WO2020062587A1 - 偏光板及显示装置 - Google Patents

偏光板及显示装置 Download PDF

Info

Publication number
WO2020062587A1
WO2020062587A1 PCT/CN2018/119682 CN2018119682W WO2020062587A1 WO 2020062587 A1 WO2020062587 A1 WO 2020062587A1 CN 2018119682 W CN2018119682 W CN 2018119682W WO 2020062587 A1 WO2020062587 A1 WO 2020062587A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
refractive index
light
compensation film
polarizing plate
Prior art date
Application number
PCT/CN2018/119682
Other languages
English (en)
French (fr)
Inventor
康志聪
Original Assignee
惠科股份有限公司
重庆惠科金渝光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司, 重庆惠科金渝光电科技有限公司 filed Critical 惠科股份有限公司
Publication of WO2020062587A1 publication Critical patent/WO2020062587A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Definitions

  • the present application relates to the field of display technology, and in particular, to a polarizing plate and a display device.
  • the display device is generally composed of a backlight module and a display panel placed on the backlight module.
  • the backlight module provides incident light for the display panel.
  • the incident light is usually concentrated and incident on the display panel. Therefore, when viewing the display screen in the frontal direction, It can obtain better display image quality, but when viewing the display screen in the side view direction, the image quality is poor and the color cast is more serious, which makes the viewing angle of normal display smaller.
  • a sub-pixel in a filter is again divided into a plurality of sub-pixels to improve the image quality of a side viewing angle, thereby expanding the viewing angle.
  • this method requires more TFT (Thin Film Transistor) elements to drive the sub-pixels. This will inevitably increase the metal traces inside the panel, causing the light-transmissive area to become smaller, affecting the light transmittance of the panel and affecting Picture quality.
  • TFT Thin Film Transistor
  • a polarizing plate capable of improving a display angle of a display device with a small display angle and poor side-view image quality, without increasing cost, is provided.
  • a display device is provided.
  • a polarizing plate includes:
  • An optical compensation film having a first refractive index having a light incident surface and a light emitting surface, and a plurality of convex structures having a predetermined shape are provided on the light emitting surface, and the convex The structure exists at least part of the surface is curved;
  • a support protective film is formed on the light emitting surface, the support protective film has a second refractive index, the first refractive index is greater than the second refractive index, and the support protective film is in contact with the optical compensation film
  • a plurality of grooves having the same shape and size as the convex structure are formed on the surface;
  • a polarizing film is disposed on the support and protection film.
  • a polarizing plate includes:
  • An optical compensation film having a first refractive index having a light incident surface and a light emitting surface, and a plurality of convex structures having a predetermined shape are provided on the light emitting surface, and the convex At least part of the structure has a spherical curved surface, the angle formed by the spherical curved surface and the light incident surface is an acute angle, the optical compensation film is a positive uniaxial A-compensation film, and the first refractive index is The abnormal refractive index of the positive uniaxial A-compensation film, the positive uniaxial A-compensation film comprising nematic liquid crystal molecules, the optical axis of the nematic liquid crystal molecules is parallel to the light incident surface;
  • a support protective film is formed on the light emitting surface, the support protective film has a second refractive index, the first refractive index is greater than the second refractive index, and the support protective film is in contact with the optical compensation film
  • a plurality of grooves having the same shape and size as the convex structure are formed on the surface;
  • a polarizing film is disposed on the support and protection film.
  • a display device includes:
  • a backlight module configured to provide a light source
  • a display panel is placed on one side of the backlight module and is set as a display screen
  • the display panel includes a polarizing plate, and the polarizing plate includes:
  • An optical compensation film having a first refractive index having a light incident surface and a light emitting surface, and a plurality of convex structures having a predetermined shape are provided on the light emitting surface, and the convex The structure exists at least part of the surface is curved;
  • a support protective film is formed on the light emitting surface, the support protective film has a second refractive index, the first refractive index is greater than the second refractive index, and the support protective film is in contact with the optical compensation film
  • a plurality of grooves having the same shape and size as the convex structure are formed on the surface;
  • a polarizing film is disposed on the support and protection film.
  • the first refractive index is greater than the second refractive index, that is, light enters the optical compensation film from the light incident surface of the optical compensation film and penetrates the optical compensation.
  • the film enters the supporting protective film it enters from the light dense to the light dense, so the phenomenon of refraction occurs at the contact interface between the two films, which deflects the light.
  • a convex structure is formed on the light exit surface of the optical compensation film. At least part of the surface of the convex structure forms an acute angle with the light incident surface. After incident light enters the optical compensation film, the convex structure is formed on the surface of the convex structure.
  • the angle of incidence is less than 90 °. Therefore, in order to cause refraction, the light incident vertically is deflected, so that the energy of the positive viewing angle is distributed to the side viewing angle, and the image quality of the side viewing angle is improved.
  • the optical compensation film and the support and protection film also have a phase compensation function, which can correct the phenomenon of phase delay and color shift after the light passes through the liquid crystal layer.
  • FIG. 1 is a schematic diagram of a partial structure of a polarizing plate in an embodiment
  • FIG. 2 is a schematic structural diagram of an optical compensation film in an embodiment
  • 3A is a perspective structural view of an optical compensation film in an embodiment
  • 3B is a schematic perspective view of an optical compensation film in another embodiment
  • 4A is a schematic structural diagram of an optical compensation film in another embodiment
  • 4B is a schematic perspective view of an optical compensation film in another embodiment
  • FIG. 5 is a partial cross-sectional view of a polarizing plate in an embodiment
  • FIG. 6 is a schematic structural diagram of a polarizing plate in an embodiment
  • FIG. 7 is a schematic structural diagram of a display device according to an embodiment
  • FIG. 8 is a cross-sectional view of the display panel structure in FIG. 7.
  • the polarizing plate 10 includes an optical compensation film 100, a support protection film 200, and a polarizing film 300.
  • the optical compensation film 100 has a light incident surface and a light emitting surface.
  • the light incident surface is a side that receives incident light.
  • the light enters the optical compensation film 100 from the incident surface and exits from the light emitting surface.
  • the light emitting surface is provided with a plurality of preset shapes.
  • the convex structure 101 has at least a part of the surface of the convex structure 101 as a curved surface, that is, the angle formed by the part of the surface and the light incident surface is ⁇ , ⁇ is an acute angle, and satisfies 0 ° ⁇ ⁇ 90 °.
  • the structure 101 generates a refraction phenomenon.
  • the support protective film 200 is formed on the optical compensation film 100.
  • the support protective film 200 is provided with a plurality of grooves 210 having the same shape and size as the convex structure 101 on the surface in contact with the optical compensation film 100, that is, the support protective film 200.
  • the optical compensation film 100 can be completely bonded to each other through the convex structure 101 and the groove 210.
  • the optical compensation film 100 has a first refractive index n1
  • the support protective film 200 has a second refractive index n
  • the first refractive index n1 is larger than the second refractive index n.
  • the light emitting surface of the film 100 is provided with a convex structure 101.
  • the surface characteristics of the convex structure 101 are combined with the surface structure of the convex structure 101 to refract and change the vertical incidence.
  • the propagation path of light deflects the light, so that the light energy of the positive viewing angle is distributed to the large viewing angle, and the image quality of the side viewing angle is improved.
  • the polarizing plate 10 further includes a polarizing film 300.
  • the polarizing film 300 is used to polarize incident light and emit the polarized light.
  • the polarizing film 300 may be a PVA (Polyvinyl alcohol) material, which mainly absorbs and penetrates polarized light.
  • the polarizing film 300 is a product commonly used in the market.
  • the transmission axis is Parallel to the 90/270 degree direction
  • the absorption axis is parallel to the 0/180 degree direction.
  • the polarizing film 300 can also be selected from products in which the transmission axis is parallel to the 0/180 degree direction and the absorption axis is parallel to the 90/270 degree direction.
  • the incident angle of the vertically incident light on the surface of the convex structure is ⁇ , 0 ⁇ ⁇ 90 °, so the light Refraction will occur, and the refraction angle is ⁇ . Since the light enters from the dense to the light, ⁇ is greater than ⁇ , that is, the light propagation path changes, and the light R1 deviates from the original normal incidence direction and diverges to the side, so there will be more The light enters the side, improving the quality of the side viewing angle.
  • the value range of the first refractive index n1 is 1.0 ⁇ n1 ⁇ 2.5
  • the value range of the second refractive index n is 1.0 ⁇ n ⁇ 2.5.
  • the value of m ranges from 0.01 ⁇ m ⁇ 1.5.
  • a plurality of convex structures 101 are formed on the light-emitting surface of the optical compensation film 100.
  • the plurality of convex structures 101 are strip-shaped structures and a part of the surface of the strip-shaped structures is an arc-shaped curved surface. Can be set side by side. It can be understood that the part of the surface referred to here may be the side of the convex structure 101 opposite to the light emitting surface, that is, the upper surface of the convex structure 101.
  • the angle between the arc-shaped curved surface and the light incident surface of the optical compensation film 100 may be the angle between the tangent of any point on the surface of the arc-shaped curved surface and the light incident surface.
  • the included angle is an acute angle, that is, ⁇ in FIG. 1, and 0 ° ⁇ ⁇ 90 °.
  • a part of the surface of the convex structure 101 may also be a spherical curved surface. It can be understood that the part of the surface referred to herein may be a side of the convex structure 101 opposite to the light emitting surface, that is, the upper surface of the convex structure 101 .
  • the plurality of convex structures 101 are distributed in a two-dimensional matrix array on the light-emitting surface, that is, in a two-dimensional matrix array.
  • the angle between the spherical surface and the light-incident surface of the optical compensation film 100 is a tangent line passing through any point on the surface of the spherical surface.
  • the included angle of the light incident surface is an acute angle, that is, ⁇ in FIG. 1, and 0 ° ⁇ ⁇ 90 °. Because in the display device, most of the light generated by the backlight module is incident on the display panel vertically, that is, most of the light incident on the phase compensation film is perpendicular to the light incident surface of the phase compensation film.
  • the curved convex structure 101 since the curved convex structure 101 is provided, it can refract the normal incident light, and the light deviates from the original normal incident direction and diverges to the side. Therefore, more light will enter the side, and the angle of the side view is improved. Picture quality.
  • the upper surface of the convex structure 101 is a circular arc surface and a plurality of convex structures 101 are arranged side by side, refraction occurs only in a one-dimensional direction, so that light is scattered to both sides of the curved surface;
  • the upper surface of the convex structure 101 is When it is a spherical curved surface and a plurality of convex structures 101 are distributed in a two-dimensional matrix array, refraction occurs in a two-dimensional plane, so that light is diffused to various angles of the two-dimensional plane, so that each angle of view can present better image quality.
  • the optical compensation film 10 may have a light incident surface and a light emitting surface, and the light emitting surface and the light incident surface may be rectangles having the same shape and size, or other shapes.
  • the upper surface of the convex structure 101 is a circular arc surface or a spherical curved surface
  • the radius of the curved surface in the first direction is less than or equal to twice the height of the convex structure 101 in the first direction, and the first direction is perpendicular to
  • the direction of the light exit surface can be understood here as the extension direction along the Y axis.
  • R is the radius of the curved surface in the first direction
  • D is the height of the convex structure 101 in the first direction
  • R ⁇ 2D the relationship between the radius R and the height D
  • the protruding structure 101 is a left-right symmetrical structure
  • the length of the protruding structure 101 in the second direction is Lx
  • the interval between adjacent protruding structures 101 is Px, Px ⁇ Lx, when Px> Lx
  • Px-Lx X.
  • Px ⁇ Lx and Px ⁇ 10 ⁇ m that is, the convex structures 101 are arranged at periodic intervals.
  • the gap When light propagates from light dense to light dense, the gap is equivalent to a grating, and the closer the gap width is to the wavelength, the more Diffraction is likely to occur in the gap between adjacent convex structures 101, and diffraction will also change the propagation path of the light, so that the vertically incident light diverges to the side, and further distributes the energy of the frontal light to the side viewing angle, improving the side viewing angle. Picture quality.
  • the convex structure 101 having a spherical curved surface has the same cross-section as a strip structure. Therefore, referring to FIG. 2 and FIG. 3B at the same time, the convex structure 101 having a spherical curved surface
  • the length in the second direction is Lx
  • Px is the center distance of the convex structure 101 with a spherical curved surface in the second direction
  • Py is the center distance of the convex structure 101 with a spherical curved surface in the third direction.
  • Ly (Not shown in the figure) is the length of the convex structure 101 with a spherical curved surface in the third direction.
  • Lx Ly can be selected.
  • the direction perpendicular to the light emitting surface is the first direction.
  • the extending direction of the rectangular width is the second direction
  • the extending direction of the rectangular length is the third direction.
  • the first direction, the second direction, and the third direction are perpendicular to each other.
  • the first direction can be understood as being along the Y axis.
  • the second direction can be understood as an extension direction along the X axis
  • the third direction can be understood as an extension direction along the Z axis.
  • Px, Py, Lx, and Ly satisfy: Px ⁇ Lx and Px ⁇ 10 ⁇ m; Py ⁇ Ly and Py ⁇ 10 ⁇ m; 10 ⁇ m is the opening size of a general pixel.
  • the optical compensation film should be made of a transparent or translucent material that can transmit light and have a function of phase compensation.
  • the optical compensation film is filled with liquid crystal.
  • the liquid crystal is a birefringent material. When the light enters the liquid crystal, it is refracted into two kinds of normal light and abnormal light.
  • the refractive index of the normal light is the normal refractive index and the abnormal light.
  • the refractive index of is the abnormal refractive index
  • the direction of the abnormal refractive index is the direction in which the direction of the optical electric field is parallel to the optical axis of the liquid crystal
  • the direction of the normal refractive index is the direction in which the optical field is perpendicular to the optical axis of the liquid crystal
  • the direction of the abnormal refractive index is perpendicular to the direction of the normal refractive index.
  • the optical compensation film 100 may be a positive uniaxial A-compensation film.
  • the positive uniaxial A-compensation film may be filled with a nematic liquid crystal 102.
  • the nematic liquid crystal 102 is The long rod-shaped liquid crystal, the optical axis of the nematic liquid crystal 102 is parallel to the light incident surface, and the abnormal refractive index nae (extraordinary refractive index) direction of the nematic liquid crystal is parallel to the optical axis of the nematic liquid crystal, that is, the nematic liquid crystal
  • the direction of the abnormal refractive index nae is parallel to the light incident surface, and the direction of the normal refractive index nao (ordinary refractive index) of the nematic liquid crystal is perpendicular to the direction of the abnormal refractive index nae, and nae> nao;
  • the second refractive index of the supporting protective film 200 may be Expressed as n, the second refractive index is also the normal refractive index.
  • the first refractive index is the anomalous refractive index nae of the positive single optical axis A-compensation film
  • the second refractive index is the normal refractive index n that supports the protective film 200.
  • the directions of nae and n are parallel On the light surface.
  • the polarizing film 300 has an absorption axis and a transmission axis, and polarized light having a vibration direction parallel to the transmission axis can pass through the polarizing film 300.
  • the optical axis (the optical axis of the liquid crystal) of the positive uniaxial A-compensation film can be parallel to the transmission axis of the polarizing film 300, and the incident light passes through the phase
  • the polarization direction after the compensation film is parallel to the transmission axis of the polarizing film 300, so it can completely pass through the polarizing film 300.
  • the positive uniaxial A-compensation film since the positive uniaxial A-compensation film has the function of phase compensation, using the positive uniaxial A-compensation film can not only deflect incident light at the interface to expand the viewing angle and enhance the quality of the side viewing angle. Can also play a role in phase compensation.
  • polyvinyl alcohol is usually used as a polarizing film, and polyvinyl alcohol is extremely hydrophilic.
  • a layer of triacetate cellulose is usually required on both sides of the polarizer.
  • Film, cellulose triacetate support film has high light transmittance, water resistance, and a certain mechanical strength, which can protect polarizers.
  • the optical compensation film 100 and the support protection film 200 are provided on one side of the polarizer, the optical compensation film 100 and the support protection film 200 can perform phase compensation and deflect light, and can also serve as a protective layer.
  • the optical compensation film 100 and the support and protection film 200 need to have appropriate thicknesses to achieve the protection effect on the polarizing film 300.
  • FIG. 4A and FIG. 4B It is a schematic structural diagram and a three-dimensional structural diagram of the optical compensation film 100 in another embodiment.
  • a plurality of convex structures 101 are formed on the light-exiting surface of the optical compensation film 100.
  • the plurality of convex structures 101 are strip-shaped structures and part of the surface of the strip-shaped structures are arc-shaped curved surfaces.
  • the plurality of convex structures 101 may be arranged side by side.
  • the protruding structure 101 can be regarded as a fan-shaped strip-shaped protruding structure.
  • the cross-sectional shape parallel to the paper surface is a fan-shaped shape.
  • One side of the fan-shaped structure is R.
  • the distance in the second direction is Px
  • the height of the fan-shaped convex structure in the first direction is D.
  • the relationship between D and R satisfies the relationship described in the previous embodiment, and Px is less than or equal to 10 ⁇ m.
  • R can also be regarded as The length of the convex structure 101 along the second direction.
  • the convex structure 101 has both an inclined surface and a curved surface, so when the incident light R0 is refracted, a plurality of different refraction angles can be obtained. , So that the outgoing light ray R1 is emitted in all directions, so that the light energy of the positive viewing angle is more evenly distributed to the side viewing angle.
  • the difference between this embodiment and the foregoing embodiment of the arc-shaped curved surface is only the shape, and the specific viewing angle diffusion principle, refractive index, and size representation are the same as the description of the foregoing arc-shaped curved surface, and the optical compensation of this embodiment
  • the first refractive index of the film 100 is greater than the second refractive index of the supporting protective film 200, so that it can be ensured that the light incident vertically is from the light dense medium to the light sparse medium, and the unique convex structure 101 is combined to make the light diffusion.
  • a part of the surface of the convex structure 101 may also be a spherical curved surface, and the convex structure 101 may be distributed in a two-dimensional matrix array on the light emitting surface.
  • a phase compensation film 400 and a pressure-sensitive adhesive layer 500 can be sequentially stacked on the light-emitting side of the polarizing film 300.
  • the phase compensation film 400 can support and protect the polarizing film 300 and phase.
  • the polarizing plate 10 is pasted on the glass substrate through the pressure-sensitive adhesive layer 500.
  • a polarizing plate which includes an optical compensation film, the optical compensation film has a first refractive index, the optical compensation film has a light entrance surface and a light exit surface, and a plurality of convex structures with a predetermined shape are provided on the light exit surface. At least part of the structure has a spherical curved surface, the angle formed by the spherical curved surface and the light incident surface is an acute angle, the optical compensation film is a positive uniaxial A-compensation film, and the first refractive index is a positive uniaxial A-compensation film.
  • Anomalous refractive index, positive uniaxial A-compensation film contains nematic liquid crystal molecules, the optical axis of the nematic liquid crystal molecules is parallel to the light incident surface; a supporting protective film is formed on the light emitting surface, and the supporting protective film has a second refraction The first refractive index is greater than the second refractive index.
  • the supporting protective film is provided with a plurality of grooves having the same shape and size as the convex structure on the surface in contact with the optical compensation film.
  • the polarizing film is provided on the supporting protective film. .
  • the convex structure having a spherical curved surface is provided in the optical compensation film, and at the same time, the incident light perpendicular to the optical compensation film is refracted according to the refraction effect caused by the refractive index different from that of the supporting protective film, so that The light energy of the positive viewing angle is distributed to the side viewing angle, thereby solving the problem of color cast.
  • no additional metal wiring is used in the entire polarizing plate, there is no problem that affects the transmittance of light and further affects the image quality.
  • the present application also discloses a display device.
  • the display device includes a backlight module 5 and a display panel 1 disposed above the backlight module.
  • the backlight module 5 is used to provide incident light R0 (not shown in FIG. 7).
  • the incident light R0 is incident on the display panel 1 in a concentrated manner.
  • the divergent direction of the incident light R0 is at a small angle with the direction perpendicular to the display panel 1. Less than 30 °, most of the light received by the display panel 1 is normal incident light. Since the optical compensation film 100 and the support and protection film 200 exist in the display panel 1 and the light-emitting surface of the optical compensation film 100 is provided with a plurality of projections having a predetermined shape.
  • the lifting structure 101 can deflect perpendicularly incident light to produce outgoing light R1 (not shown in FIG. 7) on the surface of the protruding structure 101 by refraction, thereby allocating positive viewing angle energy to the side viewing angle and improving the image quality of the side viewing angle.
  • the backlight module 5 may include a side-type LED light source 51, a reflection sheet 52, and a light guide plate 53.
  • the upper and lower surfaces of the light guide plate 53 are provided with long V-shaped grooves.
  • the side walls of the V-shaped grooves on the lower surface of the light guide plate 53 are parallel to the side-type light source 51, and the V-shaped grooves on the upper surface of the light guide plate 53 and the V-shaped grooves on the lower surface. Set up perpendicular to each other.
  • FIG. 8 is a schematic diagram of the composition of the display panel in FIG. 7.
  • the display panel 1 includes an upper polarizing plate 1000, a lower polarizing plate 2000, an upper substrate 3000, a lower substrate 4000, and a substrate sandwiched between the upper substrate 3000 and the lower substrate 4000.
  • the incident order of light in the display panel 1 is: first enter the lower polarizing plate 2000, then pass through the lower substrate 4000, then pass through the liquid crystal layer 6000, enter the upper substrate 3000 after rotating through the liquid crystal layer 6000, and finally enter the upper substrate Polarizing plate 1000.
  • the lower polarizing plate 2000 is the polarizing plate 10 described in the foregoing embodiment.
  • the upper polarizing plate 1000 may also be the polarizing plate 10 described in the foregoing embodiment.
  • the following polarizing plate 2000 is used as an example for description.
  • the lower polarizing plate 2000 may include an optical compensation film 100 having a first refractive index, the optical compensation film 100 having a light incident surface and a light emitting surface, and a plurality of convex structures 101 having a predetermined shape provided on the light emitting surface.
  • the convex structure 101 has an acute angle formed by at least part of the surface and the light incident surface; the lower polarizing plate 2000 further includes a support protective film 200 formed on the light exit surface of the optical compensation film 100, and the support protective film 200 has a second refractive index The first refractive index is greater than the second refractive index; the lower polarizing plate 2000 further includes a polarizing film 300 disposed on the supporting and protecting film 200. After the light enters from the optical compensation film 100 and enters the support protective film 200, the optical compensation film 100 can perform phase compensation on the incident light.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

本申请涉及一种偏光板及显示装置,该偏光板包括:折射率较大且开设有多个凸起结构的光学补偿膜,所述凸起结构的部分表面为曲面;折射率较小的支撑保护膜;支撑保护膜开设有多个与所述凸起结构相配合的凹槽。

Description

偏光板及显示装置
相关申请的交叉引用
本申请要求于2018年9月30日提交中国专利局、申请号为201811161397.7、申请名称为“偏光板及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,特别是涉及一种偏光板及显示装置。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有技术。
随着显示技术的发展,显示装置因具有高画质、省电、机身薄等优点而被广泛应用,其中,画质的好坏是影响消费者体验的最主要的因素。显示装置一般由背光模组和置于背光模组上的显示面板构成,背光模组为显示面板提供入射光,该入射光通常是集中垂直入射至显示面板,因此在正视方向观看显示屏时,能获取较好的显示画质,但是在侧视方向观看显示屏时,画质较差,色偏比较严重,使得正常显示的视角较小。目前,在VA(Vertical Alignment liquid crystal,垂直排列)液晶显示器中采用将滤光片中的子像素再次划分为多个次像素的手段来改善侧视角的画质,从而扩大视角。但是这种方法需要更多的TFT(Thin Film Transistor,薄膜晶体管)元件来驱动次像素,如此势必增加面板内部的金属走线,造成可透光的区域变小,影响面板的透光率,影响画质。而若为了保证光亮度,则需提高背光模组的性能,使其产生 更高亮度的入射光,如此又会增加背光成本。
申请内容
根据本申请的各种实施例,提供一种可以改善显示装置的显示视角小、侧视画质较差,同时成本不会提高的偏光板。
此外,还提供一种显示装置。
一种偏光板,包括:
光学补偿膜,所述光学补偿膜具有第一折射率,所述光学补偿膜具有入光面和出光面,且所述出光面上设有多个具有预设形状的凸起结构,所述凸起结构存在至少部分表面为曲面;
支撑保护膜,形成于所述出光面上,所述支撑保护膜具有第二折射率,所述第一折射率大于所述第二折射率,所述支撑保护膜在与所述光学补偿膜接触的面上开设有多个与所述凸起结构形状和大小均相同的凹槽;及
偏光膜,设于所述支撑保护膜上。
一种偏光板,包括:
光学补偿膜,所述光学补偿膜具有第一折射率,所述光学补偿膜具有入光面和出光面,且所述出光面上设有多个具有预设形状的凸起结构,所述凸起结构存在至少部分表面为球形曲面,所述球形曲面与所述入光面所形成的角度为锐角,所述光学补偿膜为正性单轴A-补偿膜,所述第一折射率为所述正性单轴A-补偿膜的反常折射率,所述正性单轴A-补偿膜包含向列相液晶分子,所述向列相液晶分子的光轴平行于所述入光面;
支撑保护膜,形成于所述出光面上,所述支撑保护膜具有第二折射率,所述第一折射率大于所述第二折射率,所述支撑保护膜在与所述光学补偿膜 接触的面上开设有多个与所述凸起结构形状和大小均相同的凹槽;及
偏光膜,设于所述支撑保护膜上。
一种显示装置,包括:
背光模组,设置为提供光源;及
显示面板,置于所述背光模组一侧,设置为显示画面;
其中,所述显示面板包括偏光板,所述偏光板包括:
光学补偿膜,所述光学补偿膜具有第一折射率,所述光学补偿膜具有入光面和出光面,且所述出光面上设有多个具有预设形状的凸起结构,所述凸起结构存在至少部分表面为曲面;
支撑保护膜,形成于所述出光面上,所述支撑保护膜具有第二折射率,所述第一折射率大于所述第二折射率,所述支撑保护膜在与所述光学补偿膜接触的面上开设有多个与所述凸起结构形状和大小均相同的凹槽;及
偏光膜,设于所述支撑保护膜上。
上述偏光板及显示装置,由于设有光学补偿膜和支撑保护膜,且第一折射率大于第二折射率,即光从光学补偿膜的入光面入射至光学补偿膜内并穿透光学补偿膜进入支撑保护膜时,是从光密质进入光疏质中,因此会在两层膜的接触界面发生折射现象,使光线发生偏转。本方案中,光学补偿膜的出光面形成有凸起结构,该凸起结构至少部分表面与入光面形成夹角为锐角,垂直入射光进入光学补偿膜后,在凸起结构的表面形成的入射角小于90°,因此为发生折射,使垂直入射的光线发生偏转,从而使正视角能量分配到侧视角,提高侧视角的画质。同时,光学补偿膜和支撑保护膜还具有相位补偿的功能,能够修正光线经过液晶层后会出现相位延迟以及色偏的现象。
附图说明
为了更清楚地说明本申请实施例或示例性技术中的技术方案,下面将对实施例或示例性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1为一实施例中的偏光板局部结构示意图;
图2为一实施例中的光学补偿膜的结构示意图;
图3A为一实施例中光学补偿膜的立体结构图;
图3B为另一实施例中光学补偿膜的立体示意图;
图4A为另一实施例中的光学补偿膜的结构示意图;
图4B为另一实施例中的光学补偿膜的立体示意图;
图5为一实施例中的偏光板的局部剖视图;
图6为一实施例中的偏光板的结构示意图;
图7为一实施例中的显示装置的结构示意图;
图8为图7中的显示面板结构的剖视图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的可选实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于申请的技术 领域的技术人员通常理解的含义相同。本文中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
在本申请的描述中,需要理解的是,术语“上”、“下”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方法或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
如图1所示,同时结合图6,偏光板10包括光学补偿膜100、支撑保护膜200和偏光膜300。其中,光学补偿膜100具有入光面和出光面,入光面为接收入射光的一面,光线从入射面进入光学补偿膜100并从出光面射出,出光面上设有多个具有预设形状的凸起结构101,凸起结构101存在至少部分表面为曲面,即存在部分表面与入光面所形成的角度为α,α为锐角,满足0°<α<90°。将凸起结构101的部分表面与入光面之间的夹角设置为锐角,可使得光线从入光面进入第一相位补偿膜100后从出光面射出时,会因为出光面上开设的凸起结构101产生折射现象。支撑保护膜200形成于光学补偿膜100上,支撑保护膜200在与光学补偿膜100接触的面上开设有多个与凸起结构101形状和大小均相同的凹槽210,即支撑保护膜200与光学补偿膜100可通过凸起结构101和凹槽210实现完全贴合。光学补偿膜100具有第一折射率n1,支撑保护膜200具有第二折射率n,第一折射率n1大于第二折射率n。当光穿透光学补偿膜40进入支撑保护膜200时,是从光密质进入光疏质,因此在光学补偿膜100与支撑保护膜200的接触界面会发生折射。在显示装置中,由于绝大部分光线是垂直入射至偏光板中,即绝大部分光线 垂直于入光面,本方案通过设置不同折射率的光学补偿膜100和支撑保护膜200并在相位补偿膜100的出光面设置凸起结构101,垂直入射光从光学补偿膜100入射至支撑保护膜200时,结合凸起结构101的表面特征,会在凸起结构101的表面发生折射,改变垂直入射光的传播路径,使光线发生偏转,从而使正视角光型能量分配到大视角,提高侧视角的画质。偏光板10还包括偏光膜300,偏光膜300用于对入射光进行偏振处理并射出偏振光。
在一实施例中,偏光膜300可以为PVA(Polyvinyl alcohol,聚乙烯醇)材料,主要对偏振光起吸收和穿透的作用,偏光膜300选取目前市面上常用的产品,其穿透轴是平行于90/270度方向,吸收轴平行于0/180度方向。当然,偏光膜300还可以选取穿透轴是平行于0/180度方向,吸收轴平行于90/270度方向的产品。
请同时参阅图1和图2,当光线R0垂直穿透光学补偿膜100进入支撑保护膜200时,垂直入射光在凸起结构表面处的入射角为γ,0<γ<90°,因此光线会发生折射,折射角为β,由于光线是从光密质进入光疏质,β大于γ,即光线传播路径发生改变,光线R1偏离原来垂直入射方向,向侧边发散,因此会有更多的光线射入侧边,提高侧视角度的画质。可以理解的,第一折射率n1与第二折射率n的差异越大,发生折射时的折射角度越大,越容易将正视光型能量分配到大视角。在一实施例中,第一折射率n1的取值范围为1.0<n1<2.5,第二折射率n的取值范围为1.0<n<2.5。在一实施例中,若m=n1-n,m的取值范围为0.01<m<1.5。
如图3A所示,光学补偿膜100的出光面形成有多个凸起结构101,多个凸起结构101为条状结构且条状结构的部分表面为圆弧曲面,多个凸起结构101可并排设置。可以理解,这里所说的部分表面可以为凸起结构101的相 对出光面的一面,也就是凸起结构101的上表面。当凸起结构101的上表面为圆弧形曲面时,圆弧曲面与光学补偿膜100入光面的夹角可以为过弧形曲面的表面任一点的切线与入光面的夹角,该夹角为锐角,即为图1中的α,并且,0°<α<90°。如图3B所示,凸起结构101的部分表面也可以为球形曲面,可以理解,这里所说的部分表面可以为凸起结构101的相对出光面的一面,也就是凸起结构101的上表面。多个凸起结构101在出光面上呈二维矩阵阵列分布,也即是呈二维矩阵阵列分布,球形曲面与光学补偿膜100入光面的夹角为过球形曲面表面任一点的切线与入光面的夹角,该夹角为锐角,即为图1中的α,并且,0°<α<90°。由于在显示装置中,背光模组生成的光线大部分是集中垂直入射至显示面板,即入射至相位补偿膜的光线大部分垂直于相位补偿膜的入光面。本方案中,由于设有曲面凸起结构101,可以对垂直入射光线进行折射,光线偏离原来垂直入射方向,向侧边发散,因此会有更多的光线射入侧边,提高侧视角度的画质。当凸起结构101的上表面为圆弧曲面且多个凸起结构101并排排列时,仅在一维方向发生折射,使光线发散到弧形曲面的两侧;当凸起结构101的上表面为球形曲面且多个凸起结构101呈二维矩阵阵列分布时,会在二维平面内发生折射,使光线发散至二维平面的各个角度,从而使各个视角都能呈现较好的画质。
如图2所示,光学补偿膜10可以具有入光面和出光面,出光面和入光面可以是形状和大小均相同的矩形,也可以是其他形状。在凸起结构101的上表面为圆弧曲面或球形曲面时,曲面在第一方向上的半径小于或等于凸起结构101在第一方向上的高度的两倍,第一方向也就是垂直于出光面的方向,这里可以理解为沿Y轴的延伸方向。图2中,R为曲面在第一方向上的半径,D为凸起结构101在第一方向上的高度,半径R和高度D之间的关系可以表 示为R≤2D,使得在膜层较薄时减小曲面的曲率半径,曲率半径越小,折射效果越明显,可以分配到大视角的能量范围就越多。
可选地,相邻两凸起结构101之间存在间隙,也可不存在间隙。请继续参阅图2,凸起结构101为左右对称结构,凸起结构101在第二方向上的长度为Lx,相邻凸起结构101之间的间隔为Px,Px≥Lx、当Px>Lx时,相邻凸起结构101存在间隙,间隙宽度为Px-Lx=X,当P=2r时,相邻凸起结构相互连接,不存在间隙。在一实施例中,Px≥Lx且Px≤10μm,即凸起结构101呈周期间隔排列,光从光密质传播到光疏质时,该间隙相当于光栅,其间隙宽度越接近波长就越容易在相邻凸起结构101之间的间隙处产生衍射现象,而衍射也会改变光线的传播路径,使垂直入射光朝侧边发散,进一步将正视光能量分配到侧视角,提高侧视角的画质。
同理,当凸起结构101的部分表面为球形曲面的时候,其可以具有与条状结构相同的截面,所以,此处可以同时参照图2、图3B,具备球形曲面的凸起结构101在第二方向上的长度为Lx,Px为具备球形曲面的凸起结构101在第二方向上的中心距,Py为具备球形曲面的凸起结构101在第三方向上的中心距,相应的,Ly(图未标示)为具备球形曲面的凸起结构101在第三方向上的长度,可选Lx=Ly,其中,由于出光面为矩形,故,以垂直于出光面的方向为第一方向,以矩形宽度的延伸方向为第二方向,以矩形长度的延伸方向为第三方向,第一方向、第二方向、第三方向三者之间互相垂直,这里,第一方向可以理解为沿Y轴的延伸方向,第二方向可以理解为沿X轴的延伸方向,第三方向可以理解为沿Z轴的延伸方向。Px、Py、Lx、Ly满足:Px≥Lx且Px≤10μm;Py≥Ly且Py≤10μm;10μm为一般像素的开口大小。当Px>Lx,Py>Ly时,相邻凸起结构101存在间隔,即凸起结构101呈点状阵列 分布(二维矩阵阵列分布),光从光密质传播到光疏质时,就可以借助间隔和曲面使垂直入射光朝侧边发散,进一步将正视光能量分配到侧视角,提高侧视角的画质。
可以理解的,光学补偿膜应为可透光的透明或半透明材料制成且具有相位补偿的功能。在一实施例中,光学补偿膜内填充有液晶,液晶为双折射材料,光线进入液晶时会折射成正常光和反常光两条光线,其中,正常光的折射率为正常折射率,反常光的折射率为反常折射率,反常折射率方向为光电场方向与液晶光轴平行的方向,正常折射率方向为光电场与液晶光轴垂直的方向,反常折射率方向与正常折射率方向垂直。在本实施例中,如图5所示,光学补偿膜100可以为正性单轴A-补偿膜,正性单轴A-补偿膜内部可填充向列相液晶102,向列相液晶102为长条棒状型液晶,向列相液晶102的光轴与入光面平行,向列相液晶的反常折射率nae(extraordinary refractive index)方向与向列相液晶的光轴平行,即向列相液晶的反常折射率nae方向与入光面平行,向列相液晶的正常折射率nao(ordinary refractive index)方向垂直于反常折射率nae方向,且nae>nao;支撑保护膜200的第二折射率可以表示为n,第二折射率也即是正常折射率。在本实施例中,第一折射率为正性单光轴A-补偿膜的反常折射率nae,第二折射率为支撑保护膜200的正常折射率n,nae的方向与n的方向均平行于入光面。
偏光膜300具有吸收轴和穿透轴,振动方向与穿透轴平行的偏振光能通过偏光膜300。在一实施例中,为了减小相位补偿膜对光线的偏振影响,可使正性单轴A-补偿膜的光轴(液晶光轴)与偏光膜300的穿透轴平行,入射光经过相位补偿膜后的偏振方向与偏光膜300的穿透轴平行,因此能完全穿过偏光膜300。在本方案中,由于正性单轴A-补偿膜具有相位补偿的功能,利 用正性单轴A-补偿膜除了能使入射光在界面处发生偏转以扩大视角,增强侧视角画质外,还可以起到相位补偿的作用。
示例性技术中,通常使用聚乙烯醇作为偏光膜,而聚乙烯醇具有极强的亲水性,为保护偏光膜的物理特性,通常需在偏光片的两侧设置一层三醋酸纤维素支撑膜,三醋酸纤维素支撑膜具有高透光性、耐水性号且具有一定的机械强度,能对偏光片进行保护。在本实施例中,由于在偏光片的一侧设有光学补偿膜100和支撑保护膜200,光学补偿膜100和支撑保护膜200既能进行相位补偿和对光线进行偏转,也可以充当保护层来保护偏光膜300。需要注意的是,光学补偿膜100和支撑保护膜200需具有合适的厚度以实现对偏光膜300的保护作用。
请继续参阅图4A,图4B。为另一实施例中的光学补偿膜100的结构示意图和立体结构图。光学补偿膜100的出光面上形成的多个凸起结构101,多个凸起结构101为条状结构且条状结构的部分表面为圆弧曲面,多个凸起结构101可以并排设置。如图4B所示,凸起结构101可以看作是一个扇形条状凸起结构,其与纸面平行的剖面形状为一个扇形,扇形的一条边的长度为R,相邻凸起结构101在第二方向上的间距为Px,扇形凸起结构在第一方向的高度为D,D与R之间满足前述实施例所描述的关系,Px小于或等于10μm,这里的R也可以看做是凸起结构101沿第二方向上的长度,在本实施例中,凸起结构101既具备了斜面又具备了曲面,所以在对入射光R0发生折射的时候,可以获得多个不同的折射角度,使得出射光线R1沿各个方向出射,进而使得正视角的光能量分配到侧视角时更加均匀。可以理解,本实施例与前述圆弧形曲面的实施例的不同之处仅在于形状,具体的视角扩散原理、折射率、尺寸表示都与前述圆弧曲面的描述相同,并且本实施例光学补偿膜100 的第一折射率大于支撑保护膜200的第二折射率,这样就可以保证垂直入射的光线都是由光密介质到光疏介质,再配合独有的凸起结构101,使得光线发生扩散。相应地,凸起结构101的部分表面还可以为球形曲面,凸起结构101可以在出光面上呈二维矩阵阵列分布。
如图6所示,在偏光板中,在偏光膜300的出光侧还可依次叠设有相位补偿膜400和压敏胶层500,相位补偿膜400可对偏光膜300起到支撑保护和相位补偿的作用,偏光板10通过压敏胶层500粘贴于玻璃基板上。
还提供一种偏光板,包括光学补偿膜,光学补偿膜具有第一折射率,光学补偿膜具有入光面和出光面,且出光面上设有多个具有预设形状的凸起结构,凸起结构存在至少部分表面为球形曲面,球形曲面与入光面所形成的角度为锐角,光学补偿膜为正性单轴A-补偿膜,第一折射率为正性单轴A-补偿膜的反常折射率,正性单轴A-补偿膜包含向列相液晶分子,向列相液晶分子的光轴平行于入光面;支撑保护膜,形成于出光面上,支撑保护膜具有第二折射率,第一折射率大于第二折射率,支撑保护膜在与光学补偿膜接触的面上开设有多个与凸起结构形状和大小均相同的凹槽;偏光膜,设于支撑保护膜上。
上述实施例,通过在光学补偿膜中设置具有球形曲面的凸起结构,同时根据与支撑保护膜不同的折射率引起的折射效应,可使垂直入射至光学补偿膜的入射光发生折射,从而将正视角的光能量分配到侧视角,进而解决色偏的问题。此外,由于整个偏光板没有采用额外的金属走线,所以不存在影响光线的透射率,进而影响画质的问题。
本申请还公开一种显示装置,如图7所示,包括背光模组5以及置于背光模组上方的显示面板1。背光模组5用于提供入射光R0(图7未示),该入 射光R0集中入射至显示面板1,入射光R0的发散方向与垂直于显示面板1的方向呈小角度,该小角度可小于30°,显示面板1接收到的大部分光为垂直入射光,由于显示面板1内存在光学补偿膜100和支撑保护膜200且光学补偿膜100出光面设有多个具有预设形状的凸起结构101,在凸起结构101表面通过折射可以将垂直入射光进行偏转产生出射光R1(图7未示),从而将正视角能量分配到侧视角,提高侧视角的画质。其中,背光模组5可以包括侧入式LED光源51,反射片52,导光板53。导光板53的上下表面均设有长条V型槽,导光板53下表面V型槽的侧壁与侧入式光源51平行,导光板53上表面的V型槽与下表面的V型槽以相互垂直的方式设置。
请参阅图8,为图7中的显示面板的组成示意图,该显示面板1包括上偏光板1000、下偏光板2000、上基板3000、下基板4000以及夹设于上基板3000与下基板4000之间的液晶层6000,光线在显示面板1中入射顺序为:先进入下偏光板2000,然后经过下基板4000,其次经过液晶层6000,经液晶层6000旋转之后入射进上基板3000,最后进入上偏光板1000。其中下偏光板2000为前述实施例介绍的偏光板10。可以理解,上偏光板1000也可以为前述实施例介绍的偏光板10。此处以下偏光板2000为例进行说明。下偏光板2000可以包括光学补偿膜100,光学补偿膜100具有第一折射率,光学补偿膜100具有入光面和出光面,且出光面上设有多个具有预设形状的凸起结构101,凸起结构101存在至少部分表面与入光面所形成的角度为锐角;下偏光板2000还包括支撑保护膜200,形成于光学补偿膜100的出光面,支撑保护膜200具有第二折射率,第一折射率大于第二折射率;下偏光板2000还包括偏光膜300,设于支撑保护膜200上。光线从光学补偿膜100入射后进入支撑保护膜200,光学补偿膜100可以对入射光线进行相位补偿。由于光 线从光密质进入光疏质,且入射光线在至少部分接触面的入射角不等于90°,因此会发生折射现象,使垂直入射光向侧视角偏转,将正视角能量分配到侧视角,提高侧视角的画质。其中,偏光板10的具体结构已在上文详细介绍,此处不再赘述。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (19)

  1. 一种偏光板,包括:
    光学补偿膜,所述光学补偿膜具有第一折射率,所述光学补偿膜具有入光面和出光面,且所述出光面上设有多个具有预设形状的凸起结构,所述凸起结构存在至少部分表面为曲面;
    支撑保护膜,形成于所述出光面上,所述支撑保护膜具有第二折射率,所述第一折射率大于所述第二折射率,所述支撑保护膜在与所述光学补偿膜接触的面上开设有多个与所述凸起结构形状和大小均相同的凹槽;及
    偏光膜,设于所述支撑保护膜上。
  2. 如权利要求1所述的偏光板,其中,所述凸起结构为条状结构且所述条状结构的部分表面为圆弧曲面,多个所述条状结构并排设置。
  3. 如权利要求1所述的偏光板,其中,所述凸起结构的部分表面为球形曲面,多个所述凸起结构于所述出光面上呈二维矩阵阵列分布。
  4. 如权利要求2所述的偏光板,其中,所述圆弧曲面的半径小于或等于所述条状结构在第一方向上的高度的两倍;
    相邻的所述条状结构的中心距大于或等于所述条状结构在第二方向上的长度、且小于或等于10μm;
    其中,以垂直于所述出光面的方向为第一方向,以所述出光面上垂直于所述条状结构的延伸方向的方向为第二方向。
  5. 如权利要求3所述的偏光板,其中,所述出光面为矩形,所述球形曲面的半径小于或等于所述凸起结构在第一方向上的高度的两倍;
    相邻的所述凸起结构的中心距大于或等于所述凸起结构在第二方向上的长度、且小于或等于10μm;
    相邻的所述凸起结构的中心距大于或等于所述凸起结构在第三方向上的长度、且小于或等于10μm;
    其中,以垂直于所述出光面的方向为第一方向,以所述矩形宽度的延伸方向为第二方向,以所述矩形长度的延伸方向为第三方向,第一方向、第二方向、第三方向三者之间互相垂直。
  6. 如权利要求1所述的偏光板,其中,所述光学补偿膜为正性单轴A-补偿膜,所述第一折射率为所述A-补偿膜的反常折射率,所述正性单轴A-补偿膜包含向列相液晶分子,所述向列相液晶分子的光轴平行于所述入光面。
  7. 如权利要求6所述的偏光板,其中,所述偏光膜具有穿透轴,偏振方向平行于所述穿透轴的光线可透过所述偏光膜,所述正性单轴A-补偿膜的光轴与所述穿透轴平行。
  8. 如权利要求1所述的偏光板,其中,所述第一折射率的取值范围为1.0-2.5。
  9. 如权利要求1所述的偏光板,其中,所述第二折射率的取值范围为1.0-2.5。
  10. 如权利要求1所述的偏光板,其中,所述第一折射率与所述第二折射率之间的差值范围为0.01-1.5。
  11. 如权利要求1所述的偏光板,其中,所述偏光膜包括聚乙烯醇膜。
  12. 如权利要求1所述的偏光板,其中,所述偏光板还包括相位补偿膜,设于所述偏光膜上,设置为对所述偏光膜进行相位补偿。
  13. 如权利要求12所述的偏光板,其中,所述偏光板还包括压敏胶层,设于所述相位补偿膜上。
  14. 一种偏光板,包括:
    光学补偿膜,所述光学补偿膜具有第一折射率,所述光学补偿膜具有入光面和出光面,且所述出光面上设有多个具有预设形状的凸起结构,所述凸起结构存在至少部分表面为球形曲面,所述球形曲面与所述入光面所形成的角度为锐角,所述光学补偿膜为正性单轴A-补偿膜,所述第一折射率为所述正性单轴A-补偿膜的反常折射率,所述正性单轴A-补偿膜包含向列相液晶分子,所述向列相液晶分子的光轴平行于所述入光面;
    支撑保护膜,形成于所述出光面上,所述支撑保护膜具有第二折射率,所述第一折射率大于所述第二折射率,所述支撑保护膜在与所述光学补偿膜接触的面上开设有多个与所述凸起结构形状和大小均相同的凹槽;及
    偏光膜,设于所述支撑保护膜上。
  15. 一种显示装置,包括:
    背光模组,设置为提供光源;及
    显示面板,置于所述背光模组一侧,设置为显示画面;
    其中,所述显示面板包括偏光板,所述偏光板包括:
    光学补偿膜,所述光学补偿膜具有第一折射率,所述光学补偿膜具有入光面和出光面,且所述出光面上设有多个具有预设形状的凸起结构,所述凸起结构存在至少部分表面为曲面;
    支撑保护膜,形成于所述出光面上,所述支撑保护膜具有第二折射率,所述第一折射率大于所述第二折射率,所述支撑保护膜在与所述光学补偿膜接触的面上开设有多个与所述凸起结构形状和大小均相同的凹槽;及
    偏光膜,设于所述支撑保护膜上。
  16. 根据权利要求15所述的显示装置,其中,所述背光模组包括:
    光源;
    反射片;及
    导光板;其中,所述导光板的上下表面均设有V型条状凹槽。
  17. 根据权利要求16所述的显示装置,其中,所述光源为侧入式光源,所述导光板下表面的V型条状凹槽的侧壁与所述侧入式光源平行。
  18. 根据权利要求16所述的显示装置,其中,所述导光板上表面的V型条状凹槽与所述导光板下表面的V型条状凹槽以相互垂直的方式设置。
  19. 根据权利要求15所述的显示装置,其中,所述显示面板包括:
    下偏光板;
    下基板,设置于所述下偏光板上;
    上基板;
    上偏光板,设置于所述上基板上;及
    夹设于所述上基板与所述下基板之间的液晶层。
PCT/CN2018/119682 2018-09-30 2018-12-07 偏光板及显示装置 WO2020062587A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811161397.7A CN109212652A (zh) 2018-09-30 2018-09-30 偏光板及显示装置
CN201811161397.7 2018-09-30

Publications (1)

Publication Number Publication Date
WO2020062587A1 true WO2020062587A1 (zh) 2020-04-02

Family

ID=64982829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119682 WO2020062587A1 (zh) 2018-09-30 2018-12-07 偏光板及显示装置

Country Status (2)

Country Link
CN (1) CN109212652A (zh)
WO (1) WO2020062587A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109633985A (zh) * 2019-01-30 2019-04-16 惠科股份有限公司 光学膜层和显示装置
CN109633987A (zh) * 2019-01-30 2019-04-16 惠科股份有限公司 光学膜层和显示装置
TWI785222B (zh) * 2019-03-26 2022-12-01 微采視像科技股份有限公司 光學元件及顯示裝置
TWI807368B (zh) * 2021-07-15 2023-07-01 友達光電股份有限公司 視角補償膜及使用其之顯示裝置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1745329A (zh) * 2003-01-28 2006-03-08 Lg化学株式会社 具有正补偿膜的垂直排列型液晶显示器
CN101413641A (zh) * 2008-12-03 2009-04-22 友达光电股份有限公司 导光板与背光模块
US20180267358A1 (en) * 2017-03-15 2018-09-20 Lg Display Co., Ltd. Display device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070195251A1 (en) * 2006-02-22 2007-08-23 Toppoly Optoelectronics Corp. Systems for displaying images involving alignment liquid crystal displays
CN101158778A (zh) * 2007-11-14 2008-04-09 友达光电(苏州)有限公司 广视角膜与应用该广视角膜的液晶显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1745329A (zh) * 2003-01-28 2006-03-08 Lg化学株式会社 具有正补偿膜的垂直排列型液晶显示器
CN101413641A (zh) * 2008-12-03 2009-04-22 友达光电股份有限公司 导光板与背光模块
US20180267358A1 (en) * 2017-03-15 2018-09-20 Lg Display Co., Ltd. Display device

Also Published As

Publication number Publication date
CN109212652A (zh) 2019-01-15

Similar Documents

Publication Publication Date Title
WO2020062584A1 (zh) 偏光结构及显示装置
WO2020062587A1 (zh) 偏光板及显示装置
WO2020062458A1 (zh) 偏光结构及显示装置
WO2020062591A1 (zh) 偏光板及显示装置
WO2020087620A1 (zh) 光学复合膜、显示面板和显示装置
WO2020062593A1 (zh) 偏光结构及显示装置
WO2020062563A1 (zh) 偏光结构及显示装置
WO2020062585A1 (zh) 偏光片和显示装置
WO2020087635A1 (zh) 光学复合膜、显示面板和显示装置
WO2020087624A1 (zh) 光学复合膜、显示面板和显示装置
WO2020087625A1 (zh) 光学复合膜、显示面板和显示装置
WO2020062577A1 (zh) 偏光片和显示装置
WO2020062603A1 (zh) 偏光结构及显示装置
WO2020155206A1 (zh) 光学膜层和显示装置
WO2020062565A1 (zh) 偏光结构及显示装置
WO2020087634A1 (zh) 光学复合膜层、显示面板和显示装置
WO2020062578A1 (zh) 偏光结构及显示装置
WO2020062559A1 (zh) 偏光结构及显示装置
WO2020155279A1 (zh) 光学膜层和显示装置
WO2020062558A1 (zh) 偏光结构及显示装置
WO2020062600A1 (zh) 偏光结构及显示装置
WO2020155281A1 (zh) 光学膜层和显示装置
WO2020087632A1 (zh) 光学复合膜、显示面板和显示装置
WO2020087630A1 (zh) 光学复合膜、显示面板和显示装置
WO2020062592A1 (zh) 偏光板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/07/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18934842

Country of ref document: EP

Kind code of ref document: A1