WO2020062588A1 - 偏光板及显示装置 - Google Patents

偏光板及显示装置 Download PDF

Info

Publication number
WO2020062588A1
WO2020062588A1 PCT/CN2018/119697 CN2018119697W WO2020062588A1 WO 2020062588 A1 WO2020062588 A1 WO 2020062588A1 CN 2018119697 W CN2018119697 W CN 2018119697W WO 2020062588 A1 WO2020062588 A1 WO 2020062588A1
Authority
WO
WIPO (PCT)
Prior art keywords
compensation film
phase compensation
refractive index
film
polarizing plate
Prior art date
Application number
PCT/CN2018/119697
Other languages
English (en)
French (fr)
Inventor
康志聪
Original Assignee
惠科股份有限公司
重庆惠科金渝光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司, 重庆惠科金渝光电科技有限公司 filed Critical 惠科股份有限公司
Publication of WO2020062588A1 publication Critical patent/WO2020062588A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers

Definitions

  • the present application relates to the field of display technology, and in particular, to a polarizing plate and a display device.
  • the display device is generally composed of a backlight module and a display panel placed on the backlight module.
  • the backlight module provides incident light for the display panel.
  • the incident light is usually concentrated and incident on the display panel. Therefore, when viewing the display screen in the frontal direction, It can obtain better display image quality, but when viewing the display screen in the side view direction, the image quality is poor and the color cast is more serious, which makes the viewing angle of normal display smaller.
  • a sub-pixel in a filter is again divided into a plurality of sub-pixels to improve the image quality of a side viewing angle, thereby expanding the viewing angle.
  • this method requires more TFT (Thin Film Transistor) elements to drive the sub-pixels. This will inevitably increase the metal traces inside the panel, causing the light-transmissive area to become smaller, affecting the light transmittance of the panel and affecting Picture quality.
  • TFT Thin Film Transistor
  • a polarizing plate capable of improving a display angle of a display device with a small display angle and poor side-view image quality, without increasing cost, is provided.
  • a display device is provided.
  • a polarizing plate includes:
  • a first phase compensation film having a first refractive index, the first phase compensation film having a light incident surface and a light emitting surface, and a plurality of protrusions having a predetermined shape are provided on the light emitting surface Structure, at least part of the surface of the raised structure is curved;
  • a second phase compensation film is formed on the light emitting surface, the second phase compensation film has a second refractive index, the first refractive index is greater than the second refractive index, and the second phase compensation film is in contact with A plurality of grooves having the same shape and size as the convex structure are opened on a surface contacted by the first phase compensation film;
  • a polarizing film is disposed on the second phase compensation film.
  • a polarizing plate includes:
  • a first phase compensation film having a first refractive index, the first phase compensation film having a light incident surface and a light emitting surface, and a plurality of protrusions having a predetermined shape are provided on the light emitting surface Structure, at least part of the surface of the convex structure is a circular arc surface, and the angle formed by the circular arc surface and the light incident surface is an acute angle;
  • the first phase compensation film is a positive single optical axis A- A compensation film, the first refractive index is an abnormal refractive index of the A-compensation film, and the positive single optical axis A-compensation film includes nematic liquid crystal molecules;
  • a second phase compensation film is formed on the light emitting surface, the second phase compensation film has a second refractive index, the first refractive index is greater than the second refractive index, and the second phase compensation film is in contact with A plurality of grooves having the same shape and size as the convex structure are opened on a surface contacted by the first phase compensation film; the second phase compensation film is a negative single optical axis C-compensation film, and The second refractive index is a normal refractive index of the C-compensation film, and the negative single optical axis C-compensation film includes dish-shaped liquid crystal molecules; and
  • a polarizing film is disposed on the second phase compensation film.
  • a display device includes:
  • a backlight module configured to provide a light source
  • a display panel is placed on one side of the backlight module and is set as a display screen
  • the display panel includes a polarizing plate, and the polarizing plate includes:
  • a first phase compensation film having a first refractive index, the first phase compensation film having a light incident surface and a light emitting surface, and a plurality of protrusions having a predetermined shape are provided on the light emitting surface Structure, at least part of the surface of the raised structure is curved;
  • a second phase compensation film is formed on the light emitting surface, the second phase compensation film has a second refractive index, the first refractive index is greater than the second refractive index, and the second phase compensation film is in contact with A plurality of grooves having the same shape and size as the convex structure are opened on a surface contacted by the first phase compensation film;
  • a polarizing film is disposed on the second phase compensation film.
  • the polarizing plate and the display device are provided with a first phase compensation film and a second phase compensation film, and the first refractive index is greater than the second refractive index, that is, light is incident from the light incident surface of the first phase compensation film to the first phase.
  • the compensation film penetrates the first phase compensation film and enters the second phase compensation film, it enters the photophosphite from the light dense material, so the refraction phenomenon occurs at the contact interface between the two films, and the light is deflected.
  • a convex structure is formed on the light emitting surface, and at least a part of the surface of the convex structure is a curved surface, that is, there is an acute angle formed between the part of the surface and the light incident surface.
  • the incident angle formed by the surface of the structure is less than 90 °. Therefore, in order to cause refraction, the vertically incident light is deflected, so that the energy of the positive viewing angle is distributed to the side viewing angle, and the image quality of the side viewing angle is improved.
  • the first phase compensation film and the second phase compensation film also have a phase compensation function, which can correct the phenomenon of phase delay and color shift after light passes through the liquid crystal layer.
  • FIG. 1 is a schematic diagram of a partial structure of a polarizing plate in an embodiment
  • FIG. 2 is a schematic structural diagram of a first phase compensation film in an embodiment
  • 3A is a perspective structural view of a first phase compensation film in an embodiment
  • 3B is a schematic perspective view of a first phase compensation film in another embodiment
  • 4A is a schematic structural diagram of a first phase compensation film in another embodiment
  • 4B is a schematic perspective view of a first phase compensation film in another embodiment
  • FIG. 5 is a partial cross-sectional view of a polarizing plate in an embodiment
  • 6A is a schematic structural diagram of a polarizing plate in an embodiment
  • 6B is a schematic structural diagram of a polarizing plate in another embodiment
  • 6C is a schematic structural diagram of a polarizing plate in another embodiment
  • FIG. 7 is a schematic structural diagram of a display device according to an embodiment
  • FIG. 8 is a cross-sectional view of the display panel structure in FIG. 7.
  • the polarizing plate 10 includes a first phase compensation film 100, a second phase compensation film 200, and a polarizing film 300.
  • the first phase compensation film 100 has a light incident surface and a light emitting surface.
  • the light incident surface is a surface that receives incident light. Light enters the first phase compensation film 100 from the incident surface and exits from the light emitting surface.
  • a plurality of light emitting surfaces are provided.
  • the convex structure 101 has a predetermined shape. At least a part of the surface of the convex structure 101 is a curved surface, that is, an angle formed by the part of the surface and the light incident surface is ⁇ , ⁇ is an acute angle, and 0 ° ⁇ ⁇ 90 ° is satisfied.
  • the structure 101 generates a refraction phenomenon.
  • the second phase compensation film 200 is formed on the first phase compensation film 100.
  • the second phase compensation film 200 is provided with a plurality of recesses having the same shape and size as the convex structure 101 on the surface in contact with the first phase compensation film 100.
  • the groove 210 that is, the second phase compensation film 200 and the first phase compensation film 100 can be completely bonded to each other through the convex structure 101 and the groove 210.
  • the first phase compensation film 100 has a first refractive index n1
  • the second phase compensation film 200 has a second refractive index n2
  • the first refractive index n1 is larger than the second refractive index n2.
  • a convex structure 101 is provided on the light-exiting surface of the first phase compensation film 100.
  • the incident light is incident from the first phase compensation film 100 to the second phase compensation film 200, the surface characteristics of the convex structure 101 are combined with the convex structure.
  • the surface of the structure 101 is refracted, and the propagation path of the vertically incident light is changed to deflect the light, so that the light energy of the normal viewing angle is distributed to the large viewing angle, and the image quality of the side viewing angle is improved.
  • the polarizing plate 10 further includes a polarizing film 300.
  • the polarizing film 300 is used to polarize incident light and emit the polarized light.
  • the polarizing film 300 may be a PVA (Polyvinyl alcohol) material, which mainly absorbs and penetrates polarized light.
  • the polarizing film 300 is a product commonly used in the market.
  • the transmission axis is Products parallel to the 0/180 degree direction and absorption axis parallel to the 90/270 degree direction.
  • the polarizing film 300 can also select that the transmission axis is parallel to the 90/270 degree direction, and the absorption axis is parallel to the 0/180 degree direction.
  • the incident angle of the vertically incident light on the surface of the convex structure is ⁇ , 0 ⁇ ⁇ 90 °, so the light will be refracted, the refraction angle is ⁇ , because the light is from the dense to the light, so ⁇ is greater than ⁇ , that is, the light propagation path changes, the light R1 deviates from the original perpendicular incidence direction, and diverges to the side, Therefore, more light will be incident on the side, improving the image quality of the side viewing angle.
  • the value range of the first refractive index n1 is 1.0 ⁇ n1 ⁇ 2.5
  • the value range of the second refractive index n2 is 1.0 ⁇ n2 ⁇ 2.5.
  • the preferred value range of m is 0.01 ⁇ m ⁇ 2.
  • a plurality of convex structures 101 are formed on the light-emitting surface of the first phase compensation film 100.
  • the plurality of convex structures 101 are strip-shaped structures and a part of the surface of the strip-shaped structures is an arc-shaped curved surface.
  • the structures 101 can be arranged side by side. It can be understood that a part of the surface referred to herein may be a side of the convex structure 101 opposite to the light emitting surface, that is, an upper surface of the convex structure 101.
  • the angle between the arc-shaped surface and the light incident surface of the first phase compensation film 100 may be the angle between the tangent of any point on the surface of the arc-shaped curved surface and the light incident surface
  • the included angle is an acute angle, that is, ⁇ in FIG. 1, and 0 ° ⁇ ⁇ 90 °.
  • a part of the surface of the convex structure 101 may also be a spherical curved surface. It can be understood that the part of the surface referred to herein may be a side of the convex structure 101 opposite to the light emitting surface, that is, the upper surface of the convex structure 101 .
  • the plurality of convex structures 101 may be distributed in a two-dimensional matrix array on the light emitting surface.
  • the angle between the spherical curved surface and the light incident surface of the first phase compensation film 100 is the angle between the tangent line passing through any point on the surface of the spherical curved surface and the light incident surface.
  • the included angle is an acute angle, that is, ⁇ in FIG. 1, and 0 ° ⁇ ⁇ 90 °. Because in the display device, most of the light generated by the backlight module is incident on the display panel vertically, that is, most of the light incident on the phase compensation film is perpendicular to the light incident surface of the phase compensation film.
  • the curved convex structure 101 since the curved convex structure 101 is provided, it can refract the normal incident light, and the light deviates from the original normal incident direction and diverges to the side. Therefore, more light will enter the side, and the angle of the side view is improved. Picture quality.
  • the upper surface of the convex structure 101 is a circular arc surface and a plurality of convex structures 101 are arranged side by side, refraction occurs only in a one-dimensional direction, so that light is scattered to both sides of the curved surface;
  • the upper surface of the convex structure 101 is When it is a spherical curved surface and a plurality of convex structures 101 are distributed in a dot-like array (two-dimensional matrix array), refraction occurs in a two-dimensional plane, so that light is diffused to various angles of the two-dimensional plane, so that each angle of view can be presented. Better picture quality.
  • the first phase compensation film 10 may have a light incident surface and a light emitting surface, and the light emitting surface and the light incident surface may be rectangles having the same shape and size, or other shapes.
  • the upper surface of the convex structure 101 is a circular arc surface or a spherical surface
  • the radius of the circular arc surface or the spherical surface in the first direction is less than or equal to twice the height of the convex structure 101 in the first direction.
  • the direction is the direction perpendicular to the light emitting surface, which can be understood here as the extending direction along the Y axis.
  • R is the radius of the curved surface in the first direction
  • D is the height of the convex structure 101 in the first direction
  • R ⁇ 2D the relationship between the radius R and the height D
  • the protruding structure 101 is a strip structure
  • its cross-section is a left-right symmetrical structure
  • the second direction is the direction of the extending direction of the vertical strip structure on the light emitting surface
  • the second direction can be understood here It is a direction extending along the X axis.
  • Lx is the length of the strip-like protruding structure in the second direction
  • Px is the center distance of the strip-like protruding structure in the second direction.
  • the convex structure 101 satisfies in the second direction: Px ⁇ Lx and Px ⁇ 10 ⁇ m, and 10 ⁇ m is a wavelength of visible light.
  • Px> Lx there is a gap between adjacent convex structures 101.
  • Px> Lx that is, the convex structures 101 can be arranged at periodic intervals. When light propagates from light dense to light dense, the interval is equivalent to a grating.
  • the convex structure 101 having a spherical curved surface The length in the second direction is Lx, Px is the center distance of the convex structure 101 with a spherical curved surface in the second direction, and Py is the center distance of the convex structure 101 with a spherical curved surface in the third direction.
  • the first direction, the second direction, and the third direction are perpendicular to each other.
  • the first direction can be understood as being along the Y axis.
  • Extension direction the second direction can be understood as the extension direction along the X axis
  • the third direction can be understood as the extension direction along the Z axis.
  • Px, Py, Lx, and Ly satisfy: Px ⁇ Lx and Px ⁇ 10 ⁇ m; Py ⁇ Ly and Py ⁇ 10 ⁇ m; 10 ⁇ m is the wavelength of visible light.
  • Px> Lx, Py> Ly there are gaps between adjacent convex structures 101, that is, the convex structures 101 are distributed in a dot-like array.
  • the space and surface can be used to make vertical The incident light diverges to the side, further distributes the energy of the frontal light to the side viewing angle, and improves the image quality of the side viewing angle.
  • the phase compensation film should be made of a transparent or translucent material that can transmit light and have a function of phase compensation.
  • the phase compensation film is filled with liquid crystal.
  • the liquid crystal is a birefringent material. When light enters the liquid crystal, it is refracted into two kinds of normal light and abnormal light.
  • the refractive index of the normal light is the normal refractive index and the abnormal light.
  • the refractive index of is the abnormal refractive index
  • the direction of the abnormal refractive index is the direction in which the direction of the optical electric field is parallel to the optical axis of the liquid crystal
  • the direction of the normal refractive index is the direction in which the optical field is perpendicular to the optical axis of the liquid crystal
  • the direction of the abnormal refractive index is perpendicular to the direction of the normal refractive index.
  • the first phase compensation film 100 may be a positive single optical axis A-compensation film
  • the positive single optical axis A-compensation film may be filled with nematic liquid crystal 102 and nematic Phase liquid crystal 102 is a long rod-shaped liquid crystal.
  • the optical axis of the nematic liquid crystal 102 is parallel to the light incident surface.
  • the abnormal refractive index nae (extraordinary refractive index) of the nematic liquid crystal is parallel to the optical axis of the nematic liquid crystal.
  • the abnormal refractive index nae of the nematic liquid crystal is parallel to the light incident surface.
  • the normal refractive index nao (ordinary refractive index) direction of the nematic liquid crystal is perpendicular to the direction of the abnormal refractive index nae, and nae> nao.
  • the second phase compensation film 200 may It is a negative single optical axis C-compensating film.
  • the negative single optical axis C-compensating film can be filled with a disk-shaped liquid crystal 201.
  • the optical axis of the disk-shaped liquid crystal 201 is perpendicular to the light incident surface.
  • the abnormal refractive index of the disk-shaped liquid crystal 201 is nce.
  • the direction of (extraordinary refractive index) is parallel to the optical axis of the dish-shaped liquid crystal.
  • the normal refractive index nco (ordinary refractive index) direction of the dish-shaped liquid crystal is perpendicular to the direction of the abnormal refractive index nce, that is, the normal refractive index nco of the dish-shaped liquid crystal is parallel to the entrance.
  • the first refractive index is the abnormal refractive index nae of the positive single optical axis A-compensation film
  • the second refractive index is the normal refractive index nco of the negative single optical axis C-compensation film.
  • the directions of nco are all parallel to the light incident surface.
  • the polarizing film 300 has an absorption axis and a transmission axis, and polarized light having a vibration direction parallel to the transmission axis can pass through the polarizing film 300.
  • the optical axis (the optical axis of the liquid crystal) of the phase compensation film can be parallel to the transmission axis of the polarizing film 300, and the polarization of the incident light after passing through the phase compensation film The direction is parallel to the transmission axis of the polarizing film 300, so it can completely pass through the polarizing film 300.
  • the positive single optical axis A-compensation film and the negative single optical axis C-compensation film also have the function of phase compensation
  • the positive single optical axis A-compensation film and the negative single optical axis C- In addition to deflecting the incident light at the interface to increase the viewing angle and enhance the quality of the side viewing angle, the compensation film can also play a role in phase compensation.
  • polyvinyl alcohol is usually used as a polarizing film, and polyvinyl alcohol is extremely hydrophilic.
  • a layer of triacetate cellulose is usually required on both sides of the polarizer.
  • Film, cellulose triacetate support film has high light transmittance, water resistance, and a certain mechanical strength, which can protect polarizers.
  • the first phase compensation film 100 and the second phase compensation film 200 can perform phase compensation and alignment. The light is deflected and can also serve as a protective layer to protect the polarizing film 300. It should be noted that the first phase compensation film 100 and the second phase compensation film 200 need to have appropriate thicknesses to achieve the protective effect on the polarizing film 300.
  • FIG. 4A and FIG. 4B It is a schematic structural diagram and a three-dimensional structural diagram of the first phase compensation film 100 in another embodiment.
  • the plurality of convex structures 101 are strip-shaped structures and part of the surface of the strip-shaped structures are arc-shaped curved surfaces.
  • the plurality of convex structures 101 may be arranged side by side. .
  • the protruding structure 101 can be regarded as a fan-shaped strip-shaped protruding structure.
  • the cross-sectional shape parallel to the paper surface is a fan-shaped shape.
  • One side of the fan-shaped structure is R.
  • the distance in the second direction is Px
  • the height of the fan-shaped convex structure in the first direction is D.
  • the relationship between D and R satisfies the relationship described in the previous embodiment, and Px is less than or equal to 10 ⁇ m.
  • R can also be regarded as The length of the convex structure 101 along the second direction.
  • the convex structure has both an inclined surface and a curved surface, so when the incident light R0 is refracted, a plurality of different refraction angles can be obtained.
  • the outgoing light ray R1 is emitted in all directions, so that the light energy of the positive viewing angle is more evenly distributed to the side viewing angle.
  • the difference between this embodiment and the foregoing embodiment of the arc-shaped curved surface is only in the shape, and the specific viewing angle diffusion principle, refractive index, and size representation are the same as the description of the foregoing arc-shaped curved surface, and this embodiment is convex
  • the first refractive index of the structure 101 is greater than the second refractive index of the second compensation film, so that it is possible to ensure that the light that is incident vertically is from the light dense medium to the light sparse medium, and cooperates with the unique convex structure to make the light diffuse.
  • a part of the surface of the convex structure 101 may also be a spherical curved surface, and the convex structure 101 may be a two-dimensional matrix array on the light emitting surface.
  • a polarizing plate is also provided.
  • the polarizing plate includes a first phase compensation film, the first phase compensation film has a first refractive index, the first phase compensation film has a light entrance surface and a light exit surface, and a plurality of The shape of the convex structure is set. At least part of the surface of the convex structure is a circular arc surface. The angle formed by the circular arc surface and the light incident surface is an acute angle.
  • the first phase compensation film is a positive single optical axis A-compensation film.
  • a refractive index is an abnormal refractive index of the A-compensation film, and the positive single optical axis A-compensation film includes nematic liquid crystal molecules; a second phase compensation film is formed on the light emitting surface, and the second phase compensation film has a second refraction
  • the first refractive index is greater than the second refractive index, and the second phase compensation film is provided with a plurality of grooves having the same shape and size as the convex structure on the surface in contact with the first phase compensation film;
  • the second phase compensation film Is a negative single optical axis C-compensating film, and the second refractive index is the normal refractive index of the C-compensating film.
  • the negative single optical axis C-compensating film contains dish-like liquid crystal molecules; a polarizing film is provided in the second phase On the compensation film.
  • FIG. 6A it is a schematic structural diagram of a polarizing plate in an embodiment.
  • an optical compensation film 500 and a pressure-sensitive adhesive layer 600 can be sequentially stacked on the light-emitting side of the polarizing film 300.
  • the polarizing plate 10 is pasted on a glass substrate through the pressure-sensitive adhesive layer 600, and the polarized light can be polarized through the optical compensation film 500.
  • the sheet 300 performs phase compensation and plays a supporting and protecting role.
  • FIG. 6B it is a schematic structural diagram of a polarizing plate in another embodiment.
  • an optical compensation film 500 and a pressure-sensitive adhesive layer 600 may be sequentially stacked on the light-emitting side of the polarizing film 300.
  • the polarizing plate 10 may further include a support and protection provided between the second phase compensation film 200 and the polarizing film 300. Film 400.
  • the polarizing plate 10 is adhered to the glass substrate through the pressure-sensitive adhesive layer 600, and the optical compensation film can perform phase compensation on the polarizer 300 and play a supporting and protecting role.
  • the material supporting the protective film 400 may include, but is not limited to, any one of a polyethylene terephthalate film, a cellulose triacetate film, or a polymethyl methacrylate film.
  • PET Polyethylene terephthalate
  • amorphous PET plastic has good optical transparency.
  • PET plastic has excellent abrasion resistance, dimensional stability, and electrical insulation.
  • TAC Triacetyl Cellulose
  • PMMA Polymethyl Methacrylate
  • the thickness of the supporting protective film 400 should ensure that the weather resistance of the polarizing film 300 is not affected, protect the polarizing film 300 from contacting the external environment, and prevent moisture from entering the polarized light. Film 300.
  • FIG. 6C it is a schematic structural diagram of a polarizing plate in another embodiment.
  • an optical compensation film 500 and a pressure-sensitive adhesive layer 600 may be sequentially stacked on the light-emitting side of the polarizing film 300.
  • the polarizing plate 10 may further include a support protective film provided on the light incident surface of the first phase compensation film 100. 400.
  • the polarizing plate 10 is pasted on a glass substrate through the pressure-sensitive adhesive layer 600.
  • the optical compensation film can perform phase compensation on the polarizing film 300 and support and protect the polarizing film 300.
  • the present application also discloses a display device.
  • the display device includes a backlight module 5 and a display panel 1 disposed above the backlight module.
  • the backlight module 5 is used to provide incident light R0 (not labeled in FIG. 7).
  • the incident light R0 is incident on the display panel 1 in a concentrated manner.
  • the divergent direction of the incident light R0 is at a small angle with the direction perpendicular to the display panel 1. Less than 30 °, most of the light received by the display panel 1 is perpendicularly incident light.
  • the convex structure 101 having a predetermined shape can deflect the normal incident light to generate the outgoing light R1 by refraction on the surface of the convex structure 101, thereby distributing the energy of the positive viewing angle to the side viewing angle and improving the image quality of the side viewing angle.
  • the backlight module 5 may include a side-type LED light source 51, a reflection sheet 52, and a light guide plate 53. The upper and lower surfaces of the light guide plate 53 are provided with long V-shaped grooves.
  • the side walls of the V-shaped grooves on the lower surface of the light guide plate 53 are parallel to the side-type light source 51, and the V-shaped grooves on the upper surface of the light guide plate 53 and the V-shaped grooves on the lower surface. Set up perpendicular to each other.
  • the display panel 1 may be, for example, a TFT-LCD (Thin Film Transistor, Liquid Crystal Displayer) display panel 1, an OLED (Organic Light-Emitting Diode) display panel 1, a QLED (Quantum Dot Light Emitting Diodes, Quantum dot light emitting diode) display panel 1, curved display panel 1 or other display panel 1.
  • This embodiment uses the display panel 1 as a TFT-LCD display panel 1 as an example for description.
  • the display panel 1 includes an upper polarizing plate 1000, a lower polarizing plate 2000, an upper substrate 3000, a lower substrate 4000, and a clamping device.
  • the incident order of light in the display panel is: first enter the lower polarizing plate 2000, then pass through the lower substrate 4000, then pass through the liquid crystal layer 6000, and then enter after rotating through the liquid crystal layer 6000 Enter the upper substrate 3000, and finally enter the upper polarizing plate 1000.
  • the lower polarizing plate 2000 is the polarizing plate 10 described in the foregoing embodiment. It can be understood that the upper polarizing plate 1000 may also be the polarizing plate 10 described in the foregoing embodiment. Here, the following polarizing plate 2000 is used as an example for description.
  • the lower polarizing plate 2000 may include a first phase compensation film 100, the first phase compensation film 100 has a first refractive index, the first phase compensation film 100 has a light entrance surface and a light exit surface, and a plurality of presets are provided on the light exit surface.
  • the convex structure 101 has a shape of at least a part of the surface and the light incident surface.
  • the lower polarizing plate 2000 further includes a second phase compensation film 200 formed on the light emitting surface of the first phase compensation film 100.
  • the second phase compensation film 200 has a second refractive index, and the first refractive index is greater than the second refractive index.
  • the lower polarizing plate 2000 further includes a polarizing film 300 disposed on the second phase compensation film 200.
  • the light is incident from the first phase compensation film 100 and penetrates the first phase compensation film 100 and enters the second phase compensation film 200.
  • the phase compensation film can perform phase compensation on the incident light. Because light enters from light dense to light dense, and the incident angle of incident light on at least part of the contact surface is not equal to 90 °, a refraction phenomenon occurs, which deflects normal incident light to a side viewing angle, and distributes positive viewing angle energy to the side viewing angle. To improve the quality of the side view.
  • the specific structure of the polarizing plate 10 has been described in detail above, and is not repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

一种偏光板及显示装置,偏光板(10)包括:折射率较大且开设有多个凸起结构(101)的第一相位补偿膜(100),凸起结构(101)的部分表面为曲面;折射率较小的第二相位补偿膜(200);第二相位补偿膜(200)开设有多个与凸起结构(101)相配合的凹槽(210)。

Description

偏光板及显示装置
相关申请的交叉引用
本申请要求于2018年9月30日提交中国专利局、申请号为201811162068.4、申请名称为“偏光板及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,特别是涉及一种偏光板及显示装置。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有技术。
随着显示技术的发展,显示装置因具有高画质、省电、机身薄等优点而被广泛应用,其中,画质的好坏是影响消费者体验的最主要的因素。显示装置一般由背光模组和置于背光模组上的显示面板构成,背光模组为显示面板提供入射光,该入射光通常是集中垂直入射至显示面板,因此在正视方向观看显示屏时,能获取较好的显示画质,但是在侧视方向观看显示屏时,画质较差,色偏比较严重,使得正常显示的视角较小。目前,在VA(Vertical Alignment liquid crystal,垂直排列)液晶显示器中采用将滤光片中的子像素再次划分为多个次像素的手段来改善侧视角的画质,从而扩大视角。但是这种方法需要更多的TFT(Thin Film Transistor,薄膜晶体管)元件来驱动次像素,如此势必增加面板内部的金属走线,造成可透光的区域变小,影响面板的透光率,影响画质。而若为了保证光亮度,则需提高背光模组的性能,使其产生 更高亮度的入射光,如此又会增加背光成本。
申请内容
根据本申请的各种实施例,提供一种可以改善显示装置的显示视角小、侧视画质较差,同时成本不会提高的偏光板。
此外,还提供一种显示装置。
一种偏光板,所述偏光板包括:
第一相位补偿膜,所述第一相位补偿膜具有第一折射率,所述第一相位补偿膜具有入光面和出光面,且所述出光面上设有多个具有预设形状的凸起结构,所述凸起结构的至少部分表面为曲面;
第二相位补偿膜,形成于所述出光面上,所述第二相位补偿膜具有第二折射率,所述第一折射率大于所述第二折射率,所述第二相位补偿膜在与所述第一相位补偿膜接触的面上开设有多个与所述凸起结构形状和大小均相同的凹槽;及
偏光膜,设于所述第二相位补偿膜上。
一种偏光板,所述偏光板包括:
第一相位补偿膜,所述第一相位补偿膜具有第一折射率,所述第一相位补偿膜具有入光面和出光面,且所述出光面上设有多个具有预设形状的凸起结构,所述凸起结构的至少部分表面为圆弧曲面,所述圆弧曲面与所述入光面所形成的角度为锐角;所述第一相位补偿膜为正性单光轴A-补偿膜,所述第一折射率为所述A-补偿膜的反常折射率,所述正性单光轴A-补偿膜包含向列相液晶分子;
第二相位补偿膜,形成于所述出光面上,所述第二相位补偿膜具有第二 折射率,所述第一折射率大于所述第二折射率,所述第二相位补偿膜在与所述第一相位补偿膜接触的面上开设有多个与所述凸起结构形状和大小均相同的凹槽;所述第二相位补偿膜为负性单光轴C-补偿膜,所述第二折射率为所述C-补偿膜的正常折射率,所述负性单光轴C-补偿膜包含碟状液晶分子;及
偏光膜,设于所述第二相位补偿膜上。
一种显示装置,包括:
背光模组,设置为提供光源;及
显示面板,置于所述背光模组一侧,设置为显示画面;
其中,所述显示面板包括偏光板,所述偏光板包括:
第一相位补偿膜,所述第一相位补偿膜具有第一折射率,所述第一相位补偿膜具有入光面和出光面,且所述出光面上设有多个具有预设形状的凸起结构,所述凸起结构的至少部分表面为曲面;
第二相位补偿膜,形成于所述出光面上,所述第二相位补偿膜具有第二折射率,所述第一折射率大于所述第二折射率,所述第二相位补偿膜在与所述第一相位补偿膜接触的面上开设有多个与所述凸起结构形状和大小均相同的凹槽;及
偏光膜,设于所述第二相位补偿膜上。
上述偏光板及显示装置,由于设有第一相位补偿膜和第二相位补偿膜,且第一折射率大于第二折射率,即光从第一相位补偿膜的入光面入射至第一相位补偿膜内并穿透第一相位补偿膜进入第二相位补偿膜时,是从光密质进入光疏质中,因此会在两层膜的接触界面发生折射现象,使光线发生偏转。本方案中,出光面上形成有凸起结构,该凸起结构至少部分表面为曲面,即存在部分表面与入光面形成夹角为锐角,垂直入射光进入第一相 位补偿膜后,在凸起结构的表面形成的入射角小于90°,因此为发生折射,使垂直入射的光线发生偏转,从而使正视角能量分配到侧视角,提高侧视角的画质。同时,第一相位补偿膜和第二相位补偿膜还具有相位补偿的功能,能够修正光线经过液晶层后会出现相位延迟以及色偏的现象。
附图说明
为了更清楚地说明本申请实施例或示例性技术中的技术方案,下面将对实施例或示例性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1为一实施例中的偏光板局部结构示意图;
图2为一实施例中的第一相位补偿膜的结构示意图;
图3A为一实施例中第一相位补偿膜的立体结构图;
图3B为另一实施例中第一相位补偿膜的立体示意图;
图4A为另一实施例中的第一相位补偿膜的结构示意图;
图4B为另一实施例中的第一相位补偿膜的立体示意图;
图5为一实施例中的偏光板的局部剖视图;
图6A为一实施例中的偏光板的结构示意图;
图6B为另一实施例中的偏光板的结构示意图;
图6C为另一实施例中的偏光板的结构示意图;
图7为一实施例中的显示装置的结构示意图;
图8为图7中的显示面板结构的剖视图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的可选实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于申请的技术领域的技术人员通常理解的含义相同。本文中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
在本申请的描述中,需要理解的是,术语“上”、“下”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方法或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
如图1所示,偏光板10包括第一相位补偿膜100、第二相位补偿膜200和偏光膜300。其中,第一相位补偿膜100具有入光面和出光面,入光面为接收入射光的一面,光线从入射面进入第一相位补偿膜100并从出光面射出,出光面上设有多个具有预设形状的凸起结构101,凸起结构101存在至少部分表面为曲面,即存在部分表面与入光面所形成的角度为α,α为锐角,满足0°<α<90°。将凸起结构101的部分表面与入光面之间的夹角设置为锐角,可使得光线从入光面进入第一相位补偿膜100后从出光面射出时,会因为出光面上开设的凸起结构101产生折射现象。第二相位补偿膜 200形成于第一相位补偿膜100上,第二相位补偿膜200在与第一相位补偿膜100接触的面上开设有多个与凸起结构101形状和大小均相同的凹槽210,即第二相位补偿膜200与第一相位补偿膜100可通过凸起结构101和凹槽210实现完全贴合。第一相位补偿膜100具有第一折射率n1,第二相位补偿膜200具有第二折射率n2,第一折射率n1大于第二折射率n2。当光穿透第一相位补偿膜100进入第二相位补偿膜200时,是从光密质进入光疏质,因此在第一相位补偿膜100与第二相位补偿膜200的接触界面会发生折射。在显示装置中,由于绝大部分光线是垂直入射至偏光板中,即绝大部分光线垂直于入光面,本方案通过设置不同折射率的第一相位补偿膜100和第二相位补偿膜200并在第一相位补偿膜100的出光面设置凸起结构101,垂直入射光从第一相位补偿膜100入射至第二相位补偿膜200时,结合凸起结构101的表面特征,会在凸起结构101的表面发生折射,改变垂直入射光的传播路径,使光线发生偏转,从而使正视角光型能量分配到大视角,提高侧视角的画质。偏光板10还包括偏光膜300,偏光膜300用于对入射光进行偏振处理并射出偏振光。
在一实施例中,偏光膜300可以为PVA(Polyvinyl alcohol,聚乙烯醇)材料,主要对偏振光起吸收和穿透的作用,偏光膜300选取目前市面上常用的产品,其穿透轴是平行于0/180度方向,吸收轴平行于90/270度方向的产品。当然,偏光膜300还可以选取穿透轴是平行于90/270度方向,吸收轴平行于0/180度方向。
请同时参阅图1和图2,当光线R0垂直穿透第一相位补偿膜100进入第二相位补偿膜200时,垂直入射光在凸起结构表面处的入射角为γ,0<γ<90°,因此光线会发生折射,折射角为β,由于光线是从光密质进入 光疏质,所以β大于γ,即光线传播路径发生改变,光线R1偏离原来垂直入射方向,向侧边发散,因此会有更多的光线射入侧边,提高侧视角度的画质。可以理解的,第一折射率n1与第二折射率n2的差异越大,发生折射时的折射角度越大,越容易将正视光型能量分配到大视角。在一实施例中,第一折射率n1的取值范围为1.0<n1<2.5,第二折射率n2的取值范围为1.0<n2<2.5。在一实施例中,若m=n1-n2,则m的优选取值范围为0.01<m<2。
如图3A所示,第一相位补偿膜100的出光面形成有多个凸起结构101,多个凸起结构101为条状结构且条状结构的部分表面为圆弧曲面,多个凸起结构101可并排设置。可以理解,这里所说的部分表面可以为凸起结构101的相对出光面的一面,也就是凸起结构101的上表面。当凸起结构101的上表面为圆弧形曲面时,圆弧曲面与第一相位补偿膜100入光面的夹角可以为过弧形曲面的表面任一点的切线与入光面的夹角,该夹角为锐角,即为图1中的α,并且,0°<α<90°。如图3B所示,凸起结构101的部分表面也可以为球形曲面,可以理解,这里所说的部分表面可以为凸起结构101的相对出光面的一面,也就是凸起结构101的上表面。多个凸起结构101在出光面上可以是呈二维矩阵阵列分布,球形曲面与第一相位补偿膜100入光面的夹角为过球形曲面表面任一点的切线与入光面的夹角,该夹角为锐角,即为图1中的α,并且,0°<α<90°。由于在显示装置中,背光模组生成的光线大部分是集中垂直入射至显示面板,即入射至相位补偿膜的光线大部分垂直于相位补偿膜的入光面。本方案中,由于设有曲面凸起结构101,可以对垂直入射光线进行折射,光线偏离原来垂直入射方向,向侧边发散,因此会有更多的光线射入侧边,提高侧视角度的画质。 当凸起结构101的上表面为圆弧曲面且多个凸起结构101并排排列时,仅在一维方向发生折射,使光线发散到弧形曲面的两侧;当凸起结构101的上表面为球形曲面且多个凸起结构101呈点状阵列分布(二维矩阵阵列)时,会在二维平面内发生折射,使光线发散至二维平面的各个角度,从而使各个视角都能呈现较好的画质。
如图2所示,第一相位补偿膜10可以具有入光面和出光面,出光面和入光面可以是形状和大小均相同的矩形,也可以是其他形状。在凸起结构101的上表面为圆弧曲面或球形曲面时,圆弧曲面或球形曲面在第一方向上的半径小于或等于凸起结构101在第一方向上的高度的两倍,第一方向也就是垂直于出光面的方向,这里可以理解为沿Y轴的延伸方向。图2中,R为曲面在第一方向上的半径,D为凸起结构101在第一方向上的高度,半径R和高度D之间的关系可以表示为R≤2D,使得在膜层较薄时减小曲面的曲率半径,曲率半径越小,折射效果越明显,可以分配到大视角的能量范围就越多。
可选地,相邻两凸起结构之间存在间隔,也可以不存在间隔。请继续参阅图2,当凸起结构101为条状结构时,其截面为左右对称结构,其中,第二方向为出光面上垂直条状结构的延伸方向的方向,这里可以将第二方向理解为沿X轴延伸的方向。Lx为条状凸起结构在第二方向上的长度,Px为条状凸起结构在第二方向上的中心距。凸起结构101在第二方向上满足:Px≥Lx且Px≤10μm,10μm为可见光的波长。当Px>Lx时,相邻凸起结构101存在间隔,当Px>Lx时,即凸起结构101可以呈周期间隔排列,光从光密质传播到光疏质时,该间隔相当于光栅,其间隔越接近波长就越容易在相邻凸起结构101之间的间隔处产生衍射现象,而衍射也会改 变光线的传播路径,使垂直入射光朝侧边发散,进一步将正视光能量分配到侧视角,提高侧视角的画质。
同理,当凸起结构101的部分表面为球形曲面的时候,其可以具有与条状结构相同的截面,所以,此处可以同时参照图2、图3B,具备球形曲面的凸起结构101在第二方向上的长度为Lx,Px为具备球形曲面的凸起结构101在第二方向上的中心距,Py为具备球形曲面的凸起结构101在第三方向上的中心距,相应的,Ly(图未标示)为具备球形曲面的凸起结构101在第三方向上的长度,优选Lx=Ly,其中,由于出光面为矩形,故,以垂直于出光面的方向为第一方向,以矩形宽度的延伸方向为第二方向,以矩形长度的延伸方向为第三方向,第一方向、第二方向、第三方向三者之间互相垂直,这里,第一方向可以理解为沿Y轴的延伸方向,第二方向可以理解为沿X轴的延伸方向,第三方向可以理解为沿Z轴的延伸方向。Px、Py、Lx、Ly满足:Px≥Lx且Px≤10μm;Py≥Ly且Py≤10μm;10μm为可见光的波长。当Px>Lx,Py>Ly时,相邻凸起结构101存在间隔,即凸起结构101呈点状阵列分布,光从光密质传播到光疏质时,就可以借助间隔和曲面使垂直入射光朝侧边发散,进一步将正视光能量分配到侧视角,提高侧视角的画质。
可以理解的,相位补偿膜应为可透光的透明或半透明材料制成且具有相位补偿的功能。在一实施例中,相位补偿膜内填充有液晶,液晶为双折射材料,光线进入液晶时会折射成正常光和反常光两条光线,其中,正常光的折射率为正常折射率,反常光的折射率为反常折射率,反常折射率方向为光电场方向与液晶光轴平行的方向,正常折射率方向为光电场与液晶光轴垂直的方向,反常折射率方向与正常折射率方向垂直。在本实施例中, 如图5所示,第一相位补偿膜100可以为正性单光轴A-补偿膜,正性单光轴A-补偿膜内部可填充向列相液晶102,向列相液晶102为长条棒状型液晶,向列相液晶102的光轴与入光面平行,向列相液晶的反常折射率nae(extraordinary refractive index)方向与向列相液晶的光轴平行,即向列相液晶的反常折射率nae与入光面平行,向列相液晶的正常折射率nao(ordinary refractive index)方向垂直于反常折射率nae方向,且nae>nao;第二相位补偿膜200可以为负性单光轴C-补偿膜,负性单光轴C-补偿膜内可填充碟状液晶201,碟状液晶201的光轴垂直于入光面,碟状液晶201的反常折射率nce(extraordinary refractive index)方向与碟状液晶的光轴平行,碟状液晶的正常折射率nco(ordinary refractive index)方向垂直于反常折射率nce方向,即碟状液晶的正常折射率nco方向平行于入光面,且nco>nce,在本实施例中,第一折射率为正性单光轴A-补偿膜的反常折射率nae,第二折射率为负性单光轴C-补偿膜正常折射率nco,nae的方向与nco的方向均平行于入光面。
偏光膜300具有吸收轴和穿透轴,振动方向与穿透轴平行的偏振光能通过偏光膜300。在一实施例中,为了减小相位补偿膜对光线的偏振影响,可使相位补偿膜的光轴(液晶光轴)与偏光膜300的穿透轴平行,入射光经过相位补偿膜后的偏振方向与偏光膜300的穿透轴平行,因此能完全穿过偏光膜300。在本方案中,由于正性单光轴A-补偿膜和负性单光轴C-补偿膜也具有相位补偿的功能,利用正性单光轴A-补偿膜和负性单光轴C-补偿膜除了能使入射光在界面处发生偏转以扩大视角,增强侧视角画质外,还可以起到相位补偿的作用。
示例性技术中,通常使用聚乙烯醇作为偏光膜,而聚乙烯醇具有极强 的亲水性,为保护偏光膜的物理特性,通常需在偏光片的两侧设置一层三醋酸纤维素支撑膜,三醋酸纤维素支撑膜具有高透光性、耐水性号且具有一定的机械强度,能对偏光片进行保护。在本实施例中,由于在偏光膜300的一侧设有第一相位补偿膜100和第二相位补偿膜200,第一相位补偿膜100和第二相位补偿膜200既能进行相位补偿和对光线进行偏转,也可以充当保护层来保护偏光膜300。需要注意的是,第一相位补偿膜100和第二相位补偿膜200需具有合适的厚度以实现对偏光膜300的保护作用。
请继续参阅图4A,图4B。为另一实施例中的第一相位补偿膜100的结构示意图和立体结构图。第一相位补偿膜100的出光面上形成的多个凸起结构101,多个凸起结构101为条状结构且条状结构的部分表面为圆弧曲面,多个凸起结构101可以并排设置。如图4B所示,凸起结构101可以看作是一个扇形条状凸起结构,其与纸面平行的剖面形状为一个扇形,扇形的一条边的长度为R,相邻凸起结构101在第二方向上的间距为Px,扇形凸起结构在第一方向的高度为D,D与R之间满足前述实施例所描述的关系,Px小于或等于10μm,这里的R也可以看做是凸起结构101沿第二方向上的长度,在本实施例中,凸起结构既具备了斜面又具备了曲面,所以在对入射光R0发生折射的时候,可以获得多个不同的折射角度,使得出射光线R1沿各个方向出射,进而使得正视角的光能量分配到侧视角时更加均匀。可以理解,本实施例与前述圆弧形曲面的实施例的不同之处仅在于形状,具体的视角扩散原理、折射率、尺寸表示都与前述圆弧曲面的描述相同,并且本实施例凸起结构101的第一折射率大于第二补偿膜的第二折射率,这样就可以保证垂直入射的光线都是由光密介质到光疏介质,再配合独有的凸起结构,使得光线发生扩散。相应地,凸起结构101的部 分表面还可以为球形曲面,凸起结构101可以在出光面上呈二维矩阵阵列。
还提供一种偏光板,偏光板包括第一相位补偿膜,第一相位补偿膜具有第一折射率,第一相位补偿膜具有入光面和出光面,且出光面上设有多个具有预设形状的凸起结构,凸起结构的至少部分表面为圆弧曲面,圆弧曲面与入光面所形成的角度为锐角;第一相位补偿膜为正性单光轴A-补偿膜,第一折射率为A-补偿膜的反常折射率,正性单光轴A-补偿膜包含向列相液晶分子;第二相位补偿膜,形成于出光面上,第二相位补偿膜具有第二折射率,第一折射率大于第二折射率,第二相位补偿膜在与第一相位补偿膜接触的面上开设有多个与凸起结构形状和大小均相同的凹槽;第二相位补偿膜为负性单光轴C-补偿膜,第二折射率为所述C-补偿膜的正常折射率,负性单光轴C-补偿膜包含碟状液晶分子;偏光膜,设于第二相位补偿膜上。
上述实施例,通过在第一相位补偿膜中设置具有圆弧曲面的凸起结构,同时根据与第二相位补偿膜不同的折射率引起的折射效应,可使垂直入射至第一相位补偿膜的入射光发生折射,从而将正视角的光能量分配到侧视角,进而解决色偏的问题。此外,由于整个偏光板没有采用额外的金属走线,所以不存在影响光线的透射率,进而影响画质的问题。
如图6A所示,为一实施例中的偏光板的结构示意图。在偏光板中,在偏光膜300的出光侧可依次叠设光学补偿膜500和压敏胶层600,偏光板10通过压敏胶层600粘贴于玻璃基板上,通过光学补偿膜500可对偏光片300进行相位补偿并起到支撑保护作用。
如图6B所示,为另一实施例中的偏光板的结构示意图。在偏光板中,在偏光膜300的出光侧可依次叠设光学补偿膜500和压敏胶层600,偏光 板10还可以包括设于第二相位补偿膜200与偏光膜300之间的支撑保护膜400。偏光板10通过压敏胶层600粘贴于玻璃基板上,通过光学补偿膜可对偏光片300进行相位补偿并起到支撑保护作用。
支撑保护膜400的材料可以包括但不限于聚对苯二甲酸乙二醇酯膜、三醋酸纤维素膜或聚甲基丙烯酸甲酯膜中的任意一种。PET(Polyethylene terephthalate,聚对苯二甲酸类塑料)具有很好的光学性能和耐候性,非晶态的PET塑料具有良好的光学透明性。另外PET塑料具有优良的耐磨耗摩擦性和尺寸稳定性及电绝缘性。TAC(Triacetyl Cellulose,三醋酸纤维素),主要用于保护LCD偏光板。PMMA(Polymethyl Methacrylate,聚甲基丙烯酸甲酯),具有良好的化学稳定性和耐候性。同时,由于支撑保护膜400起到支撑并保护偏光膜300的作用,所以支撑保护膜400厚度应该保证偏光膜300的耐候性不受影响,保护偏光膜300不接触外界环境,防止湿气进入偏光膜300。
如图6C所示,为另一实施例中的偏光板的结构示意图。在偏光板中,在偏光膜300的出光侧可依次叠设光学补偿膜500和压敏胶层600,偏光板10还可以包括设于第一相位补偿膜100的入光面上的支撑保护膜400。偏光板10通过压敏胶层600粘贴于玻璃基板上,通过光学补偿膜可对偏光膜300进行相位补偿并起到支撑保护作用。
可以理解,支撑保护膜400可以参照前述实施例中的描述,在此不再进一步赘述。
本申请还公开一种显示装置,如图7所示,包括背光模组5以及置于背光模组上方的显示面板1。背光模组5用于提供入射光R0(图7未标示),该入射光R0集中入射至显示面板1,入射光R0的发散方向与垂直于显示面板 1的方向呈小角度,该小角度可小于30°,显示面板1接收到的大部分光为垂直入射光,由于显示面板1内存在第一相位补偿膜100和第二相位补偿膜200且第一相位补偿膜100出光面设有多个具有预设形状的凸起结构101,在凸起结构101表面通过折射可以将垂直入射光进行偏转产生出射光R1,从而将正视角能量分配到侧视角,提高侧视角的画质。其中,背光模组5可以包括侧入式LED光源51,反射片52,导光板53。导光板53的上下表面均设有长条V型槽,导光板53下表面V型槽的侧壁与侧入式光源51平行,导光板53上表面的V型槽与下表面的V型槽以相互垂直方式设置。
请参阅图8,为图7中的显示面板的组成示意图。该显示面板1可例如TFT-LCD(Thin Film Transistor Liquid Crystal Displayer,薄膜晶体管液晶显示器)显示面板1、OLED(Organic Light-Emitting Diode,有机发光二极管)显示面板1、QLED(Quantum Dot Light Emitting Diodes,量子点发光二极管)显示面板1、曲面显示面板1或其他显示面板1。本实施例以显示面板1为TFT-LCD显示面板1为例进行说明,如图8所示,该显示面板1包括上偏光板1000、下偏光板2000、上基板3000、下基板4000以及夹设于上基板3000和下基板4000之间的液晶层6000,光线在显示面板中入射顺序为:先进入下偏光板2000,然后经过下基板4000,其次经过液晶层6000,经液晶层6000旋转之后入射进上基板3000,最后进入上偏光板1000。其中下偏光板2000为前述实施例介绍的偏光板10。可以理解,上偏光板1000也可以为前述实施例介绍的偏光板10。此处以下偏光板2000为例进行说明。下偏光板2000可以包括第一相位补偿膜100,第一相位补偿膜100具有第一折射率,第一相位补偿膜100具有入光面和出光面,且出光面上设有多个具有预设形状的凸起结构101,凸起结构101存在至少部分表面与入光面所形成的角度为锐 角;下偏光板2000还包括第二相位补偿膜200,形成于第一相位补偿膜100的出光面,第二相位补偿膜200具有第二折射率,第一折射率大于第二折射率;下偏光板2000还包括偏光膜300,设于第二相位补偿膜200上。光线从第一相位补偿膜100入射,并穿透第一相位补偿膜100进入第二相位补偿膜200,相位补偿膜可以对入射光线进行相位补偿。由于光线从光密质进入光疏质,且入射光线在至少部分接触面的入射角不等于90°,因此会发生折射现象,使垂直入射光向侧视角偏转,将正视角能量分配到侧视角,提高侧视角的画质。其中,偏光板10的具体结构已在上文详细介绍,此处不再赘述。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种偏光板,包括:
    第一相位补偿膜,所述第一相位补偿膜具有第一折射率,所述第一相位补偿膜具有入光面和出光面,且所述出光面上设有多个具有预设形状的凸起结构,所述凸起结构的至少部分表面为曲面;
    第二相位补偿膜,形成于所述出光面上,所述第二相位补偿膜具有第二折射率,所述第一折射率大于所述第二折射率,所述第二相位补偿膜在与所述第一相位补偿膜接触的面上开设有多个与所述凸起结构形状和大小均相同的凹槽;及
    偏光膜,设于所述第二相位补偿膜上。
  2. 如权利要求1所述的偏光板,其中,所述凸起结构为条状结构且所述条状结构的部分表面为圆弧曲面,多个所述条状结构并排设置。
  3. 如权利要求1所述的偏光板,其中,所述凸起结构的部分表面为球形曲面,多个所述凸起结构于所述出光面上呈二维矩阵阵列分布。
  4. 如权利要求2所述的偏光板,其中,所述圆弧曲面的半径小于或等于所述条状结构在第一方向上的高度的两倍;
    相邻的所述条状结构的中心距大于或等于所述条状结构在第二方向上的长度、且小于或等于10μm;
    其中,以垂直于所述出光面的方向为第一方向,以所述出光面上垂直于所述条状结构的延伸方向的方向为第二方向。
  5. 如权利要求3所述的偏光板,其中,所述出光面为矩形,所述球形曲面的半径小于或等于所述凸起结构在第一方向上的高度的两倍;
    相邻的所述凸起结构的中心距大于或等于所述凸起结构在第二方向上的 长度、且小于或等于10μm;
    相邻的所述凸起结构的中心距大于或等于所述凸起结构在第三方向上的长度、且小于或等于10μm;
    其中,以垂直于所述出光面的方向为第一方向,以所述矩形宽度的延伸方向为第二方向,以所述矩形长度的延伸方向为第三方向,第一方向、第二方向、第三方向三者之间互相垂直。
  6. 如权利要求1所述的偏光板,其中,所述第一折射率的取值范围为1.0-2.5。
  7. 如权利要求1所述的偏光板,其中,所述第二折射率的取值范围为1.0-2.5。
  8. 如权利要求1所述的偏光板,所述第一折射率与所述第二折射率之间的差值范围为0.01-2。
  9. 如权利要求1所述的偏光板,其中,所述偏光板还包括支撑保护膜,所述支撑保护膜设于所述第二相位补偿膜与所述偏光膜之间。
  10. 如权利要求1所述的偏光板,其中,所述偏光板还包括支撑保护膜,所述支撑保护膜设于所述第一相位补偿膜的入光面上。
  11. 如权利要求9所述的偏光板,其中,所述支撑保护膜包括聚对苯二甲酸乙二醇酯膜。
  12. 如权利要求9所述的偏光板,其中,所述支撑保护膜包括三醋酸纤维素膜。
  13. 如权利要求9所述的偏光板,其中,所述支撑保护膜包括聚甲基丙烯酸甲酯膜。
  14. 如权利要求1所述的偏光板,其中,所述偏光板还包括光学补偿膜, 设于所述偏光膜上,设置为对所述偏光膜进行相位补偿。
  15. 如权利要求14所述的偏光板,其中,所述偏光板还包括压敏胶层,设于所述光学补偿膜上。
  16. 如权利要求1所述的偏光板,其中,所述第一相位补偿膜为正性单光轴A-补偿膜,所述第一折射率为所述A-补偿膜的反常折射率,所述正性单光轴A-补偿膜包含向列相液晶分子,所述向列相液晶分子的光轴平行于所述入光面。
  17. 如权利要求1所述的偏光板,其中,所述第二相位补偿膜为负性单光轴C-补偿膜,所述第二折射率为所述C-补偿膜的正常折射率,所述负性单光轴C-补偿膜包含碟状液晶分子,所述碟状液晶分子的光轴垂直于所述入光面。
  18. 如权利要求1所述的偏光板,其中,所述偏光膜具有穿透轴,偏振方向平行于所述穿透轴的光线可透过所述偏光膜,所述负性单光轴补偿膜的光轴与所述穿透轴垂直。
  19. 一种偏光板,包括:
    第一相位补偿膜,所述第一相位补偿膜具有第一折射率,所述第一相位补偿膜具有入光面和出光面,且所述出光面上设有多个具有预设形状的凸起结构,所述凸起结构的至少部分表面为圆弧曲面,所述圆弧曲面与所述入光面所形成的角度为锐角;所述第一相位补偿膜为正性单光轴A-补偿膜,所述第一折射率为所述A-补偿膜的反常折射率,所述正性单光轴A-补偿膜包含向列相液晶分子;
    第二相位补偿膜,形成于所述出光面上,所述第二相位补偿膜具有第二折射率,所述第一折射率大于所述第二折射率,所述第二相位补偿膜在与所 述第一相位补偿膜接触的面上开设有多个与所述凸起结构形状和大小均相同的凹槽;所述第二相位补偿膜为负性单光轴C-补偿膜,所述第二折射率为所述C-补偿膜的正常折射率,所述负性单光轴C-补偿膜包含碟状液晶分子;及
    偏光膜,设于所述第二相位补偿膜上。
  20. 一种显示装置,包括:
    背光模组,设置为提供光源;及
    显示面板,置于所述背光模组一侧,设置为显示画面;
    其中,所述显示面板包括偏光板,所述偏光板包括:
    第一相位补偿膜,所述第一相位补偿膜具有第一折射率,所述第一相位补偿膜具有入光面和出光面,且所述出光面上设有多个具有预设形状的凸起结构,所述凸起结构的至少部分表面为曲面;
    第二相位补偿膜,形成于所述出光面上,所述第二相位补偿膜具有第二折射率,所述第一折射率大于所述第二折射率,所述第二相位补偿膜在与所述第一相位补偿膜接触的面上开设有多个与所述凸起结构形状和大小均相同的凹槽;及
    偏光膜,设于所述第二相位补偿膜上。
PCT/CN2018/119697 2018-09-30 2018-12-07 偏光板及显示装置 WO2020062588A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811162068.4 2018-09-30
CN201811162068.4A CN109143446A (zh) 2018-09-30 2018-09-30 偏光板及显示装置

Publications (1)

Publication Number Publication Date
WO2020062588A1 true WO2020062588A1 (zh) 2020-04-02

Family

ID=64810629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119697 WO2020062588A1 (zh) 2018-09-30 2018-12-07 偏光板及显示装置

Country Status (2)

Country Link
CN (1) CN109143446A (zh)
WO (1) WO2020062588A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109633987A (zh) * 2019-01-30 2019-04-16 惠科股份有限公司 光学膜层和显示装置
CN118379932B (zh) * 2024-06-21 2024-09-13 国鲸科技(广东横琴粤澳深度合作区)有限公司 一种透明柔性错位层叠排布像素显示屏结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101158778A (zh) * 2007-11-14 2008-04-09 友达光电(苏州)有限公司 广视角膜与应用该广视角膜的液晶显示装置
CN101334498A (zh) * 2003-07-17 2008-12-31 大日本印刷株式会社 相位差层、相位差光学元件、偏光元件及液晶显示装置
CN101510010A (zh) * 2008-02-13 2009-08-19 碧理科技有限公司 偏振光分束器及其制造方法、以及使用其的液晶投影仪
CN201314990Y (zh) * 2008-12-19 2009-09-23 上海纽发利商贸有限公司 广视角镜片及利用广视角镜片的偏光板和液晶显示装置
CN103323898A (zh) * 2012-03-20 2013-09-25 远东新世纪股份有限公司 制造位相差板的方法
CN104737040A (zh) * 2012-09-28 2015-06-24 富士胶片株式会社 光学补偿板
CN104808278A (zh) * 2015-05-18 2015-07-29 京东方科技集团股份有限公司 偏光片及其制作方法以及显示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070195251A1 (en) * 2006-02-22 2007-08-23 Toppoly Optoelectronics Corp. Systems for displaying images involving alignment liquid crystal displays
US10983388B2 (en) * 2017-03-15 2021-04-20 Lg Display Co., Ltd. Display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101334498A (zh) * 2003-07-17 2008-12-31 大日本印刷株式会社 相位差层、相位差光学元件、偏光元件及液晶显示装置
CN101158778A (zh) * 2007-11-14 2008-04-09 友达光电(苏州)有限公司 广视角膜与应用该广视角膜的液晶显示装置
CN101510010A (zh) * 2008-02-13 2009-08-19 碧理科技有限公司 偏振光分束器及其制造方法、以及使用其的液晶投影仪
CN201314990Y (zh) * 2008-12-19 2009-09-23 上海纽发利商贸有限公司 广视角镜片及利用广视角镜片的偏光板和液晶显示装置
CN103323898A (zh) * 2012-03-20 2013-09-25 远东新世纪股份有限公司 制造位相差板的方法
CN104737040A (zh) * 2012-09-28 2015-06-24 富士胶片株式会社 光学补偿板
CN104808278A (zh) * 2015-05-18 2015-07-29 京东方科技集团股份有限公司 偏光片及其制作方法以及显示装置

Also Published As

Publication number Publication date
CN109143446A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
WO2020062584A1 (zh) 偏光结构及显示装置
US9261731B2 (en) Liquid crystal display apparatus
WO2020062458A1 (zh) 偏光结构及显示装置
WO2020087620A1 (zh) 光学复合膜、显示面板和显示装置
WO2020062593A1 (zh) 偏光结构及显示装置
WO2020062591A1 (zh) 偏光板及显示装置
WO2020062563A1 (zh) 偏光结构及显示装置
WO2020062587A1 (zh) 偏光板及显示装置
WO2020087638A1 (zh) 光学复合膜、显示面板及显示装置
WO2020087624A1 (zh) 光学复合膜、显示面板和显示装置
WO2020062559A1 (zh) 偏光结构及显示装置
WO2020087635A1 (zh) 光学复合膜、显示面板和显示装置
WO2020062565A1 (zh) 偏光结构及显示装置
WO2020062603A1 (zh) 偏光结构及显示装置
WO2020062600A1 (zh) 偏光结构及显示装置
WO2020062577A1 (zh) 偏光片和显示装置
WO2020062578A1 (zh) 偏光结构及显示装置
WO2020062558A1 (zh) 偏光结构及显示装置
WO2020062588A1 (zh) 偏光板及显示装置
WO2020155281A1 (zh) 光学膜层和显示装置
WO2020155279A1 (zh) 光学膜层和显示装置
WO2020087632A1 (zh) 光学复合膜、显示面板和显示装置
WO2020087630A1 (zh) 光学复合膜、显示面板和显示装置
WO2020062592A1 (zh) 偏光板及显示装置
WO2020062561A1 (zh) 偏光结构及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/07/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18935760

Country of ref document: EP

Kind code of ref document: A1