WO2020063701A1 - Led显示屏 - Google Patents

Led显示屏 Download PDF

Info

Publication number
WO2020063701A1
WO2020063701A1 PCT/CN2019/107989 CN2019107989W WO2020063701A1 WO 2020063701 A1 WO2020063701 A1 WO 2020063701A1 CN 2019107989 W CN2019107989 W CN 2019107989W WO 2020063701 A1 WO2020063701 A1 WO 2020063701A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
led
light absorption
light emitting
led display
Prior art date
Application number
PCT/CN2019/107989
Other languages
English (en)
French (fr)
Inventor
李士杰
胡飞
王霖
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2020063701A1 publication Critical patent/WO2020063701A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes

Definitions

  • the present invention relates to the field of display, and more particularly, to an LED display screen.
  • LED lamp beads have the characteristics of high luminous brightness, fast response, and can be individually controlled on and off.
  • Patent CN104049374A proposes a barrier frame frame array as shown in Figure 1 to ensure that adjacent LED pixel points do not crosstalk.
  • a color difference problem is introduced.
  • the light emitted by the LED lamp beads is divided into two types: light scattered and absorbed through the side wall of the light shielding frame; and light directly emitted without passing through the light shielding frame, and the combination of these two types of light makes the LED with the light shielding frame
  • the screen has an angular distribution of brightness different from that of an LED screen without a shading frame.
  • FIG. 2 is a schematic diagram showing the relative positions of the LED light-emitting chip and the light-shielding frame under three viewing angles: forward, horizontal, and vertical.
  • FIG. 2 illustrates that a grid 321 surrounds a three-color LED light emitting chip as an example.
  • the RGB (ie, red, green, and blue) three-color LED chips are preferably arranged longitudinally in a “one” shape. The viewer is usually looking at the screen in the forward direction of the screen, as shown in FIG. 2 (a). When viewed in a lateral viewing angle, as shown in FIG.
  • the three LED light-emitting chips of red, green, and blue, and the three LED light-emitting chips of red, green, and blue are the same distance from the side wall of the grid 321.
  • the degree of occlusion is the same, so that the viewer cannot see the chromatic aberration in the horizontal viewing angle.
  • the three red, green and blue LED light emitting chips are at different distances from the sidewall of the grid 321, and the three red, green and blue LED light emitting chips are separated by the side wall of the grid 321
  • the degree of occlusion is different.
  • the color is biased toward the light-emitting color of the LED light-emitting chip that is less blocked in the longitudinal viewing angle. For example, in the example of (c) of FIG. 2, since the red LED light emitting chip is blocked and the green and blue LED light emitting chips are not blocked, the viewed color will shift toward blue.
  • FIG. 3 is a schematic diagram showing light intensity angle distributions of three types of LED light-emitting chips of R (red), G (green), and B (blue) in a longitudinal viewing angle when a light-shielding frame is installed. It can be seen from FIG. 3 that the viewing angles corresponding to the maximum light intensity of the three colors of red, green, and blue do not overlap. Specifically, the light intensity angle distributions overlap at 0 °, and then disperse. After moving a certain angle, because the three LED light-emitting chips of red, green, and blue are blocked by the shading frame, the light intensity curves tend to overlap again. This phenomenon directly leads to the existence of chromatic aberration in the longitudinal viewing angle.
  • the color difference du’v ’ is defined as:
  • u 'and v' are color coordinates in the CIELUV color coordinate system
  • u ' ref and v' ref are color coordinates at a viewing angle of 0 °.
  • an object of the present invention is to provide an LED display screen capable of reducing color difference by improving the internal structure.
  • the present invention provides an LED display screen, including: an LED light emitting array, the LED light emitting array includes a plurality of LED light emitting chips; a matrix shading frame, the matrix shading frame includes a plurality of grids, and a plurality of The grids are connected to each other in a matrix form, and the grids are hollow, and the LED light emitting chips are correspondingly arranged in the grids; a light absorption plate, which is used to absorb a part of the light emitted from the LED light emitting chips. Wherein, the light absorption plate completely covers the LED light emitting chip surrounded by the grid.
  • the light absorption plate is disposed directly above the LED light emitting chip, and a center of the light absorption plate is aligned with an arrangement center of the LED light emitting chip.
  • the light absorption plate when the LED light emitting chip is arranged laterally with respect to the grid, the light absorption plate is laterally disposed directly above the LED light emitting chip; in a longitudinal direction of the LED light emitting chip with respect to the grid When arranged on the ground, the light absorption plate is vertically arranged directly above the LED light emitting chip.
  • the width w of the light absorption plate is at least d (p-w2) / h, wherein the distance from the light absorption plate to the substrate on which the LED light emitting chip is disposed is d, and the opposite side walls of the grid The distance between the midpoints is p, the lateral thickness of the side wall of the grid is w2, the height of the grid is h, and the length of the light absorption plate is at least two sides connected to the light absorption plate The vertical distance between the walls.
  • the width w of the light absorption plate is not more than 1.2 times of d (p ⁇ w2) / h.
  • the light absorption plate includes a light absorption portion, and the light absorption portion completely covers the LED light emitting chip.
  • the light absorption plate further includes a connection portion, and the light absorption portion is connected between opposite sidewalls of the grid through the connection portion, and the connection portion is transparent.
  • the light absorption portion is provided with a bracket, and the bracket is used to fix the light absorption portion directly above the LED light emitting chip.
  • the light absorption plate is directly connected between two side walls of the grid.
  • both sides or one side of the light absorption plate is coated with a light absorption layer.
  • the light absorption of the light absorption plate is greater than 50%.
  • the light absorption of the light absorption plate is greater than 80%.
  • the shape of the light absorbing plate is rectangular, circular, elliptical, or two adjacent sides of the light absorbing plate intersect in a circular arc shape.
  • the LED display screen further comprises: a diffusion layer, the diffusion layer is arranged above the plurality of grids to cover a plurality of the LED light emitting chips.
  • the matrix shading frame is divided into a first part and a second part which can be connected, and any one of the first part and the second part has the light absorbing plate, and when the first part is connected And the second portion, the light absorbing plate is located between the first portion and the second portion.
  • the first part and the second part are spliced together by a buckle.
  • the LED display screen of the present invention by adding a light-absorbing plate structure inside the display screen, all the light emitted by the LED is emitted through the light-absorbing plate, thereby effectively balancing the brightness of the three colors of R, G, and B at different viewing angles to reduce chromatic aberration.
  • the purpose is to further improve the visual effect of LED display.
  • FIG. 1 is a schematic diagram showing a barrier frame frame array according to the related art.
  • FIG. 2 is a schematic diagram showing the relative positions of the LED light emitting chip and the light shielding frame in the three viewing directions of the vertical direction, the horizontal direction and the vertical direction.
  • FIG. 3 is a schematic diagram showing light intensity angle distributions of three types of LED light-emitting chips of R, G, and B in a longitudinal viewing angle when a light-shielding frame according to the prior art is installed.
  • FIG. 4 is a schematic diagram of an LED display screen according to an embodiment of the present invention.
  • FIG. 5 is a plan view showing a relative positional relationship between a light absorbing plate, an LED light emitting chip, and a light shielding frame according to an embodiment of the present invention.
  • FIG. 6 are a front view and a side view, respectively, showing a relative positional relationship between the light absorption plate, the LED light emitting chip, and the light shielding frame according to the embodiment of the present invention.
  • FIG. 7 is a diagram showing various parameters for deriving the width of the light absorption plate.
  • FIG. 8 is a schematic diagram illustrating a fixing manner of a light absorption plate according to another embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing a pixelization distribution of light intensity of a one-dimensional LED display screen.
  • FIG. 10 is a diagram showing a comparison of color difference distributions before and after addition of a light absorption plate.
  • FIG. 11 is a schematic view showing a part of splicing of a light-shielding frame provided with a light-absorbing plate.
  • FIG. 12 is a block diagram illustrating a method of manufacturing a light-shielding frame provided with a light-absorbing plate.
  • FIG. 4 is a schematic diagram of an LED display screen 3 according to an embodiment of the present invention.
  • a matrix shading frame 32 is provided in the LED display screen 3 according to the embodiment of the present invention.
  • the LED display screen 3 also includes an LED light emitting array composed of LED lamp beads 34 as LED light emitting chips, and the LED light emitting array is arranged on a PCB board 33 as a substrate.
  • the matrix light-shielding frame 32 is arranged on the LED light-emitting array, and the purpose is to effectively avoid the crosstalk of light from adjacent LED lamp beads and improve the clarity of the display.
  • the matrix shading frame 32 is composed of multiple grids 321, that is, multiple grids 321 are connected in a matrix form, and each grid 321 is a hollow structure.
  • the center of each grid 321 and the arrangement center of the LED light emitting chips are arranged substantially in alignment, that is, each LED lamp bead 34 is correspondingly arranged in the grid 321.
  • the height h of the matrix shade frame is 0.1 mm to 10 mm, preferably 1 to 3 mm.
  • the thickness of the side wall of the unit is 0.05 mm to 10 mm, preferably 0.1 to 0.8 mm.
  • the thickness of the side wall of the unit includes the thickness of the side wall of the light-shielding side and the thickness of the light-emitting side of the matrix light-shielding side.
  • the side wall of the matrix light shielding frame 32 is a scattering layer, preferably Lambertian scattering, and the side wall of the matrix light shielding frame 32 has an absorbance of 10%.
  • the manufacturing process of the matrix light-shielding frame 32 is metal mold injection molding, and the molding material is polycarbonate (PC), polymethyl methacrylate (PMMA), polyvinyl chloride (PVC), polypropylene (PP), and polyamide.
  • PA polylactic acid
  • PLA acrylonitrile-butadiene-styrene
  • PET polyethylene terephthalate
  • each grid 321 in FIG. 4 includes a light absorption plate 61 described below, which is used to absorb a part of the light emitted from the LED lamp beads 34, that is, light of a small angle emitted by the LED light emitting chip. .
  • FIG. 5 is a plan view showing a relative positional relationship between a light absorbing plate, an LED light emitting chip, and a matrix light shielding frame according to an embodiment of the present invention.
  • the light absorption plate 61 is connected between two side walls of the grid 321 in such a manner as to completely cover the LED light emitting chip that can be surrounded by the grid, and the light absorption plate 61 and the LED light emitting chip are arranged at intervals.
  • the light absorption plate is located at a certain position above the LED light emitting chip.
  • the light absorption plate 61 is disposed directly above the LED light emitting chip, and the center of the light absorption plate 61 is aligned with the arrangement center of the LED light emitting chip. As shown in FIG. 5 (a), when the LED light emitting chips are aligned vertically with respect to the grid 321, the light absorption plate 61 is vertically provided directly above the LED light emitting chips.
  • the light absorption layer 61 is coated with a light absorption layer on both sides or one side, and the light absorption rate of the light absorption plate 61 is more than 50%, preferably more than 80%.
  • complete coverage means that the projection of the light absorption plate 61 on the substrate can cover at least the LED light emitting chip.
  • FIG. 5 uses one grid 321 as an example for illustration.
  • the light absorption plate 61 is disposed directly above the LED light emitting chip, and has a length of l, a width of w, and a width of w less than a length of l.
  • the length l of the light absorbing plate 61 is at least the vertical distance between the two side walls to which the light absorbing plate 61 is connected.
  • the arrangement of the light absorption plate is horizontal. . That is, when the LED light emitting chips are arranged laterally with respect to the grid 321, the light absorption plate 61 is laterally disposed directly above the LED light emitting chips.
  • FIG. 6 are a front view and a side view, respectively, showing the relative positional relationship of the light absorption plate, the LED light emitting chip, and the matrix light-shielding frame according to the embodiment of the present invention.
  • FIG. 6 also uses one grid 321 of the matrix shading frame as an example for description.
  • the matrix shading frame is placed between the LED light emitting chip and the diffusion layer.
  • the LED light emitting chip is attached to the PCB board, and the PCB surface is a light absorbing layer.
  • the thickness of the side wall of the grid 321 on the light incident side is w1 and w2, w1 is the thickness of the longitudinal side wall in the front view of FIG. 6 (a), and w2 is the transverse direction in the side view in FIG. 6 (b)
  • the light absorption plate 61 is connected to the two side walls of the grid 321 in a manner to completely cover the LED light emitting chip.
  • the distance between the midpoints of the two sidewalls facing each other is p, the height of the grid 321 is h, and the distance from the light absorbing plate 61 to the PCB is d.
  • FIG. 7 is a diagram showing various parameters for deriving the width of the light absorption plate. Next, a preferable value of the width w of the light absorption plate 61 is specifically derived with reference to FIG. 7.
  • the width w of the light absorption plate 61 may not be greater than 1.2 times of d (p ⁇ w2) / h.
  • the cross-section of the matrix light-shielding frame has been described as an example with reference to the drawings, the present technology is also applicable to a case where the cross-section of the matrix light-shielding frame is substantially rectangular.
  • the width w of the light absorbing plate 61 is smaller than the distance between two side walls parallel to the light absorbing plate.
  • the pixel array can be clearly observed in the entire screen, which affects the viewing effect. This is because the low fill rate and large pitch of the LED result in a low light fill rate of the light emitting area in the pixel (the light fill rate is defined as the ratio of the light emitting area of a single pixel to the total area of the pixel).
  • FIG. 8 is a schematic diagram illustrating a fixing manner of a light absorption plate according to another embodiment of the present invention. Relative to the embodiment of FIGS. 5 to 7, (a) and (b) of FIG. 8 respectively show two other connection relationships of the light absorption plate with respect to the light shielding frame.
  • the light absorption plate has a light absorption portion 81 that completely covers the LED light emitting chip, and the width w of the light absorption portion 81 also satisfies the relational expression obtained with reference to FIG. 7 described above.
  • connection portions 82 are provided at both ends of the light absorbing portion 81.
  • the connection portion 82 is preferably transparent, and the light absorbing portion 81 can be adhered between two opposite side walls of the grid 321.
  • the width of the connection portion 82 and the light absorption portion 81 are equal
  • the width of the connection portion 82 is not particularly limited, that is, the width may be greater than, equal to, or less than the width of the light absorption portion 81 as long as it is sufficient
  • the light absorption plate 81 may be fixedly connected.
  • FIG. 8 (b) shows another way of connecting the light absorption plate.
  • the light absorbing plate 81 in FIG. 8 (b) is equivalent to the light absorbing plate discussed above.
  • the light absorption plate is fixed above the LED light emitting chip through the bracket 821, and when the bracket 821 is installed, the bracket 821 does not affect the light emitted by the LED light emitting chip.
  • FIG. 8 (b) shows the bracket 821 perpendicular to the light absorbing plate 81, the bracket 821 can be connected at any angle to the light absorbing plate 81, and the cross section of the bracket 821 is not limited to the rectangle shown in the figure.
  • the shape of the light absorbing plate 61 or the light absorbing portion 81 may be rectangular, circular, oval, or two adjacent sides may intersect in a circular arc shape.
  • the light absorbing plate 61 or the light absorbing portion 81 is not limited to the shapes listed above. It can also be other regular or irregular shapes, such as irregular arcs. .
  • the shape of the light absorbing plate 61 or the light absorbing portion 81 is circular or oval, it can better adapt to the Lambertian light emitted by the LED light emitting chip, better absorb the small angle light emitted by the LED light emitting chip, and better solve the problem of chromatic aberration .
  • FIG. 9 is a schematic diagram showing a pixelization distribution of light intensity of a one-dimensional LED display screen. As shown in (a) of FIG. 9, in the case where the light emitting side of the LED light emitting array is not provided with a diffusion layer, the peak light emission intensity is too concentratedly projected on the retina of the human eye due to the low light filling rate of each pixel point. This can cause discomfort to the human eye.
  • adding a diffusion layer in front of the LED light emitting array can effectively average the light intensity distribution in each pixel area, that is, improve the light filling rate ⁇ in the pixel. It is defined that when the illuminance E in the pixel under the diffusion layer is attenuated to a certain ratio a (0 ⁇ a ⁇ 0.5) of the illuminance Em at the center of the pixel, the area of the area where the illuminance is not less than a * Em is A, then the light fill ratio ⁇ (that is, the pixel fill Rate) is:
  • A0 is the pixel area
  • Ep is the average illuminance per unit pixel under the diffusion layer
  • N is the total number of samples.
  • the LED display screen 3 in FIG. 4 further includes a diffusion layer 31, which is located above the matrix light-shielding frame 32 to cover a plurality of LED lamp beads 34.
  • the diffusion layer 31 generally uses transparent polycarbonate (PC) and polyethylene terephthalate (PET) as the substrate, and a body diffusion film including bulk scattering particles, such as inorganic particles such as silica and titanium dioxide, can be selected.
  • a body diffusion film including bulk scattering particles such as inorganic particles such as silica and titanium dioxide
  • Organic particles made of acrylic resin or epoxy resin can be used; or a diffusion layer can be formed by processing a microstructure with optical diffusion on the surface of a transparent substrate.
  • the diffusion angle of the diffusion layer should be greater than 10 degrees. The larger the diffusion angle, the better the shielding effect of the diffusion layer. A diffusion layer of 40 degrees or more is preferred.
  • the bonding surface between the matrix light-shielding frame 32 and the diffusion layer 31 has an optical absorption property, and its light absorption rate is preferably 90% or more, which can improve the contrast against ambient light.
  • FIG. 10 is a diagram showing a comparison of color difference distributions before and after addition of a light absorption plate.
  • the above-mentioned light absorption plate with a light absorption of 95% is added to the matrix shading frame, which can effectively reduce the chromatic aberration.
  • the pitch of the LED light-emitting chips is 5 mm
  • the light-emitting chips arranged in a “one” pattern using the three-color LED light-emitting chips of R, G, and B have a package size of 1 * 1 mm 2 .
  • the side wall of the matrix light-shielding frame is a Lambertian scattering layer with an absorption rate of 15%.
  • the inclination angle of the side wall is preferably 6.7 °, and the thinnest wall thickness is 0.3 mm, that is, the wall thickness of the light-emitting side of the matrix light-shielding frame.
  • the light-emitting surface of the shading frame is covered with a transparent diffusion layer with a scattering angle of 30 ° Gauss.
  • the light absorption plate is set at 0.26mm above the LED bottom plate, the width is 0.5mm, and the light absorption rate is 95%.
  • the color difference of the LED display within ⁇ 40 ° of the longitudinal viewing angle is greater than 0.02.
  • the chromatic aberration is reduced to less than 0.014 at the same viewing angle.
  • the color difference value after adding the light absorption plate is significantly reduced. In the viewing angle of ⁇ 30 °, the color difference value is less than 0.008, that is, less than the color difference value that can be perceived by the human eye.
  • FIG. 11 shows only a schematic view of a spliced portion (ie, a grid) of a shading frame provided with a light absorbing plate.
  • a metal mold injection molding method is used to manufacture a light-shielding frame according to an embodiment of the present invention.
  • two metal molds are prepared by using the light-absorbing plate as the division reference, and the material used to form the matrix light-shielding frame is injected into the cavity of the two metal molds to obtain two parts (hereinafter, these two parts are referred to as the first part and The second part), and the light absorption plate is injection molded on any one of the first part and the second part.
  • the first part and the second part are spliced together so that the light absorbing plate is located between the first part and the second part, and the matrix light-shielding frame provided with the light absorbing plate according to this embodiment can be effectively manufactured.
  • (A) and (b) of FIG. 11 respectively show the case where the light absorption plate is formed on different portions. In both cases, the first part and the second part are spliced together to obtain a matrix shading frame according to an embodiment of the present invention.
  • the manufacturing of the light shielding frame according to the embodiment of the present invention will be described in detail.
  • FIG. 12 is a block diagram showing a method of manufacturing a matrix light-shielding frame provided with a light-absorbing plate.
  • step S110 two metal molds A and B are made into mold cavities each having a portion for forming a matrix light-shielding frame.
  • step S112 a first part and a second part each having a plurality of perforated grids are obtained through injection molding.
  • the plurality of perforated grids are formed in a matrix shape, and the plurality of perforated grids on the two parts are arranged.
  • the method, shape and size are the same.
  • These two parts are the two main parts of the matrix shade frame.
  • a light-absorbing plate is injection-molded on each of the plurality of perforated grids in any one of the first part and the second part, so as to obtain the basic operation of the present embodiment shown in (a) and (b) of FIG.
  • An LED light-emitting chip that can be surrounded by a hollow grid.
  • the matrix light-shielding frame when using the matrix light-shielding frame, the light-absorbing plate and the LED light-emitting chip are spaced apart.
  • the side wall of the light shielding frame is coated with a scattering layer by spray painting, chemical plating, electroplating, etc.
  • the scattering layer is Lambertian or Gaussian scattering, preferably Lambertian scattering, and the reflectance is> 30%, preferably 90%. .
  • step S116 the light-absorbing layer is coated on the light-emitting side of the matrix light-shielding frame and the diffusion layer is in close contact with the light-absorbing layer, which can improve the contrast resistance to ambient light, and the visible light absorption rate is> 70%, preferably 95%.
  • step S118 the light absorption layer is coated on both sides or one side of the light absorption plate so that the overall absorption rate is> 50%, preferably 80%.
  • the light-emitting surface of the light-absorbing plate can also use Lambertian or Gaussian scattering coating.
  • step S120 the first part and the second part of the matrix shading frame are superimposed and spliced to obtain an LED matrix shading frame according to an embodiment of the present invention.
  • a buckle may be provided on the superimposed position of the first part and the second part of the matrix light-shielding frame for fixing.
  • the LED display screen by adding a light absorption plate structure inside the display screen, all the light emitted by the LED is emitted through the light absorption plate, thereby effectively balancing the three colors of R, G, and B at different viewing angles.
  • the brightness of the LED achieves the purpose of reducing chromatic aberration, thereby improving the visual effect of the LED display.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Led Device Packages (AREA)

Abstract

一种LED显示屏(3)。LED显示屏(3)包括:LED发光阵列,LED发光阵列包括多个LED发光芯片;矩阵遮光架(32),矩阵遮光架(32)包括多个栅格(321),多个栅格(321)互相连接成矩阵形式,并且栅格(321)是镂空的,LED发光芯片对应设置在栅格(321)内;吸光板(61),吸光板(61)用于吸收LED发光芯片的部分出射光,其中,吸光板(61)完全覆盖栅格(321)包围的LED发光芯片。通过在显示屏(3)内部增设吸光板(61),使由LED发射的光均经过吸光板(61)出射,从而有效地平衡R、G、B三色在不同视角的亮度,达到降低色差的目的,进而提高了LED显示的视觉效果。

Description

LED显示屏 技术领域
本发明涉及显示领域,更具体地,涉及一种LED显示屏。
背景技术
LED灯珠具有发光亮度高、响应快以及能够被单独控制亮灭等特点。专利CN104049374A提出了如图1所示的障壁框框阵列,用来保证相邻的LED像素点不发生串扰。
然而,对于由LED灯珠阵列组成的显示屏而言,在加装了障壁框框阵列(对应于下面将说明由多个栅格组成的遮光架)之后,引入了色差问题。这是因为由LED灯珠发射的光被分为两类:经过遮光架侧壁散射、吸收的光;和不经过遮光架直接出射的光,而这两类光线的组合使得有遮光架的LED屏幕有不同于无遮光架LED屏幕的亮度角分布。
图2是示出了在正向、横向、纵向三种视角下LED发光芯片和遮光架的相对位置的示意图。图2以一个栅格321包围三色LED发光芯片为例进行说明。如图2所示,RGB(即,红、绿、蓝)三色LED芯片优选地以“一”字形纵向排列。通常观看者位于屏幕的正向观看屏幕,如图2的(a)所示。在横向视角观看时,如图2的(b)所示,红绿蓝三个LED发光芯片,红绿蓝三个LED发光芯片距离栅格321的侧壁距离一样,被栅格321的侧壁遮挡程度相同,这样观看者在横向视角上看不到色差。但是如图2的(c)所示,在纵向视角观看时,红绿蓝三个LED发光芯片距离栅格321的侧壁距离不同,红绿蓝三个LED发光芯片被栅格321的侧壁遮挡的程度则不同。由于不经过遮光架直接出射的光线具有更大的光强,所以在纵向视角下颜色偏向于被遮挡程度小的LED发光芯片的发光颜色。例如在图2的(c)的示例中,由于红色LED发光芯片被遮挡,绿色和蓝色LED发光芯片未被遮挡,观看的颜色将向蓝色偏移。
图3是示出了在安装有遮光架的情况下,纵向视角下R(红)、G(绿)、B(蓝)三种LED发光芯片的光强角度分布的示意图。从图3可以看出, 红、绿、蓝三色光强最大值对应的视角并不重合。具体地,光强角分布在0°时重合,之后分散,在移动一定角度之后,由于红、绿、蓝三个LED发光芯片都被遮光架遮挡,光强曲线再次趋于重合。这种现象这直接导致了在纵向视角下色差的存在。色差du’v’定义为:
Figure PCTCN2019107989-appb-000001
其中,u’和v’是CIELUV色坐标系统中的色坐标,u’ ref和v’ ref是0°视角时的色坐标。
综上可知,由于RGB三色LED发光芯片在屏幕上错开分布,到栅格的侧壁距离不同,导致LED发光芯片被栅格的侧壁遮挡程度不一样,使得这三种芯片各自达到最大亮度的角度视角不同,这就造成了不同视角下的色差问题,显然现有技术未给出这个问题的相应解决方案。而这种色差问题在很大程度上影响了观看者的感受。
发明内容
因而,本发明的目的是提供一种能够通过改进内部结构而降低色差的LED显示屏。
为了解决上述问题,本发明提供了一LED显示屏,其包括:LED发光阵列,所述LED发光阵列包括多个LED发光芯片;矩阵遮光架,所述矩阵遮光架包括多个栅格,多个所述栅格互相连接成矩阵形式,并且所述栅格是镂空的,所述LED发光芯片对应设置在所述栅格内;吸光板,所述吸光板用于吸收LED发光芯片的部分出射光,其中,所述吸光板完全覆盖所述栅格包围的LED发光芯片。
优选地,所述吸光板设置在所述LED发光芯片的正上方,所述吸光板的中心与所述LED发光芯片的排布中心对齐。
优选地,在所述LED发光芯片相对于所述栅格横向地排列时,所述吸光板横向地设置在所述LED发光芯片的正上方;在所述LED发光芯片相对于所述栅格纵向地排列时,所述吸光板纵向地设置在所述LED发光芯片的正上方。
优选地,所述吸光板的宽度w至少为d(p–w2)/h,其中,所述吸光 板到设置有所述LED发光芯片的基板的距离为d,所述栅格的相对侧壁的中点之间的距离为p,所述栅格的侧壁的横向厚度为w2,所述栅格的高度为h,所述吸光板的长度至少为连接有所述吸光板的两个侧壁之间的垂直距离。
优选地,所述吸光板的宽度w不大于d(p–w2)/h的1.2倍。
优选地,所述吸光板包括吸光部,所述吸光部完全覆盖所述LED发光芯片。
优选地,所述吸光板还包括连接部,所述吸光部通过所述连接部连接到所述栅格的相对侧壁之间,所述连接部是透明的。
优选地,所述吸光部设置有支架,所述支架用于将所述吸光部固定在所述LED发光芯片正上方。
优选地,所述吸光板直接连接在所述栅格的两侧壁之间。
优选地,所述吸光板的双面或者单面涂覆有吸光层。
优选地,所述吸光板的光吸收率大于50%。
优选地,所述吸光板的光吸收率大于80%。
优选地,所述吸光板的形状为矩形,圆形,椭圆形,或者所述吸光板的相邻两边相交为圆弧形。
优选地,所述LED显示屏还包括:扩散层,所述扩散层布置在所述多个栅格上方,以覆盖多个所述LED发光芯片。
优选地,所述矩阵遮光架被分为能够进行连接的第一部分和第二部分,所述第一部分和所述第二部分中的任一者具有所述吸光板,并且当连接所述第一部分和所述第二部分时,所述吸光板位于所述第一部分和所述第二部分之间。
优选地,所述第一部分和所述第二部分通过卡扣拼接在一起。
根据本发明的LED显示屏,通过在显示屏内部增设吸光板结构,使由LED发射的光均经过吸光板出射,从而有效地平衡R、G、B三色在不同视角的亮度,达到降低色差的目的,进而提高了LED显示的视觉效果。
附图说明
图1是示出了根据现有技术的障壁框框阵列的示意图。
图2是示出了纵向在正向、横向、纵向三种视角下LED发光芯片和遮光架的相对位置的示意图。
图3是示出了在安装有根据现有技术的遮光架的情况下,纵向视角下R、G、B三种LED发光芯片的光强角度分布的示意图。
图4是根据本发明的实施例的LED显示屏的示意图。
图5是示出了根据本发明的实施例的吸光板和LED发光芯片以及遮光架的相对位置关系俯视图。
图6的(a)和(b)分别是示出了根据本发明的实施例的吸光板和LED发光芯片以及遮光架的相对位置关系前视图和侧视图。
图7是示出了用于推导吸光板的宽度的各种参数的图。
图8是示出根据本发明的另外实施例的吸光板的固定方式的示意图。
图9是示出了一维LED显示屏幕的光强像素化分布示意图。
图10是示出了吸光板增设前后的色差分布对比的图。
图11是示出了设有吸光板的遮光架的拼接的一部分的示意图。
图12是示出了设有吸光板的遮光架的制造方法的框图。
具体实施方式
下面,将参照附图详细说明根据本发明的LED显示屏。
通常由于相邻LED发光源的干扰,单个像素空间上混有相邻LED发光源信息,这降低了显示的清晰度。图4是根据本发明的实施例的LED显示屏3的示意图。如图4所示,在根据本发明的实施例的LED显示屏3中,设有矩阵遮光架32。此外,LED显示屏3还包括由作为LED发光芯片的LED灯珠34构成的LED发光阵列,LED发光阵列布置在作为基板的PCB板33上。矩阵遮光架32设置在LED发光阵列上,目的在于有效避免相邻LED灯珠光线的串扰,提高显示的清晰度。
具体而言,矩阵遮光架32由多个栅格321组成,即多个栅格321连 接成矩阵形式,并且每个栅格321是镂空结构。各栅格321的中心和LED发光芯片的排布中心基本对齐地设置,即,每个LED灯珠34对应设置在栅格321内。矩阵遮光架的高度h为0.1毫米至10毫米,优选1到3毫米。单元侧壁厚度为0.05毫米至10毫米,优选0.1到0.8毫米,单元侧壁厚度包括矩阵遮光架入光侧的侧壁厚度和出光侧的侧壁厚度,入光侧指的是矩阵遮光架靠近LED发光芯片的一侧,出光侧指的是远离LED发光芯片的一侧。矩阵遮光架32的侧壁为散射层,优选为朗伯散射,同时矩阵遮光架32侧壁具有10%吸光率。优选地,矩阵遮光架32的制造工艺为金属模具注塑,成型材料为聚碳酸酯(PC)、聚甲基丙烯酸甲酯(PMMA)、聚氯乙烯(PVC)、聚丙烯(PP)、聚酰胺(PA)、聚乳酸(PLA)、丙烯腈-丁二烯-苯乙烯(ABS)、聚对酞酸乙二酯(PET)等。
虽然增设矩阵遮光架可以缓解相邻LED灯珠光线的串扰问题,但因矩阵遮光架遮挡LED发光源的程度不一样会进而出现色差问题。为了解决色差问题,图4中的每个栅格321均包括下面将说明的吸光板61,该吸光板用于吸收LED灯珠34的部分出射光,即:LED发光芯片发出的小角度的光。
图5是示出了根据本发明的实施例的吸光板和LED发光芯片以及矩阵遮光架的相对位置关系俯视图。如图5所示的实施例,吸光板61以完全覆盖能够被栅格包围的LED发光芯片的方式连接在栅格321的两个侧壁之间,并且吸光板61和LED发光芯片间隔设置。比如,吸光板位于LED发光芯片的上方一定位置处。优选地,吸光板61设置在LED发光芯片的正上方,并且吸光板61的中心与LED发光芯片的排布中心对齐。如图5的(a)所示,在LED发光芯片相对于栅格321纵向地排列时,吸光板61纵向地设置在LED发光芯片的正上方处。此外,吸光板61的双面或者单面涂覆有吸光层,吸光板61的光吸收率大于50%,优选地大于80%。这里,完全覆盖是指吸光板61在基板上的投影至少能够覆盖LED发光芯片。
图5以一个栅格321为例进行说明。在图5所示的示例中,优选地,吸光板61设置在LED发光芯片的正上方,长度为l,宽度为w,宽度为w小于长度为l。另外,吸光板61的长度l至少为连接有吸光板61的两 个侧壁之间的垂直距离。当然可以理解的是,如图5的(b)的示例中,因为应用场景的不同,随着LED发光芯片的横向排列,与图5(a)中的纵向排列不同,吸光板的排列为横向。也就是说,在LED发光芯片相对于栅格321横向地排列时,吸光板61横向地设置在LED发光芯片的正上方。
图6的(a)和(b)分别是示出了根据本发明的实施例的吸光板和LED发光芯片以及矩阵遮光架的相对位置关系的前视图和侧视图。
图6同样以矩阵遮光架的一个栅格321为例进行说明。矩阵遮光架放置在LED发光芯片和扩散层中间,LED发光芯片贴合在PCB板上,PCB表面是吸光层。栅格321的侧壁在入光侧的厚度是w1和w2,w1是图6的(a)的前视图中的纵向侧壁厚度,w2是图6的(b)中的侧视图中的横向侧壁厚度,优选地,w1=w2或者w1>w2。吸光板61以完全覆盖LED发光芯片的方式与栅格321的两侧壁连接在一起。彼此相对的两侧壁中点之间的距离为p,栅格321的高度为h,吸光板61至PCB板的距离是d,优选地吸光板61的宽度w=d(p–w2)/h。
图7是示出了用于推导吸光板的宽度的各种参数的图。下面,参照图7来具体地推导吸光板61的宽度w的优选值。
在图7所示的侧视图的情况下,设吸光板61到侧壁的距离为A,LED发光芯片到侧壁的距离为B,则
Figure PCTCN2019107989-appb-000002
根据三角形的边长关系可知:
Figure PCTCN2019107989-appb-000003
因此,
Figure PCTCN2019107989-appb-000004
即,w=d(p–w2)/h。
当w等于此优选值时,在任意视角均不会看到不经过遮光架直接出射的光线,从而解决了色差问题。同时由于吸光板61的高吸收率,环境光无法通过LED发光芯片反射,从而进一步提高了LED显示屏的对比度。可以理解的是,在可以接受的显示效果的范围内,吸光板61的宽度w可以不大于d(p–w2)/h的1.2倍。此外,虽然参照附图以矩阵遮光架的截面为锥形为例进行了说明,但是本技术同样适用于矩阵遮光架的截面为 基本矩形的情况。且吸光板61的宽度w小于与吸光板平行的两侧壁的间距。
此外,普通LED显示屏在放映时,整个画面可以清楚地观察到像素点阵列,影响了观影效果。这是因为LED的低填充率和大间距导致了像素内发光区域的低光线填充率(光线填充率定义为单个像素发光面积占像素总面积的比值)。
图8是示出根据本发明的另外实施例的吸光板的固定方式的示意图。相对于图5-图7的实施例,图8的(a)和(b)分别示出了吸光板相对于遮光架的另外两种连接关系。
具体地,如图8的(a)所示,吸光板具有吸光部81,吸光部81完全覆盖LED发光芯片,吸光部81的宽度w同样满足上述参照图7所得到的关系式。吸光部81的两端设置有连接部82,连接部82优选为透明的,并且可以将吸光部81粘合到栅格321的两相对侧壁之间。虽然图8的(a)示出了连接部82与吸光部81的宽度相等,但是对连接部82的宽度没有特别限制,即,其宽度可以大于、等于或小于吸光部81的宽度,只要足以将吸光板81固定连接即可。
图8的(b)示出了另一种连接吸光板的方式。可以理解,图8的(b)中的吸光板81相当于以上所讨论的吸光板。如图所示,通过支架821将吸光板固定在LED发光芯片上方,在安装支架821时,使支架821不影响LED发光芯片发射的光线。可以理解的是,虽然图8的(b)示出与吸光板81垂直的支架821,但是支架821可以与吸光板81呈任何角度连接,并且支架821的截面不限于图中所示的矩形。
此外,吸光板61或吸光部81的形状可以为矩形,圆形,椭圆形,或者其相邻两边可以相交为圆弧形,所述吸光板61或吸光部81不限于上述所列举的形状,也可以是其他规则形状或不规则形状,如不规则弧形。。当吸光板61或吸光部81的形状为圆形,椭圆形时,能更加适配LED发光芯片发出的郎伯光,能够更好的吸收LED发光芯片发出的小角度光,能够更好的解决色差问题。
图9是示出了一维LED显示屏幕的光强像素化分布示意图。如图9 的(a)所示,在LED发光阵列的出光侧未设置扩散层的情况下,由于每个像素点的光线填充率很低,峰值发光强度过于集中地投射到人眼视网膜上,这会造成人眼不适。
对比而言,如图9的(b)所示,在LED发光阵列前增设扩散层,可以有效的平均每个像素区域内的光强分布,即,提高像素内的光线填充率η。定义当扩散层下的像素内照度E衰减到像素中心照度Em的一定比值a(0<a<0.5)时,照度不小于a*Em的区域面积为A,则光线填充率η(即像素填充率)为:
η=A/A0,
其中,A0为像素面积。
定义像素内光线均匀度σ为:
Figure PCTCN2019107989-appb-000005
其中,Ep为扩散层下的单位像素内平均照度,N为总体采样数。
根据以上说明并结合图9可知,在提高像素内光线填充率的同时降低光线均匀度会产生更好的显示效果,更有利于视觉健康,同时提高显示屏逐点校正的准确性。因此,图4中的LED显示屏3还包括扩散层31,扩散层31位于矩阵遮光架32上方,以覆盖多个LED灯珠34。
扩散层31一般采用透明的聚碳酸酯(PC)、聚对酞酸乙二酯(PET)作为基材,可以选择包括添加了体散射粒子的体扩散膜,比如二氧化硅、二氧化钛等无机颗粒或者采用丙烯酸树脂、环氧系树脂制成的有机颗粒;或者可以通过在透明基材表面加工具备光学扩散作用的微结构来形成扩散层。扩散层的扩散角度应大于10度以上,扩散角度越大,扩散层的遮蔽效果越好,优选40度以上的扩散层。
矩阵遮光架32和扩散层31之间的贴合面具有光学吸收属性,并且其光线吸收率优选为90%以上,能够提高抗环境光的对比度。
通过计算机仿真可以对根据本发明的实施例进行计算。图10是示出了吸光板增设前后的色差分布对比的图。
在该仿真中,矩阵遮光架中增设有95%吸光率的上述吸光板,这可 以有效降低色差。具体地,在该示例中,LED发光芯片的间距是5mm,使用R、G、B三色LED发光芯片“一”字排列的发光芯片,封装尺寸是1*1mm 2。矩阵遮光架侧壁为吸收率15%的朗伯散射层,侧壁的倾斜角度优选是6.7°,最薄处壁厚为0.3mm,即矩阵遮光架的出光侧的壁厚。在遮光架出光面覆盖散射角度为高斯30°的透明扩散层。吸光板设置在LED底板上方0.26mm处,宽度为0.5mm,光线吸收率为95%。通过计算,在没有吸光板的情况下,LED显示屏纵向视角±40°内色差变化大于0.02。然而,在增设吸光板后,在相同视角下,色差降低到0.014以下。如图9所示,增加吸光板后的色差值明显下降,在±30°视角内,色差值小于0.008,即小于人眼可察觉的色差值。
下面,将结合图11和图12来说明根据本发明的实施例的设有吸光板的矩阵遮光架的制造方法。
出于简洁的目的,图11仅示出了设有吸光板的遮光架的拼接的一部分(即,一个栅格)的示意图。作为示例,使用金属模具注塑成型法来制造根据本发明的实施例的遮光架。例如,以吸光板为分割基准分别准备两块金属模具,将用于形成矩阵遮光架的材料注入两块金属模具的模腔中,得到两个部分(以下将这两个部分称为第一部分和第二部分),并使吸光板注塑成型在第一部分和第二部分中的任一者上。最后,以使吸光板位于第一部分和第二部分之间的方式将第一部分和第二部分拼接在一起,就可以有效地制造出根据本实施例的设有吸光板的矩阵遮光架。图11的(a)和(b)分别示出了吸光板形成在不同部分上的情况。在这两种情况下,将第一部分和第二部分拼接在一起就可得到根据本发明的实施例的矩阵遮光架。下面,将对根据本发明的实施例的遮光架的制造进行详细说明。
图12是示出了设有吸光板的矩阵遮光架的制造方法的框图。
首先,在步骤S110中,将两块金属模具A和B制作成分别具有用于形成矩阵遮光架的一个部分的模腔。接着,在步骤S112中,通过注塑成型得到分别具有多个镂空栅格的第一部分和第二部分,多个镂空栅格形成为矩阵状,并且这两个部分上的多个镂空栅格的排列方式、形状及尺寸相同。这两个部分即为构成矩阵遮光架的两个主要部分。此外,在第一部分和第二部分中的任一者的多个镂空栅格的每者上注塑成型吸光 板,从而得到图11的(a)和(b)示出的根本本本实施例的以一个栅格为例的矩阵遮光架的第一部分和第二部分,即,在第一部分和第二部分中的任一者的多个栅格的每者上注塑成型吸光板,并且吸光板完全覆盖能够被镂空栅格包围的LED发光芯片。另外,在使用该矩阵遮光架时,将吸光板和LED发光芯片间隔设置。然后,在步骤S114中,对遮光架的侧壁通过喷漆、化学镀、电镀等方式涂覆散射层,散射层为朗伯或者高斯散射,优选朗伯散射,反射率>30%,优选90%。
在步骤S116中,在矩阵遮光架的出光侧和扩散层紧贴的部分涂覆吸光层,能够提高抗环境光对比度,对可见光的吸收率>70%,优选95%。在步骤S118中,在吸光板的双面或者单面涂覆吸光层,使得总体吸收率>50%,优选80%。吸光板的出光面也可以选用朗伯或高斯散射涂层。最后,在步骤S120中,将矩阵遮光架的第一部分和第二部分叠加拼接,得到根据本发明的实施例的LED矩阵遮光架。为了增强两者的结合强度,可以在矩阵遮光架的第一部分和第二部分的叠加位置上设置卡扣,以进行固定。
综上所述,采用根据本发明的LED显示屏,通过在显示屏内部增设吸光板结构,使由LED发射的光均经过吸光板出射,从而有效地平衡R、G、B三色在不同视角的亮度,达到降低色差的目的,进而提高了LED显示的视觉效果。
尽管在上面已经参照附图说明了根据本发明的LED显示屏,但是本发明不限于此,且本领域技术人员应理解,在不偏离本发明随附权利要求书限定的主旨或范围的情况下,可以做出各种改变、组合、次组合以及变型。

Claims (16)

  1. 一种LED显示屏,其特征在于,包括:
    LED发光阵列,所述LED发光阵列包括多个LED发光芯片;
    矩阵遮光架,所述矩阵遮光架包括
    多个栅格,多个所述栅格互相连接成矩阵形式,并且所述栅格是镂空的,所述LED发光芯片对应设置在所述栅格内;
    吸光板,所述吸光板用于吸收LED发光芯片的部分出射光,其中,所述吸光板完全覆盖所述栅格包围的LED发光芯片。
  2. 根据权利要求1所述的LED显示屏,其特征在于,
    所述吸光板设置在所述LED发光芯片的正上方,所述吸光板的中心与所述LED发光芯片的排布中心对齐。
  3. 根据权利要求2所述的LED显示屏,其特征在于,
    在所述LED发光芯片相对于所述栅格横向地排列时,所述吸光板横向地设置在所述LED发光芯片的正上方;
    在所述LED发光芯片相对于所述栅格纵向地排列时,所述吸光板纵向地设置在所述LED发光芯片的正上方。
  4. 根据权利要求1所述的LED显示屏,其特征在于,
    所述吸光板的宽度w至少为d(p–w2)/h,其中,所述吸光板到设置有所述LED发光芯片的基板的距离为d,所述栅格的相对侧壁的中点之间的距离为p,所述栅格的侧壁的横向厚度为w2,所述栅格的高度为h,
    所述吸光板的长度至少为连接有所述吸光板的两个侧壁之间的垂直距离。
  5. 根据权利要求4所述的LED显示屏,其特征在于,
    所述吸光板的宽度w不大于d(p–w2)/h的1.2倍。
  6. 根据权利要求1所述的LED显示屏,其特征在于,
    所述吸光板包括吸光部,所述吸光部完全覆盖所述LED发光芯片。
  7. 根据权利要求6所述的LED显示屏,其特征在于,
    所述吸光板还包括连接部,所述吸光部通过所述连接部连接到所述栅格的相对侧壁之间,所述连接部是透明的。
  8. 根据权利要求6所述的LED显示屏,其特征在于,
    所述吸光部设置有支架,所述支架用于将所述吸光部固定在所述LED发光芯片正上方。
  9. 根据权利要求1所述的LED显示屏,其特征在于,
    所述吸光板直接连接在所述栅格的两侧壁之间。
  10. 根据权利要求1所述的LED显示屏,其特征在于,
    所述吸光板的双面或者单面涂覆有吸光层。
  11. 根据权利要求1所述的LED显示屏,其特征在于,
    所述吸光板的光吸收率大于50%。
  12. 根据权利要求11所述的LED显示屏,其特征在于,
    所述吸光板的光吸收率大于80%。
  13. 根据权利要求1所述的LED显示屏,其特征在于,
    所述吸光板的形状为矩形,圆形,椭圆形,或者所述吸光板的相邻两边相交为圆弧形。
  14. 根据权利要求1所述的LED显示屏,其特征在于,还包括:
    扩散层,所述扩散层布置在所述多个栅格上方,以覆盖多个所述LED发光芯片。
  15. 根据权利要求1所述的LED显示屏,其特征在于,
    所述矩阵遮光架被分为能够进行连接的第一部分和第二部分,所述第一部分和所述第二部分中的任一者具有所述吸光板,并且当连接所述第一部分和所述第二部分时,所述吸光板位于所述第一部分和所述第二部分之间。
  16. 根据权利要求15所述的LED显示屏,其特征在于,
    所述第一部分和所述第二部分通过卡扣拼接在一起。
PCT/CN2019/107989 2018-09-28 2019-09-26 Led显示屏 WO2020063701A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811136854.7A CN110969954B (zh) 2018-09-28 2018-09-28 Led显示屏
CN201811136854.7 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020063701A1 true WO2020063701A1 (zh) 2020-04-02

Family

ID=69949849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107989 WO2020063701A1 (zh) 2018-09-28 2019-09-26 Led显示屏

Country Status (2)

Country Link
CN (1) CN110969954B (zh)
WO (1) WO2020063701A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112786766A (zh) * 2021-02-04 2021-05-11 錼创显示科技股份有限公司 微型发光二极管显示面板
CN114144825A (zh) * 2021-09-10 2022-03-04 深圳市雷迪奥视觉技术有限公司 一种面罩及显示屏
US11935985B2 (en) 2021-02-04 2024-03-19 PlayNitride Display Co., Ltd. Micro light-emitting diode display panel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111739430A (zh) * 2020-07-01 2020-10-02 北京环宇蓝博科技有限公司 具有隔光装置的cob显示屏
CN114137753B (zh) * 2021-11-24 2022-11-25 Tcl华星光电技术有限公司 一种显示模组及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014115576A (ja) * 2012-12-12 2014-06-26 Dainippon Printing Co Ltd 表示装置
CN104049374A (zh) * 2014-07-05 2014-09-17 福州大学 一种可实现面发光的led屏及其裸眼立体显示装置
CN104392676A (zh) * 2014-12-11 2015-03-04 广东威创视讯科技股份有限公司 一种led显示屏
CN105161012A (zh) * 2015-08-28 2015-12-16 厦门科安技术开发有限公司 Led显示屏消除摩尔纹混色面罩
CN106205401A (zh) * 2016-07-21 2016-12-07 长春希达电子技术有限公司 一种集成封装led显示模组及其制作方法
CN207676585U (zh) * 2017-12-06 2018-07-31 深圳雷曼光电科技股份有限公司 Led显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012068486A (ja) * 2010-09-24 2012-04-05 Sony Corp 表示装置、光学部材及び光学部材の製造方法
CN204679675U (zh) * 2015-06-01 2015-09-30 东莞市钜欣电子有限公司 可改变面出光之光学色度的导光膜
CN105869537B (zh) * 2016-06-21 2019-06-14 深圳市华夏光彩股份有限公司 一种透明面罩及应用该透明面罩的led显示模组
CN107658331B (zh) * 2017-10-17 2021-04-13 京东方科技集团股份有限公司 一种显示面板及显示装置
CN207517695U (zh) * 2017-12-14 2018-06-19 上海和辉光电有限公司 一种显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014115576A (ja) * 2012-12-12 2014-06-26 Dainippon Printing Co Ltd 表示装置
CN104049374A (zh) * 2014-07-05 2014-09-17 福州大学 一种可实现面发光的led屏及其裸眼立体显示装置
CN104392676A (zh) * 2014-12-11 2015-03-04 广东威创视讯科技股份有限公司 一种led显示屏
CN105161012A (zh) * 2015-08-28 2015-12-16 厦门科安技术开发有限公司 Led显示屏消除摩尔纹混色面罩
CN106205401A (zh) * 2016-07-21 2016-12-07 长春希达电子技术有限公司 一种集成封装led显示模组及其制作方法
CN207676585U (zh) * 2017-12-06 2018-07-31 深圳雷曼光电科技股份有限公司 Led显示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112786766A (zh) * 2021-02-04 2021-05-11 錼创显示科技股份有限公司 微型发光二极管显示面板
US11935985B2 (en) 2021-02-04 2024-03-19 PlayNitride Display Co., Ltd. Micro light-emitting diode display panel
CN114144825A (zh) * 2021-09-10 2022-03-04 深圳市雷迪奥视觉技术有限公司 一种面罩及显示屏

Also Published As

Publication number Publication date
CN110969954B (zh) 2022-04-15
CN110969954A (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
WO2020063701A1 (zh) Led显示屏
US9423535B1 (en) LED display screen covers and LED displays
US10323819B2 (en) LED display screen covers and LED displays
TWI767282B (zh) 發光裝置及發光模組
US20140126222A1 (en) Light Source Device
JP2019515459A (ja) 照明モジュール及びこれを備える照明装置
CN104344287A (zh) 光源设备和显示单元
JP2006031941A (ja) 面状光源ユニット
CN1702507A (zh) Led封装和用于包括该led封装的lcd的背光组件
US9853196B2 (en) Light-emitting display device
JP6188408B2 (ja) Led表示素子および映像表示装置
TWI578579B (zh) 發光裝置、顯示單元及影像顯示裝置
CN114464604B (zh) 显示装置、电子设备及背光模组的封装方法
JP6762166B2 (ja) 照明装置、面光源装置、表示装置及び電子機器
WO2020151604A1 (zh) Led显示屏
CN112349822B (zh) Led器件和背光模组
US10505086B2 (en) Light source device
CN110969957B (zh) Led显示屏
JP2007157520A (ja) 側面入射光源混合式バックライト
TW201411905A (zh) 有機發光二極體封裝結構以及於基板上製作凹穴之方法
WO2020063705A1 (zh) Led显示屏幕
CN112259008A (zh) Led显示屏面罩结构及led显示屏
WO2020063703A1 (zh) Led显示屏
WO2018109978A1 (ja) 面光源装置および表示装置
TW202024694A (zh) 背光模組

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19865711

Country of ref document: EP

Kind code of ref document: A1