WO2020062504A1 - 机臂组件及包括该机臂组件的无人机 - Google Patents

机臂组件及包括该机臂组件的无人机 Download PDF

Info

Publication number
WO2020062504A1
WO2020062504A1 PCT/CN2018/116471 CN2018116471W WO2020062504A1 WO 2020062504 A1 WO2020062504 A1 WO 2020062504A1 CN 2018116471 W CN2018116471 W CN 2018116471W WO 2020062504 A1 WO2020062504 A1 WO 2020062504A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
positioning
positioning hole
machine
arm assembly
Prior art date
Application number
PCT/CN2018/116471
Other languages
English (en)
French (fr)
Inventor
颜钊
谭敏哲
杨康
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880042130.8A priority Critical patent/CN110972471A/zh
Publication of WO2020062504A1 publication Critical patent/WO2020062504A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms

Definitions

  • Embodiments of the present disclosure relate to the technical field of drones, and in particular, to an arm assembly and an unmanned aerial vehicle including the arm assembly.
  • An unmanned aerial vehicle is a non-manned aircraft operated by a radio remote control device or a remote control device to perform a mission.
  • drones have been developed and applied in many fields, such as civil, industrial and military applications.
  • Existing multi-rotor drones usually use fixed-structured or foldable-structured arms. Because the length of the arms is fixed, the rotor diameter and flight stability of the drone are limited to a certain extent , Mobility, load capacity and application scenarios.
  • Embodiments of the present disclosure provide an arm assembly and an unmanned aerial vehicle to solve the above or other problems in the prior art.
  • an arm assembly is provided.
  • the arm assembly is mounted on an unmanned aerial vehicle.
  • the arm assembly includes: a first arm, a second arm, and the first A positioning structure of a machine arm and / or a second machine arm, and the second machine arm can be fixed to different positions in the longitudinal direction of the first machine arm through the positioning structure.
  • first and second arms are tubular, and the first and second arms are sleeved on the second and second arms.
  • the cross-sectional shapes of the first and second arms are the same, and the cross-sectional shapes of the first and second arms include at least one of the following: circular, semi-circular, oval, Polygon.
  • the positioning structure includes a positioning member, a first positioning hole provided in the first machine arm, and a second positioning hole provided in the second machine arm, and the positioning member passes through the first A positioning hole and a second positioning hole fix the second machine arm to the first machine arm.
  • the positioning member includes an elastic member fixed in the second arm and a pin connected to the elastic member, and the pin passes through the first member under an elastic force of the elastic member.
  • a positioning hole and a second positioning hole fix the second machine arm to the first machine arm.
  • the first arm is provided with a plurality of first positioning holes, and the plurality of first positioning holes are uniformly arranged along the longitudinal direction of the first arm.
  • a plurality of first positioning holes of the first machine arm are respectively numbered.
  • the positioning structure includes an eccentric wheel locking device provided at an end of the first machine arm to fix the second machine arm to the first machine arm.
  • a size scale is provided on the surface of the second machine arm along the longitudinal direction.
  • the first arm is a slider
  • the second arm is a guide rail that can slide relative to the slider.
  • a drone includes: a fuselage; and the aforementioned arm assembly, the arm assembly is mounted on the fuselage.
  • the arm assembly is foldable relative to the fuselage.
  • the drone of the present application because the second arm can be fixed to different positions in the longitudinal direction of the first arm through the positioning structure, so that the arm components can have different lengths Therefore, the drone can have different rotor diameters according to specific needs, which improves the stability, maneuverability, load capacity and flexibility of the drone, so that the drone can adapt to more application scenarios.
  • FIG. 1 is a schematic diagram of an embodiment of a drone of the present application.
  • FIG. 2 is a schematic diagram of the arm assembly shown in FIG. 1.
  • FIG. 3 is a longitudinal sectional view of the arm assembly shown in FIG. 2.
  • FIG. 4 is a cross-sectional view of the boom assembly shown in FIG. 2.
  • FIG. 5 is a schematic diagram of another embodiment of the arm assembly shown in FIG. 1.
  • FIG. 6 is a schematic view of the arm assembly shown in FIG. 5 in another state.
  • FIG. 1 shows a schematic diagram of an embodiment of a drone 500.
  • the drone 500 shown in FIG. 1 may be used for aerial photography, mapping, and monitoring, but is not limited thereto. In some other embodiments, for example, the drone 500 may also be used in agriculture, express delivery, providing network services, and the like.
  • the drone 500 may include: a fuselage 200, an arm assembly 100, and a power assembly 300. In other embodiments, the drone may further include a carrier and a tripod mounted below the fuselage.
  • the power assembly 300 may include: a propeller, a motor (not shown), and an ESC (not shown).
  • the propeller is driven to rotate by a motor, so as to provide power for ascending, advancing, rotating, etc. of the drone 100.
  • the propeller may have a blade and a hub, the hub is fixed to the output shaft of the motor, and the blade is mounted on the hub.
  • the output shaft of the motor drives the hub to rotate
  • the blades mounted on the hub also rotate to form a rotation plane, and the air around the propeller is directed below the rotation plane, that is, an underwash airflow is formed so that Man-machine 500 provides lift.
  • the ESC can be used to control the operation of the motor. It is electrically connected to the flight control circuit board provided in the fuselage 200 to control the start / stop, rotation speed, steering, etc. of the motor according to the control signals issued by the flight control circuit board, thereby controlling the drone 500 flight direction and speed.
  • the plurality of propellers may be arranged around the fuselage 200.
  • the drone when it is a multi-rotor drone, it may include a plurality of arm assemblies 100, and these arm assemblies 100 are scattered around the fuselage of the drone.
  • the number of power components 300 may be the same as the number of arm components 100, and each propeller is installed at one end of the arm component 100 away from the fuselage, for example, at the end of the arm component 100 away from the fuselage A mounting hole is opened, and a motor mounting seat is provided in the mounting hole; the number of the power assembly 300 may be different from the number of the arm assembly 100, and a plurality of propellers are simultaneously installed on each of the arm assemblies 100.
  • the motor of the power assembly is fixed in the mounting seat, and the propeller hub is fixed on the output shaft of the motor.
  • the ESC may be integrated with the motor, or the ESC may be installed in the cavity of the arm assembly 100.
  • the drone 500 includes four arm assemblies 100 and four propellers respectively disposed on the four arm assemblies 100.
  • the four propellers 30 may be symmetrical about the horizontal axis and the longitudinal axis of the drone 500 Settings.
  • the arm assembly 100 is mounted on the drone 500 and is used to connect the propeller and the fuselage 200.
  • the arm assembly 100 is foldable relative to the fuselage 200. In this way, the arm assembly 100 can be both retractable and foldable, further reducing the volume of the drone 500 and facilitating transportation and storage. .
  • FIG. 2 shows a schematic diagram of an embodiment of the boom assembly 100.
  • FIG. 3 is a longitudinal sectional view of one embodiment of the boom assembly 100.
  • FIG. 4 is a cross-sectional view of one embodiment of the arm assembly 100.
  • the arm assembly 100 includes a first arm 10, a second arm 20, and a positioning structure 30 disposed on the first arm 10 and / or the second arm 20.
  • the second arm 20 can be fixed at different positions in the longitudinal direction of the first arm 10 through the positioning structure 30.
  • the boom assembly 100 can have different lengths, so that the drone 500 can have different rotors according to specific needs Diameter, while improving the stability, maneuverability, load capacity and flexibility of the drone 500, so that the drone 500 can adapt to more application scenarios.
  • the first and second arms 10 and 20 may be hollow rods made of metal, plastic, or carbon fiber materials, respectively, that is, the first and second arms 10 and 20
  • the first arm 10 is sleeved on the second arm 20.
  • the first arm 10 is a hollow rod
  • the second arm 20 is a solid rod
  • the first arm 10 is sleeved on the second arm 20.
  • the first arm 10 is fixed to the casing of the fuselage 200
  • the propeller is fixed to an end of the second arm 20 away from the fuselage.
  • the propeller can be detachably or rotatably installed on an end of the second arm 20 away from the fuselage, so as to facilitate storage and transportation of the drone.
  • the other end of the first arm 10 can also be detachably or rotatably connected to the casing of the fuselage 200, thereby improving the convenience of storage or transportation of the drone.
  • the fixing of the positioning mechanism 30 to the first arm 10 and the second arm 20 is first released, and then the second arm 20 is slid along the longitudinal direction of the first arm 10. Until the length of the arm assembly 100 reaches the target length, the first arm 10 and the second arm 20 are fixed by the positioning structure 30.
  • the second arm 20 is fixed to the casing of the fuselage 200, and the propeller 30 is fixed to an end of the first arm 10 away from the fuselage.
  • the fixing of the positioning mechanism 30 to the first arm 10 and the second arm 20 is first released, and then the first arm 10 is slid in the longitudinal direction of the second arm 20.
  • the first arm 10 and the second arm 20 are fixed by the positioning structure 30.
  • first arm 10 and the second arm 20 may also be plate-shaped structures or solid rods.
  • the length of the first arm 10 and the second arm 20 may be the same or different. In one embodiment, the lengths of the first and second arms 10 and 20 are the same, and the maximum length of the arm assembly 100 is the sum of the length of the first and second arms 10, 20, The minimum length of the assembly 100 is the length of the first arm 10 or the length of the second arm 20. That is, the length of the arm assembly 100 can be changed between its maximum length and minimum length as needed.
  • the cross-sectional shapes of the first and second arms 10 and 20 are the same.
  • the cross-sectional shapes of the first and second arms 10 and 20 include at least one of the following: circular, semi-circular, oval, The polygon is not limited to this.
  • the cross-sectional shapes of the first and second arms 10 and 20 may also be other regular or irregular shapes.
  • the cross-sectional size of the first robot arm 10 is larger than the cross-sectional size of the second robot arm 20, so that the first robot arm 10 can be sleeved on the second robot arm 20.
  • the cross sections of the first and second arms 10 and 20 may be the same shape or different shapes; the cross sections of each arm assembly 100 may be the same shape, Part of them may be the same shape, or all of them may be different shapes.
  • the positioning structure 30 includes a positioning member 31, a first positioning hole 11 provided in the first machine arm 10, and a second positioning hole 21 provided in the second machine arm 20.
  • the positioning member 31 passes through the first positioning hole 11 and the second positioning hole 21 to fix the second arm 20 to the first arm 10.
  • the first arm 10 is provided with a plurality of first positioning holes 11, and the plurality of first positioning holes 11 are evenly arranged along the longitudinal direction of the first arm 10.
  • the second arm 20 is provided with a second positioning hole 21. When the one second positioning hole 21 is aligned with a different first positioning hole 11 and the positioning member 31 passes through the first positioning hole 11 and the second positioning hole 21 to fix the second arm 20 to the first positioning hole 11
  • the arm assembly 100 can have different lengths.
  • the second arm 20 is provided with a plurality of second positioning holes 21, and the plurality of second positioning holes 21 are evenly arranged along the longitudinal direction of the second arm 20.
  • the first arm 10 is provided with a first positioning hole 11. When the one first positioning hole 11 is aligned with a different second positioning hole 21 and the positioning member 31 passes through the first positioning hole 11 and the second positioning hole 21 to fix the second arm 20 to the first positioning hole 11
  • the arm assembly 100 can have different lengths.
  • the first arm 10 is provided with a plurality of first positioning holes 11, and the plurality of first positioning holes 11 are evenly arranged along the longitudinal direction of the first arm 10.
  • the second arm 20 is provided with a plurality of second positioning holes 21, and the plurality of second positioning holes 21 are evenly arranged along the longitudinal direction of the second arm 20.
  • the first machine arm 10 slides along the longitudinal direction of the second machine arm 20, so that one first positioning hole 11 is aligned with a different second positioning hole 21, or a plurality of first positioning holes 11 are different from a plurality of second positioning holes
  • the positioning holes 21 are aligned and pass through the first positioning hole 11 and the second positioning hole 21 through one or more positioning members 31 to fix the second arm 20 to the first arm 10, so that the arm The assembly 100 has different lengths.
  • the positioning member 31 includes an elastic member 311 fixed in the second arm 20 and a pin 312 connected to the elastic member 311.
  • the pin 312 is located on the elastic member 311.
  • the first positioning hole 11 and the second positioning hole 21 pass through the elastic force to fix the second arm 20 to the first arm 10.
  • press the pin 312 inward so that the pin 312 compresses the elastic member 311 until the pin is separated from the first positioning hole 11 and the second positioning hole 21, and then the second arm 20 is moved along the first
  • the arm 10 slides in the longitudinal direction.
  • the pin 312 passes through the corresponding first positioning hole 11 and the second positioning hole 12 under the elastic restoring force of the elastic member 311. .
  • the elastic member 311 includes at least one of the following: a spring, a metal elastic piece, and an elastic rubber member. In the illustrated embodiment, the elastic member 311 is a spring.
  • the plurality of first positioning holes 11 of the first machine arm 10 are respectively numbered. In this way, when adjusting the length of the arm assembly 100, the second positioning hole 21 of the second arm 20 can quickly find the corresponding first positioning hole 11.
  • the positioning structure 30 includes an eccentric locking device provided at an end of the first machine arm 10 to fix the second machine arm 20 to the first machine arm 10.
  • an eccentric locking device provided at an end of the first machine arm 10 to fix the second machine arm 20 to the first machine arm 10.
  • the arm assembly 100 is provided with two different positioning structures 30 at the same time.
  • One of the positioning structures 30 includes a positioning member 31, a first positioning hole 11 provided in the first machine arm 10, and a second positioning hole 21 provided in the second machine arm 20.
  • the positioning member 31 passes through The first positioning hole 11 and the second positioning hole 21 fix the second arm 20 to the first arm 10;
  • another positioning structure 30 includes an end portion of the first arm 10 Eccentric locking device. In this way, the length of the arm assembly 100 can be adjusted, and the torsional and bending characteristics of the arm assembly 100 can be increased to ensure the stability and stiffness of the arm assembly 100.
  • FIG. 5 and 6 are schematic diagrams of another embodiment of the arm assembly.
  • a size scale 22 is provided on the surface of the second machine arm 20 along the longitudinal direction. In this way, when adjusting the length of the arm assembly 100, it is convenient for the lengths of the four arm assemblies 100 to remain the same.
  • first arm 10 is a slider
  • second arm 20 is a guide rail that can slide relative to the slider.
  • first arm 10 is fixed to the casing of the fuselage 200
  • second arm 20 is fixed to the first arm 10 through a fixing structure such as a flange.
  • the second arm 20 is fixed to the first arm 10, or the second arm 20 is detached from the first arm 10, so that the arm assemblies 100 have different lengths.
  • first arm 10 and the second arm 20 are mutually fitted guide rail structures, and the second arm 20 can slide relative to the first arm 10.
  • the extension and contraction of the arm assembly 100 can be controlled by an automatic control method.
  • the arm assembly 100 further includes a control unit and a driving device, and the controller is used to release the positioning structure 30 from positioning the first arm 10 and the second arm 20.
  • the driving device is used to drive the second arm 20 to move relative to the first arm 10, thereby changing the length of the arm assembly 100.
  • the driving device includes a motor and a steering gear.
  • the output end of the motor is fixed with a screw rod.
  • the screw rod and the second arm 20 are threaded. When the motor is started, the output end drives the screw rod to rotate, and accordingly the second arm 20 is along the longitudinal direction of the first arm 10 Move so that the length of the arm assembly 100 can be controlled by the motor.
  • the corresponding flight control program also has a variety of parameter settings to suit different lengths of the arm assembly 100.
  • the arm assembly 100 of the drone 500 is short, the maneuverability of the drone 500 is higher, and when the length of the arm assembly 100 becomes longer, under the same parameter settings and load conditions, the drone 500
  • the control sensitivity needs to be reduced accordingly.
  • the specific sensitivity control curve needs to be determined according to the weight, structure, arm component materials, propeller diameter, motor ESC and other factors of the drone 500.
  • the corresponding sensitivity threshold value under a series of parameters can be determined through actual measurement methods.
  • the sensitivity curve can then be used to adjust the flight control sensitivity value according to the length of the boom component 100, so as to achieve the adaptation of the flight control parameters under different lengths of the boom component 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Toys (AREA)
  • Catching Or Destruction (AREA)

Abstract

一种机臂组件(100),其安装于无人机(500),该机臂组件(100)包括:第一机臂(10)、第二机臂(20)及设置于第一机臂(10)和/或第二机臂(20)的定位机构(30),第二机臂(20)能够通过定位结构(30)固定于第一机臂(10)纵长方向的不同位置。还公开了一种无人机(500)。

Description

机臂组件及包括该机臂组件的无人机 技术领域
本公开实施例涉及无人机技术领域,特别涉及一种机臂组件及包括该机臂组件的无人机。
背景技术
无人机是一种由无线电遥控设备或者远程控制装置操纵以执行任务的非载人飞行器。近些年来,无人机在多个领域得到发展和应用,例如民用、工业应用和军事应用等。现有的多旋翼无人机,通常使用固定结构的机臂或可折叠结构的机臂,由于机臂的长度固定不变,因而在一定程度上限定了无人机的旋翼直径、飞行稳定性、机动性、载重能力和应用场景。
实用新型内容
本公开实施例提供一种机臂组件及无人机,以解决现有技术存在的以上或者其他前者问题。
根据本公开实施例的第一方面,提供一种机臂组件,所述机臂组件安装于无人机,所述机臂组件包括:第一机臂、第二机臂及设置于所述第一机臂和/或第二机臂的定位结构,所述第二机臂能够通过所述定位结构固定于所述第一机臂纵长方向的不同位置。
可选的,所述第一机臂及第二机臂呈管状,所述第一机臂套设于所述第二机臂。
可选的,所述第一机臂及第二机臂的截面形状相同,所述第一机臂及第二机臂的截面形状包括以下至少一种:圆形、半圆形、椭圆形、多边形。
可选的,所述定位结构包括定位件、设置于所述第一机臂的第一定位孔和设置于所述第二机臂的第二定位孔,所述定位件穿过所述第一定位孔和第 二定位孔,将所述第二机臂固定于所述第一机臂。
可选的,所述定位件包括固定于所述第二机臂内的弹性件及连接于所述弹性件的销钉,所述销钉在所述弹性件的弹性力作用下穿过所述第一定位孔和第二定位孔,将所述第二机臂固定于所述第一机臂。
可选的,所述第一机臂设有多个第一定位孔,所述多个第一定位孔沿第一机臂的纵长方向均匀排布。
可选的,所述第一机臂的多个第一定位孔分别设有编号。
可选的,所述定位结构包括设置于所述第一机臂端部的偏心轮锁紧装置,以将所述第二机臂固定于所述第一机臂。
可选的,所述第二机臂表面沿纵长方向设有尺寸刻度。
可选的,所述第一机臂为滑块,所述第二机臂为可相对于所述滑块滑动的导轨。
根据本申请实施例的另一个方面,提供一种无人机,所述无人机包括:机身;及上述的机臂组件,所述机臂组件安装于所述机身。
可选的,所述机臂组件相对于所述机身可折叠设置。
由以上本申请实施例提供的技术方案可见,本申请的无人机,由于第二机臂能够通过定位结构固定于第一机臂纵长方向的不同位置,使得机臂组件可以具有不同的长度,进而使得无人机可以根据具体需要具有不同的旋翼直径,改善了无人机的稳定性、机动性、载重能力以及灵活性,使得无人机能够适应更多的应用场景。
附图说明
图1是本申请无人机的一个实施例的示意图。
图2是图1所示的机臂组件的示意图。
图3是图2所示的机臂组件的纵向剖视图。
图4是图2所述的机臂组件的横向剖视图。
图5是图1所述的机臂组件的另一个实施例的示意图。
图6是图5所述的机臂组件的另一状态下的示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,本申请说明书以及权利要求书中使用的“第一”“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。除非另行指出,“前部”、“后部”、“下部”和/或“上部”等类似词语只是为了便于说明,而并非限于一个位置或者一种空间定向。“包括”或者“包含”等类似词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而且可以包括电性的连接,不管是直接的还是间接的。
下面结合附图,对本公开实施例的机臂组件、无人机进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
图1所示为无人机500的一个实施例的示意图。图1所示的无人机500可以用于航拍、测绘、监测,但不限于此。在其他一些实施例中,例如,无人机500还可用于农业、快递送货、提供网络服务等。在本实施例中,无人机500可 以包括:机身200、机臂组件100、动力组件300。在其他实施例中,无人机还可以进一步包括挂载于机身下方的载体以及脚架。
请参阅图1,动力组件300可以包括:螺旋桨、电机(图未示)以及电调(图未示)。其中,螺旋桨由电机带动旋转,从而为无人机100的上升、前进、转动等提供动力。螺旋桨可以具有桨叶和桨毂,桨毂与电机的输出轴固定,桨叶安装在桨毂上。当电机的输出轴带动桨毂旋转时,安装在桨毂上的桨叶也跟随转动以形成旋转平面,并将螺旋桨周围的空气引到旋转平面的下方,也即形成下洗气流,以便为无人机500提供升力。电调可以用来控制电机工作,其与设置于机身200的飞行控制电路板电连接,以根据飞行控制电路板发出的控制信号控制电机启动/停止、转速、转向等,进而控制无人机500的飞行方向和飞行速度。
进一步,螺旋桨可以有多个,从而形成多旋翼无人机。具体的,这多个螺旋桨可以布置在机身200的四周。从图1中可以看出,当无人机为多旋翼无人机时,其可以包括多个机臂组件100,这些机臂组件100分散设置在无人机的机身四周。其中,动力组件300的个数可以与机臂组件100的个数相同,每个螺旋桨均安装在其中一个机臂组件100远离机身的一端,例如,可以在机臂组件100远离机身的一端开设安装孔、并在安装孔内设置电机安装座;动力组件300的个数也可以与机臂组件100的个数不相同,多个螺旋桨同时安装在每一个机臂组件100上。动力组件的电机固定在安装座内,螺旋桨的桨毂固定在电机的输出轴上。电调可以与电机集成在一起,或者电调可以安装在机臂组件100的空腔中。在本实施例中,无人机500包括四个机臂组件100及分别设置于四个机臂组件100的四个螺旋桨,这四个螺旋桨30可以关于无人机500的横轴线和纵轴线对称设置。
机臂组件100安装于无人机500,用来连接螺旋桨和机身200。在一个实施例中,所述机臂组件100相对于所述机身200可折叠设置,如此,机臂组件100既能伸缩,又可折叠,进一步减小无人机500的体积,方便运输储存。
图2所示为机臂组件100的一个实施例的示意图。图3为机臂组件100的 一个实施例的纵向剖视图。图4为机臂组件100的一个实施例的横向剖视图。请参阅图2至图4,机臂组件100包括:第一机臂10、第二机臂20及设置于所述第一机臂10和/或第二机臂20的定位结构30,所述第二机臂20能够通过所述定位结构30固定于所述第一机臂10纵长方向的不同位置。
由于第二机臂20能够通过定位结构30固定于第一机臂10纵长方向的不同位置,使得机臂组件100可以具有不同的长度,进而使得无人机500可以根据具体需要具有不同的旋翼直径,同时改善了无人机500的稳定性、机动性、载重能力以及灵活性,使得无人机500能够适应更多的应用场景。
在图示实施例中,第一机臂10和第二机臂20可以是分别由诸如金属、塑料、或者碳纤维材料制作成的中空的杆件,即第一机臂10和第二机臂20呈管状,第一机臂10套设于第二机臂20。在另一个实施例中,第一机臂10为中空的杆件,第二机臂20为实心的杆件,第一机臂10套设于第二机臂20。第一机臂10固定于机身200的机壳,螺旋桨固定于第二机臂20远离机身的一端。可选的,螺旋桨可拆卸、或者可转动的安装在第二机臂20远离机身的一端,以方便无人机的储藏与运输。同理的,第一机臂10的另一端也同样可以可拆卸、或者可转动的与机身200的机壳连接,从而提高无人机的储藏或者运输中的便捷性。
当需要改变机臂组件100的长度时,先解除定位结构30对第一机臂10和第二机臂20的固定,再使得第二机臂20沿第一机臂10的纵长方向滑动,直至机臂组件100的长度达到目标长度,然后通过定位结构30将第一机臂10和第二机臂20固定。
在另一个实施例中,第二机臂20固定于机身200的机壳,螺旋桨30固定于第一机臂10远离机身的一端。当需要改变机臂组件100的长度时,先解除定位结构30对第一机臂10和第二机臂20的固定,再使得第一机臂10沿第二机臂20的纵长方向滑动,直至机臂组件100的长度达到目标长度,然后通过定位结构30将第一机臂10和第二机臂20固定。
当然,在另外一些实施方式中,第一机臂10和第二机臂20也可以是板状 结构或者是实心的杆件。第一机臂10和第二机臂20的长度可以相同,也可以不同。在一个实施例中,第一机臂10和第二机臂20的长度相同,则机臂组件100的最大长度为第一机臂10的长度和第二机臂20的长度之和,机臂组件100的最小长度为第一机臂10的长度或第二机臂20的长度。也就是说,机臂组件100的长度可以根据需要在其最大长度和最小长度之间变化。
所述第一机臂10及第二机臂20的截面形状相同,所述第一机臂10及第二机臂20的截面形状包括以下至少一种:圆形、半圆形、椭圆形、多边形,且不限于此。所述第一机臂10及第二机臂20的截面形状还可以是其他规则或不规则形状。在图示实施例中,第一机臂10的截面尺寸大于第二机臂20的截面尺寸,使得第一机臂10能够套设于第二机臂20。
在某些实施例中,第一机臂10和第二机臂20的横截面可以是相同的形状,也可以是不相同的形状;每个机臂组件100的横截面可以是相同的形状,也可以是部分是相同的形状,也可以是全部为不相同的形状。
在图示实施例中,所述定位结构30包括定位件31、设置于所述第一机臂10的第一定位孔11和设置于所述第二机臂20的第二定位孔21,所述定位件31穿过所述第一定位孔11和第二定位孔21,将所述第二机臂20固定于所述第一机臂10。
在一个实施例中,所述第一机臂10设有多个第一定位孔11,所述多个第一定位孔11沿第一机臂10的纵长方向均匀排布。所述第二机臂20设有一个第二定位孔21。当所述一个第二定位孔21与不同的第一定位孔11对齐,并通过定位件31穿过第一定位孔11和第二定位孔21将所述第二机臂20固定于所述第一机臂10时,可以使得机臂组件100具有不同的长度。
在另一个实施例中,所述第二机臂20设有多个第二定位孔21,所述多个第二定位孔21沿第二机臂20的纵长方向均匀排布。所述第一机臂10设有一个第一定位孔11。当所述一个第一定位孔11与不同的第二定位孔21对齐,并通过定位件31穿过第一定位孔11和第二定位孔21将所述第二机臂20固定于所述第一机臂10时,可以使得机臂组件100具有不同的长度。
在又一个实施例中,所述第一机臂10设有多个第一定位孔11,所述多个第一定位孔11沿第一机臂10的纵长方向均匀排布。所述第二机臂20设有多个第二定位孔21,所述多个第二定位孔21沿第二机臂20的纵长方向均匀排布。第一机臂10沿第二机臂20的纵长方向滑动,使得一个第一定位孔11与不同的第二定位孔21对齐,或者使得多个第一定位孔11与不同的多个第二定位孔21对齐,并通过一个或多个定位件31穿过第一定位孔11和第二定位孔21,将所述第二机臂20固定于所述第一机臂10,可以使得机臂组件100具有不同的长度。
在图示实施例中,所述定位件31包括固定于所述第二机臂20内的弹性件311及连接于所述弹性件311的销钉312,所述销钉312在所述弹性件311的弹性力作用下穿过所述第一定位孔11和第二定位孔21,将所述第二机臂20固定于所述第一机臂10。当需要调节机臂组件100的长度时,向内按压销钉312,使销钉312压缩弹性件311,直至销钉脱离第一定位孔11和第二定位孔21,然后使第二机臂20沿第一机臂10的纵长方向滑动,当机臂组件100的长度达到目标长度时,销钉312在弹性件311的弹性回复力作用下,再次穿过对应的第一定位孔11和第二定位孔12。
所述弹性件311包括如下至少一种:弹簧、金属弹片、弹性橡胶件。在图示实施例中,弹性件311为弹簧。
在一个实施例中,所述第一机臂10的多个第一定位孔11分别设有编号。如此在调整机臂组件100的长度时,第二机臂20的第二定位孔21能够快速地找到对应的第一定位孔11。
在另一个实施例中,所述定位结构30包括设置于所述第一机臂10端部的偏心轮锁紧装置,以将所述第二机臂20固定于所述第一机臂10。当需要改变机臂组件100的长度时,先松开偏心轮锁紧装置,再使得第二机臂20沿第一机臂10的纵长方向滑动,直至机臂组件100的长度达到目标长度,然后锁紧偏心轮锁紧装置。
在另一个实施例中,机臂组件100同时设有两种不同的定位结构30。其中一种定位结构30包括定位件31、设置于所述第一机臂10的第一定位孔11和设 置于所述第二机臂20的第二定位孔21,所述定位件31穿过所述第一定位孔11和第二定位孔21,将所述第二机臂20固定于所述第一机臂10;另一种定位结构30包括设置于所述第一机臂10端部的偏心轮锁紧装置。如此,既能调整机臂组件100的长度,又能增加机臂组件100的抗扭特性和抗弯特性,保证机臂组件100的稳定性和刚度。
图5及图6是机臂组件的另一个实施例的示意图。所述第二机臂20表面沿纵长方向设有尺寸刻度22。如此,在调整机臂组件100的长度时,便于四个机臂组件100的长度保持一致。
在另一个实施例中,所述第一机臂10为滑块,所述第二机臂20为可相对于所述滑块滑动的导轨。
在另一个实施例中,第一机臂10固定于机身200的机壳,第二机臂20通过法兰等固定结构固定于第一机臂10。通过将第二机臂20固定于第一机臂10,或者将第二机臂20从第一机臂10拆下,从而使得机臂组件100具有不同长度。在又一个实施例中,第一机臂10和第二机臂20为互相嵌合的导轨结构,第二机臂20可以相对于第一机臂10滑动。
在一些实施例中,可以通过自动控制方式控制机臂组件100的伸长和缩短。机臂组件100进一步包括控制单元和驱动装置,控制器用于解除定位结构30对第一机臂10和第二机臂20的定位。驱动装置用于驱动第二机臂20相对于第一机臂10移动,从而改变机臂组件100的长度。驱动装置包括电机、舵机。例如:电机输出端固定有丝杆,丝杆与第二机臂20为螺纹配合,当电机启动时,输出端带动丝杆转动,相应地第二机臂20沿第一机臂10纵长方向移动,如此即可通过电机控制机臂组件100的长度。
为了在不同的机臂组件100长度下或安装不同直径的螺旋桨时保持无人机500的稳定性和机动性,对应的飞控程序也有多种参数设置,以适应不同的机臂组件100长度。当无人机500的机臂组件100较短时,无人机500的机动性较高,对应机臂组件100长度变长时,在相同的参数设定下和负重条件下,无人机500的控制感度需要相应地进行降低。具体的感度控制曲线需要根据无人机 500的重量、结构、机臂组件材料、螺旋桨直径、电机电调等因素来确定,可以通过实测的方法确定一系列参数条件下对应的感度临界值,确定感度曲线以后就能够根据机臂组件100长度调节飞控感度值,实现不同机臂组件100长度下的飞控参数的适配。
以上所述仅是本公开实施例的较佳实施例而已,并非对本公开实施例做任何形式上的限制,虽然本公开实施例已以较佳实施例揭露如上,然而并非用以限定本公开实施例,任何熟悉本专业的技术人员,在不脱离本公开实施例技术方案的范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本公开实施例技术方案的内容,依据本公开实施例的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本公开实施例技术方案的范围内。
本专利文件披露的内容包含受版权保护的材料。该版权为版权所有人所有。版权所有人不反对任何人复制专利与商标局的官方记录和档案中所存在的该专利文件或者该专利披露。

Claims (21)

  1. 一种机臂组件(100),其特征在于,所述机臂组件安装于无人机(500),所述机臂组件(100)包括:第一机臂(10)、第二机臂(20)及设置于所述第一机臂(10)和/或第二机臂(20)的定位结构(30),所述第二机臂(20)能够通过所述定位结构(30)固定于所述第一机臂(10)纵长方向的不同位置。
  2. 根据权利要求1所述的机臂组件,其特征在于,所述第一机臂(10)及第二机臂(20)呈管状,所述第一机臂(10)套设于所述第二机臂(20)。
  3. 根据权利要求2所述的机臂组件,其特征在于,所述第一机臂(10)及第二机臂(20)的截面形状相同,所述第一机臂(10)及第二机臂(20)的截面形状包括以下至少一种:圆形、半圆形、椭圆形、多边形。
  4. 根据权利要求2所述的机臂组件,其特征在于,所述定位结构(30)包括定位件(31)、设置于所述第一机臂(10)的第一定位孔(11)和设置于所述第二机臂(20)的第二定位孔(21),所述定位件(31)穿过所述第一定位孔(11)和第二定位孔(21),将所述第二机臂(20)固定于所述第一机臂(10)。
  5. 根据权利要求4所述的机臂组件,其特征在于,所述定位件(31)包括固定于所述第二机臂(20)内的弹性件(311)及连接于所述弹性件(311)的销钉(312),所述销钉(312)在所述弹性件(311)的弹性力作用下穿过所述第一定位孔(11)和第二定位孔(21),将所述第二机臂(20)固定于所述第一机臂(10)。
  6. 根据权利要求4所述的机臂组件,其特征在于,所述第一机臂(10)设有多个第一定位孔(11),所述多个第一定位孔(11)沿第一机臂(10)的纵长方向均匀排布。
  7. 根据权利要求6所述的机臂组件,其特征在于,所述第一机臂(10) 的多个第一定位孔(11)分别设有编号。
  8. 根据权利要求2所述的机臂组件,其特征在于,所述定位结构(30)包括设置于所述第一机臂(10)端部的偏心轮锁紧装置,以将所述第二机臂(20)固定于所述第一机臂(10)。
  9. 根据权利要求8所述的机臂组件,其特征在于,所述第二机臂(20)表面沿纵长方向设有尺寸刻度(22)。
  10. 根据权利要求1所述的机臂组件,其特征在于,所述第一机臂(10)为滑块,所述第二机臂(20)为可相对于所述滑块滑动的导轨。
  11. 一种无人机(500),包括:
    机身(200);及
    机臂组件(100),所述机臂组件(100)安装于所述机身(200);
    所述机臂组件(100)安装于无人机(500),所述机臂组件(100)包括:第一机臂(10)、第二机臂(20)及设置于所述第一机臂(10)和/或第二机臂(20)的定位结构(30),所述第二机臂(20)能够通过所述定位结构(30)固定于所述第一机臂(10)纵长方向的不同位置。
  12. 根据权利要求11所述的无人机,其特征在于,所述第一机臂(10)及第二机臂(20)呈管状,所述第一机臂(10)套设于所述第二机臂(20)。
  13. 根据权利要求12所述的无人机,其特征在于,所述第一机臂(10)及第二机臂(20)的截面形状相同,所述第一机臂(10)及第二机臂(20)的截面形状包括以下至少一种:圆形、半圆形、椭圆形、多边形。
  14. 根据权利要求12所述的无人机,其特征在于,所述定位结构(30)包括定位件(31)、设置于所述第一机臂(10)的第一定位孔(11)和设置于所述第二机臂(20)的第二定位孔(21),所述定位件(31)穿过所述第一定位孔(11)和第二定位孔(21),将所述第二机臂(20)固定于所述第一机臂(10)。
  15. 根据权利要求14所述的无人机,其特征在于,所述定位件(31)包括固定于所述第二机臂(20)内的弹性件(311)及连接于所述弹性件(311) 的销钉(312),所述销钉(312)在所述弹性件(311)的弹性力作用下穿过所述第一定位孔(11)和第二定位孔(21),将所述第二机臂(20)固定于所述第一机臂(10)。
  16. 根据权利要求14所述的无人机,其特征在于,所述第一机臂(10)设有多个第一定位孔(11),所述多个第一定位孔(11)沿第一机臂(10)的纵长方向均匀排布。
  17. 根据权利要求16所述的无人机,其特征在于,所述第一机臂(10)的多个第一定位孔(11)分别设有编号。
  18. 根据权利要求12所述的无人机,其特征在于,所述定位结构(30)包括设置于所述第一机臂(10)端部的偏心轮锁紧装置,以将所述第二机臂(20)固定于所述第一机臂(10)。
  19. 根据权利要求18所述的无人机,其特征在于,所述第二机臂(20)表面沿纵长方向设有尺寸刻度(22)。
  20. 根据权利要求11所述的无人机,其特征在于,所述第一机臂(10)为滑块,所述第二机臂(20)为可相对于所述滑块滑动的导轨。
  21. 如权利要求11至20任一项所述的无人机,其特征在于,所述机臂组件(100)相对于所述机身(200)可折叠设置。
PCT/CN2018/116471 2018-09-28 2018-11-20 机臂组件及包括该机臂组件的无人机 WO2020062504A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880042130.8A CN110972471A (zh) 2018-09-28 2018-11-20 机臂组件及包括该机臂组件的无人机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201821600057.5 2018-09-28
CN201821600057.5U CN209064359U (zh) 2018-09-28 2018-09-28 机臂组件及包括该机臂组件的无人机

Publications (1)

Publication Number Publication Date
WO2020062504A1 true WO2020062504A1 (zh) 2020-04-02

Family

ID=67093824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116471 WO2020062504A1 (zh) 2018-09-28 2018-11-20 机臂组件及包括该机臂组件的无人机

Country Status (2)

Country Link
CN (2) CN209064359U (zh)
WO (1) WO2020062504A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209064359U (zh) * 2018-09-28 2019-07-05 深圳市大疆创新科技有限公司 机臂组件及包括该机臂组件的无人机
JPWO2021220390A1 (zh) * 2020-04-28 2021-11-04
CN112278253A (zh) * 2020-10-27 2021-01-29 江西玉祥智能装备制造有限公司 一种具有伸缩机臂的无人机

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206243446U (zh) * 2016-08-31 2017-06-13 北京臻迪科技股份有限公司 一种无人机机臂的连接机构
CN206394868U (zh) * 2017-01-12 2017-08-11 福建农林大学 无人机可伸缩机臂
EP3269641A1 (en) * 2016-07-14 2018-01-17 Trampaboards Ltd Unmanned aerial or marine vehicle
CN206954486U (zh) * 2017-07-19 2018-02-02 潍坊歌尔电子有限公司 一种无人机机臂及无人机
CN107719654A (zh) * 2017-10-29 2018-02-23 成都常明信息技术有限公司 一种运输无人机
US20180150718A1 (en) * 2016-11-30 2018-05-31 Gopro, Inc. Vision-based navigation system
CN108216559A (zh) * 2018-01-30 2018-06-29 成都睿铂科技有限责任公司 一种无人机机臂
US20180229833A1 (en) * 2017-02-16 2018-08-16 Amazon Technologies, Inc. Maintaining attitude control of unmanned aerial vehicles by varying centers of gravity
CN207791146U (zh) * 2017-09-19 2018-08-31 深圳洲际通航投资控股有限公司 一种可变轴距无人机

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205010472U (zh) * 2015-09-01 2016-02-03 湖南云顶智能科技有限公司 用于无人机的可伸缩机臂
CN206407100U (zh) * 2016-12-13 2017-08-15 深圳市道通智能航空技术有限公司 一种机臂连接结构及无人机
CN206394865U (zh) * 2016-12-26 2017-08-11 重庆零度智控智能科技有限公司 一种伸缩机臂组件及无人机
CN107878745A (zh) * 2017-12-18 2018-04-06 南京灿华光电设备有限公司 一种便于收放折叠的无人机
CN108438216A (zh) * 2018-06-20 2018-08-24 广东电网有限责任公司 无人机骨架及无人机
CN209064359U (zh) * 2018-09-28 2019-07-05 深圳市大疆创新科技有限公司 机臂组件及包括该机臂组件的无人机

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3269641A1 (en) * 2016-07-14 2018-01-17 Trampaboards Ltd Unmanned aerial or marine vehicle
CN206243446U (zh) * 2016-08-31 2017-06-13 北京臻迪科技股份有限公司 一种无人机机臂的连接机构
US20180150718A1 (en) * 2016-11-30 2018-05-31 Gopro, Inc. Vision-based navigation system
CN206394868U (zh) * 2017-01-12 2017-08-11 福建农林大学 无人机可伸缩机臂
US20180229833A1 (en) * 2017-02-16 2018-08-16 Amazon Technologies, Inc. Maintaining attitude control of unmanned aerial vehicles by varying centers of gravity
CN206954486U (zh) * 2017-07-19 2018-02-02 潍坊歌尔电子有限公司 一种无人机机臂及无人机
CN207791146U (zh) * 2017-09-19 2018-08-31 深圳洲际通航投资控股有限公司 一种可变轴距无人机
CN107719654A (zh) * 2017-10-29 2018-02-23 成都常明信息技术有限公司 一种运输无人机
CN108216559A (zh) * 2018-01-30 2018-06-29 成都睿铂科技有限责任公司 一种无人机机臂

Also Published As

Publication number Publication date
CN209064359U (zh) 2019-07-05
CN110972471A (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
WO2020062504A1 (zh) 机臂组件及包括该机臂组件的无人机
US20070215750A1 (en) Radio controlled helicopter
JP7080500B2 (ja) 垂直離着陸機体
US10640207B2 (en) Tilt-prop aircraft
CN204489181U (zh) 可变电机角度四轴垂直起降固定翼复合无人机
US9272784B2 (en) Vertical takeoff winged multicopter
US7946526B2 (en) Rotary-wing vehicle system
CN108473192B (zh) 顺桨螺旋桨离合器机构
JP2019532871A5 (zh)
EP3097014A1 (en) Multicopters with variable flight characteristics
US8579226B2 (en) Power assisted toy flying device
Carlson A hybrid tricopter/flying-wing vtol uav
JP2014240214A (ja) ロータヘッド及び無人ヘリコプタ
CN110422329A (zh) 凸轮控制叶片转动的轮式动翼装置与轮式动翼方法
CN104787327A (zh) 一种可变轴距的多旋翼飞行器
CN105539832B (zh) 一种可变螺距的多旋翼无人机动力装置
WO2019119409A1 (zh) 无人机及无人机控制方法
CN205256669U (zh) 一种可变螺距的多旋翼无人机及其动力装置
CN205381396U (zh) 一种飞行航拍器
CN110371285A (zh) 叶片可转卧式升力四轮式动翼无人机
CN207045728U (zh) 固定翼矢量无人机
CN206954510U (zh) 一种可垂直起降的固定翼无人机
CN110254705A (zh) 带有固定翼的叶片可转卧式单轮式动翼飞行器
US20110089287A1 (en) Power assisted toy flying device
CN210618461U (zh) 可驻扎于峭壁的无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934570

Country of ref document: EP

Kind code of ref document: A1