、得られた成形体を毎分100℃以上の昇温速度で400℃以上まで加熱してこの金属粒子内包中間体から金属粒子を噴出させ、炭素材料中間体を得る第2の加熱処理工程と、前記炭素材料中間体を熱濃硝酸又は熱濃硫酸と接触させてこの炭素材料中間体を清浄化する洗浄処理工程と、更に清浄化された炭素材料中間体を真空中又は不活性ガス雰囲気中1400~2100℃で加熱処理して担体炭素材料を得る第3の加熱処理工程とからなる製造方法で調製された多孔質炭素材料が提案されている。この多孔質炭素材料は、吸着過程の窒素吸着等温線をDollimore-Heal法で解析して求められる細孔直径2~50nmのメソ孔の比表面積Sが600~1600m/gであり、ラマン分光スペクトルにおけるG’-バンド2650~2700cm-1の範囲のピーク強度(lG’)とG-バンド1550~1650cm-1の範囲のピーク強度(l)との相対強度比(lG’/l)が0.8~2.2であり、メソ孔の内の細孔直径2nm以上10nm未満のメソ孔の比細孔面積S2-10が400~1100m/gであって比細孔容積V2-10が0.4~1.6cc/gであり、メソ孔の内の細孔直径10nm以上50nm以下のメソ孔の比細孔面積S10-50が20~150m/gであって比細孔容積V2-10が0.4~1.6cc/gであり、また、吸着過程の窒素吸着等温線をHorvath-Kawazoe法で解析して求められる細孔直径2nm未満の細孔の比細孔面積Sが250~550m/gである。
 更にまた、特許文献4には、起動・停止といった負荷変動の繰り返しに対する耐久性に優れ、また、低加湿時の運転条件下での発電性能に優れている固体高分子形燃料電池用触媒を調製可能な触媒担体用炭素材料が提案されている。
 具体的には、特許文献4には、金属アセチリドを中間体として自己分解爆発反応を経て調製された樹状炭素ナノ構造を有する多孔質炭素材料〔新日鉄住金化学社製商品名:エスカーボン(ESCARBON)(登録商標)-MCND〕を原料として用い、黒鉛化処理を行った後に、更に過酸化水素、硝酸、液中プラズマ装置等を用いた酸化処理を行って得られた触媒担体用炭素材料が提案されている。この触媒担体用炭素材料は、酸素含有量OICPが0.1~3.0質量%、不活性ガス(又は真空)雰囲気中1200℃の熱処理後に残存する酸素残存量O1200℃が0.1~1.5質量%、BET比表面積が300~1500m/g、ラマン分光スペクトルの1550~1650cm-1の範囲に検出されるG-バンドの半値幅ΔGが30~70cm-1、及び不活性ガス(又は真空)雰囲気中1200℃の熱処理後に残存する水素残存量H1200℃が0.005~0.080質量%である
 特許文献1:WO 2014/129597 A1
 特許文献2:WO 2015/088025 A1
 特許文献3:WO 2015/141810 A1
 特許文献4:WO 2016/133132 A1
 非特許文献1:西方篤(2009).「固体高分子形燃料電池の腐食劣化問題」『材料と環境』,58,288-293.
 上記の特許文献1~4に記載された触媒担体用炭素材料は、いずれも比較的大きな比表面積を有し、触媒金属の担体への担持位置密度(粒子数密度)が高く、その絶対量を多くすることができ、触媒金属粒子を小さく、且つ、高密度に、しかも均一(均質)に担持しやすいものである。そのために、これら触媒担体用炭素材料は、固体高分子形燃料電池用触媒を調製する上で所定の発電特性を発揮するものではある。しかし、本発明者らがその発電特性の更なる向上を検討する中で、触媒金属の分散性(均一性)の観点において改善の余地があることが判明した。
 すなわち、触媒金属粒子の粒子径が異なる場合、いわゆるオストワルド成長と呼ばれる粒子の成長現象により、燃料電池使用時の電位サイクルの繰り返しの際には、カソード側において、高電位時には触媒金属(Pt)の粒子の溶解が起こり、一方で、低電位時にはPtの析出が起こることが知られている(非特許文献1を参照)。触媒金属粒子の粒子径が増大すると、触媒金属の反応面積が下がって利用率が減少するために、電池の出力低下が起こり、耐久性の低下につながる。そのことから、この経時的な劣化をできるだけ予防するためには、触媒担体に担持させる触媒金属の粒子径分布を狭くして担持を均質にすること、すなわち、粒子間の距離を均一にすることが求められる。
 そして、上記の特許文献1~4に記載された触媒担体用炭素材料は、いずれも比較的大きな比表面積およびメソ孔容積を有するものではあるものの、本開示の発明者らが更に詳細に検討した。その結果、意外なことに、このような従来の触媒担体用炭素材料においても、一部触媒金属の分散性(均一性)を阻害すると考えられる高結晶性且つ非多孔性の塊状炭素(以下、本開示では、これを「黒鉛化物」と称することとする。図1を参照。)が、僅かではあるが、触媒担体用炭素材料を形成する骨格形成炭素に対して混入されていることを確認した。そして、黒鉛化物の存在が、担体表面の均質性(均一性)を劣化させる一因となっていることを突き止めた。
 さらに、本開示の発明者らは、このような触媒担体用炭素材料に混入される黒鉛化物が、如何にして生成・混入されるものであって、その生成・混入の程度を定量的に評価する方法を見出すことと共に、それを可及的に減少させることができる方法を見出すことに鋭意取り組んだ結果、以下のような知見を得た。
 すなわち、上記するような触媒担体用炭素材料を製造するには、前述の通り、先ず、金属又は金属塩、具体的には硝酸銀を含むアンモニア性水溶液中にアセチレンガスを吹き込んで銀アセチリドを生成させる。この銀アセチリドの生成に際しては、反応系内において反応する硝酸銀とアセチレンとのモル比を考慮して、反応系内に導入されるアセチレンが若干過剰となるようにアセチレンガスを吹き込んでいる。そのように硝酸銀とアセチレンとの等量点を超えてアセチレンガスを吹き込むと、過剰なアセチレンガスが、生成される銀アセチリドに吸着される。このアセチレンガスを過剰に吸着した銀アセチリドを、その後に続く自己分解爆発反応に供すると、芳香族性の高い炭素の中に、一定量の“芳香族性の低い炭素”(以下、本開示では、これを「煤」と称することとする。)が不可避的に生成・混在される。
 ここで、“芳香族性の低い炭素(煤)”が生成されていると推察する理由は、次の通りである。通常は銀アセチリドが自己分解爆発する過程において芳香族性の高い炭素が形成される。しかし、後述するように、自己分解爆発後に得られた分解生成物(炭素材料中間体)から希硝酸により銀を取り除いた後の洗浄処理工程において、所定の酸化剤溶液により処理することにより、その後の加熱処理工程を経て得られる目的物(触媒担体用炭素材料)では黒鉛化物の生成・混入が抑制されていることが確認された。すなわち、このような所定の酸化剤溶液による処理で溶解・除去されるような低分子(すなわち、芳香族性が低い)成分であると推察される。そして、このようにして生成した黒鉛化物が触媒担体用炭素材料表面の不活性化、すなわち、この結晶性が高く不活性な表面には触媒金属の粒子が担持され難くその分散性(均一性)の低下をもたらすといったことを突き止めた。
 なお、特許文献1~4に代表される従来の触媒担体用炭素材料の製造においても酸化剤である硝酸による処理が行われているが、その主目的は分解工程の分解生成物(炭素材料中間体)から銀を取り除くことである。この硝酸による処理時間が1時間と短く、加熱も行われていないことから硝酸の酸化力も高いものでは無く、今般その存在を突き止めた芳香族性の低い炭素(煤)を除去するには不十分である。
 さらに、特許文献2には炭素材料中間体に200℃で濃硫酸を接触させ銀を除去する方法が開示されているが、これは、熱濃硫酸を使用することにより、炭素の官能基化(炭素の消耗)を抑制しつつ銀の除去を目指したものである。そのため、同じく今般その存在を突き止めた芳香族性の低い炭素(煤)を除去することはできない。
 しかも、このようにして生成される芳香族性が低い炭素(煤)が、その後に行われる加熱処理工程の際に非多孔性の塊状炭素となり、且つ細孔壁などが拘束されず形状的制約を持たない炭素である。そのために自由に成長して結晶性が発達した黒鉛質(黒鉛化物)となることも、特許文献1~4では何ら予見されていない。
 また、このような芳香族性の低い炭素(煤)の生成に起因して黒鉛化物が混在している触媒担体用炭素材料については、空気雰囲気下の熱重量分析(炭素酸化消耗試験)において、その高結晶性且つ多孔性が低い当該黒鉛化物の存在により、燃え尽きる直前の重量減少曲線(微分熱重量曲線、DTG)がより高温側に裾を引いて、触媒担体用炭素材料の骨格形成炭素よりも難燃焼性(難酸化消耗性)の成分を多く有することを突き止めると共に、それが、触媒金属粒子の担持性と強く相関が採れることを突き止めた。
 さらには、このような黒鉛化物の生成を抑制することについては、前記芳香族性の低い炭素(煤)が芳香族性の高い炭素に比べて酸化されやすいことに着目した。そして、この性質を利用して、銀アセチリドの自己分解爆発反応で形成された炭素材料中間体から希硝酸により銀を取り除いた後の洗浄処理工程において、芳香族性の低い炭素(煤)を除去することを目的とし、その処理方法を鋭意検討した。その結果、希硝酸を用いて銀を除去すると共に、それに加えて、上記芳香族性の低い炭素(煤)を除去するための所定の酸化剤溶液による処理も行うことにより、結果として得られる黒鉛化物の生成を可及的に抑制できることを突き止めた。しかも、結果として得られる触媒担体用炭素材料は触媒担体として求められる特性(比表面積、メソ孔容積など)に対しては特段の影響は与えないことを知見した。このようにして、本開示を完成した。
 本開示は、上述した各知見に基づいてなされたものであり、その目的とするところは、触媒金属の担持特性(すなわち、触媒金属粒子の担持の均一性)が良く、発電特性が優れ、燃料電池としての耐久性に優れるような固体高分子形燃料電池の触媒を製造する上で好適な触媒担体用炭素材料を提供することである。
 すなわち、本開示は以下の通りである。
 〔1〕多孔質炭素材料であって、下記(1)、(2)、(3)および(4)を同時に満たす固体高分子形燃料電池の触媒担体用炭素材料。
(1)空気雰囲気下で10℃/分で昇温したときの熱重量分析により得られる微分熱重量曲線(DTG)において、750℃における強度(I750)と690℃近傍のピーク強度(Ipeak)との強度比(I750/Ipeak)が0.10以下であること。
(2)窒素ガス吸着等温線のBET解析により求められるBET比表面積が400~1500m/gであること。
(3)窒素ガス吸着等温線のDollimore-Heal法を用いた解析により求められる細孔径2~10nmの積算細孔容積V2-10が0.4~1.5mL/gであること。
(4)窒素ガス吸着等温線において、相対圧0.95~0.99における窒素ガス吸着量Vmacroが300~1200cc(STP)/gであること。
 〔2〕空気雰囲気下で10℃/分で昇温したときの熱重量分析において、750℃における残重量割合が、3%以下である〔1〕に記載の固体高分子形燃料電池の触媒担体用炭素材料。
 〔3〕ラマン分光スペクトルの1550~1650cm-1の範囲に検出されるG-バンドの半値幅ΔGが、50~70cm-1である〔1〕又は〔2〕に記載の固体高分子形燃料電池の触媒担体用炭素材料。
 〔4〕前記V2-10が、0.5~1.0mL/gである〔1〕~〔3〕のいずれかに記載の固体高分子形燃料電池の触媒担体用炭素材料。
 〔5〕棒状体又は環状体が3次元的に分岐した3次元樹状構造を有する〔1〕~〔4〕のいずれかに記載の固体高分子形燃料電池の触媒担体用炭素材料。
〔6〕 固体高分子形燃料電池の触媒担体用炭素材料の製造方法であり、
 硝酸銀のアンモニア水溶液からなる反応溶液中にアセチレンガスを吹き込んで銀アセチリドを合成する銀アセチリド生成工程と、
 前記銀アセチリドを自己分解爆発反応させて炭素材料中間体を得る分解工程と、
 前記炭素材料中間体を希硝酸に接触させて、前記炭素材料中間体から銀を除去する銀除去工程と、
 銀が除去された前記炭素材料中間体を酸化剤溶液に接触させて、前記炭素材料中間体を清浄化する洗浄処理工程と、
 清浄化された前記炭素材料中間体を真空中又は不活性ガス雰囲気中1400~2200℃の温度で加熱処理して触媒担体用炭素材料を得る加熱処理工程と、
 を備え、
 前記酸化剤溶液として、過マンガン酸塩溶液、及び過酸化水素溶液からなる群から選択される1種以上を用いる固体高分子形燃料電池の触媒担体用炭素材料の製造方法。
 本開示の触媒担体用炭素材料によれば、触媒金属の担持特性(すなわち、触媒金属粒子の担持の均一性)が良く、発電特性に優れ、燃料電池としての耐久性に優れるような固体高分子形燃料電池の触媒を製造する上で好適な触媒担体用炭素材料を提供することができる。
図1は、実験例27の触媒担体用炭素材料を、TEM観察した際に確認される黒鉛化物(白点線内)を示すための説明図(写真)である。 図2Aは、本開示の強度比(I750/Ipeak)を得るに当たり、それぞれI750、Ipeakの求め方を説明する説明図である。 図2Bは、本開示の残重量割合(%)の求め方を説明する説明図である。 図3Aは、本開示の実験例1~4、23、27~28の熱重量分析における微分熱重量曲線〔温度と重量減少量(μg/min)との関係〕を示すグラフである。 図3Bは、図3Aのグラフを得る際に使用した熱重量分析(TGA)において温度750℃に現れる強度を残重量割合(%)として表した拡大図である。 図4Aは、実験例1の触媒担体用炭素材料を、SEM観察した際に確認される樹状構造を示すための説明図(写真)である(図中左下のバーは、1μmを示す)。 図4Bは、実験例1の触媒担体用炭素材料を、SEM観察した際に確認される樹状構造を示すための説明図(写真)である(図中左下のバーは、5μmを示す)。 本開示の触媒担体用炭素材料について、枝径の測定方法を表す説明図である。
 以下、本開示の固体高分子形燃料電池の触媒担体用炭素材料及びその製造方法について、詳細に説明する。
 本開示の固体高分子形燃料電池の触媒担体用炭素材料は、下記の(1)、(2)、(3)および(4)を同時に満たす多孔質炭素材料である。
(1)空気雰囲気下で10℃/分で昇温したときの熱重量分析により得られる微分熱重量曲線(DTG)において、750℃における強度(I750)と690℃近傍のピーク強度(
peak)との強度比(I750/Ipeak)が0.10以下であること。
(2)窒素ガス吸着等温線のBET解析により求められるBET比表面積が400~1500m/gであること。
(3)窒素ガス吸着等温線のDollimore-Heal法を用いた解析により求められる細孔径2~10nmの積算細孔容積V2-10が0.4~1.5mL/gであること。
(4) 窒素ガス吸着等温線において、相対圧0.95~0.99における窒素ガス吸着量Vmacroが300~1200cc(STP)/gであること。
 先ず、上記(1)について、本開示の触媒担体用炭素材料は、前述したように、担持される触媒金属の分散性(均一性)を阻害すると考えられる非多孔性の塊状炭素(黒鉛化物)の生成・混入が可及的に抑制されたものである。そして、このような黒鉛化物の存在量を表す手法として、熱重量分析を用いたものである。当該熱重量分析の具体的な方法は次の通りである。すなわち、熱重量分析装置に試料を設置し、空気雰囲気下において、10℃/分の昇温速度とした際の重量減少を測定し、それにより得られた重量減少曲線(TGA)を時間で微分して微分熱重量曲線(DTG)を得る。そのDTGにおいて690℃近傍に現れる非常に強いピーク(本開示では、この強度を「Ipeak」と表すこととする。)は当該触媒担体用炭素材料の骨格形成炭素の燃焼とする。一方で、それよりも高温側の750℃において立ち上がるように(裾を引くように)現れる部分(本開示では、この強度を「I750」と表すこととする。)を黒鉛化物の燃焼とする。そして、これらの相対的な強度比(I750/Ipeak)として、黒鉛化物の存在量が少ないことを表現する。この方法は、当該黒鉛化物が、触媒担体用炭素材料においては極めて少なく、また、骨格形成炭素と比べて結晶性が発達した黒鉛質となっているものと推測し、それ故に、難燃焼性(難酸化消耗性)であるとの着目から見出されたものである。また、この方法は、この分析における微分熱重量曲線(DTG)がそれらのピーク或いは強度を再現よく表すことができることに加えて、後述の実施例から把握されるように触媒金属粒子の担持性の低下(粒子径の均一性の低下)とよく相関が採れることから見出されたものである。
 ここで、690℃近傍に現れる非常に強いピーク(つまり690℃近傍のピーク)とは、ピーク頂点が690±50℃の範囲内に現れるDTGの極大値を有するピークを意味する。
 本開示の触媒担体用炭素材料は、このような黒鉛化物の生成・混入が極力抑制されたものであることが触媒金属の担持特性(触媒金属粒子の担持の均一性)の面で好ましい。そのため、骨格形成炭素のピーク強度(Ipeak)に比べて黒鉛化物の強度(I750)ができるだけ小さいこと、すなわち、強度比(I750/Ipeak)が0.10以下であることが求められる。強度比(I750/Ipeak)は、好ましくは0.09以下、より好ましくは0.08以下である。なお、強度比(I750/Ipeak)はできるだけゼロに近いことが最も好ましい(つまり、強度比(I750/Ipeak)の下限値は0であることが最も好ましい。)。ただし、難燃焼性(難酸化消耗性)成分は芳香族性の低い炭素(煤)由来だけでなく、高温焼成の過程における構造変化により生成し得ることから、強度比(I750/Ipeak)は、0.001以上であってもよい。
 当該強度比(I750/Ipeak)が0.10を超えて大きくなると、炭素材料に含まれる黒鉛化物の含有量が増加し、触媒金属微粒子が当該担体としての炭素材料表面に均一に担持され難くなる虞がある。また、黒鉛化物に担持された触媒粒子は炭素材料表面との相互作用が弱く、脱落・凝集しやすくなる虞がある。その結果、燃料電池使用環境下においては触媒金属微粒子の粒子径が増大する虞がある。
 なお、強度比(I750/Ipeak)は、後述する実施例に示す測定方法により測定される値である。
 また、このような本開示の触媒担体用炭素材料については、上記(2)の如く、窒素ガス吸着等温線のBET解析により求められるBET比表面積が400~1500m/g、好ましくは500m/g以上1400m/g以下であることが必要である。このBET比表面積が400m/g以上、好ましくは500m/g以上であると、数nmの触媒金属粒子は、良好に分散した状態で、すなわち、触媒金属粒子間距離が一定値以上保たれて粒子が単独で存在できる状態で担持される。反対に、このBET比表面積が400m/g未満であると、触媒粒子間距離が短くなり、触媒金属微粒子を高密度かつ均一に担持し難くなる虞がある。その結果、触媒金属粒子の有効面積が低下し、燃料電池特性が大幅に低下してしまう。また、1500m/gを超えて大きくなるようにすると、多孔質炭素材料におけるエッジ部位が増加するため、実質的な結晶性の低下が伴って耐久性が低下し易くなる虞がある。
 なお、BET比表面積は、後述する実施例に示す測定方法により測定される値である。
 さらに、このような本開示の触媒担体用炭素材料は、上記(3)の如く、窒素ガス吸着等温線のDollimore-Heal法を用いた解析により求められる細孔径2~10nmの積算細孔容積V2-10が0.4~1.5mL/g、好ましくは0.5~1.0mL/gであることが必要である。このような2~10nmの細孔径を有することにより、通常直径数nmに調製される触媒金属微粒子が高分散状態で当該細孔内に分散され、触媒利用率の観点において好ましく寄与する。当該細孔容積V2-10が0.4mL/g未満の場合には、細孔面積に対して容積が小さいため、平均的な細孔サイズが小さくなる。触媒金属である白金微粒子を細孔内に担持した際、細孔と白金微粒子の間の空隙が小さくなるため、ガス拡散が低下して大電流特性が低下してしまう虞がある。反対に、V2-10が1.5mL/g超えて大きくなると、担体用炭素材料としての骨格が肉薄になってしまい、耐酸化消耗性が低下する。それと共に、触媒層を調製するための触媒層インク液調製の際に必要な撹拌により、この担体用炭素材料の骨格が容易に破壊され、形状に由来する特性が発揮できなくなる虞がある。
 なお、積算細孔容積V2-10は、後述する実施例に示す測定方法により測定される値である。
 また、本開示の触媒担体用炭素材料については、空気雰囲気下で10℃/分で昇温したときの熱重量分析において、750℃における黒鉛化物の残重量割合(つまり、触媒担体用炭素材料に混在されている黒鉛化物の混在量)が3%以下であることが好ましく、2%以下であることがより好ましい。なお、黒鉛化物の混在量(残重量割合)はできるだけゼロに近いことが最も好ましい(つまり、黒鉛化物の混在量(残重量割合)の下限値は0であることが最も好ましい。)ただし、難燃焼性(難酸化消耗性)成分は芳香族性の低い炭素(煤)由来だけでなく、高温焼成の過程における構造変化により生成し得ることから、黒鉛化物の混在量(残重量割合)は、0.01以上であってもよい。
 この黒鉛化物の混在量(残重量割合)は、上記した強度比(I750/Ipeak)とは別に、黒鉛化物自体の存在量を、熱重量分析(TGA)における750℃の黒鉛化物の残存重量に着目して求めたものである。具体的には、図2Bに示すように、熱重量分析(TGA)の昇温温度と黒鉛化物の混在量(残重量割合)との関係から算出して求められる数値である。
 なお、黒鉛化物の混在量(残重量割合)は、後述する実施例に示す測定方法により測定される値である。
 また、本開示の触媒担体用炭素材料については、その結晶性を高めて燃料電池使用環境下における耐久性を改善するという観点から、ラマン分光スペクトルの1550~1650cm-1の範囲に検出されるG-バンドの半値幅ΔGが、50~70cm-1であることが好ましく、より好ましくは50~65cm-1である。このΔGは炭素材料の炭素網面の広がりを表すとされており、ΔGが50cm-1未満であると炭素網面が広がり過ぎて細孔壁を形成する炭素網面のエッジ量が減少し、細孔壁への触媒金属微粒子の担持特性が低下する傾向がある。反対に、ΔGが70cm-1を超えて大きくなると炭素網面が狭く、酸化消耗しやすい炭素網面のエッジ量が増えるため、耐久性が低下する傾向がある。
 なお、G-バンドの半値幅ΔGは、後述する実施例に示す測定方法により測定される値である。
 また、本開示の触媒担体用炭素材料については、触媒層中に形成される微細孔の内部におけるガス拡散性の観点から、上記(4)の如く、前記窒素ガス吸着等温線において、相対圧が0.95から0.99までの間に吸着される窒素ガス吸着量Vmacroが、300~1200cc(STP)/g、好ましくは300~800cc(STP)/gが必要である。この相対圧0.95~0.99までの間における窒素ガス吸着量Vmacroは、1次粒子の間隙によって形成されるマクロ孔の大きさを示すものである。この値が上記の範囲である場合、炭素材料の3次元樹状構造が高度に発達したものとなる。3次元樹状構造を発達させることで、固体高分子形燃料電池とした際に原料ガス(H、O)の供給が少なくなることや、生成したHOが排出されないことに起因して発生する状況(電池反応が阻害されるような状況)を回避することができる。すなわち、大電流特性が良好な燃料電池を形成することが可能となるため好ましい。しかしながら、Vmacroが大きすぎると触媒層を形成した際に含有する炭素量が減少するため、触媒層の形状を保つことが困難となる。
 なお、窒素ガス吸着量Vmacroは、後述する実施例に示す測定方法により測定される値である。
 そして、このような本開示の触媒担体用炭素材料を製造する方法については、銀アセチリドを自己分解爆発させて得られた炭素材料中間体に含まれてくる芳香族性の低い炭素(煤)を可及的に除去する必要がある。そのため、これまで一般的に採用されてきた濃硝酸を用いた銀除去ではなく、先ずは、例えば。濃度5~30質量%の希硝酸を用い銀のみを選択的に溶解した後、所定の酸化剤溶液を用い芳香族性の低い炭素(煤)の除去を行う。このように2段階の処理とすることで、芳香族性の低い炭素(煤)を効率よく除去することができる。そして、このような所定の酸化剤溶液としては、酸化力が高いことから過マンガン酸塩水溶液、及び過酸化水素水溶液からなる群から選択される1種以上が挙げられる。
 そして、上記のような洗浄処理工程で得られ、芳香族性の低い炭素が可及的に除去された清浄化された炭素材料中間体を用いることにより、従来の方法と同様の方法で本開示の触媒担体用炭素材料を調製することができる。
 すなわち、本開示の触媒担体用炭素材料は、硝酸銀のアンモニア水溶液からなる反応溶液中にアセチレンガスを吹き込んで銀アセチリドを合成し(銀アセチリド生成工程)、得られた銀アセチリドを120~400℃の温度で自己分解爆発反応させて炭素材料中間体を回収し(分解工程)、この回収された炭素材料中間体を希硝酸にて銀を除去後(銀除去工程)に所定の酸化剤溶液に接触させて、炭素材料中間体を清浄化し(洗浄処理工程)、この清浄化された炭素材料中間体を真空中又は不活性ガス雰囲気中1400~2200℃(好ましくは1800~2100℃)の温度で加熱処理(加熱処理工程)することにより製造することができる。
 以下、各工程の一例について、詳細に説明する。
(銀アセチリド生成工程)
 銀アセチリド生成工程は公知の方法であれば特に限定されないが、例えば、特許文献1に記載の硝酸銀水溶液とアセチレン分子を接触させることにより、銀アセチリドを生成させる方法を用いることができる。
 アセチレンガスの接触方法は、特に限定されないが、例えば、硝酸銀水溶液にアセチレンガスを通過させる方法、より具体的は硝酸銀水溶液にアセチレンガスを吹き込む方法が挙げられる。
 また、硝酸銀水溶液とアセチレンガスとの接触時において、硝酸銀水溶液を撹拌することが好ましい。これにより、アセチレンガスと硝酸銀水溶液との接触の頻度が増加する結果、効率よく銀アセチリドが生成する。撹拌は、一般的な撹拌翼を用いて行ってもよいし、マグネットスターラー等の撹拌子を用いて行ってもよい。以上により白色結晶の嵩高い沈殿物として銀アセチリドを得ることができる。
(分解工程)
 次に、得られた銀アセチリドを加熱することにより分解させ、炭素材料中間体を得る。銀アセチリドを加熱することにより、銀アセチリドがナノスケールにて爆発し、銀と炭素とに相分離し、その際、銀についてはナノサイズの粒子を形成し、または反応熱によりガス化して表面部分に噴出する。一方で、炭素については、アセチレン分子等のアセチレン系化合物が3個集まってベンゼン環を形成しやすいために、芳香族性の高い構造を有することになる。また、銀がナノ粒子を形成するため、銀を除去した炭素相は、多孔質の構造体となる。
 銀アセチリドの加熱は、例えば、以下のように行うことができる。得られた銀アセチリドの沈殿物を、減圧雰囲気下で例えば40℃以上100℃以下で加熱する。この加熱により、銀アセチリド中に残存する溶媒を除去することができ、爆発の熱エネルギーが溶媒の気相への相転移の顕熱に費やされることを防ぎ、銀アセチリドの分解を効率化することができる。なお、この温度では、銀アセチリドは分解しない(本開示では、この加熱処理を「第1の加熱処理」と呼ぶこととする)。
 次いで、形成された炭素材料中間体を、例えば140℃~400℃で加熱する。このように比較的高い温度まで銀アセチリドを加熱することにより、銀アセチリドがナノスケールで爆発して分解し、銀と炭素が各々ナノ構造物を形成する。これにより、銀と、炭素とを含む複合材料が得られる。
 なお、同複合材料の炭素相の部分の基本構造は、前述のようにアセチレン系化合物による多環芳香族形成により、主として数層のグラフェンにより構成されるものである。また、同複合材料においては、銀が爆発過程においてナノスケールの粒子を形成することから、銀粒子を除去した炭素材料は、比表面積が大きく、また多孔性に富むものとなる(本開示では、この加熱処理を「第2の加熱処理」と呼ぶこととする)。
(銀除去工程)
 次に、炭素材料中間体を希硝酸に接触させて、炭素材料中間体から銀を除去する。
 希硝酸としては、例えば、濃度5~30質量%の希硝酸水溶液を用いる。そして、希硝酸による処理は、例えば、液温15~60℃、処理時間0.5~2時間とする。
(洗浄処理工程)
 次に、銀が除去された炭素材料中間体を酸化剤溶液に接触させて、炭素材料中間体を清浄化する。
 銀が除去後された炭素材料中間体を所定の酸化剤溶液に接触させると、芳香族性の低い炭素(煤)を選択的に効率よく除去できる。
 所定の酸化剤溶液としては、酸化力が高いことから、過マンガン酸塩溶液、及び過酸化水素溶液からなる群から選択される1種以上を用いる。
 過マンガン酸塩溶液としては、例えば、1N過マンガン酸カリウム水溶液、1N過マンガン酸ナトリウム水溶液等を用いる。
 過酸化水素溶液としては、例えば、濃度15~60質量%の過酸化水素水を用いる。
 そして、所定の酸化剤溶液による処理は、過マンガン酸塩溶液を用いる場合、液温を25~80℃、処理時間を2~5時間とし、過酸化水素溶液を用いる場合、例えば、液温60~108℃(沸点)以上、処理時間を1~24時間とする。
 ただし、過マンガン酸塩溶液を用いた場合、処理後に生じるマンガンを別途の酸洗浄等により除去する必要があることから、所定の酸化剤溶液による処理は、そのような金属除去のための酸処理等を要さない過酸化水素水溶液を用いることがより好ましい。
(加熱処理工程)
 前述の洗浄処理工程にて清浄化された炭素材料中間体を真空中又は不活性ガス雰囲気中、1400~2200℃、好ましくは1800~2100℃の温度で熱処理し、触媒担体用炭素材料を得る。本工程で行われる熱処理により触媒担体用炭素材料の結晶を発達させることができる。そして、温度によって触媒担体用炭素材料の結晶性を調節、制御することができる。触媒担体用炭素材料が、固体高分子形燃料電池の電極の触媒担体として使用される場合には、比較的高温、例えば80℃程度であり、また、pH1以下の強酸性かつ1.3V vs SHEの高電位の環境下に暴露される。このような環境下では、多孔質である当該炭素材料中の炭素が酸化消耗しやすい。そのため、多孔質である当該炭素材料を触媒担体として使用する場合には、本工程において結晶性を高めることが重要であるとされている(本開示では、この加熱処理工程を、「第3の加熱処理」と呼ぶこととする)。
 芳香族性の低い炭素(煤)は溶融温度が低く、黒鉛化しやすい易黒鉛化炭素と推察される。易黒鉛化炭素の多くは2000℃付近から急激に黒鉛化が進行することが知られており〔岩下哲雄,新・炭素材料入門(炭素材料学会編)(1996) pp. 24-31.〕、芳香族性の低い炭素(煤)も同様の結晶化挙動を示すと考えられる。そのため、加熱処理工程の温度は2200℃以下が好ましく、より好ましくは2100℃以下である。また、加熱処理工程の温度が2200℃を超えると、芳香族性の高い炭素も急激な結晶化が始まる。そのため、炭素網面のエッジが減少し、触媒の担持特性が悪化する虞がある。また、当該加熱処理工程の温度の下限については、得られる触媒担体用炭素材料の耐久性(前述のΔG)を良好なものとするとの観点から、1400℃以上とする必要がある。加熱処理工程の温度の下限は、好ましくは、1800℃以上とすることがよい。
 加熱処理工程の保持時間は、芳香族性の高い炭素の結晶化抑制および触媒担体用炭素材料の耐久性向上の観点から、好ましくは0.5~10時間であり、より好ましくは1~8時間である。
 加熱処理工程は、特に限定されないが、例えば減圧雰囲気下または不活性ガス雰囲気下で行うことができ、好ましくは不活性ガス雰囲気下である。不活性ガスとしては、特に限定されないが、例えば、窒素、アルゴン等を用いることができる。
 そして、本開示の触媒担体用炭素材料は、触媒担体として好適には、棒状体又は環状体が3次元的に分岐した3次元樹状構造を有する樹状炭素ナノ構造体からなる。この触媒担体用炭素材料はは、従来のこの種の樹状炭素ナノ構造体と比較してBET比表面積及び耐久性において同等あるいはより優れているだけでなく、前述の通り、触媒金属の分散性(均一性)を阻害すると考えられる高結晶性且つ非多孔性の黒鉛化物が可及的に除去されているものである。そのため、この樹状炭素ナノ構造体を触媒担体として調製された触媒層には反応ガスを抵抗なく拡散させ、また、この触媒層中で生成した水(生成水)を遅滞なく排出させるのに適した微細孔が形成され、更には、触媒金属の利用率が低下する虞が少なくて、燃料電池としての耐久性に優れるような固体高分子形燃料電池を得ることができる。
 ここで、樹状炭素ナノ構造体とは、例えば、枝径10nm以上数100nm以下(例えば、500nm以下(好ましくは200nm以下))で枝分かれした樹枝状の構造体を示す。
 枝径は、次の通り測定する。走査型電子顕微鏡(SEM;日立ハイテク社製SU-9000)により、10万倍の倍率で5視野(大きさ2.5μm×2μm)のSEM画像を観察し、各視野の画像上でそれぞれ20ヶ所の枝径を計測し、総計100ヶ所の測定値の平均値を枝径の値とする。なお、計測する枝径は、注目する枝について、隣接する2つ分岐点間の中央部(枝分かれしている枝の中間部)の枝径(図4A参照。図4A中、Dは枝径を示す)を対象とする。
 図5を参照して、枝径の測定方法を説明する。図5では、1箇所の注目する枝を示している。この注目する枝について、枝分かれする分岐点BP1と分岐点BP2とを特定する。次に、特定した分岐点BP1と分岐点BP2とを結び、分岐点BP1と分岐点BP2とを結んだ垂直二等分線BCとなる位置で、枝の太さ(幅)を計測する。この計測した枝の太さ(幅)が1箇所当たりの枝径Dである。
 以下、実験例に基づいて、本開示の触媒担体用炭素材料及びその製造方法を具体的に説明する。
 なお、以下の実験例において調製された触媒担体用炭素材料の熱重量分析〔強度比(I750/Ipeak)、黒鉛化物の残重量割合(%)〕、BET比表面積(m/g)、細孔径2~10nmの積算細孔容積V2-10、窒素ガス吸着量Vmacro〔cc(STP)/g〕、ラマン分光スペクトルの1550~1650cm-1の範囲に検出されるG-バンドの半値幅ΔG(cm-1)、及び収率(%)についての測定は、それぞれ以下のようにして実施した。また、得られた触媒担体用炭素材料の一部について、透過型電子顕微鏡(TEM)及び走査型電子顕微鏡(SEM)を用いて観察を行った。
<熱重量分析による強度比(I750/Ipeak)及び残重量割合(%)の測定>
 後述する各実験例で準備した触媒担体用炭素材料を試料とし、これを約6mg量り採った。その後、試料を熱重量・示唆熱測定装置(日立ハイテクノロジーズ社製、EXSTAR TG/DTA7200)にセットし、昇温速度10℃/分、乾燥空気200mL/minの流通の下で900℃までの重量減少を測定した。得られた重量減少曲線を時間で微分して微分熱重量曲線(DTG)を得た。そして、そのDTGにおいて690℃近傍に現れるピーク強度(Ipeak)と、750℃の強度(I750)を測定して、その強度比(I750/Ipeak)を算出した。
 また、黒鉛化物の残存量割合(%)については、熱重量分析(TGA)における750℃の黒鉛化物の残存重量に着目して求めたものであり、具体的には、上記条件での熱重量分析(TGA)により、図2Bに示すように、熱重量分析(TGA)により、黒鉛化物の混在量(残重量割合)との関係を求める。具体的には、TGAスペクトルにおける300℃の残存重量割合を100%、900℃における残存重量割合を0%とした縦軸を有するグラフを作成し、そのグラフにおける750℃時の縦軸の値から、熱重量分析(TGA)における750℃の黒鉛化物の残存重量割合(%)を求めた。
 300℃における残重量割合を100%とする理由として、触媒担体用炭素材料(多孔質炭素材料)が水を吸着していた場合、200℃までに水の放出が行われることから、300℃における値が触媒担体用炭素材料(多孔質炭素材料)の真の試料量となるためである。
<BET比表面積(m/g)、細孔径2~10nmの積算細孔容積V2-10、及び窒素ガ
ス吸着量Vmacro〔cc(STP)/g〕の測定>
 後述する各実験例で準備した触媒担体用炭素材料を試料とし、これを約30mg測り採り、200℃で2時間真空乾燥した。その後に、自動比表面積測定装置(カンタクローム・インスツルメンツ・ジャパン社製 AUTOSORB I-MP)を用い、窒素ガスを吸着質に用いて窒素ガス吸着等温線を測定した。吸着時の等温線の相対圧が0.05~0.15の範囲においてBET解析を実施しBET比表面積を算出した。
 また、細孔径2~10nmの積算細孔容積V2-10については、前記同様の窒素ガス吸着等温線を用い、それを付属のソフトを用いたDollimore-Heal法(DH法)により解析して算出した。
 さらに、窒素ガス吸着量Vmacroについては、前記同様の窒素ガス吸着等温線の相対圧
が0.95の時の吸着量〔cc(STP)/g〕と、0.99の時の吸着量〔cc(STP)/g〕との差を算出してVmacro〔cc(STP)/g〕の値とした。
<ラマン分光スペクトルの1550~1650cm-1の範囲に検出されるG-バンドの
半値幅ΔG(cm-1)>
 後述する各実験例で準備した触媒担体用炭素材料を試料とし、これを約3mg測り採った。その後、試料をレーザラマン分光光度計(日本分光(株)製NRS-3100型)にセットし、励起レーザー:532nm、レーザーパワー:10mW(試料照射パワー:1.1mW)、顕微配置:Backscattering、スリット:100μm×100μm、対物レンズ:×100倍、スポット径:1μm、露光時間:30sec、観測波数:2000~300cm-1、及び、積算回数:6回の測定条件で測定し、得られた6個のスペクトルから各々1580cm-1近傍に現れるいわゆる黒鉛のG-バンドの半値幅ΔG(cm-1)を求め、その平均値を測定値とした。
<TEM観察>
 結晶化物の様子を観察するために、実験例27で準備した触媒担体用炭素材料を試料とし、透過型電子顕微鏡を用いて観察を行った。結果を図1に示す。
<SEM観察>
 樹状構造の様子を観察するために、実験例1で準備した触媒担体用炭素材料を試料とし、高分解能走査型電子顕微鏡を用いて観察を行った。結果を図4A及び図4Bに示す。
[実験例1]
(1)銀アセチリド生成工程
 硝酸銀25gに25質量%アンモニア水溶液110gを加えて溶解し、さらに水110gを加えた後、乾燥窒素を吹き込むことで残留酸素を除去した。次いで、その溶液を攪拌すると共に超音波振動子を浸して振動を与えながら、アセチレンガスを73.5mL/minの流速で22分間吹き付けた。これによって、溶液中に銀アセチリドの固形物を沈殿させた。次いで、得られた沈殿物をメンブレンフィルターで濾過したが、濾過の際には、沈殿物をメタノールで洗浄し、さらに若干のメタノールを加えて沈殿物中にメタノールを含浸させた。
(2)分解工程
 上記の銀アセチリド生成工程で得られた各実験例の銀アセチリドについて、メタノールが含浸された状態のまま約0.5gを直径5cmのステンレス製円筒容器内に装入し、これを真空乾燥機に入れて、60℃で約15~30分間かけて真空乾燥し、銀アセチリド由来の銀粒子内包中間体を調製した(第1の加熱処理)。
 次に、上記第1の加熱処理工程で得られた真空乾燥直後の60℃の銀粒子内包中間体を、そのまま更に真空加熱電気炉から取り出すことなく200℃まで急速に加熱し、20分間加熱を実施した(第2の加熱処理)。この過程で、容器内ではナノスケールの爆発反応が起こり、内包されていた銀が噴出し、表面及び内部には多数の噴出孔が形成された銀内包ナノ構造物(炭素材料中間体)を、銀と炭素とを含む複合材料として得た。
(3)銀除去工程
 上記第2の加熱処理で得られた銀と炭素との複合材料からなる炭素材料中間体について、その10gを濃度15質量%の希硝酸150g(液温30℃)で1時間浸漬した。次いで、遠心分離機を用いて硝酸を除去し、さらに、残留する硝酸を十分に除去するために、上記遠心分離後の炭素材料中間体を再び純水中に分散させ、それを再度遠心分離機に供して、炭素材料中間体(固体)を液体から分離させた。このような水洗する操作を2回行うことで、硝酸を除去して銀が除かれた炭素材料中間体として得た。
(4)洗浄処理工程
 銀が除かれた炭素材料中間体に30質量%の過酸化水素水を150g加え、処理温度(液温)60℃で窒素気流下4時間処理することで残存する芳香族性の低い炭素(煤)などを除去し、清浄化された炭素材料中間体を得た。その清浄化された炭素材料中間体を、140℃、空気雰囲気下で2時間処理することにより水分を除去して乾燥させ、その後、アルゴン流通下、1100℃で2時間の熱処理を行い、多孔質な炭素材料として得た。
(5)加熱処理工程(第3の加熱処理)
 上記(4)で得られた多孔質な炭素材料を、さらに、アルゴン流通下、2100℃まで15℃/分で昇温した。そして、所定の温度に達した後、その温度にて2時間保持して加熱処理を行い、実験例1に係る触媒担体用炭素材料を得た。
 以上のようにして調製された実験例1の触媒担体用炭素材料について、前述の方法にて、熱重量分析〔強度比(I750/Ipeak)、残重量割合(%)〕、BET比表面積 (m/g)、細孔径2~10nmの積算細孔容積V2-10、窒素ガス吸着量Vmacro〔cc(STP)/g〕およびラマン分光スペクトルの1550~1650cm-1の範囲に検出されるG-バンドの半値幅ΔG(cm-1)の測定を行った。
 結果を表1に示す。
[実験例2~5]
 加熱処理工程(第3の加熱処理)の保持温度を、それぞれ、2000℃、1900℃、1800℃、又は2200℃に変更した以外は、実験例1と同様の手順で各触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表1に示す。
[実験例6~7]
 洗浄処理工程の処理時間を、それぞれ、2時間又は8時間に変更した以外は、実験例1と同様の手順で各触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表1に示す。
[実験例8~9]
 洗浄処理工程の処理時間を8時間に変更し、さらに、加熱処理工程(第3の加熱処理)の保持温度を、それぞれ1800℃又は2200℃に変更した以外は、実験例1と同様の手順で各触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表1に示す。
[実験例10]
 洗浄処理工程の過酸化水素水濃度を35質量%に変更した以外は、実験例1と同様の手順で各触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表1に示す。
[実験例11~12]
 洗浄処理工程の過酸化水素水濃度を35質量%に変更し、さらに、加熱処理工程(第3の加熱処理)の保持温度を、それぞれ1800℃又は2200℃に変更した以外は、実験例1と同様の手順で各触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表1に示す。
[実験例13]
 洗浄処理工程の過酸化水素水濃度を15質量%に変更した以外は、実験例1と同様の手順で各触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表1に示す。
[実験例14~15]
 洗浄処理工程の過酸化水素水濃度を15質量%に変更し、さらに、処理時間を、それぞれ8時間又は24時間に変更した以外は、実験例1と同様の手順で各触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表1に示す。
[実験例16~19]
 洗浄処理工程の過酸化水素水濃度を35質量%、処理温度(液温)を108℃(沸点)に変更し、さらに、処理時間をそれぞれ2時間、4時間、8時間、又は24時間に変更した以外は、実験例1と同様の手順で各触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表1に示す。
[実験例20]
 洗浄処理工程の過酸化水素水濃度を15質量%に変更し、さらに加熱処理工程(第3の加熱処理)の保持温度を2200℃に変更した以外は、実験例1と同様の手順で各触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表1に示す。
[実験例21~22]
 加熱処理工程(第3の加熱処理)の保持温度を、それぞれ1700℃又は1500℃に変更した以外は、実験例1と同様の手順で各触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表1に示す。
[実験例23~24]
 加熱処理工程(第3の加熱処理)の保持温度を、それぞれ、2300℃、2500℃に変更した以外は、実験例1と同様の手順で各触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表2に示す。
[実験例25~26]
 洗浄処理工程の過酸化水素水濃度をそれぞれ60質量%、処理温度(液温)をそれぞれ108℃(還流条件、処理時間をそれぞれ2時間、加熱処理工程(第3の加熱処理)の保持温度をそれぞれ1300℃、1100℃に変更した以外は、実験例1と同様の手順で各触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表2に示す。
[実験例27~28]
 加熱処理工程(第3の加熱処理)の保持時間をそれぞれ1時間、4時間に変更した以外は、実験例1と同様の手順で各触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表2に示す。
[実験例29]
 銀除去工程および洗浄処理工程を下記の通り硝酸処理工程に変更した以外は、実験例1と同様の手順で触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表3に示す。
 <硝酸処理工程>
 上記第2の加熱処理で得られた銀と炭素との複合材料からなる炭素材料中間体について、その10gを濃度60質量%の濃硝酸150gに浸漬し、処理温度(液温)90℃で窒素気流下2時間洗浄することにより、残存する銀粒子や芳香族性の低い炭素(煤)などを除去した。次いで、遠心分離機を用いて、上記洗浄後の炭素材料中間体から濃硝酸を除去し、さらに、残留する濃硝酸を十分に除去するために、上記遠心分離後の炭素材料中間体を再び純水中に分散させ、それを再度遠心分離機に供して、炭素材料中間体(固体)を液体から分離させた。このような水洗する操作を2回行うことにより、濃硝酸を除去して清浄化された炭素材料中間体として得た。
 その清浄化された炭素材料中間体を、140℃、空気雰囲気下で2時間処理することにより水分を除去して乾燥させ、その後、アルゴン流通下、2100℃で2時間の熱処理を行い、多孔質な炭素材料として得た。
[実験例30]
 硝酸処理工程の硝酸濃度を30質量%、処理温度(液温)を60℃に変更した以外は、実験例29と同様の手順で各触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表3に示す。
[実験例31]
 洗浄処理工程を下記の通り過マンガン酸カリウム水溶液処理に変更した以外は、実験例1と同様の手順で触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表4に示す。
<過マンガン酸カリウム水溶液処理>
 上記第2の加熱処理で得られた銀と炭素との複合材料からなる炭素材料中間体について、その10gを濃度15質量%の希硝酸150gに30℃で1時間浸漬した。次いで、遠心分離機を用いて硝酸を除去し、さらに、残留する硝酸を十分に除去するために、上記遠心分離後の炭素材料中間体を再び純水中に分散させ、それを再度遠心分離機に供して、炭素材料中間体(固体)を液体から分離させた。このような水洗する操作を2回行うことで、硝酸を除去して銀が除かれた炭素材料中間体として得た。更に銀が除かれた炭素材料中間体に0.4N過マンガン酸カリウム水溶液を150g加え、処理温度(液温)80℃で窒素気流下4時間処理することで残存する芳香族性の低い炭素(煤)などを除去した。
 次いで、遠心分離機を用いて、過マンガン酸カリウム水溶液を炭素材料中間体から除去した。さらに、残留する過マンガン酸カリウム水溶液を十分に除去するために、上記遠心分離後の炭素材料中間体を再び純水中に分散させ、それを再度遠心分離機に供して、炭素材料中間体(固体)を液体から分離させた。このような水洗する操作を2回行うことにより、過マンガン酸カリウム水溶液を除去した。
 また、過マンガン酸カリウム水溶液除去後の炭素材料中間体には二酸化マンガンが残留している可能性があることから、過マンガン酸カリウム水溶液除去後の炭素材料中間体に1N塩酸を100g加え、遠心分離機を用い液体から炭素材料中間体(固体)を分離した。上記遠心分離後の炭素材料中間体を再び純水中に分散させ、それを再度遠心分離機に供して、炭素材料中間体(固体)を液体から分離させた。このような水洗する操作を2回行うことにより、清浄化された炭素材料中間体を得た。その清浄化された炭素材料中間体を、140℃、空気雰囲気下で2時間処理することにより水分を除去して乾燥させ、その後、アルゴン流通下、2100℃で2時間の熱処理を行い、多孔質な炭素材料として得た。
[実験例32]
 過マンガン酸水溶液処理工程の過マンガン酸カリウム水溶液の処理時間を2時間に変更した以外は、実験例31と同様の手順で各触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表4に示す。
[実験例33]
 過マンガン酸水溶液処理工程の過マンガン酸カリウム水溶液の濃度を1.0Nに変更し、処理温度を60℃に変更し、処理時間を3時間に変更した以外は、実験例31と同様の手順で各触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表4に示す。
[実験例34]
 過マンガン酸水溶液処理工程の過マンガン酸カリウム水溶液の濃度を3.0Nに変更し、処理温度を40℃に変更し、処理時間を5時間に変更した以外は、実験例31と同様の手順で各触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表4に示す。
[実験例35]
 また、市販の多孔質炭素材料について、実験例35~37として検討した。結果を表5に示す。
 市販の多孔質炭素材料としては、樹状構造を持ち細孔も発達し比表面積が大きい多孔質炭素であるライオン社製ケッチェンブラックEC600JDをアルゴン流通下、1400℃まで15℃/分で昇温した。そして、所定の温度に達した後、その温度にて2時間保持して加熱処理を行い、実験例35に係る触媒担体用炭素材料を得た。
[実験例36~37]
 加熱処理の保持温度を、それぞれ1700℃又は2000℃に変更した以外は、実験例35と同様の手順で各触媒担体用炭素材料を得た。
[実験例38]
 分解工程における真空乾燥時間を2時間に変更した以外は実験例1と同様の手順で各触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表6に示す。
[実験例39~40]
 分解工程における真空乾燥時間を2時間に変更し、加熱処理工程(第3の加熱処理)の保持温度をそれぞれ1800℃、1100℃に変更した以外は、実験例1と同様の手順で各触媒担体用炭素材料を調製し、それらを同様の方法で評価した。結果を表6に示す。
<触媒の調製、触媒層の作製、及び触媒金属担持性の評価>
 次に、以上のようにして準備した各触媒担体用炭素材料を用い、以下のようにして触媒金属が担持された固体高分子型燃料電池用触媒を調製し、その触媒金属の担持性の評価を行い、また、得られた触媒を用いて触媒層インク液を調製し、次いでこの触媒層インク液を用いて触媒層を形成し、更に形成された触媒層を用いて膜電極接合体(MEA: Membrane Electrode Assembly)を作製し、この作製されたMEAを燃料電池セルに組み込み、燃料電池測定装置を用いて発電試験を行った。以下、各部材の調製及び発電試験によるセル評価について詳細に説明する。
(1)固体高分子型燃料電池用触媒(白金担持炭素材料)の作製
 上記で作製した各触媒担体用炭素材料を、蒸留水中に分散させ、この分散液にホルムアルデヒドを加え、40℃に設定したウォーターバスにセットし、分散液の温度がバスと同じ40℃になってから、撹拌下にこの分散液中にジニトロジアミンPt錯体硝酸水溶液をゆっくりと注ぎ入れた。その後、約2時間撹拌を続けた後、濾過し、得られた固形物の洗浄を行った。このようにして得られた固形物を90℃で真空乾燥した後、乳鉢で粉砕し、次いで水素を5体積%含むアルゴン雰囲気中200℃で1時間熱処理をして白金触媒粒子担持炭素材料を作製した。なお、この白金担持炭素材料の白金担持量については、触媒担体用炭素材料と白金粒子の合計質量に対して40質量%となるように調整し、誘導結合プラズマ発光分光分析(ICP-AES: Inductively Coupled Plasma - Atomic Emission Spectrometry)により測定して確認した。
 白金粒子の平均粒子径は、X線回折装置(Rigaku社製RINT TTR III)を用いて、得られた触媒の粉末X線回折スペクトルの白金(111)ピークの半値幅からScherrerの式によって見積った。
(2)触媒金属担持性の評価(平均粒子径の増大率測定)
 上記で作製した白金触媒粒子担持炭素材料を、アルゴンフロー中、600℃で2時間保持し、その後、冷却した。そして、再度、粉末X線回折測定により担持されている白金触媒粒子の平均粒子径を測定し、粒子径の増大率(%)を算出し、以下の基準で評価した。結果を表1~表6に示す。
〔合格ランク〕
 A:粒子径の増大率が200%以下であるもの。
〔不合格ランク〕
 C:粒子径の増大率が200%超過であるもの。
<触媒層の作製、MEAの作製、燃料電池の組立、及び電池性能(耐久性)の評価>
(1)触媒層の調製
 以上のようにして調製された白金担持炭素材料(Pt触媒)を用い、また、電解質樹脂としてDupont社製ナフィオン(登録商標:Nafion;パースルホン酸系イオン交換樹脂)を用い、Ar雰囲気下でこれらPt触媒とナフィオンとを白金触媒粒子担持炭素材料の質量に対してナフィオン固形分の質量が1.0倍、非多孔質炭素に対しては0.5倍の割合で配合し、軽く撹拌した後、超音波でPt触媒を解砕し、更にエタノールを加えてPt触媒と電解質樹脂とを合わせた合計の固形分濃度が1.0質量%となるように調整し、Pt触媒と電解質樹脂とが混合した触媒層インク液を調製した。
 このようにして調製された固形分濃度1.0質量%の各触媒層インク液に更にエタノールを加え、白金濃度が0.5質量%のスプレー塗布用触媒層インク液を作製し、白金の触媒層単位面積当たりの質量(以下、「白金目付量」という。)が0.2mg/cm2となるようにスプレー条件を調節し、上記スプレー塗布用触媒層インクをテフロン(登録商標)シート上にスプレーした後、アルゴン中120℃で60分間の乾燥処理を行い、触媒層を作製した。
(2)MEAの作製
 以上のようにして作製した触媒層を用い、以下の方法でMEA(膜電極複合体)を作製した。
 ナフィオン膜(Dupont社製NR211)から一辺6cmの正方形状の電解質膜を切り出した。また、テフロン(登録商標)シート上に塗布されたアノード及びカソードの各触媒層については、それぞれカッターナイフで一辺2.5cmの正方形状に切り出した。
 このようにして切り出されたアノード及びカソードの各触媒層の間に、各触媒層が電解質膜の中心部を挟んでそれぞれ接すると共に互いにずれが無いように、この電解質膜を挟み込み、120℃、100kg/cmで10分間プレスし、次いで室温まで冷却した後、アノード及びカソード共にテフロンシートのみを注意深く剥ぎ取り、アノード及びカソードの各触媒層が電解質膜に定着した触媒層-電解質膜接合体を調製した。
 次に、ガス拡散層として、カーボンペーパー(SGLカーボン社製35BC)から一辺2.5cmの大きさで一対の正方形状カーボンペーパーを切り出し、これらのカーボンペーパーの間に、アノード及びカソードの各触媒層が一致してずれが無いように、上記触媒層-電解質膜接合体を挟み、120℃、50kg/cmで10分間プレスしてMEAを作製した。
 なお、作製された各MEAにおける触媒金属成分、炭素材料、電解質材料の各成分の目付量については、プレス前の触媒層付テフロンシートの質量とプレス後に剥がしたテフロンシートの質量との差からナフィオン膜(電解質膜)に定着させた触媒層の質量を求め、触媒層の組成の質量比より算出した。
(3)燃料電池の性能評価(発電性能および耐久性の評価)
 各実験例に係る各触媒担体用炭素材料を用いて作製したMEAについて、それぞれセルに組み込み、燃料電池測定装置にセットして、次の手順で燃料電池の性能評価を行った。
 カソード側には酸化性ガスとして空気を、また、アノード側には反応ガスとして純水素を、それぞれ利用率が40%と70%となるように、セル下流に設けられた背圧弁で圧力調整し、背圧0.05MPaで供給した。また、セル温度は80℃に設定し、また、供給する酸化性ガス及び反応ガスについては、カソード及びアノード共に、加湿器中で60℃に保温された蒸留水でバブリングを行い、低加湿状態での発電性能の評価を行った。
〔発電性能の評価〕
 このような設定の下にセルに反応ガスを供給した条件下で、負荷を徐々に増やし、電流密度100mA/cmにおけるセル端子間電圧を出力電圧として記録し、燃料電池の性能評価を実施した。そして、下記の合格ランクA及びBと不合格ランク×の基準で評価を行った。結果を表1~表6に示す。
〔合格ランク〕
 A:100mA/cmにおける出力電圧が0.86V以上であるもの。
 B:100mA/cmにおける出力電圧が0.84V以上であるもの。
〔不合格ランク〕
 C:合格ランクBに満たないもの。
〔耐久性の評価〕
 上記セルにおいて、アノードはそのままに、カソードには上記と同じ加湿条件のアルゴンガスを流しながら、セル電圧を0.6Vにして4秒間保持する操作とセル電圧を1.0Vにして4秒間保持する操作とを繰り返す操作(矩形波的電圧変動の繰返し操作)を1サイクルとし、この矩形波的電圧変動の繰返し操作を4000サイクル実施した後、上記の大電流特性の評価と同様にして耐久性を調査した。そして、下記の合格ランクA及びBと不合格ランク×の基準で評価を行った。結果を表1~表6に示す。
〔合格ランク〕
 A:100mA/cmにおける出力電圧が0.86V以上であるもの。
 B:100mA/cmにおける出力電圧が0.84V以上であるもの。
〔不合格ランク〕
 C:合格ランクBに満たないもの。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006

 

Claims (6)

  1.  多孔質炭素材料であって、下記(1)、(2)、(3)および(4)を同時に満たす固体高分子形燃料電池の触媒担体用炭素材料。
    (1)空気雰囲気下で10℃/分で昇温したときの熱重量分析により得られる微分熱重量曲線(DTG)において、750℃における強度(I750)と690℃近傍のピーク強度(
    peak)との強度比(I750/Ipeak)が0.10以下であること。
    (2)窒素ガス吸着等温線のBET解析により求められるBET比表面積が400~1500m/gであること。
    (3)窒素ガス吸着等温線のDollimore-Heal法を用いた解析により求められる細孔径2~10nmの積算細孔容積V2-10が0.4~1.5mL/gであること。
    (4) 窒素ガス吸着等温線において、相対圧0.95~0.99における窒素ガス吸着量Vmacroが300~1200cc(STP)/gであること。
  2.  空気雰囲気下で10℃/分で昇温したときの熱重量分析において、750℃における黒鉛化物の残重量割合が、3%以下である請求項1に記載の固体高分子形燃料電池の触媒担体用炭素材料。
  3.  ラマン分光スペクトルの1550~1650cm-1の範囲に検出されるG-バンドの半値幅ΔGが、50~70cm-1である請求項1又は2に記載の固体高分子形燃料電池の触媒担体用炭素材料。
  4.  前記V2-10が、0.5~1.0mL/gである請求項1~3のいずれかに記載の固体高分子形燃料電池の触媒担体用炭素材料。
  5.  棒状体又は環状体が3次元的に分岐した3次元樹状構造を有する請求項1~4のいずれかに記載の固体高分子形燃料電池の触媒担体用炭素材料。
  6.  固体高分子形燃料電池の触媒担体用炭素材料の製造方法であり、
     硝酸銀のアンモニア水溶液からなる反応溶液中にアセチレンガスを吹き込んで銀アセチリドを合成する銀アセチリド生成工程と、
     前記銀アセチリドを自己分解爆発反応させて炭素材料中間体を得る分解工程と、
     前記炭素材料中間体を希硝酸に接触させて、前記炭素材料中間体から銀を除去する銀除去工程と、
     銀が除去された前記炭素材料中間体を酸化剤溶液に接触させて、前記炭素材料中間体を清浄化する洗浄処理工程と、
     清浄化された前記炭素材料中間体を真空中又は不活性ガス雰囲気中1400~2200℃の温度で加熱処理して触媒担体用炭素材料を得る加熱処理工程と、
     を備え、
     前記酸化剤溶液として、過マンガン酸塩溶液、及び過酸化水素溶液からなる群から選択される1種以上を用いる固体高分子形燃料電池の触媒担体用炭素材料の製造方法。
PCT/JP2018/036548 2018-09-28 2018-09-28 固体高分子形燃料電池の触媒担体用炭素材料及びその製造方法 WO2020066010A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP18934998.8A EP3858481B1 (en) 2018-09-28 2018-09-28 Carbon material for catalyst carrier of polymer electrolyte fuell cell and method of producing the same
CA3114566A CA3114566A1 (en) 2018-09-28 2018-09-28 Carbon material for catalyst carrier of polymer electrolyte fuel cell and method of producing the same
PCT/JP2018/036548 WO2020066010A1 (ja) 2018-09-28 2018-09-28 固体高分子形燃料電池の触媒担体用炭素材料及びその製造方法
CN201880098159.8A CN112867564B (zh) 2018-09-28 2018-09-28 固体高分子型燃料电池的催化剂载体用碳材料以及其制造方法
JP2020547873A JP7110377B2 (ja) 2018-09-28 2018-09-28 固体高分子形燃料電池の触媒担体用炭素材料及びその製造方法
US17/280,134 US20210344019A1 (en) 2018-09-28 2018-09-28 Carbon Material for Catalyst Carrier of Polymer Electrolyte Fuel Cell and Method of Producing the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/036548 WO2020066010A1 (ja) 2018-09-28 2018-09-28 固体高分子形燃料電池の触媒担体用炭素材料及びその製造方法

Publications (1)

Publication Number Publication Date
WO2020066010A1 true WO2020066010A1 (ja) 2020-04-02

Family

ID=69950394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036548 WO2020066010A1 (ja) 2018-09-28 2018-09-28 固体高分子形燃料電池の触媒担体用炭素材料及びその製造方法

Country Status (6)

Country Link
US (1) US20210344019A1 (ja)
EP (1) EP3858481B1 (ja)
JP (1) JP7110377B2 (ja)
CN (1) CN112867564B (ja)
CA (1) CA3114566A1 (ja)
WO (1) WO2020066010A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022085693A1 (ja) * 2020-10-19 2022-04-28 日鉄ケミカル&マテリアル株式会社 固体高分子形燃料電池触媒担体用炭素材料、固体高分子形燃料電池用触媒層、及び燃料電池
WO2023243986A1 (ko) * 2022-06-17 2023-12-21 희성촉매 주식회사 메조 다공 카본의 제조 방법 및 이에 의해 제조된 메조 다공 카본

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225246A (ja) * 2005-02-21 2006-08-31 Mitsubishi Heavy Ind Ltd ナノカーボン材料
WO2014129597A1 (ja) 2013-02-21 2014-08-28 新日鉄住金化学株式会社 触媒担体用炭素材料
WO2015088025A1 (ja) 2013-12-13 2015-06-18 新日鐵住金株式会社 固体高分子形燃料電池用の担体炭素材料及び金属触媒粒子担持炭素材料、並びにこれらの製造方法
WO2015141810A1 (ja) 2014-03-19 2015-09-24 新日鐵住金株式会社 固体高分子形燃料電池用の担体炭素材料及び触媒金属粒子担持炭素材料
JP2016012572A (ja) * 2010-08-10 2016-01-21 株式会社デンソー 炭素ナノ構造体、金属担持炭素ナノ構造体及びリチウム二次電池
WO2016133132A1 (ja) 2015-02-18 2016-08-25 新日鐵住金株式会社 触媒担体用炭素材料、固体高分子形燃料電池用触媒、固体高分子形燃料電池、及び触媒担体用炭素材料の製造方法
JP2018012626A (ja) * 2016-07-21 2018-01-25 新日鉄住金化学株式会社 多孔質炭素材料、固体高分子形燃料電池用触媒および固体高分子形燃料電池ならびに多孔質炭素材料の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9656870B2 (en) * 2007-12-12 2017-05-23 Nippon Steel & Sumikin Chemical Co., Ltd Metal encapsulated dendritic carbon nanostructure, carbon nanostructure, process for producing metal encapsulated dendritic carbon nanostructure, process for producing carbon nanostructure, and capacitor
CN103969148B (zh) * 2014-05-19 2016-03-30 西南科技大学 锂离子电池用碳材料种类稳定性的检测方法
JP6496531B2 (ja) * 2014-11-25 2019-04-03 新日鐵住金株式会社 固体高分子形燃料電池用触媒
JP2017144414A (ja) * 2016-02-19 2017-08-24 株式会社キャタラー キャニスタ及びその製造方法
JP6362582B2 (ja) * 2015-11-30 2018-07-25 コリア インスティチュート オブ エナジー リサーチ 多孔質グラフェン部材、多孔質グラフェン部材の製造方法及びこれを用いた多孔質グラフェン部材の製造装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225246A (ja) * 2005-02-21 2006-08-31 Mitsubishi Heavy Ind Ltd ナノカーボン材料
JP2016012572A (ja) * 2010-08-10 2016-01-21 株式会社デンソー 炭素ナノ構造体、金属担持炭素ナノ構造体及びリチウム二次電池
WO2014129597A1 (ja) 2013-02-21 2014-08-28 新日鉄住金化学株式会社 触媒担体用炭素材料
WO2015088025A1 (ja) 2013-12-13 2015-06-18 新日鐵住金株式会社 固体高分子形燃料電池用の担体炭素材料及び金属触媒粒子担持炭素材料、並びにこれらの製造方法
WO2015141810A1 (ja) 2014-03-19 2015-09-24 新日鐵住金株式会社 固体高分子形燃料電池用の担体炭素材料及び触媒金属粒子担持炭素材料
WO2016133132A1 (ja) 2015-02-18 2016-08-25 新日鐵住金株式会社 触媒担体用炭素材料、固体高分子形燃料電池用触媒、固体高分子形燃料電池、及び触媒担体用炭素材料の製造方法
JP2018012626A (ja) * 2016-07-21 2018-01-25 新日鉄住金化学株式会社 多孔質炭素材料、固体高分子形燃料電池用触媒および固体高分子形燃料電池ならびに多孔質炭素材料の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ATSUSHI NISHIKATA: "Corrosion Problems Related to Polymer Electrolyte Fuel Cell", MATERIALS AND ENVIRONMENTS, vol. 58, 2009, pages 288 - 293
NORIO IWASHITA: "Introduction to Carbon Materials", 1996, THE CARBON SOCIETY OF JAPAN, pages: 24 - 31

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022085693A1 (ja) * 2020-10-19 2022-04-28 日鉄ケミカル&マテリアル株式会社 固体高分子形燃料電池触媒担体用炭素材料、固体高分子形燃料電池用触媒層、及び燃料電池
WO2023243986A1 (ko) * 2022-06-17 2023-12-21 희성촉매 주식회사 메조 다공 카본의 제조 방법 및 이에 의해 제조된 메조 다공 카본

Also Published As

Publication number Publication date
US20210344019A1 (en) 2021-11-04
JPWO2020066010A1 (ja) 2021-09-16
CN112867564B (zh) 2023-12-05
CA3114566A1 (en) 2020-04-02
EP3858481A1 (en) 2021-08-04
JP7110377B2 (ja) 2022-08-01
CN112867564A (zh) 2021-05-28
EP3858481A4 (en) 2022-05-04
EP3858481B1 (en) 2023-09-13

Similar Documents

Publication Publication Date Title
JP6198810B2 (ja) 触媒担体用炭素材料
JP6802363B2 (ja) 固体高分子形燃料電池の触媒担体用炭素材料及びその製造方法
JP6768386B2 (ja) 多孔質炭素材料、固体高分子形燃料電池用触媒および固体高分子形燃料電池ならびに多孔質炭素材料の製造方法
WO2019004472A1 (ja) 固体高分子形燃料電池触媒担体、固体高分子形燃料電池触媒担体の製造方法、固体高分子形燃料電池用触媒層、及び燃料電池
WO2020066010A1 (ja) 固体高分子形燃料電池の触媒担体用炭素材料及びその製造方法
JP6854685B2 (ja) 固体高分子形燃料電池の触媒担体用炭素材料及びその製造方法、並びに前記触媒担体用炭素材料を用いた固体高分子形燃料電池用触媒担体
JP6964448B2 (ja) 燃料電池触媒担体用鋳型炭素材料、燃料電池用触媒層、及び燃料電池
JP6802362B2 (ja) 固体高分子形燃料電池の触媒担体用炭素材料およびその製造方法
JP6970183B2 (ja) 固体高分子形燃料電池の触媒担体用炭素材料及びその製造方法
JP2020166942A (ja) 触媒担体用炭素材料、触媒担体用炭素材料の製造方法、燃料電池用触媒層、及び燃料電池
JP2022156985A (ja) 固体高分子形燃料電池の触媒担体用炭素材料及びその製造方法
CN116391277A (zh) 固体高分子型燃料电池催化剂载体用碳材料、固体高分子型燃料电池用催化剂层以及燃料电池
JP2021061142A (ja) 固体高分子形燃料電池の触媒担体用多孔質炭素材料、固体高分子形燃料電池用触媒層、及び燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934998

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3114566

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020547873

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018934998

Country of ref document: EP

Effective date: 20210428