WO2020062543A1 - 以含有聚氧乙烯聚氧丙烯醚嵌段共聚物的乳化配方制备多糖微球的方法 - Google Patents

以含有聚氧乙烯聚氧丙烯醚嵌段共聚物的乳化配方制备多糖微球的方法 Download PDF

Info

Publication number
WO2020062543A1
WO2020062543A1 PCT/CN2018/118592 CN2018118592W WO2020062543A1 WO 2020062543 A1 WO2020062543 A1 WO 2020062543A1 CN 2018118592 W CN2018118592 W CN 2018118592W WO 2020062543 A1 WO2020062543 A1 WO 2020062543A1
Authority
WO
WIPO (PCT)
Prior art keywords
polysaccharide
block copolymer
polyoxyethylene polyoxypropylene
polyoxypropylene ether
oil phase
Prior art date
Application number
PCT/CN2018/118592
Other languages
English (en)
French (fr)
Inventor
梁鑫淼
张洲毓
于伟
郭志谋
刘子豪
刘坤
Original Assignee
泰州医药城国科化物生物医药科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泰州医药城国科化物生物医药科技有限公司 filed Critical 泰州医药城国科化物生物医药科技有限公司
Publication of WO2020062543A1 publication Critical patent/WO2020062543A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons

Definitions

  • the invention relates to the field of preparing polysaccharide microspheres, in particular to a method for preparing polysaccharide microspheres by using an emulsified formula containing a polyoxyethylene polyoxypropylene ether block copolymer.
  • Polysaccharides are also known as polysaccharides.
  • the main structure is a polymer composed of aldose or ketose monomers connected by glycosidic bonds. They are abundant biological macromolecules in nature. They are extremely widely distributed and almost exist in In all living things, such as plant fiber tissue, glycogen in animals, and glycoproteins on cell membranes. Natural polysaccharides have excellent biocompatibility and biodegradability, so they have more advantages in drug carriers than other polymer materials.
  • emulsion polymerization is the most common method for preparing microspheres.
  • Traditional emulsion polymerization uses an oil-in-water emulsion called a normal phase emulsion; and a water-in-oil emulsion is called an inverse emulsion.
  • the emulsion method has the advantages of simple process and batch preparation.
  • the emulsifier is a key component that affects the emulsion system and the polymerization reaction.
  • the type and amount of the emulsifier determine the success or failure of the preparation of microspheres. Therefore, the selection and application of emulsifiers has been an important content of emulsion polymerization research .
  • emulsifiers are mainly composed of small molecule surfactants. Their structure is characterized by a molecule consisting of a hydrophilic head with (positive / negative) ions and a hydrophobic fatty chain. The hydrophilic ionic part can be positive. Charged quaternary ammonium ion or negatively charged phosphate / sulfonate ion.
  • emulsion systems are increasingly used in biological or life science systems, which makes the issue of residues of emulsifiers and biological safety more and more important. .
  • the positively-charged quaternary ammonium ion has great biological toxicity, and once it remains in use, it will cause great harm to people or other living organisms.
  • the residue of other ionic groups will increase the ionic strength of the emulsion or emulsification system, and cause unnecessary biological residues or non-specific adsorption problems. Therefore, it must be gradually avoided in the emulsion system.
  • non-ionic emulsifiers have become a point of concern in the study of emulsification systems.
  • the application of polyoxyethylene polyoxypropylene ether block copolymers as emulsifiers has attracted the most attention.
  • a new type of non-ionic polymer emulsifier a series of commercial products of polyoxyethylene polyoxypropylene ether block copolymer have appeared, and its trade name is Pluronic.
  • Pluronic As a block polymer, polyoxyethylene polyoxypropylene ether block copolymer does not have a charged group.
  • polyoxyethylene polyoxypropylene ether block copolymers can be used alone or together with other emulsifiers to increase the scope of use of this type of nonionic polymer emulsifiers (Lu Jianjun, Zhao Xiaobo, Liu Miaoqing, Polymer Journal, 2010, 12, 1479-1482. Yang Jianping, Wei Gang, Ju Xiaojie, Chu Liangyin, Chemical Research and Application, 2009, 5, 699).
  • the polyoxyethylene polyoxypropylene ether block copolymer has been approved by the FDA for use in pharmaceutical preparations, and its biosafety and biocompatibility are beyond doubt.
  • polyoxyethylene polyoxypropylene ether block copolymers have a large HLB value, that is, a hydrophilic / lipophilic balance value, so they often exist in the form of oil-in-water in an emulsified system.
  • HLB value that is, a hydrophilic / lipophilic balance value
  • polysaccharide microspheres because the polysaccharide has better affinity with water molecules, the process of preparing microspheres by emulsification is often achieved in the form of water-in-oil. Therefore, from the perspective of the balance between water and oil, polyoxyethylene polyoxypropylene ether block copolymers are often difficult to achieve the water-in-oil emulsification process, and the particle size of the microspheres is often difficult to control.
  • the emulsifier with a lower HLB value together with the polyoxyethylene polyoxypropylene ether block copolymer, or fully consider the balance between oil and water in the emulsification process.
  • the use of high HLB value polyoxyethylene polyoxypropylene ether block copolymers will make the emulsification system often exhibit the characteristics of a composite emulsification system, especially in a water-in-oil system, often The existence of more complex oil-in-water-in-oil structures can be observed.
  • the internal oil phase can function as a pore-forming agent, thereby achieving a structure with large pores inside the emulsified microspheres.
  • the technical problem to be solved by the present invention is to overcome the shortcomings of the prior art and provide a method for preparing non-toxic and harmless polysaccharide microspheres with good biocompatibility.
  • the invention provides a method for preparing polysaccharide microspheres by an inverse emulsion polymerization method. Using polyoxyethylene polyoxypropylene ether block copolymer as an emulsifier, a spherical polysaccharide hydrogel is formed in the oil phase. Shape the microspheres.
  • a method for preparing polysaccharide microspheres from an emulsified formulation containing a polyoxyethylene polyoxypropylene ether block copolymer the steps are as follows:
  • the emulsifier in step 1) is Span 65, Span 80, Span 85, and Tween 20.
  • oil phase in step 1) is edible oil, liquid paraffin, cetyl alcohol, octadecene, and oleic acid.
  • the polysaccharide used in step 1) is cellulose, sodium alginate, chitosan, agarose, and carrageenan.
  • the volume ratio of the polysaccharide aqueous solution to the oil phase is 1: 3-1: 5.
  • the temperature reduction rate in step 3 is 1-5 ° C / min, preferably 2-3 ° C / min.
  • the polysaccharide microspheres prepared by the invention are non-toxic and harmless, and have biodegradability and good biocompatibility.
  • the present invention uses edible oil, liquid paraffin, cetyl alcohol, octadecene, oleic acid and other non-toxic or low-toxic organic phases as the oil phase. The harm can be ignored;
  • the polyoxyethylene polyoxypropylene ether block copolymer is non-toxic and harmless, and can be prepared at a concentration of 6-9mg / mL and a water-to-oil ratio of 1: 3-1: 5. 20-500 micron polysaccharide microspheres are produced;
  • the polysaccharide microsphere size can be controlled by adjusting the oil phase and water phase comparison, emulsifier concentration, and stirring rate.
  • A, b, and c in FIG. 1 are optical microscope images of Example 1, Example 2, and Example 3, respectively.
  • the raw materials used in the examples are all conventional commercially available products.
  • a method for synthesizing polysaccharide microspheres based on a polyoxyethylene polyoxypropylene ether block copolymer includes the following steps:
  • Disperse polyoxyethylene polyoxypropylene ether block copolymer (average molecular weight 2750, polyoxyethylene segment content 40%) into liquid paraffin, dilute to a concentration of 8mg / mL, and reserve; dilute agarose aqueous solution to 6wt% ,spare.
  • the reaction system was lowered to room temperature, and the cooling rate was 2 ° C./min.
  • Agarose polysaccharide microspheres were obtained through filtration and water washing, and the size of the polysaccharide microspheres was 100-200 ⁇ m.
  • Disperse polyoxyethylene polyoxypropylene ether block copolymer (average molecular weight 2750, polyoxyethylene segment content is 40%) into corn germ oil, dilute to a concentration of 6mg / mL, and reserve; dilute carrageenan aqueous solution to 7wt %,spare.
  • the reaction system was lowered to room temperature, and the temperature reduction rate was 2 ° C / min.
  • Carrageenan polysaccharide microspheres were obtained through filtration and water washing, and the size of the polysaccharide microspheres was 50-80 microns.
  • Disperse polyoxyethylene polyoxypropylene ether block copolymer (average molecular weight 2750, polyoxyethylene segment content 40%) into liquid paraffin, dilute to a concentration of 7mg / mL, and reserve; dilute sodium alginate aqueous solution to 6wt %,spare.
  • the reaction system was lowered to room temperature, and the temperature reduction rate was 3 ° C / min.
  • Sodium alginate polysaccharide microspheres were obtained through filtration and water washing, and the size of the polysaccharide microspheres was 20-50 microns.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Preparation (AREA)

Abstract

一种以含有聚氧乙烯聚氧丙烯醚嵌段共聚物的乳化配方制备多糖微球的方法,包括:将包括有聚氧乙烯聚氧丙烯醚嵌段共聚物的乳化剂或乳化剂混合物加入到油相中,得到含有聚氧乙烯聚氧丙烯醚嵌段共聚物的油相步骤;将多糖加入到水相中,加热,得到含有多糖的水相步骤;将上述油相和水相混合,得到W/O乳液步骤;将W/O乳液在搅拌定型,过滤得微球步骤。多糖微球具有内部大孔的结构、无毒、可生物降解、具有良好的生物相容性。

Description

一种以含有聚氧乙烯聚氧丙烯醚嵌段共聚物的乳化配方制备多糖微球的方法 技术领域
本发明涉及多糖微球制备领域,特别涉及一种以含有聚氧乙烯聚氧丙烯醚嵌段共聚物的乳化配方制备多糖微球的方法。
背景技术
多糖又称为多聚糖(polysaccharide),主要结构是由醛糖或者酮糖单体经过糖苷键连接而成的多聚物,是自然界中存量丰富的生物大分子,分布极其广泛,几乎存在于一切生命体中,比如植物纤维组织,动物体内的糖原,细胞膜上的糖蛋白。天然多糖具有优良的生物相容性与可生物降解性,故其在药物载体中较其他高分子材料具有更多的优势。
多糖微球制备的方法有很多种,常见的有微流体法、自组装法、喷雾干燥法、乳液聚合法,其中乳液聚合法是最为常见的一种微球制备方法。传统的乳液聚合采用水包油乳液被称为正相乳液;而油包水乳液被称为反相乳液。相比于其他微球制备方法,乳液法制备微球具有工艺简单,可批量制备的优点。
在反相乳液聚合中,乳化剂是影响乳液体系及聚合反应的关键组分,其种类和用量都决定着微球的制备成败,因而关于乳化剂的选择和应用一直是乳液聚合研究的重要内容。
传统上乳化剂主要以小分子表面活性剂为主,其结构特征在于分子由一个带有(正/负)离子的亲水头部和疏水的脂肪链组成,亲水的离子部分可以是带正电荷的季铵离子或带有负电荷的磷酸根/磺酸根离子。但是考虑乳化技术的不断发展及乳化液的使用范围日益广泛,乳液体系正越来越多的应用于生物或生命科学体系,这就使得乳化剂的残留以及生物安全性的问题越来越受到重视。其中,带正电荷的季铵离子其具有较大的生物毒性,使用中一旦残留,会对人或其它生命体带来较大的伤害。而其它离子基团的残留则会提升乳液或乳化体系的离子强度,带来不必要的生物残留或非特异性吸附问题,因此,也是需要逐步在乳化体系之中避免的。
因此,近年来非离子型乳化剂的开发及应用,正成为乳化体系研究中备受关注的一点。其中,以聚氧乙烯聚氧丙烯醚嵌段共聚物作为乳化剂的应用,最为人所关注。作为 一种新型的非离子型高分子乳化剂,聚氧乙烯聚氧丙烯醚嵌段共聚物目前已经有系列化的商品出现,其商品名为普流尼克(Pluronic)。作为一种嵌段高分子聚合物,聚氧乙烯聚氧丙烯醚嵌段共聚物不具有带电荷的基团,依靠聚氧化乙烯和聚氧化丙烯亲水/亲脂能力的差异,通过改变两者的比例关系来实现对于乳化行为的调控。在使用中,聚氧乙烯聚氧丙烯醚嵌段共聚物可以单独或者与其它乳化剂共同使用,以增加该类非离子型高分子乳化剂的使用范围(卢建军,赵晓博,刘妙青,高分子学报,2010,12,1479-1482。杨建平,魏刚,巨晓洁,褚良银,化学研究与应用,2009,5,699)。同时,应当指出的是,聚氧乙烯聚氧丙烯醚嵌段共聚物已被FDA批准用于药物制剂来使用,其生物安全性和生物相容性是毋庸置疑的。
一般来讲,聚氧乙烯聚氧丙烯醚嵌段共聚物具有较大的HLB值,即亲水/亲油平衡值,因此在乳化体系中往往以水包油的形式存在。而对于多糖微球的制备过程,由于多糖与水分子有更好的亲和能力,因此通过乳化制备微球的过程往往是以油包水的形式实现的。因此,从水油两相的平衡角度来讲,聚氧乙烯聚氧丙烯醚嵌段共聚物往往很难实现油包水的乳化过程,得到微球的粒径往往难以控制。因此,就需要HLB值较低的乳化剂与聚氧乙烯聚氧丙烯醚嵌段共聚物共同使用,或者在乳化的过程中充分考虑油、水两相的平衡问题。同时,还有一点值得注意的,高HLB值聚氧乙烯聚氧丙烯醚嵌段共聚物的使用,会使得乳化体系往往呈现出复合乳化体系的特征,特别是在油包水的体系中,往往可以观察到更加复杂的油包水包油结构的存在。此时内部的油相即可起到制孔剂的作用,从而实现在乳化微球的内部得到大孔的结构。
发明内容
本发明所要解决的技术问题是克服现有技术的不足,提供一种无毒无害,生物相容性良好的多糖微球制备方法。
本发明提供一种通过反相乳液聚合方法制备多糖微球的方法,以聚氧乙烯聚氧丙烯醚嵌段共聚物为乳化剂,在油相中形成球形的多糖水凝胶,通过快速降温,使微球成型。
一种以含有聚氧乙烯聚氧丙烯醚嵌段共聚物的乳化配方制备多糖微球的方法,步骤如下:
1)将聚氧乙烯聚氧丙烯醚嵌段共聚物(平均分子量2750,聚氧化乙烯段含量为10-60%,优选40%)或与乳化剂的混合物分散到油相中,稀释成浓度为5-10mg/mL,优选6-9mg/mL,备用;将多糖水溶液稀释到2-10wt%,优选3-8wt%,备用;
2)将多糖水溶液加入至油相中,60℃-120℃下,300-700rpm机械搅拌,使其充分乳化,得到均匀的W/O乳液;
3)将反应体系降至室温,通过过滤、水洗得到多糖微球。
进一步地,步骤1)中所述乳化剂为司班65、司班80、司班85、吐温20。
进一步地,步骤1)所述油相为食用油、液状石蜡、十六醇、十八烯、油酸。
进一步地,步骤1)中所用的多糖为纤维素、海藻酸钠、壳聚糖、琼脂糖、卡拉胶。
进一步地,步骤2)中多糖水溶液与油相混合的过程中,多糖水溶液与油相的体积比为1:3-1:5。
进一步地,步骤3)降温速率为1-5℃/min,优选为2-3℃/min。
本发明制得的多糖微球,无毒无害,具有生物可降解性以及良好的生物相容性。
本发明的有益效果:
(1)本发明采用食用油、液状石蜡、十六醇、十八烯、油酸等无毒或低毒有机相为油相,即使有少量油相残留,也易于清洗或残留对人体带来的危害可以忽略;
(2)本发明采用的乳化剂,聚氧乙烯聚氧丙烯醚嵌段共聚物无毒无害,且按照6-9mg/mL的浓度,1:3-1:5的水油比,可制备出20-500微米的多糖微球;
(3)本发明通过调剂油相和水相比例,乳化剂浓度,搅拌速率可以实现多糖微球尺寸的控制。
附图说明
图1中的a、b、c分别为为实施例1、实施例2、实施例3的光学显微镜图。
具体实施方式
下面以具体的实施例来进一步阐述本发明。
需要强调的是,以下的实施例仅用于说明本发明而不是限制本发明的范围。
实施例中所用原料均为常规市购产品。
实施例1
一种基于聚氧乙烯聚氧丙烯醚嵌段共聚物的多糖微球合成方法,包括以下步骤:
将聚氧乙烯聚氧丙烯醚嵌段共聚物(平均分子量2750,聚氧化乙烯段含量为40%)分散到液状石蜡中,稀释成浓度为8mg/mL,备用;将琼脂糖水溶液稀释到6wt%,备用。
取100mL琼脂糖水相加入至500mL聚氧乙烯聚氧丙烯醚嵌段共聚物油相(液体石 蜡)中,60℃下,500rpm机械搅拌,使其充分乳化,得到均匀的W/O乳液;
将反应体系降至室温,降温速率为2℃/min,通过过滤、水洗得到琼脂糖多糖微球,多糖微球尺寸100-200微米。
实施例2
将聚氧乙烯聚氧丙烯醚嵌段共聚物(平均分子量2750,聚氧化乙烯段含量为40%)分散到玉米胚芽油中,稀释成浓度为6mg/mL,备用;将卡拉胶水溶液稀释到7wt%,备用。
取100mL琼脂糖水相加入至300mL聚氧乙烯聚氧丙烯醚嵌段共聚物油相(玉米胚芽油)中,90℃下,700rpm机械搅拌,使其充分乳化,得到均匀的W/O乳液;
将反应体系降至室温,降温速率为2℃/min,通过过滤、水洗得到卡拉胶多糖微球,多糖微球尺寸50-80微米。
实施例3
将聚氧乙烯聚氧丙烯醚嵌段共聚物(平均分子量2750,聚氧化乙烯段含量为40%)分散到液状石蜡中,稀释成浓度为7mg/mL,备用;将海藻酸钠水溶液稀释到6wt%,备用。
取100mL琼脂糖水相加入至400mL聚氧乙烯聚氧丙烯醚嵌段共聚物油相(液体石蜡)中,100℃下,300rpm机械搅拌,使其充分乳化,得到均匀的W/O乳液;
将反应体系降至室温,降温速率为3℃/min,通过过滤、水洗得到海藻酸钠多糖微球,多糖微球尺寸20-50微米。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种以含有聚氧乙烯聚氧丙烯醚嵌段共聚物的乳化配方制备多糖微球的方法,其特征在于:步骤如下:
    1)将聚氧乙烯聚氧丙烯醚嵌段共聚物(平均分子量2750,聚氧化乙烯段含量为10-60%)或与乳化剂的混合物分散到油相中,稀释成浓度为5-10mg/mL,备用;将多糖水溶液稀释到2-10wt%,备用;
    2)将多糖水溶液加入至油相中,60℃-120℃下,300-700rpm机械搅拌,使其充分乳化,得到均匀的W/O乳液;
    3)将反应体系降至室温,通过过滤、水洗得到多糖微球。
  2. 根据权利要求1所述的方法,其特征在于:步骤1)中所述乳化剂为司班65、司班80、司班85、吐温20。
  3. 根据权利要求1所述的方法,其特征在于:步骤1)所述油相为食用油、液状石蜡、十六醇、十八烯、油酸。
  4. 根据权利要求1所述的方法,其特征在于:步骤1)中所用的多糖为纤维素、海藻酸钠、壳聚糖、琼脂糖、卡拉胶。
  5. 根据权利要求1所述的方法,其特征在于:步骤1)所述步骤为将聚氧乙烯聚氧丙烯醚嵌段共聚物(平均分子量2750,聚氧化乙烯段含量为40%)或与乳化剂的混合物分散到油相中,稀释成浓度为6-9mg/mL,备用;将多糖水溶液稀释到6-9wt%,备用.
  6. 根据权利要求1所述的方法,其特征在于:步骤2)中多糖水溶液与油相混合的过程中,多糖水溶液与油相的体积比为1:3-1:5。
  7. 根据权利要求1所述的方法,其特征在于:步骤3)降温速率为1-5℃/min。
  8. 根据权利要求7所述的方法,其特征在于:步骤3)降温速率为为2-3℃/min。
PCT/CN2018/118592 2018-09-29 2018-11-30 以含有聚氧乙烯聚氧丙烯醚嵌段共聚物的乳化配方制备多糖微球的方法 WO2020062543A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811144636.8A CN110961053A (zh) 2018-09-29 2018-09-29 一种以含有聚氧乙烯聚氧丙烯醚嵌段共聚物的乳化配方制备多糖微球的方法
CN201811144636.8 2018-09-29

Publications (1)

Publication Number Publication Date
WO2020062543A1 true WO2020062543A1 (zh) 2020-04-02

Family

ID=69949210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118592 WO2020062543A1 (zh) 2018-09-29 2018-11-30 以含有聚氧乙烯聚氧丙烯醚嵌段共聚物的乳化配方制备多糖微球的方法

Country Status (2)

Country Link
CN (1) CN110961053A (zh)
WO (1) WO2020062543A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111610334A (zh) * 2020-05-18 2020-09-01 山东省肿瘤防治研究院(山东省肿瘤医院) 一种基于细胞大小过滤识别肿瘤患者外周血循环肿瘤细胞的方法
CN114947097B (zh) * 2022-06-10 2023-10-27 青岛瑞可莱餐饮配料有限公司 一种复合食品增香剂及其制备方法
CN115197479B (zh) * 2022-06-17 2023-09-08 苏州百奥吉生物科技有限公司 一种粒径均一多糖微球及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102389755A (zh) * 2011-08-02 2012-03-28 北京化工大学 一种琼脂凝胶微球的制备方法
CN103194008A (zh) * 2013-03-26 2013-07-10 中国科学院过程工程研究所 一种尺寸均一的小粒径魔芋葡甘聚糖微球及其制备方法
CN106496597A (zh) * 2016-11-22 2017-03-15 中国科学院过程工程研究所 一种利用离子液体制备多糖微球的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100929195B1 (ko) * 2007-12-18 2009-12-01 한국식품연구원 캡사이신을 포함하는 나노캡슐 및 그의 제조방법
CN103113626B (zh) * 2013-01-23 2016-01-20 中国科学院过程工程研究所 一种超大孔多糖微球及其制备方法
CN108239293B (zh) * 2016-12-27 2021-04-20 中国海洋大学 一种浒苔多糖微球及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102389755A (zh) * 2011-08-02 2012-03-28 北京化工大学 一种琼脂凝胶微球的制备方法
CN103194008A (zh) * 2013-03-26 2013-07-10 中国科学院过程工程研究所 一种尺寸均一的小粒径魔芋葡甘聚糖微球及其制备方法
CN106496597A (zh) * 2016-11-22 2017-03-15 中国科学院过程工程研究所 一种利用离子液体制备多糖微球的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WEI, GANG ET AL.: "Stabilization of Recombinant Human Growth Hormone Against Emulsification-Induced Aggregation by Pluronic Surfactants During Microencapsulation", INTERNATIONAL JOURNAL OF PHARMACEUTICS, vol. 338, 2 February 2007 (2007-02-02), pages 125 - 132, XP002599480, ISSN: 0378-5173, DOI: 20190513152547A *

Also Published As

Publication number Publication date
CN110961053A (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
WO2020062543A1 (zh) 以含有聚氧乙烯聚氧丙烯醚嵌段共聚物的乳化配方制备多糖微球的方法
Varanasi et al. Pickering emulsions electrostatically stabilized by cellulose nanocrystals
US11446227B2 (en) Pumpkin seed protein nanoparticles, methods for preparing and using thereof
Bai et al. Self-assembled networks of short and long chitin nanoparticles for oil/water interfacial superstabilization
Yue et al. Effect of ultrasound assisted emulsification in the production of Pickering emulsion formulated with chitosan self-assembled particles: Stability, macro, and micro rheological properties
DE69635127T2 (de) Verfahren zur herstellung von vernetzten wasserlöslichen polymerpartikel, die partikel und ihre verwendung
CN107855080A (zh) 高分子凝胶颗粒、其制备方法、包含其的复合凝胶颗粒及用途
Medeiros et al. Synthesis of biocompatible and thermally sensitive poly (N‐vinylcaprolactam) nanogels via inverse miniemulsion polymerization: Effect of the surfactant concentration
Qiao et al. Stability and rheological behaviors of different oil/water emulsions stabilized by natural silk fibroin
CN112891626B (zh) 一种用于组织再生修复的微凝胶组装体支架及其制备方法
WO2008131664A1 (fr) Microsphères de gel d'agarose et leur procédé de préparation
JP2011527900A (ja) カルボキシメチルセルロース成分を欠くバクテリアセルロース含有製剤
CN107242999A (zh) 一种固体多重自乳化载体及其制备方法
CN111808301A (zh) 纳米粒子与纳米纤维复合物稳定高内相乳液的制备方法
CN108851019A (zh) 一种细菌纤维素稳定的皮克林双乳液及其制备方法
Magdassi et al. Formation of positively charged microcapsules based on chitosan-lecithin interactions
CN102921013A (zh) 具有孔隙结构的壳聚糖纳米粒的制备方法及应用
JP2017504707A (ja) フィラー用ポリジオキサノン粒子の製造方法
US3549555A (en) Encapsulation of lipophilic liquid-in-hydrophilic liquid emulsions
Li et al. Novel bacterial cellulose-TiO2 stabilized Pickering emulsion for photocatalytic degradation
Tian et al. Pickering emulsions produced with kraft lignin colloids destabilized by in situ pH shift: Effect of emulsification energy input and stabilization mechanism
CN101792149A (zh) 球状二氧化硅空心材料及其制备方法
US6590096B1 (en) Process for the production of polysaccharide beads
KR20110100857A (ko) 알지네이트 미세입자와 칼슘 카보네이트 미세입자를 함유한 pH 민감성 마이크로 캡슐 및 그 제조방법
CN111909427A (zh) 壳聚糖-纤维素硫酸酯磁性多孔复合微球及其制备与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18935129

Country of ref document: EP

Kind code of ref document: A1