WO2020062593A1 - 偏光结构及显示装置 - Google Patents

偏光结构及显示装置 Download PDF

Info

Publication number
WO2020062593A1
WO2020062593A1 PCT/CN2018/120036 CN2018120036W WO2020062593A1 WO 2020062593 A1 WO2020062593 A1 WO 2020062593A1 CN 2018120036 W CN2018120036 W CN 2018120036W WO 2020062593 A1 WO2020062593 A1 WO 2020062593A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
compensation film
polarizing
refractive index
light
Prior art date
Application number
PCT/CN2018/120036
Other languages
English (en)
French (fr)
Inventor
康志聪
Original Assignee
惠科股份有限公司
重庆惠科金渝光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司, 重庆惠科金渝光电科技有限公司 filed Critical 惠科股份有限公司
Publication of WO2020062593A1 publication Critical patent/WO2020062593A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Definitions

  • the present application relates to the field of display technology, and in particular, to a polarizing structure and a display device.
  • a liquid crystal display device is generally composed of a backlight module and a display panel placed on the backlight module.
  • the backlight module provides incident light for the display panel.
  • the incident light is usually concentrated and incident on the display panel vertically. Therefore, when viewing the display screen in the front view direction, , Can obtain better display image quality, but when viewing the display screen in the side view direction, the image quality is poor, the color cast is more serious, making the viewing angle of normal display smaller.
  • the types of display panels can include TFT-LCD (Thin Film Transistor Liquid Crystal Displayer) display panels, OLED (Organic Light-Emitting Diode) display panels, QLED (Quantum Dot Light Emitting Diodes, Quantum dot light emitting diode) display panel, curved display panel or other display panel, among which TFT-LCD includes VA (Vertical Alignment), IPS (In-Plane Switching), TN (Twisted Nematic) Nematic) etc.
  • VA Vertical Alignment
  • IPS In-Plane Switching
  • TN Transmission Nematic Nematic
  • VA Very Alignment Liquid Crystal vertical display
  • the sub-pixels in the filter are divided into multiple sub-pixels to improve the quality of the side viewing angle.
  • a polarizing structure capable of improving a display angle of a display device with a small display angle and poor side-view image quality without increasing costs is provided.
  • a display device is provided.
  • a polarizing structure includes:
  • the support protective film has a light incident surface and a light emitting surface, and the light incident surface is in contact with the polarizing film.
  • the light emitting surface is provided with a plurality of grooves having a predetermined shape, and the sides of the grooves are in contact with the light emitting surface.
  • the included angle between the light incident surfaces is an acute angle;
  • a plurality of raised structures matching the shape and size of the groove are provided on the surface where the film contacts.
  • a polarizing structure includes:
  • the support protective film has a light incident surface and a light emitting surface, and the light incident surface is in contact with the polarizing film.
  • the light emitting surface is provided with a plurality of grooves having a triangular pyramid shape, and the sides of the triangular pyramid grooves The included angle with the light incident surface is an acute angle;
  • a plurality of triangular pyramid-shaped convex structures matching the shape and size of the triangular pyramid-shaped groove are opened on the surface where the film contacts;
  • the optical compensation film is a positive single optical axis compensation film, and the first refractive index Is an abnormal refractive index of the positive single optical axis compensation film, the positive single optical axis compensation film includes nematic liquid crystal molecules, and the optical axis of the nematic liquid crystal molecules is parallel to the light incident surface.
  • a display device includes:
  • a backlight module configured to provide a light source
  • a display panel is placed on one side of the backlight module and is set as a display screen
  • the display panel includes a polarizing structure, and the polarizing structure includes:
  • the support protective film has a light incident surface and a light emitting surface, and the light incident surface is in contact with the polarizing film.
  • the light emitting surface is provided with a plurality of grooves having a predetermined shape, and the sides of the grooves are in contact with the light emitting surface.
  • the included angle between the light incident surfaces is an acute angle;
  • a plurality of raised structures matching the shape and size of the groove are provided on the surface where the film contacts.
  • the above-mentioned polarizing structure and display device can refract the incident light perpendicularly incident on the optical compensation film by providing an optical compensation film having a convex structure with a predetermined shape, and according to a refractive effect caused by a refractive index different from that of the supporting protective film. Therefore, the light energy of the positive viewing angle is distributed to the side viewing angle, thereby solving the problem of color misregistration.
  • no additional metal traces are used for the entire polarizing structure, there is no problem that affects the transmittance of light and further affects the image quality.
  • FIG. 1 is a schematic diagram of a polarizing structure according to an embodiment
  • FIG. 2 is a schematic structural diagram of the optical compensation film in FIG. 1;
  • FIG. 3 is a schematic structural diagram of an optical compensation film in an embodiment
  • FIG. 4 is a schematic structural diagram of an optical compensation film in another embodiment
  • FIG. 5 is a perspective view of an optical compensation film in an embodiment
  • FIG. 6 is a perspective view of an optical compensation film in another embodiment
  • FIG. 7 is a schematic structural diagram of a display device according to an embodiment
  • FIG. 8 is a schematic diagram of a composition of the display panel in FIG. 7;
  • FIG. 9 is a schematic diagram of a composition of a polarizing structure in another embodiment.
  • a polarizing structure may include: a polarizing film 10, a support protective film 20 and an optical compensation film 30.
  • the supporting protective film 20 has a light incident surface and a light emitting surface.
  • the light incident surface is a side that receives incident light.
  • the light incident surface of the supporting protective film 20 is in contact with the polarizing film 10, and the light enters the supporting protective film 20 from the light incident surface and exits from the light incident surface.
  • the light emitting surface emits.
  • the optical compensation film 30 is formed on the light-emitting surface of the support protective film 20.
  • the first refractive index of the optical compensation film 30 is greater than the second refractive index of the support protective film 20.
  • the supporting protective film 20 is provided with a plurality of grooves 210 having a predetermined shape on a surface in contact with the optical compensation film 30.
  • the angle between the side surface of the groove 210 and the light incident surface is ⁇ , ⁇ is an acute angle, and satisfies 0 ° ⁇ ⁇ 90 °.
  • the angle between the side of the groove 210 and the light incident surface is set to an acute angle, so that when light enters the support protective film 20 from the light incident surface and exits from the light emitting surface, it will be refracted by the groove 210 opened on the light emitting surface. phenomenon.
  • the optical compensation film 30 is provided with a plurality of protruding structures 310 on the surface in contact with the support and protection film 20 to match the shape and size of the groove 210. That is, the supporting protective film 20 and the optical compensation film 30 can be completely bonded to each other through the convex structure 310 and the groove 210.
  • the optical compensation film 30 has a first refractive index n1, the support protective film 20 has a second refractive index n2, and the first refractive index n1 is larger than the second refractive index n2.
  • a support protective film 20 and an optical compensation film 30 with different refractive indexes are provided and optical compensation is performed.
  • a convex structure 310 is provided on the side of the film 30 that is in contact with the support protective film 20.
  • the surface characteristics of the convex structure 310 are combined with the surface characteristics of the convex structure 310. Refraction occurs, changing the propagation path of the vertically incident light, and deflecting the light, so that the light energy of the positive viewing angle is distributed to the large viewing angle, and the image quality of the side viewing angle is improved.
  • the optical compensation film 30 having the convex structure 310 since the optical compensation film 30 having the convex structure 310 is provided, and the first refractive index is greater than the second refractive index, that is, when the light enters the optical compensation film 30 from the light exit surface of the support and protection film 20, the light is emitted from the light.
  • the inhomogeneity enters the light density, so the phenomenon of refraction occurs at the contact interface of the two films, which deflects the light.
  • a convex structure 310 is formed on the side of the optical compensation film 30 that is in contact with the support and protection film 20.
  • the side of the convex structure 310 forms an acute angle with the light incident surface.
  • the incident angle formed on the surface of the raised structure 310 is less than 90 °, so a refraction phenomenon occurs, which deflects the vertically incident light, thereby distributing the energy of the positive viewing angle to the side viewing angle and improving the image quality of the side viewing angle.
  • the entire polarizing structure does not use additional metal traces, there is no problem that affects the transmittance of light and further affects the image quality.
  • a plurality of protruding structures 310 are provided on a surface of the optical compensation film 30 that is in contact with the support and protection film 20.
  • the plurality of protruding structures 310 are V-shaped strip-shaped protruding structures, which can also be understood as triangular prism strip structures, and the multiple triangular prism strip structures are parallel to each other.
  • One side surface of the triangular prism strip structure is in contact with the side where the optical compensation film 30 and the supporting protective film 20 are in contact.
  • the contact surface between the optical compensation film 30 and the supporting protective film 20 is also the light incident surface of the optical compensation film 30.
  • the first selectable range of ⁇ may be 0 ° ⁇ ⁇ 90 °
  • the second selectable range may be 15 ° ⁇ ⁇ 75 °.
  • the first selectable range of ⁇ may be 0 ° ⁇ ⁇ 90 °, and the second selectable range may be 15 ° ⁇ ⁇ 75 °.
  • Setting a certain angle between the side of the raised structure 310 and the light incident surface can make the refraction effect easier when the incident light passes through the side, so that the light energy of the positive viewing angle is more diverged to the side viewing angle, and the side is improved. Viewing quality.
  • the plurality of convex structures 310 may be distributed in a two-dimensional matrix array on the light incident surface of the optical compensation film 30.
  • the protruding structure 310 is a triangular pyramidal protrusion.
  • the protruding structure 310 when it is a triangular pyramidal protrusion, it may have the same cross section as the triangular prism strip structure.
  • the bottom surface of the triangular pyramid is in contact with the light incident surface of the optical compensation film 30, and a certain angle is formed between the other side surfaces and the light incident surface of the optical compensation film 30. Since the cross section with the triangular prism strip structure 310 is the same, the included angle here is ⁇ in FIG. 1. Since the angle formed between the side surface of the groove 210 supporting the protective film 20 and the light incident surface is an acute angle, ⁇ is an acute angle.
  • the convex structures 310 are triangular prism-shaped convex structures and are arranged side by side, only one-dimensional direction of refraction occurs, so that light is scattered to both sides of the inclined surface of the triangular prism; when the convex structures 310 are triangular pyramids and multiple When a triangular pyramid is in a two-dimensional matrix array, it will be refracted in a two-dimensional plane, making the light diverge to various angles of the two-dimensional plane, so that each angle of view can present better image quality.
  • the incident angle of the vertically incident light on the surface of the convex structure 310 is ⁇ , 0 ⁇ ⁇ 90 °, so The light will be refracted with a refraction angle of ⁇ . Since the light enters the optical compensation film 30 (light dense) with the second refractive index from the support and protection film 20 (optically dense) with the first refractive index, ⁇ is larger than ⁇ That is, the light propagation path changes, and the light R1 deviates from the original normal incident direction and diverges to the side. Therefore, more light enters the side and improves the image quality of the side viewing angle.
  • the value range of the first refractive index n1 is 1.0 ⁇ n1 ⁇ 2.5
  • the value range of the second refractive index n2 is 1.0 ⁇ n2 ⁇ 2.5.
  • a selectable value range of m is 0.01 ⁇ m ⁇ 2.
  • the protrusion structure 310 of the optical compensation film 30 is a triangular prism strip structure (V-shaped strip protrusion structure)
  • the distance between adjacent triangular prism protrusions in the first direction is greater than or equal to the triangular prism protrusions.
  • the length in the first direction is the first direction, and can also be understood as the extending direction along the X axis.
  • the surface of the optical compensation film 30 that is in contact with the support and protection film 20 may be rectangular.
  • the triangular prism may be a regular triangular prism, or it may not be a regular triangular prism; the sizes of the multiple triangular prisms may be the same or different.
  • the plurality of triangular prism protruding structures 310 are parallel to each other on a surface where the optical compensation film 30 and the support and protection film 20 are in contact. As shown in FIG. 2, Px is the distance between adjacent triangular prism strip structures, Lx is the length of the triangular prism strip structures in the first direction, and Px and Lx satisfy: Px ⁇ Lx.
  • the protrusion structure 310 is a triangular pyramid protrusion structure, since it can have the same cross-section as a triangular prism protrusion, here, referring to FIGS. 2 and 5 at the same time, adjacent triangular pyramid protrusions
  • the distance of the structure 310 in the first direction is greater than or equal to the length of the triangular pyramidal protrusion structure 310 in the first direction; the distance of the adjacent triangular pyramidal protrusion structure 310 in the second direction is greater than or equal to the triangular pyramidal protrusion structure
  • the length of 310 in the second direction is less than or equal to the wavelength ⁇ of visible light.
  • the wavelength ⁇ of visible light is optionally 300 nm to 1000 nm.
  • the extending direction of the rectangular width is taken as the first direction, which can also be understood as the extending direction along the X axis; the extending direction of the rectangular length is referred to as the first direction.
  • Two directions, here can be understood as the extension direction along the Y axis.
  • the triangular prism may be a regular triangular pyramid, or may not be a regular triangular pyramid.
  • the sizes of the multiple triangular pyramids may be the same or different. It can be understood that the shape, size, and size of the groove can be changed without departing from the core principle of the application to meet the actual needs of those skilled in the art. As shown in FIG.
  • Px is the distance in the first direction of adjacent triangular pyramid protrusion structures 310; Py is the distance in the second direction of adjacent triangular pyramid protrusion structures 310; Lx is triangular pyramid protrusion The length of the structure 310 in the first direction; Ly is the length of the triangular pyramidal protrusion structure 310 in the second direction.
  • the distance Px in the first direction and the distance Py in the second direction of the adjacent triangular pyramid convex structures 310 may be equal or unequal.
  • Px, Py, Lx, and Ly satisfy: Px ⁇ Lx; Py ⁇ Ly. When Px> Lx and Py> Ly, there are gaps between adjacent convex structures 310, that is, the convex structures 310 are distributed in a two-dimensional matrix array. When light travels from photophosphine to light dense, the space and protrusion can be used. Disperse the vertically incident light toward the side, further distribute the energy of the frontal light to the side viewing angle, and improve the image quality of the side viewing
  • a plurality of V-shaped strip-shaped protruding structures 310 may also be distributed in a two-dimensional matrix array, and the arrangement in two dimensions may refer to the front triangular pyramidal protrusions.
  • the description of the structure 310 is not further described herein. Due to the space between adjacent convex structures 310, the convex structures 310 are distributed in a two-dimensional matrix array.
  • light propagates from photophosgene to light dense vertical incident light can be directed to the side by means of spaces and protrusions. Divergence further distributes the energy of the frontal view light to the side view angle, improving the image quality of the side view angle.
  • the support protective film 20 may include, but is not limited to, any one of a polyethylene terephthalate film, a cellulose triacetate film, or a polymethyl methacrylate film.
  • PET Polyethylene terephthalate
  • amorphous PET plastic has good optical transparency.
  • PET plastic has excellent wear resistance, friction resistance, dimensional stability, and electrical insulation.
  • TAC Triacetyl Cellulose
  • PMMA Polymethyl Methacrylate
  • the thickness of the protective film 30 should ensure that the weather resistance of the polarizing film 10 is not affected, protect the polarizing film 10 from contacting the external environment, and prevent moisture from entering the polarizing film 10 .
  • the optical compensation film 30 is a single optical axis optical compensation film made of a light-transmitting transparent or translucent material and having a function of phase compensation.
  • the optical compensation film 30 is filled with liquid crystal, and the liquid crystal is a birefringent material. When light enters the liquid crystal, it will be refracted into normal light and abnormal light.
  • the refractive index of normal light is the normal refractive index
  • the refractive index of abnormal light is the abnormal refractive index
  • the direction of the abnormal refractive index is the direction of the electric field and the optical axis of the liquid crystal.
  • the normal refractive index direction is a direction in which the electric field is perpendicular to the optical axis of the liquid crystal, and the abnormal refractive index direction is perpendicular to the normal refractive index direction.
  • the optical compensation film 30 may be a negative single optical axis compensation film, and specifically may be a negative single optical axis C-compensation film.
  • the normal refractive index of the negative single optical axis C-compensation film is parallel to the light emitting surface. All directions.
  • Negative uniaxial C-compensation film can be filled with dish-shaped liquid crystal molecules, the dish-shaped liquid crystal molecules are dish-shaped liquid crystals, the optical axis of the dish-shaped liquid crystal is perpendicular to the light incident surface, and the abnormal refractive index of the dish-shaped liquid crystal nce (extraordinary refractive index ) Direction is parallel to the optical axis of the dish-shaped liquid crystal, and the normal refractive index nco (ordinary refractive index) direction of the dish-shaped liquid crystal is perpendicular to the abnormal refractive index (extraordinary refractive index) direction, that is, the normal refractive index nco direction of the dish-shaped liquid crystal is parallel to Incident surface, and nco> nce.
  • the optical compensation film 30 may also be a positive single optical axis compensation film, and specifically may be a positive single optical axis A-compensation film, which also has an abnormal refractive index and a normal refractive index;
  • the positive single optical axis A-compensation film may be internally Filled with nematic liquid crystal molecules, nematic liquid crystal molecules are long rod-shaped liquid crystals, the optical axis of the nematic liquid crystal is parallel to the light incident surface, the abnormal refractive index nae direction of the nematic liquid crystal and the optical axis of the nematic liquid crystal Parallel, that is, the abnormal refractive index nae direction of the nematic liquid crystal is parallel to the light incident surface, the normal refractive index nao direction of the nematic liquid crystal is perpendicular to the abnormal refractive index nae direction, and nae> nao; in this embodiment, in the optical When the compensation film 30 is a negative single optical
  • resin particles 50 may also be doped to make the optical compensation film 30 have anti-vertigo function.
  • doping concentration there is no particular limitation on the specific doping concentration in this application. Those skilled in the art can use well-known doping concentrations.
  • An optical film may also be coated on the light exit surface of the optical compensation film 30 so that the optical compensation film 30 has an anti-reflection function.
  • the application is not particularly limited, and the thickness is well known and commonly used by those skilled in the art.
  • the second refractive index of the supporting protective film 20 may be 1.0-2.5, and the second refractive index here is also the ordinary refractive index, which may be represented by np.
  • the first refractive index of the optical compensation film 30 is larger than the normal refractive index (second refractive index) of the support protective film 20.
  • the support protective film 20 is an optically sparse medium with respect to the optical compensation film 30, and the optical compensation film 30 is an optically dense medium with respect to the support and protective film 20.
  • the difference range between the first refractive index of the optical compensation film 30 and the normal refractive index of the support and protection film 20 is optionally 0.01-2.
  • the polarizing film 10 has an absorption axis and a transmission axis, and polarized light having a polarization direction parallel to the transmission axis can pass through the polarizing film 10.
  • the optical axis (optical axis of the liquid crystal) of the optical compensation film can be parallel to the transmission axis of the polarizing film, and the polarization direction of the incident light after passing through the optical compensation film Since it is parallel to the polarization axis of the polarizing film 10, it can completely pass through the polarizing film 10.
  • the optical compensation film 30 since the optical compensation film 30 also has a phase compensation function, in addition to using the optical compensation film 30 to deflect incident light at the interface to expand the viewing angle and enhance the quality of the side viewing angle, it can also perform phase compensation. effect.
  • polyvinyl alcohol is usually used as a polarizing film, and polyvinyl alcohol has extremely strong hydrophilicity. In order to protect the physical properties of the polarizing film, it mainly absorbs and penetrates polarized light. Polarized light in this application
  • the film 10 is selected from products currently used in the market. The penetration axis is parallel to the 90/270 degree direction, and the absorption axis is parallel to the 0/180 degree direction.
  • a triacetate cellulose support film needs to be provided on both sides of the polarizing film 10.
  • the triacetate cellulose support film has high light transmittance, good water resistance, and a certain mechanical strength, and can protect the polarizer.
  • the support protective film 20 and the optical compensation film 30 can perform phase compensation and deflect light, and can also serve as protection. Layer to protect the polarizing film 10. It should be noted that the thickness of the supporting protective film 20 and the thickness of the optical compensation film 30 (that is, D + d in FIG. 2) need to satisfy a proper thickness to achieve the protective effect on the polarizing film 10.
  • the polarizing structure may further include a phase compensation film 40 disposed below the polarizing film 10, which may be the same material as the optical compensation film 30.
  • the phase compensation film 40 and the polarizing film should be ensured here. 10.
  • the overall thickness of the support protective film 20 and the optical compensation film 30 makes the weather resistance of the polarizing film unaffected, protects the polarizing film 10 from contact with the external environment, and prevents moisture from entering the polarizing film 10.
  • the polarizing structure may further include a pressure-sensitive adhesive 50 disposed under the phase compensation film 40, which is mainly configured to adhere the polarizing structure to other components.
  • the polarizing structure may include: a polarizing film; a supporting protective film having a light incident surface and a light emitting surface; the light incident surface of the supporting protective film is in contact with the polarizing film; and a plurality of triangular pyramid shapes are provided on the light emitting surface.
  • the angle between the side of the triangular pyramid-shaped groove and the light incident surface is an acute angle; the optical compensation film is formed on the light emitting surface; the first refractive index of the optical compensation film is greater than that of the supporting protective film.
  • the optical compensation film is provided with a plurality of triangular pyramid-shaped convex structures matching the shape and size of the triangular pyramid groove on the surface in contact with the support and protection film.
  • the optical compensation film is a positive single optical axis compensation film
  • the first refractive index is an abnormal refractive index of the positive single optical axis compensation film.
  • the positive single optical axis compensation film includes nematic liquid crystal molecules, and the optical axis of the nematic liquid crystal molecules is parallel to the light incident surface.
  • the incident light perpendicular to the optical compensation film can be refracted according to a refractive effect caused by a refractive index different from that of the supporting protective film.
  • the light energy of the positive viewing angle is distributed to the side viewing angle, thereby solving the problem of color misregistration.
  • the entire polarizing structure does not use additional metal traces, there is no problem that affects the transmittance of light and further affects the image quality.
  • the groove 210 supporting the protective film 20 is a V-shaped groove
  • the optical compensation film 30 is a negative single optical axis C-compensation film
  • the protrusion of the optical compensation film 30 The structure 310 is a V-shaped strip-shaped protrusion
  • the transmission axis of the polarizing film is parallel to the 90/270 ° direction
  • the absorption axis is parallel to the 0/180 ° direction.
  • the viewing angle improvement principle of this application is briefly described: light enters the display panel First, the lower polarizing plate 2000 is passed, and then the upper polarizing plate 1000 is passed.
  • the upper polarizing plate 1000 has the functions of absorbing and penetrating polarized light. After entering the upper polarizing plate 1000, the light can be divided into horizontally polarized and vertically polarized light. Since the transmission axis of the polarizing film 10 used here is parallel to the 90/270 ° direction, only the medium interface through which the light of the vertical polarization component passes is focused here.
  • the light of the vertical polarization component passes through the polarization axis of the polarizing film 10 in the direction of 90/270 ° (horizontal polarized light is absorbed by the polarization axis of the polarizing film 10 in the direction of 0/180 °), which is equivalent to the negative single optical axis C-compensation film
  • the refractive index is nco (ordinary refractive index)
  • the equivalent refractive index corresponding to the support protective film 20 is np
  • the light of the vertical polarization component passes through the support protective film 20 and passes through the negative single optical axis C-compensating film (
  • the negative single optical axis C--the refractive index of the compensation film is nco
  • the polarization axis of the polarizing film 10 used is parallel to the 0/180 ° direction, only the medium interface through which the light of the horizontal polarization component passes is focused here.
  • the equivalent refractive index of the light R0 of the horizontal polarization component on the negative single optical axis C-compensating film is nco (ordinary refractive index).
  • the equivalent refractive index of the supporting protective film 20 is np, and the horizontal polarization component.
  • Light passes through the support protective film 20 and passes through the negative single optical axis C-compensating film (corresponding to the negative single optical axis C-compensating film's refractive index nco), so the horizontally polarized light is at the two media contact surfaces (i.e.
  • the V-shaped strip-shaped protrusions in FIG. 2 occur from the optically sparse medium to the optically dense medium (nco> np), and the refraction effect is produced by the acute angle formed between the convex structure 310 of the optical compensation film 30 and the light incident surface.
  • the emitted light R1 is generated to form a positive viewing angle light type energy distribution and a large viewing angle optical phenomenon.
  • the light energy of the positive viewing angle is allocated to the side viewing angle, and the problem of color cast is improved.
  • FIG. 7 is a schematic diagram of a composition of a display device according to an embodiment.
  • the present application also discloses a total display device including a backlight module 5 and a display panel 1 disposed above the backlight module.
  • the backlight module 5 is configured to provide incident light R0 (not labeled in FIG. 7).
  • the incident light R0 is incident on the display panel 1 in a concentrated manner.
  • the divergent direction of the incident light R0 is at a small angle with the direction perpendicular to the display panel 1. Less than 30 °, most of the light received by the display panel 1 is normal incident light.
  • the convex structure 310 has a predetermined shape.
  • the surface of the convex structure 310 can be deflected to generate the outgoing light R1 by refraction (not labeled in FIG. 7), thereby allocating positive viewing angle energy to the side viewing angle and improving the side viewing angle.
  • the backlight module 5 may include a side-type LED light source 51, a reflection sheet 52, and a light guide plate 53.
  • the upper and lower surfaces of the light guide plate 53 are provided with long V-shaped grooves.
  • the side walls of the V-shaped grooves on the lower surface of the light guide plate 53 are parallel to the side-type light source 51, and the V-shaped grooves on the upper surface of the light guide plate 53 and the V-shaped grooves on the lower surface. Set up perpendicular to each other.
  • the display panel 1 may be, for example, a TFT-LCD (Thin Film Transistor Liquid Crystal Displayer) display panel 1, an OLED (Organic Light-Emitting Diode) display panel 1, or a QLED (Quantum Dot Light Emitting Diodes). , Quantum dot light emitting diode) display panel 1, curved display panel 1 or other display panel 1.
  • the display panel 1 is a TFT-LCD display panel 1 as an example for description. As shown in FIG.
  • the display panel 1 may include an upper polarizing plate 1000, a lower polarizing plate 2000, an upper substrate 3000, a lower substrate 4000, and sandwiched between In the liquid crystal layer 6000 between the upper substrate 3000 and the lower substrate 4000, the incident order of light in the display panel 1 is: first enter the lower polarizing plate 2000, then pass through the lower substrate 4000, then pass through the liquid crystal layer 6000, and enter after rotating through the liquid crystal layer 6000 Enter the upper substrate 3000, and finally enter the upper polarizing plate 1000.
  • the upper polarizing plate 1000 is a polarizing structure described in the foregoing embodiment.
  • the upper polarizing plate 1000 may include a polarizing film 10, a supporting protective film 20, and the supporting protective film 20 having a light incident surface and a light emitting surface.
  • the light incident surface is in contact with the polarizing film 10, and an optical compensation film 30 is formed on the light emitting surface.
  • the support protective film 20 has a second refractive index
  • the optical compensation film 30 has a first refractive index
  • the first refractive index is greater than the second refractive index
  • the support protective film 20 is provided with a plurality of grooves 210 having a predetermined shape.
  • the angle between the side surface of the groove 210 and the light incident surface is an acute angle; the surface of the optical compensation film 30 is provided with a plurality of convex structures 310 matching the shape and size of the groove 210 on the surface in contact with the support and protection film 20.
  • the upper polarizing plate 1000 may further include a phase compensation film 40, which is formed under the polarizing film 10. The light is incident from the upper polarizing plate 1000 to the polarizing film 10 in the upper polarizing plate 1000 and penetrates the support protective film 20 into the optical compensation film 30.
  • the optical compensation film 30 can phase compensate the incident light.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

一种偏光结构及显示装置,该偏光结构包括折射率较小且开设有多个凹槽(210)的支撑保护膜(20);折射率较大的光学补偿膜(30),该光学补偿膜(30)上设有多个与该凹槽(210)相配合的凸起结构(310)。

Description

偏光结构及显示装置
相关申请的交叉引用
本申请要求于2018年9月30日提交中国专利局、申请号为201811161887.7、申请名称为“偏光结构、显示面板及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,特别是涉及一种偏光结构及显示装置。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有技术。
随着显示技术的发展,液晶显示装置因具有高画质、省电、机身薄等优点而被广泛应用,其中,画质的好坏是影响消费者体验的最主要的因素。液晶显示装置一般由背光模组和置于背光模组上的显示面板构成,背光模组为显示面板提供入射光,该入射光通常是集中垂直入射至显示面板,因此在正视方向观看显示屏时,能获取较好的显示画质,但是在侧视方向观看显示屏时,画质较差,色偏比较严重,使得正常显示的视角较小。目前,显示面板的种类可以包括TFT-LCD(Thin Film Transistor Liquid Crystal Displayer,薄膜晶体管液晶显示器)显示面板、OLED(Organic Light-Emitting Diode,有机发光二极管)显示面板、QLED(Quantum Dot Light Emitting Diodes,量子点发光二极管)显示面板、曲面显示面板或其他显示面板,其中,TFT-LCD包括VA(Vertical Alignment,垂直排列型)、IPS(In-Plane Switching,平面转换型)、 TN(Twisted Nematic,扭曲向列型)等,以VA为例,在VA(Vertical Alignment liquid crystal,垂直排列)液晶显示器中采用将滤光片中的子像素再次划分为多个次像素的手段来改善侧视角的画质,从而扩大视角。但是这种方法需要更多的TFT(Thin Film Transistor,薄膜晶体管)元件来驱动次像素,如此势必增加面板内部的金属走线,造成可透光的区域变小,影响面板的透光率,影响画质。而若为了保证光亮度,则需提高背光模组的性能,使其产生更高亮度的入射光,如此又会增加背光成本。
申请内容
根据本申请的各种实施例,提供一种可以改善显示装置的显示视角小、侧视画质较差,同时成本不会提高的偏光结构。
此外,还提供一种显示装置。
一种偏光结构,包括:
偏光膜;
支撑保护膜,具有入光面和出光面,所述入光面与所述偏光膜接触,所述出光面上开设有多个具有预设形状的凹槽,所述凹槽的侧面与所述入光面之间的夹角为锐角;及
光学补偿膜,所述光学补偿膜形成于所述出光面上;所述光学补偿膜的第一折射率大于所述支撑保护膜的第二折射率;所述光学补偿膜在与所述支撑保护膜接触的面上开设有多个与所述凹槽形状和尺寸相配合的凸起结构。
一种偏光结构,包括:
偏光膜;
支撑保护膜,具有入光面和出光面,所述入光面与所述偏光膜接触,所 述出光面上开设有多个具有三棱锥状的凹槽,所述三棱锥状凹槽的侧面与所述入光面之间的夹角为锐角;及
光学补偿膜,所述光学补偿膜形成于所述出光面上;所述光学补偿膜的第一折射率大于所述支撑保护膜的第二折射率;所述光学补偿膜在与所述支撑保护膜接触的面上开设有多个与所述三棱锥状凹槽形状和尺寸相配合的三棱锥状凸起结构;所述光学补偿膜为正性单光轴补偿膜,所述第一折射率为所述正性单光轴补偿膜的反常折射率,所述正性单光轴补偿膜包含向列相液晶分子,所述向列相液晶分子的光轴平行于所述入光面。
一种显示装置,包括:
背光模组,设置为提供光源;及
显示面板,置于所述背光模组一侧,设置为显示画面;
其中,所述显示面板包括偏光结构,所述偏光结构包括:
偏光膜;
支撑保护膜,具有入光面和出光面,所述入光面与所述偏光膜接触,所述出光面上开设有多个具有预设形状的凹槽,所述凹槽的侧面与所述入光面之间的夹角为锐角;及
光学补偿膜,所述光学补偿膜形成于所述出光面上;所述光学补偿膜的第一折射率大于所述支撑保护膜的第二折射率;所述光学补偿膜在与所述支撑保护膜接触的面上开设有多个与所述凹槽形状和尺寸相配合的凸起结构。
上述偏光结构及显示装置,通过设置具有预设形状凸起结构的光学补偿膜,同时根据其与支撑保护膜不同的折射率引起的折射效应,可使垂直入射至光学补偿膜的入射光发生折射,从而将正视角的光能量分配到侧视角,进而解决色偏的问题。此外,由于整个偏光结构没有采用额外的金属走线,所 以不存在影响光线的透射率,进而影响画质的问题。
附图说明
为了更清楚地说明本申请实施例或示例性技术中的技术方案,下面将对实施例或示例性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1为一实施例中的偏光结构的组成示意图;
图2为图1中的光学补偿膜的结构示意图;
图3为一实施例中的光学补偿膜的结构示意图;
图4为另一实施例中的光学补偿膜的结构示意图;
图5为一实施例中的光学补偿膜的斜视图;
图6为另一实施例中的光学补偿膜的斜视图;
图7为一实施例中的显示装置的组成示意图;
图8为图7中的显示面板的组成示意图;
图9为另一实施例中的偏光结构的组成示意图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的可选的实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于申请的技术领域的技术人员通常理解的含义相同。本文中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参照图1,为一实施例中的偏光结构的组成示意图。同时辅助参阅图2。一种偏光结构,可以包括:偏光膜10,支撑保护膜20及光学补偿膜30。其中,支撑保护膜20具有入光面和出光面,入光面为接收入射光的一面,支撑保护膜20的入光面与偏光膜10接触,光线从入光面进入支撑保护膜20并从出光面射出。光学补偿膜30形成于支撑保护膜20的出光面上,光学补偿膜30的第一折射率大于支撑保护膜20的第二折射率。支撑保护膜20在与光学补偿膜30接触的面上开设有多个具有预设形状的凹槽210,凹槽210的侧面与入光面之间的夹角为α,α为锐角,满足0°<α<90°。将凹槽210的侧面与入光面之间的夹角设置为锐角,可使得光线从入光面进入支撑保护膜20后从出光面射出时,会因为出光面上开设的凹槽210产生折射现象。光学补偿膜30在与支撑保护膜20接触的面上设有多个与凹槽210形状和尺寸相配合的凸起结构310。即支撑保护膜20与光学补偿膜30可通过凸起结构310和凹槽210实现完全贴合。光学补偿膜30具有第一折射率n1,支撑保护膜20具有第二折射率n2,第一折射率n1大于第二折射率n2。当光穿透支撑保护膜20进入光学补偿膜30时,是从光疏质进入光密质,因此在支撑保护膜20与光学补偿膜30的接触界面会发生折射。在显示装置中,由于绝大部分光线是垂直入射至偏光板中,即绝大部分光线垂直于入光面,本方案通过设置不同折射率的支撑保护膜20与光学补偿膜30并在光学补偿膜30与支撑保护膜20接触的一面上设置 凸起结构310,垂直入射光从支撑保护膜20入射至光学补偿膜30时,结合凸起结构310的表面特征,会在凸起结构310的表面发生折射,改变垂直入射光的传播路径,使光线发生偏转,从而使正视角光型能量分配到大视角,提高侧视角的画质。
上述实施例,由于设有具有凸起结构310的光学补偿膜30,且第一折射率大于第二折射率,即光从支撑保护膜20的出光面入射至光学补偿膜30时,是从光疏质进入光密质中,因此会在两层膜的接触界面发生折射现象,使光线发生偏转。本方案中,光学补偿膜30与支撑保护膜20接触的一面形成有凸起结构310,该凸起结构310的侧面与入光面形成夹角为锐角,垂直入射光进入光学补偿膜30后,在凸起结构310的表面形成的入射角小于90°,因此发生折射现象,使垂直入射的光线发生偏转,从而使正视角能量分配到侧视角,提高侧视角的画质。此外,由于整个偏光结构没有采用额外的金属走线,所以不存在影响光线的透射率,进而影响画质的问题。
在一个实施例中,请继续参照图1,光学补偿膜30与支撑保护膜20接触的面上设有多个凸起结构310。多个凸起结构310为V形条状凸起结构,也可以理解为三棱柱条状结构,多个三棱柱条状结构之间相互平行。三棱柱条状结构的一个侧面与光学补偿膜30和支撑保护膜20接触的一面接触,光学补偿膜30与支撑保护膜20的接触面也就是光学补偿膜30的入光面。另外两个侧面与光学补偿膜30的入光面之间形成有一定的夹角,也即是图1中的α。由于支撑保护膜20的凹槽210的侧面与入光面之间形成的夹角为锐角,所以β为锐角,相应地,凸起结构310的侧面与入光面之间形成的夹角α也为锐角,同时凸起结构310与凹槽210形状和尺寸 均相配合,所以这里α=β。可选地,β的第一可选范围可以为0°<β<90°,第二可选范围可以为15°<β<75°。α的第一可选范围可以为0°<α<90°,第二可选范围可以为15°<α<75°。将凸起结构310的侧面与入光面之间设置有一定的角度可以使得在入射光穿过侧面的时候更容易发生折射效应,使得正视角的光能量更多的发散到侧视角,提高侧视角度的画质。如图4所示,多个凸起结构310在光学补偿膜30的入光面上可以是呈二维矩阵阵列分布。并且凸起结构310为三棱锥凸起,可以理解,当凸起结构310为三棱锥凸起的时候,其可以具有与三棱柱条状结构相同的横截面。三棱锥的底面与光学补偿膜30的入光面接触,其余侧面与光学补偿膜30的入光面之间形成一定的夹角。由于与三棱柱条状结构310具有相同的横截面,所以,这里的夹角也即是图1中的β。由于支撑保护膜20的凹槽210的侧面与入光面之间形成的夹角为锐角,所以β为锐角,相应地,凸起结构310的侧面与入光面之间形成的夹角α也为锐角,同时凸起结构310与凹槽210形状和尺寸均相配合,所以这里α=β。当凸起结构310的为三棱柱条状凸起结构并且并排排列时,仅在一维方向发生折射,使光线发散到三棱柱的斜面的两侧;当凸起结构310为三棱锥并且多个三棱锥呈二维矩阵阵列时,会在二维平面内发生折射,使光线发散至二维平面的各个角度,从而使各个视角都能呈现较好的画质。
请同时参阅图1和图2,当光线R0垂直穿透支撑保护膜20进入光学补偿膜30时,垂直入射光在凸起结构310表面处的入射角为γ,0<γ<90°,因此光线会发生折射,折射角为θ,由于光线是从具有第一折射率的支撑保护膜20(光疏质)进入具有第二折射率的光学补偿膜30(光密质),所以γ大于θ,即光线传播路径发生改变,光线R1偏离原来垂直入射方 向,向侧边发散,因此会有更多的光线射入侧边,提高侧视角度的画质。可以理解的,第一折射率n1与第二折射率n2的差异越大,发生折射时的折射角度越大,越容易将正视光型能量分配到大视角。在一实施例中,第一折射率n1的取值范围为1.0<n1<2.5,第二折射率n2的取值范围为1.0<n2<2.5。在一实施例中,若m=n1-n2,则m的可选取值范围为0.01<m<2。
如图2所示,同时参照图5。在光学补偿膜30的凸起结构310为三棱柱条状结构(V形条状凸起结构)的时候,相邻的三棱柱凸起之间在第一方向上的间距大于或等于三棱柱凸起在第一方向上的长度。这里,以光学补偿膜30与支撑保护膜20接触的面上垂直于三棱柱条状凸起结构的延伸方向为第一方向,也可以理解为沿X轴的延伸方向。光学补偿膜30与支撑保护膜20接触的面可以为矩形。三棱柱可以为正三棱柱,也可以不是正三棱柱;多个三棱柱的大小可以相同,也可以不相同。多个三棱柱凸起结构310在光学补偿膜30与支撑保护膜20接触的面上相互平行。如图2所示,Px为相邻的三棱柱条状结构之间的距离,Lx为三棱柱条状结构在第一方向上的长度,Px、Lx满足:Px≥Lx。
同理,当凸起结构310为三棱锥凸起结构的时候,由于可以具有与三棱柱凸起相同的横截面,所以,此处可以同时参照图2和图5,相邻的三棱锥凸起结构310在第一方向上的距离大于或等于三棱锥凸起结构310在第一方向上的长度;相邻的三棱锥凸起结构310在第二方向上的距离大于或等于三棱锥凸起结构310在第二方向上的长度、且小于或等于可见光的波长λ,这里可见光的波长λ可选地为300nm~1000nm。其中,由于光学补偿膜30与支撑保护膜20接触的面为矩形,故,以矩形宽度的延伸方向 为第一方向,也可以理解为沿X轴的延伸方向;以矩形长度的延伸方向为第二方向,这里可以理解为沿Y轴的延伸方向。三棱柱可以为正三棱锥,也可以不是正三棱锥,多个三棱锥的大小可以相同,也可以不相同。可以理解,在不脱离本申请的核心原理的情况下可以对凹槽的形状、尺寸、大小进行变化以适应本领域技术人员的实际需要。如图6所示,Px为相邻的三棱锥凸起结构310在第一方向上的距离;Py为相邻的三棱锥凸起结构310在第二方向上的距离;Lx为三棱锥凸起结构310在第一方向上的长度;Ly为三棱锥凸起结构310在第二方向上的长度。相邻的三棱锥凸起结构310在第一方向上的距离Px和在第二方向上的距离Py可以相等,也可以不相等。Px、Py、Lx、Ly满足:Px≥Lx;Py≥Ly。当Px>Lx,Py>Ly时,相邻凸起结构310存在间隔,即凸起结构310呈二维矩阵阵列分布,光从光疏质传播到光密质时,就可以借助间隔和凸起使垂直入射光朝侧边发散,进一步将正视光能量分配到侧视角,提高侧视角的画质。
可选地,凸起结构310为V形条状时,多个V形条状凸起结构310之间还可以呈二维矩阵阵列分布,其在二维上的排列方式可以参照前面三棱锥凸起结构310的描述,在此不再进一步赘述。相邻凸起结构310之间由于存在间隔,所以凸起结构310呈二维矩阵阵列分布,光从光疏质传播到光密质时,就可以借助间隔和凸起使垂直入射光朝侧边发散,进一步将正视光能量分配到侧视角,提高侧视角的画质。
支撑保护膜20可以包括但不限于聚对苯二甲酸乙二醇酯膜、三醋酸纤维素膜或聚甲基丙烯酸甲酯膜中的任意一种。PET(Polyethylene terephthalate,聚对苯二甲酸类塑料)具有很好的光学性能和耐候性,非晶态的PET塑料具有良好的光学透明性。另外PET塑料具有优良的耐磨耗 摩擦性和尺寸稳定性及电绝缘性。TAC(Triacetyl Cellulose,三醋酸纤维素),主要设置为保护LCD偏光板。PMMA(Polymethyl Methacrylate,聚甲基丙烯酸甲酯),具有良好的化学稳定性和耐候性。同时,由于保护膜30起到支撑并保护偏光膜10的作用,所以保护膜30厚度应该保证偏光膜10的耐候性不受影响,保护偏光膜10不接触外界环境,防止湿气进入偏光膜10。
光学补偿膜30为可透光的透明或半透明材料制成且具有相位补偿的功能的单光轴光学补偿膜,在一实施例中,光学补偿膜30内填充有液晶,液晶为双折射材料,光线进入液晶时会折射成正常光和反常光两条光线,其中,正常光的折射率为正常折射率,反常光的折射率为反常折射率,反常折射率方向为电场方向与液晶光轴平行的方向,正常折射率方向为电场与液晶光轴垂直的方向,反常折射率方向与正常折射率方向垂直。在本实施例中,光学补偿膜30可以为负性单光轴补偿膜,具体可以为负性单光轴C-补偿膜,负性单光轴C-补偿膜的正常折射率平行于出光面的各个方向。负性单轴C-补偿膜内部可填充碟状液晶分子,碟状液晶分子为碟子形状的液晶,碟状液晶的光轴与入光面垂直,碟状液晶的反常折射率nce(extraordinary refractive index)方向与碟状液晶的光轴平行,碟状液晶的正常折射率nco(ordinary refractive index)方向垂直于反常折射率nce(extraordinary refractive index)方向,即碟状液晶的正常折射率nco方向平行于入光面,且nco>nce。光学补偿膜30还可以为正性单光轴补偿膜,具体可以为正性单光轴A-补偿膜,其同样具有反常折射率和正常折射率;正性单光轴A-补偿膜内部可填充向列相液晶分子,向列相液晶分子为长条棒状型液晶,向列相液晶的光轴与入光面平行,向列相液晶的反常折射率 nae方向与向列相液晶的光轴平行,即向列相液晶的反常折射率nae方向与入光面平行,向列相液晶的正常折射率nao方向垂直于反常折射率nae方向,且nae>nao;在本实施例中,在光学补偿膜30为负性单光轴C-补偿膜时,其第一折射率为负性单光轴C-补偿膜的正常折射率nco,在光学补偿膜30为正性单光轴A-补偿膜时,其第一折射率为正性单光轴A-补偿膜的反常折射率nae,nae的方向与nco的方向均平行于入光面。
在一个实施例中,请辅助参阅图3,在光学补偿膜30中还可以掺杂树脂粒子50以使光学补偿膜30具备抗眩晕的功能,对于具体的掺杂浓度本申请没有特殊限制,以本领域技术人员熟知、且常用的掺杂浓度即可。
在一个实施例中,请辅助参阅图4,还可以在光学补偿膜30的出光面上涂布一层光学薄膜以使光学补偿膜30具备抗反射的功能,对于涂布的光学薄膜的厚度本申请没有特殊限制,以本领域技术人员熟知、且常用的厚度即可。
可选地,支撑保护膜20的第二折射率可以为1.0-2.5,这里的第二折射率也就是正常折射率(ordinary refractive index),可以用np表示。光学补偿膜30的第一折射率大于支撑保护膜20的正常折射率(第二折射率)。换句话说,支撑保护膜20相对光学补偿膜30而言为光疏介质,光学补偿膜30相对支撑保护膜20而言为光密介质。具体地,光学补偿膜30的第一折射率与支撑保护膜20的正常折射率差值范围可选地为0.01-2。理论上,光学补偿膜30的第一折射率相对于支撑保护膜20的正常折射率差异越大,当入射光垂直入射到光学补偿膜30上发生折射效应的时候,越容易将正视角的光能量分配到侧视角。
偏光膜10具有吸收轴和穿透轴,偏振方向与穿透轴平行的偏振光能 通过偏光膜10。在一实施例中,为了减小光学补偿膜对光线的偏振影响,可使光学补偿膜的光轴(液晶光轴)与偏光膜的穿透轴平行,入射光经过光学补偿膜后的偏振方向与偏光膜10的穿透轴平行,因此能完全穿过偏光膜10。在本方案中,由于光学补偿膜30也具有相位补偿的功能,利用光学补偿膜30除了能使入射光在界面处发生偏转以扩大视角,增强侧视角画质外,还可以起到相位补偿的作用。
示例性技术中,通常使用聚乙烯醇作为偏光膜,而聚乙烯醇具有极强的亲水性,为保护偏光膜的物理特性,主要对偏振光起吸收和穿透的作用,本申请中偏光膜10选取目前市面上常用的产品,其穿透轴是平行于90/270度方向,吸收轴平行于0/180度方向。通常需在偏光膜10的两侧设置一层三醋酸纤维素支撑膜,三醋酸纤维素支撑膜具有高透光性、耐水性好且具有一定的机械强度,能对偏光片进行保护。在本实施例中,由于在偏光膜10的一侧设有支撑保护膜20和光学补偿膜30,支撑保护膜20和光学补偿膜30既能进行相位补偿和对光线进行偏转,也可以充当保护层来保护偏光膜10。需要注意的是,支撑保护膜20的厚度和光学补偿膜30的厚度(即图2中的D+d)需满足合适的厚度以实现对偏光膜10的保护作用。
在一个实施例中,请参阅图9,偏光结构还可以包括设置于偏光膜10下方的相位补偿膜40,其可以为与光学补偿膜30具有相同材料,这里应当保证相位补偿膜40、偏光膜10、支撑保护膜20以及光学补偿膜30的整体厚度使得偏光膜的耐候性不受影响,保护偏光膜10不接触外界环境,防止湿气进入偏光膜10。
偏光结构还可以包括压敏胶50,设置于相位补偿膜40下方,其主要设置为将偏光结构与其他组件进行粘合。
还提供一种偏光结构,偏光结构可以包括:偏光膜;支撑保护膜,具有入光面和出光面,支撑保护膜的入光面与偏光膜接触,出光面上开设有多个具有三棱锥状的凹槽,三棱锥状凹槽的侧面与入光面之间的夹角为锐角;光学补偿膜,光学补偿膜形成于出光面上;光学补偿膜的第一折射率大于支撑保护膜的第二折射率;光学补偿膜在与支撑保护膜接触的面上开设有多个与三棱锥状凹槽形状和尺寸相配合的三棱锥状凸起结构,光学补偿膜为正性单光轴补偿膜,第一折射率为正性单光轴补偿膜的反常折射率,正性单光轴补偿膜包含向列相液晶分子,向列相液晶分子的光轴平行于入光面。
上述实施例,通过在光学补偿膜中设置多个三棱锥状的凸起结构,同时根据与支撑保护膜不同的折射率引起的折射效应,可使垂直入射至光学补偿膜的入射光发生折射,从而将正视角的光能量分配到侧视角,进而解决色偏的问题。此外,由于整个偏光结构没有采用额外的金属走线,所以不存在影响光线的透射率,进而影响画质的问题。
综上,同时结合图1、图2,以支撑保护膜20的凹槽210为V形条状凹槽,光学补偿膜30为负性单光轴C-补偿膜,光学补偿膜30的凸起结构310为V形条状凸起,偏光膜的穿透轴是平行于90/270°方向,吸收轴为平行于0/180°方向为例简述本申请的视角改善原理:光进入显示面板前先通过下偏光板2000,然后通过上偏光板1000,上偏光板1000对偏振光具备吸收跟穿透的作用,光进入上偏光板1000后可分为水平偏振跟垂直偏振分量的光。由于这里使用的偏光膜10的穿透轴是平行90/270°方向,因此这里只关注垂直偏振分量的光通过的介质界面。垂直偏振分量的光通过偏光膜10的穿透轴90/270°方向(水平偏振光被偏光膜10吸收轴0/180° 方向吸收),在负性单光轴C-补偿膜对应的等效折射率为nco(ordinary refractive index,正常折射率),在支撑保护膜20对应的等效折射率为np,垂直偏振分量的光通过支撑保护膜20后经过负性单光轴C-补偿膜(对应于负性单光轴C--补偿膜的折射率为nco),因此该垂直偏振的光在两介质接触面(即图2中的V形条状凸起)发生从光疏介质进入光密介质(nco>np)的行为,配合光学补偿膜30的凸起结构310与入光面之间形成的锐角产生折射效应,形成正视角光型能量分配大视角的光学现象。也可以和通过上述原理实现将正视角的光能量分配到侧视角,改善色偏问题。
同理,当使用的偏光膜10的穿透轴为平行于0/180°方向,因此这里只关注水平偏振分量的光通过的介质界面。水平偏振分量的光R0在负性单光轴C-补偿膜对应的等效折射率为nco(ordinary refractive index,正常折射率),在支撑保护膜20的等效折射率为np,水平偏振分量的光通过支撑保护膜20后经过负性单光轴C-补偿膜(对应于负性单光轴C-补偿膜的折射率为nco),因此该水平偏振的光在两介质接触面(即图2中的V形条状凸起)发生从光疏介质进入光密介质(nco>np)的行为,配合光学补偿膜30的凸起结构310与入光面之间形成的锐角产生折射效应产生出射光R1,形成正视角光型能量分配大视角的光学现象。从而将正视角的光能量分配到侧视角,改善色偏问题。
请参照图7,为一实施例中的显示装置的组成示意图。本申请还公开一共显示装置,包括背光模组5以及置于背光模组上方的显示面板1。背光模组5设置为提供入射光R0(图7未标示),该入射光R0集中入射至显示面板1,入射光R0的发散方向与垂直于显示面板1的方向呈小角度,该小角度可小于30°,显示面板1接收到的大部分光为垂直入射光,由于显示 面板1内存在支撑保护膜20和光学补偿膜30且光学补偿膜30与支撑保护膜20接触的面设有多个具有预设形状的凸起结构310,在凸起结构310表面通过折射可以将垂直入射光进行偏转产生出射光R1(图7未标示),从而将正视角能量分配到侧视角,提高侧视角的画质。其中,背光模组5可以包括侧入式LED光源51,反射片52,导光板53。导光板53的上下表面均设有长条V型槽,导光板53下表面V型槽的侧壁与侧入式光源51平行,导光板53上表面的V型槽与下表面的V型槽以相互垂直的方式设置。
请参阅图8,为图7中的显示面板的组成示意图。该显示面板1可例如为TFT-LCD(Thin Film Transistor Liquid Crystal Displayer,薄膜晶体管液晶显示器)显示面板1、OLED(Organic Light-Emitting Diode,有机发光二极管)显示面板1、QLED(Quantum Dot Light Emitting Diodes,量子点发光二极管)显示面板1、曲面显示面板1或其他显示面板1。此处以显示面板1为TFT-LCD显示面板1为例进行说明,如图8所示,该显示面板1可以包括上偏光板1000、下偏光板2000,上基板3000,下基板4000以及夹设于上基板3000和下基板4000之间的液晶层6000,光线在显示面板1中入射顺序为:先进入下偏光板2000,然后经过下基板4000,其次经过液晶层6000,经液晶层6000旋转之后入射进上基板3000,最后进入上偏光板1000。其中上偏光板1000为前述实施例介绍的偏光结构。上偏光板1000可以包括偏光膜10,支撑保护膜20,支撑保护膜20具有入光面和出光面,入光面与偏光膜10接触,出光面上形成光学补偿膜30。支撑保护膜20具有第二折射率,光学补偿膜30具有第一折射率,第一折射率大于第二折射率,且支撑保护膜20上开设有多个具有预设形状的凹槽 210,凹槽210的侧面与入光面之间的夹角为锐角;光学补偿膜30在与支撑保护膜20接触的面上开设有多个与凹槽210形状和尺寸相配合的凸起结构310。上偏光板1000还可以包括相位补偿膜40,相位补偿膜40形成于偏光膜10的下方。光线从上偏光板1000入射至从上偏光板1000中的偏光膜10,并穿透支撑保护膜20进入光学补偿膜30,光学补偿膜30可以对入射光线进行相位补偿。由于光线从光疏质进入光密质,且入射光线在至少部分接触面的入射角不等于90°,因此会发生折射现象,使垂直入射光向侧视角偏转,将正视角能量分配到侧视角,提高侧视角的画质。其中,偏光结构的具体结构已在上文详细介绍,此处不再赘述。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种偏光结构,包括:
    偏光膜;
    支撑保护膜,具有入光面和出光面,所述入光面与所述偏光膜接触,所述出光面上开设有多个具有预设形状的凹槽,所述凹槽的侧面与所述入光面之间的夹角为锐角;及
    光学补偿膜,所述光学补偿膜形成于所述出光面上;所述光学补偿膜的第一折射率大于所述支撑保护膜的第二折射率;所述光学补偿膜在与所述支撑保护膜接触的面上开设有多个与所述凹槽形状和尺寸相配合的凸起结构。
  2. 根据权利要求1所述的偏光结构,其中,所述光学补偿膜为正性单光轴补偿膜,所述第一折射率为所述正性单光轴补偿膜的反常折射率,所述正性单光轴补偿膜包含向列相液晶分子,所述向列相液晶分子的光轴平行于所述入光面。
  3. 根据权利要求1所述的偏光结构,其中,所述光学补偿膜为负性单光轴补偿膜,所述第一折射率为所述负性单光轴补偿膜的正常折射率,所述负性单光轴补偿膜包含碟状液晶分子,所述碟状液晶分子的光轴垂直于所述入光面。
  4. 根据权利要求3所述的偏光结构,其中,所述偏光膜具有穿透轴,偏振方向平行于所述穿透轴的光线可透过所述偏光膜,所述负性单光轴补偿膜的光轴与所述穿透轴垂直。
  5. 根据权利要求1所述的偏光结构,其中,所述支撑保护膜包括聚对苯二甲酸乙二醇酯膜。
  6. 根据权利要求1所述的偏光结构,其中,所述支撑保护膜包括三醋酸 纤维素膜。
  7. 根据权利要求1所述的偏光结构,其中,所述支撑保护膜包括聚甲基丙烯酸甲酯膜。
  8. 根据权利要求1所述的偏光结构,其中,所述第一折射率的取值范围为1.0-2.5。
  9. 根据权利要求1所述的偏光结构,其中,所述第二折射率的取值范围为1.0-2.5。
  10. 根据权利要求1所述的偏光结构,其中,所述第一折射率与所述第二折射率的差值范围为0.01-2。
  11. 根据权利要求1所述的偏光结构,其中,所述凸起结构为V形条状凸起结构,多个所述V形条状凸起结构之间相互平行。
  12. 根据权利要求1所述的偏光结构,其中,所述凸起结构为三棱锥凸起结构,多个所述三棱锥凸起结构于所述光学补偿膜与所述支撑保护膜接触的面上呈二维矩阵阵列分布。
  13. 根据权利要求11所述的偏光结构,其中,相邻的所述凸起结构在第一方向上的距离大于或等于所述凸起结构在所述第一方向上的长度;其中,以所述光学补偿膜与所述支撑保护膜接触的面上垂直于所述V形条状凸起结构的延伸方向的方向为第一方向。
  14. 根据权利要求12所述的偏光结构,其中,所述光学补偿膜与所述支撑保护膜接触的面为矩形,相邻的所述三棱锥凸起结构在第一方向上的距离大于或等于所述三棱锥凸起结构在所述第一方向上的长度;
    相邻的所述三棱锥凸起结构在第二方向上的距离大于或等于所述三棱锥凸起结构在所述第二方向上的长度;其中,以所述矩形宽度的延伸方向为第 一方向,以所述矩形长度的延伸方向为第二方向。
  15. 根据权利要求1所述的偏光结构,其中,所述光学补偿膜中掺杂有预设浓度的树脂粒子。
  16. 根据权利要求1所述的偏光结构,其中,所述偏光结构还包括相位补偿膜,设置于所述偏光膜上,设置为支撑并保护所述偏光膜。
  17. 根据权利要求16所述的偏光结构,其中,所述偏光结构还包括压敏胶层,设置于所述相位补偿膜上。
  18. 一种偏光结构,包括:
    偏光膜;
    支撑保护膜,具有入光面和出光面,所述入光面与所述偏光膜接触,所述出光面上开设有多个具有三棱锥状的凹槽,所述三棱锥状凹槽的侧面与所述入光面之间的夹角为锐角;及
    光学补偿膜,所述光学补偿膜形成于所述出光面上;所述光学补偿膜的第一折射率大于所述支撑保护膜的第二折射率;所述光学补偿膜在与所述支撑保护膜接触的面上开设有多个与所述三棱锥状凹槽形状和尺寸相配合的三棱锥状凸起结构;所述光学补偿膜为正性单光轴补偿膜,所述第一折射率为所述正性单光轴补偿膜的反常折射率,所述正性单光轴补偿膜包含向列相液晶分子,所述向列相液晶分子的光轴平行于所述入光面。
  19. 一种显示装置,包括:
    背光模组,设置为提供光源;及
    显示面板,置于所述背光模组一侧,设置为显示画面;
    其中,所述显示面板包括偏光结构,所述偏光结构包括:
    偏光膜;
    支撑保护膜,具有入光面和出光面,所述入光面与所述偏光膜接触,所述出光面上开设有多个具有预设形状的凹槽,所述凹槽的侧面与所述入光面之间的夹角为锐角;及
    光学补偿膜,所述光学补偿膜形成于所述出光面上;所述光学补偿膜的第一折射率大于所述支撑保护膜的第二折射率;所述光学补偿膜在与所述支撑保护膜接触的面上开设有多个与所述凹槽形状和尺寸相配合的凸起结构。
  20. 根据权利要求19所述的显示装置,其中,所述显示面板为液晶显示面板。
PCT/CN2018/120036 2018-09-30 2018-12-10 偏光结构及显示装置 WO2020062593A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811161887.7 2018-09-30
CN201811161887.7A CN109143673A (zh) 2018-09-30 2018-09-30 偏光结构、显示面板及显示装置

Publications (1)

Publication Number Publication Date
WO2020062593A1 true WO2020062593A1 (zh) 2020-04-02

Family

ID=64810594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120036 WO2020062593A1 (zh) 2018-09-30 2018-12-10 偏光结构及显示装置

Country Status (2)

Country Link
CN (1) CN109143673A (zh)
WO (1) WO2020062593A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109597239A (zh) * 2019-01-30 2019-04-09 惠科股份有限公司 光学膜层和显示装置
CN109683400A (zh) 2019-01-30 2019-04-26 惠科股份有限公司 光学膜层和显示装置
CN109633986A (zh) * 2019-01-30 2019-04-16 惠科股份有限公司 光学膜层和显示装置
CN109683381A (zh) * 2019-01-30 2019-04-26 惠科股份有限公司 光学膜层和显示装置
CN112630884B (zh) * 2020-12-22 2023-09-08 联合微电子中心有限责任公司 用于光学相控阵的波导光栅天线阵列及其制备方法
CN115019669B (zh) * 2022-06-21 2023-11-10 厦门天马微电子有限公司 一种显示面板、背光模组及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101158778A (zh) * 2007-11-14 2008-04-09 友达光电(苏州)有限公司 广视角膜与应用该广视角膜的液晶显示装置
CN102540314A (zh) * 2010-12-31 2012-07-04 京东方科技集团股份有限公司 偏光片及其制备方法、具有该偏光片的3d显示装置
CN104991370A (zh) * 2015-06-10 2015-10-21 深圳市华星光电技术有限公司 视角扩大膜及包括其的广视角薄膜晶体管液晶显示装置
US20160178958A1 (en) * 2014-12-19 2016-06-23 Samsung Display Co., Ltd. Polarization member and display device including the same
CN109143677A (zh) * 2018-09-30 2019-01-04 惠科股份有限公司 偏光结构、显示面板及显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258772A (ja) * 1999-03-10 2000-09-22 Nippon Mitsubishi Oil Corp 液晶表示装置
KR100682230B1 (ko) * 2004-11-12 2007-02-12 주식회사 엘지화학 수직 배향 액정표시장치
US20070195251A1 (en) * 2006-02-22 2007-08-23 Toppoly Optoelectronics Corp. Systems for displaying images involving alignment liquid crystal displays
CN102608798B (zh) * 2011-01-21 2016-04-20 群创光电股份有限公司 液晶面板模块、背光模块与液晶显示装置
JP2014182280A (ja) * 2013-03-19 2014-09-29 Toshiba Corp 表示装置
CN104091898B (zh) * 2014-07-30 2018-06-01 上海天马有机发光显示技术有限公司 有机发光显示面板及其制造方法
US10983388B2 (en) * 2017-03-15 2021-04-20 Lg Display Co., Ltd. Display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101158778A (zh) * 2007-11-14 2008-04-09 友达光电(苏州)有限公司 广视角膜与应用该广视角膜的液晶显示装置
CN102540314A (zh) * 2010-12-31 2012-07-04 京东方科技集团股份有限公司 偏光片及其制备方法、具有该偏光片的3d显示装置
US20160178958A1 (en) * 2014-12-19 2016-06-23 Samsung Display Co., Ltd. Polarization member and display device including the same
CN104991370A (zh) * 2015-06-10 2015-10-21 深圳市华星光电技术有限公司 视角扩大膜及包括其的广视角薄膜晶体管液晶显示装置
CN109143677A (zh) * 2018-09-30 2019-01-04 惠科股份有限公司 偏光结构、显示面板及显示装置

Also Published As

Publication number Publication date
CN109143673A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
WO2020062584A1 (zh) 偏光结构及显示装置
WO2020062593A1 (zh) 偏光结构及显示装置
US9261731B2 (en) Liquid crystal display apparatus
WO2020062458A1 (zh) 偏光结构及显示装置
US9261640B2 (en) Liquid crystal display apparatus
CN102411231B (zh) 液晶显示装置
US10663797B2 (en) Composite optical sheet, liquid crystal display device using same, and method for manufacturing same
WO2020062563A1 (zh) 偏光结构及显示装置
WO2020087620A1 (zh) 光学复合膜、显示面板和显示装置
CN109212822B (zh) 光学复合膜和显示面板
WO2020062591A1 (zh) 偏光板及显示装置
WO2020062587A1 (zh) 偏光板及显示装置
WO2020062585A1 (zh) 偏光片和显示装置
WO2020062565A1 (zh) 偏光结构及显示装置
WO2020062577A1 (zh) 偏光片和显示装置
WO2020062578A1 (zh) 偏光结构及显示装置
WO2020062603A1 (zh) 偏光结构及显示装置
WO2020062558A1 (zh) 偏光结构及显示装置
WO2020062559A1 (zh) 偏光结构及显示装置
WO2020062600A1 (zh) 偏光结构及显示装置
WO2020062592A1 (zh) 偏光板及显示装置
WO2020062561A1 (zh) 偏光结构及显示装置
WO2020062568A1 (zh) 偏光结构及显示装置
WO2020062560A1 (zh) 偏光结构及显示装置
WO2020062588A1 (zh) 偏光板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/08/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18935135

Country of ref document: EP

Kind code of ref document: A1