WO2020062199A1 - SiC晶须增强的Sn-Bi系焊料及其制备方法 - Google Patents

SiC晶须增强的Sn-Bi系焊料及其制备方法 Download PDF

Info

Publication number
WO2020062199A1
WO2020062199A1 PCT/CN2018/108930 CN2018108930W WO2020062199A1 WO 2020062199 A1 WO2020062199 A1 WO 2020062199A1 CN 2018108930 W CN2018108930 W CN 2018108930W WO 2020062199 A1 WO2020062199 A1 WO 2020062199A1
Authority
WO
WIPO (PCT)
Prior art keywords
reinforced
sic whisker
sic
solder
nickel
Prior art date
Application number
PCT/CN2018/108930
Other languages
English (en)
French (fr)
Inventor
陈钦
罗登俊
徐衡
陈旭
Original Assignee
苏州优诺电子材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州优诺电子材料科技有限公司 filed Critical 苏州优诺电子材料科技有限公司
Priority to PCT/CN2018/108930 priority Critical patent/WO2020062199A1/zh
Publication of WO2020062199A1 publication Critical patent/WO2020062199A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding

Definitions

  • the invention relates to the field of soldering, and in particular to a SiC whisker-reinforced Sn-Bi based solder.
  • the solder obtained by adding a strengthening phase to the existing solder is called a composite solder.
  • the composite solder maintains a stable microstructure and uniform deformation inside the solder, thereby improving the reliability of the solder, improving and compensating the performance of the base alloy.
  • Another important feature of this strengthening is that it will not change the melting point, wettability and other process characteristics of the original solder substrate.
  • the object of the present invention is to provide a SiC whisker-reinforced Sn-Bi-based solder, which has excellent mechanical properties, good wettability with the substrate to be welded, and excellent fatigue resistance.
  • the present invention adopts the following technical solutions:
  • SiC whisker-reinforced Sn-Bi based solder in terms of parts by weight, includes the following components:
  • SiC whiskers 3-6 copies
  • the Sn-Bi series microalloy powder includes the following components in terms of mass percentage:
  • the SiC whisker has a diameter of 20-50 nm and a length of 1-2 ⁇ m.
  • a particle size of the Sn-Bi based microalloy powder is 10-20 ⁇ m.
  • the Sn-Bi based microalloy powder further includes 0.001-0.006% Ag and 0-0.001% Sm.
  • the amounts of the SiC whiskers and Sn-Bi based microalloy powder are further: 3-4.5 parts of SiC whiskers and 55-75 parts of Sn-Bi based microalloy powder.
  • the Bi content is further 50-50.5%, and the further In content is 0.1-0.2%.
  • the preparation method of SiC whisker-reinforced Sn-Bi based solder includes the following steps:
  • the conditions of the plasma treatment are that the microwave power is 600-700W, the temperature is 400-500 ° C, and the plasma treatment time is 5-10min.
  • the thickness of the nickel layer is 5-15 nm.
  • an appropriate amount of SiC whiskers are added to the Sn-Bi series substrate.
  • the SiC whiskers do not react and deform in the solder substrate, and can effectively prevent dislocations and grain boundary slips, thereby improving the mechanical properties of the solder substrate.
  • the composite solder prepared by the present invention can form reliable solder joints without oxide doping, has extremely small welding pores, excellent high and low temperature impact resistance characteristics, excellent thermal fatigue performance, and good reliability. Good wettability on various surface-treated pads.
  • SiC whisker-reinforced Sn-Bi based solder in terms of parts by weight, includes the following components:
  • SiC whiskers 3 copies
  • the Sn-Bi series microalloy powder includes the following components in terms of mass percentage:
  • Its preparation method includes the following steps:
  • the plasma processing time is 5min;
  • SiC whisker-reinforced Sn-Bi based solder in terms of parts by weight, includes the following components:
  • the Sn-Bi series microalloy powder includes the following components in terms of mass percentage:
  • Its preparation method includes the following steps:
  • SiC whisker-reinforced Sn-Bi based solder in terms of parts by weight, includes the following components:
  • SiC whiskers 4 copies
  • the Sn-Bi series microalloy powder includes the following components in terms of mass percentage:
  • Its preparation method includes the following steps:
  • Plasma activation of the SiC whisker surface then deposit a layer of myopia nickel on the surface to obtain nickel-plated SiC whiskers; wherein the plasma treatment conditions are microwave power of 700W and temperature of 400 ° C. Plasma processing time is 6min;
  • SiC whisker-reinforced Sn-Bi based solder in terms of parts by weight, includes the following components:
  • SiC whiskers 4.5 copies
  • the Sn-Bi series microalloy powder includes the following components in terms of mass percentage:
  • Its preparation method includes the following steps:
  • SiC whisker-reinforced Sn-Bi based solder in terms of parts by weight, includes the following components:
  • SiC whiskers 5 copies
  • the Sn-Bi series microalloy powder includes the following components in terms of mass percentage:
  • Its preparation method includes the following steps:
  • Plasma activation of the SiC whisker surface then deposit a layer of myopia nickel on the surface to obtain nickel-plated SiC whiskers; wherein the plasma treatment conditions are microwave power of 700W and temperature of 400 ° C.
  • the plasma processing time is 8min;
  • SiC whisker-reinforced Sn-Bi based solder in terms of parts by weight, includes the following components:
  • the Sn-Bi series microalloy powder includes the following components in terms of mass percentage:
  • Its preparation method includes the following steps:

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

一种SiC晶须增强的Sn-Bi系焊料及其制备方法,该焊料以重量份计,包括以下组分:SiC晶须3-6份;Sn-Bi系微合金粉40-80份;其中,Sn-Bi系微合金粉以质量百分比计包括以下组分:Bi 35.9-57.5%,In 0.3-0.6%,Cu 0.01-0.05%,Zn 0.005-0.009%,Pt 0.001-0.003%,Y 0-0.003%,Ce 0.001-0.005%,Cd 0.0005-0.0009%,Co 0.0001-0.0005%,其余为Sn以及不可避免的杂质。该焊料对基体的润湿性好,具有良好的机械性能。

Description

SiC晶须增强的Sn-Bi系焊料及其制备方法 技术领域:
本发明涉及钎焊领域,具体的涉及一种SiC晶须增强的Sn-Bi系焊料。
背景技术:
在已有焊料中加入强化相后得到的焊料称为复合焊料,复合焊料是通过在焊料内部保持一个稳定的显微组织及均匀的变形,从而改进焊料的可靠性,改善和弥补基体合金性能上的某些不足,全面提高焊点的性能(特别是热疲劳性能及蠕变性能)和使用寿命。这种强化的另一个重要特征是不会改变原焊料基体的熔点、润湿性等工艺特性。
复合焊料的制备方法一般有两种,最传统的方法是把强化颗粒加入到熔融的焊料中熔炼,这种方法称为机械混合法或外加法,机械混合法中的另一分支是直接在焊膏中添加强化颗粒,再将它们与焊膏长时间混合制备复合焊膏,直接用于表面组装;另外一种方法基于粉末冶金技术,即先将强化颗粒与焊料和合金颗粒混合均匀,再通过挤压成形制成复合焊料。但是目前的复合焊料增强颗粒与合金基体相容性差,容易发生团聚,使得焊料的使用寿命大大缩短。
发明内容:
本发明的目的是提供一种SiC晶须增强的Sn-Bi系焊料,其机械性能优异,与被焊基体的润湿性好,抗疲劳性能优异。
为实现上述目的,本发明采用以下技术方案:
SiC晶须增强的Sn-Bi系焊料,以重量份计,包括以下组分:
SiC晶须            3-6份;
Sn-Bi系微合金粉    40-80份。
作为上述技术方案的优选,Sn-Bi系微合金粉以质量百分比计包括以下组分:
Figure PCTCN2018108930-appb-000001
其余为Sn以及不可避免的杂质。
作为上述技术方案的优选,所述SiC晶须的直径为20-50nm,长度为1-2μm。
作为上述技术方案的优选,所述Sn-Bi系微合金粉的粒径大小为10-20μm。
作为上述技术方案的优选,所述Sn-Bi系微合金粉还包括0.001-0.006%的Ag和0-0.001%的Sm。
作为上述技术方案的优选,所述SiC晶须和Sn-Bi系微合金粉的用量进一步为:SiC晶须3-4.5份、Sn-Bi系微合金粉55-75份。
作为上述技术方案的优选,所述Bi的含量进一步为50-55.5%,In的进一步含量为0.1-0.2%。
SiC晶须增强的Sn-Bi系焊料的制备方法,包括以下步骤:
(1)将SiC晶须表面进行等离子体活化;然后在其表面沉积一层近视镍,制得镀镍的SiC晶须;
(2)将上述制得的镀镍的SiC晶须与Sn-Bi系微合金粉混合研磨,制得复合焊料。
作为上述技术方案的优选,步骤(1)中,所述等离子体处理的条件为微波功率为600-700W,温度为400-500℃,等离子体处理时间为5-10min。
作为上述技术方案的优选,步骤(1)中,所述镍层的厚度为5-15nm。
本发明具有以下有益效果:
本发明在Sn-Bi系基体中加入适量的SiC晶须,SiC晶须在焊料基体中不发生反应,不变形,且可以有效阻碍位错和晶界滑移,从而提高焊料基体的机械性能;
本发明制得的复合焊料能够形成可靠焊点,没有氧化物掺杂,焊接孔隙极小,耐高低温冲击特性、热疲劳性能优异,有较好可靠性。在各种表面处理的焊盘上具有良好的润湿性。
具体实施方式:
为了更好的理解本发明,下面通过实施例对本发明进一步说明,实施例只用于解释本发明,不会对本发明构成任何的限定。
实施例1
SiC晶须增强的Sn-Bi系焊料,以重量份计,包括以下组分:
SiC晶须           3份;
Sn-Bi系微合金粉   40份;
其中,Sn-Bi系微合金粉以质量百分比计包括以下组分:
Figure PCTCN2018108930-appb-000002
其余为Sn以及不可避免的杂质;
其制备方法包括以下步骤:
(1)将SiC晶须表面进行等离子体活化;然后在其表面沉积一层近视镍,制得镀镍的SiC晶须;其中,等离子体处理的条件为微波功率为600W,温度为400℃,等离子体处理时间为5min;
(2)将上述制得的镀镍的SiC晶须与Sn-Bi系微合金粉混合研磨,制得复合焊料。
实施例2
SiC晶须增强的Sn-Bi系焊料,以重量份计,包括以下组分:
SiC晶须            6份;
Sn-Bi系微合金粉    80份;
其中,Sn-Bi系微合金粉以质量百分比计包括以下组分:
Figure PCTCN2018108930-appb-000003
其余为Sn以及不可避免的杂质;
其制备方法包括以下步骤:
(1)将SiC晶须表面进行等离子体活化;然后在其表面沉积一层近视镍,制得镀镍的SiC晶须;其中,等离子体处理的条件为微波功率为600W,温度为500℃,等离子体处理时间为10min;
(2)将上述制得的镀镍的SiC晶须与Sn-Bi系微合金粉混合研磨,制得复合焊料。
实施例3
SiC晶须增强的Sn-Bi系焊料,以重量份计,包括以下组分:
SiC晶须           4份;
Sn-Bi系微合金粉   50份;
其中,Sn-Bi系微合金粉以质量百分比计包括以下组分:
Figure PCTCN2018108930-appb-000004
其余为Sn以及不可避免的杂质;
其制备方法包括以下步骤:
(1)将SiC晶须表面进行等离子体活化;然后在其表面沉积一层近视镍,制得镀镍的SiC晶须;其中,等离子体处理的条件为微波功率为700W,温度为400℃,等离子体处理时间为6min;
(2)将上述制得的镀镍的SiC晶须与Sn-Bi系微合金粉混合研磨,制得复合焊料。
实施例4
SiC晶须增强的Sn-Bi系焊料,以重量份计,包括以下组分:
SiC晶须            4.5份;
Sn-Bi系微合金粉    60份;
其中,Sn-Bi系微合金粉以质量百分比计包括以下组分:
Figure PCTCN2018108930-appb-000005
其余为Sn以及不可避免的杂质;
其制备方法包括以下步骤:
(1)将SiC晶须表面进行等离子体活化;然后在其表面沉积一层近视镍,制得镀镍的SiC晶须;其中,等离子体处理的条件为微波功率为650W,温度为450℃,等离子体处理时间为7min;
(2)将上述制得的镀镍的SiC晶须与Sn-Bi系微合金粉混合研磨,制得复合焊料。
实施例5
SiC晶须增强的Sn-Bi系焊料,以重量份计,包括以下组分:
SiC晶须            5份;
Sn-Bi系微合金粉    70份;
其中,Sn-Bi系微合金粉以质量百分比计包括以下组分:
Figure PCTCN2018108930-appb-000006
其余为Sn以及不可避免的杂质;
其制备方法包括以下步骤:
(1)将SiC晶须表面进行等离子体活化;然后在其表面沉积一层近视镍,制得镀镍的SiC晶须;其中,等离子体处理的条件为微波功率为700W,温度为400℃,等离子体处理时间为8min;
(2)将上述制得的镀镍的SiC晶须与Sn-Bi系微合金粉混合研磨,制得复合焊料。
实施例6
SiC晶须增强的Sn-Bi系焊料,以重量份计,包括以下组分:
SiC晶须            5.5份;
Sn-Bi系微合金粉    75份;
其中,Sn-Bi系微合金粉以质量百分比计包括以下组分:
Figure PCTCN2018108930-appb-000007
其余为Sn以及不可避免的杂质;
其制备方法包括以下步骤:
(1)将SiC晶须表面进行等离子体活化;然后在其表面沉积一层近视镍,制得镀镍的SiC晶须;其中,等离子体处理的条件为微波功率为600W,温度为450℃,等离子体处理时间为9min;
(2)将上述制得的镀镍的SiC晶须与Sn-Bi系微合金粉混合研磨,制得复合焊料。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (10)

  1. SiC晶须增强的Sn-Bi系焊料,其特征在于,以重量份计,包括以下组分:
    SiC晶须         3-6份;
    Sn-Bi系微合金粉  40-80份。
  2. 如权利要求1所述的SiC晶须增强的Sn-Bi系焊料,其特征在于,Sn-Bi系微合金粉以质量百分比计包括以下组分:
    Figure PCTCN2018108930-appb-100001
    其余为Sn以及不可避免的杂质。
  3. 如权利要求1所述的SiC晶须增强的Sn-Bi系焊料,其特征在于,所述SiC晶须的直径为20-50nm,长度为1-2μm。
  4. 如权利要求1所述的SiC晶须增强的Sn-Bi系焊料,其特征在于,所述Sn-Bi系微合金粉的粒径大小为10-20μm。
  5. 如权利要求1所述的SiC晶须增强的Sn-Bi系焊料,其特征在于,所述Sn-Bi系微合金粉还包括0.001-0.006%的Ag和0-0.001%的Sm。
  6. 如权利要求1所述的SiC晶须增强的Sn-Bi系焊料,其特征在于,所述SiC晶须和Sn-Bi系微合金粉的用量进一步为:SiC晶须3-4.5份、Sn-Bi系微合金粉55-75份。
  7. 如权利要求1所述的SiC晶须增强的Sn-Bi系焊料,其特征在于,所述Bi的含量进一步为50-55.5%,In的进一步含量为0.1-0.2%。
  8. 如权利要求1至7任一所述的SiC晶须增强的Sn-Bi系焊料的制备方法,其特征在于,包括以下步骤:
    (1)将SiC晶须表面进行等离子体活化;然后在其表面沉积一层近视镍,制得镀镍的SiC晶须;
    (2)将上述制得的镀镍的SiC晶须与Sn-Bi系微合金粉混合研磨,制得复合焊料。
  9. 如权利要求8所述的SiC晶须增强的Sn-Bi系焊料的制备方法,其特征在于,步骤(1)中,所述等离子体处理的条件为微波功率为600-700W,温度为400-500℃,等离子体处理时间为5-10min。
  10. 如权利要求8所述的SiC晶须增强的Sn-Bi系焊料的制备方法,其特征在于,步骤(1)中,所述镍层的厚度为5-15nm。
PCT/CN2018/108930 2018-09-30 2018-09-30 SiC晶须增强的Sn-Bi系焊料及其制备方法 WO2020062199A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/108930 WO2020062199A1 (zh) 2018-09-30 2018-09-30 SiC晶须增强的Sn-Bi系焊料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/108930 WO2020062199A1 (zh) 2018-09-30 2018-09-30 SiC晶须增强的Sn-Bi系焊料及其制备方法

Publications (1)

Publication Number Publication Date
WO2020062199A1 true WO2020062199A1 (zh) 2020-04-02

Family

ID=69952667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108930 WO2020062199A1 (zh) 2018-09-30 2018-09-30 SiC晶须增强的Sn-Bi系焊料及其制备方法

Country Status (1)

Country Link
WO (1) WO2020062199A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036691A (ja) * 2006-08-09 2008-02-21 Toyota Motor Corp 鉛フリーはんだ材料及びその製造方法、接合構造、並びに電子部品実装構造
CN101323062A (zh) * 2008-07-16 2008-12-17 太仓市南仓金属材料有限公司 碳化硅颗粒增强型锡银锌复合焊料及其制备方法
CN101480763A (zh) * 2008-01-07 2009-07-15 三星电子株式会社 复合材料焊料及其制备方法
CN102400121A (zh) * 2011-11-05 2012-04-04 上海上大瑞沪微系统集成技术有限公司 用于强化复合无铅焊料的纳米陶瓷颗粒的制备工艺
CN103906598A (zh) * 2011-08-02 2014-07-02 阿尔法金属公司 高冲击韧性的焊料合金
JP2014237170A (ja) * 2013-06-10 2014-12-18 三菱電機株式会社 超音波はんだ接合用鉛フリーはんだ合金及びそれを用いた超音波はんだ接合方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036691A (ja) * 2006-08-09 2008-02-21 Toyota Motor Corp 鉛フリーはんだ材料及びその製造方法、接合構造、並びに電子部品実装構造
CN101480763A (zh) * 2008-01-07 2009-07-15 三星电子株式会社 复合材料焊料及其制备方法
CN101323062A (zh) * 2008-07-16 2008-12-17 太仓市南仓金属材料有限公司 碳化硅颗粒增强型锡银锌复合焊料及其制备方法
CN103906598A (zh) * 2011-08-02 2014-07-02 阿尔法金属公司 高冲击韧性的焊料合金
CN102400121A (zh) * 2011-11-05 2012-04-04 上海上大瑞沪微系统集成技术有限公司 用于强化复合无铅焊料的纳米陶瓷颗粒的制备工艺
JP2014237170A (ja) * 2013-06-10 2014-12-18 三菱電機株式会社 超音波はんだ接合用鉛フリーはんだ合金及びそれを用いた超音波はんだ接合方法

Similar Documents

Publication Publication Date Title
CN107999994B (zh) 微米/纳米颗粒增强型复合焊料及其制备方法
CN103624418B (zh) 一种低银铜基钎料及其制备方法
US8598707B2 (en) Solder alloy and semiconductor device
CN103358051B (zh) 一种铜基钎料及其制备方法
CN107058796B (zh) 一种稀土微合金化铜基合金、制备方法及挤压成棒材的方法
WO2007091576A1 (ja) 高耐熱性、高強度Ir基合金及びその製造方法
CN109576534A (zh) 一种低钨含量γ`相强化钴基高温合金及其制备工艺
CN114559179A (zh) 一种Sn-Ag-Cu低熔点无铅钎料及其制备方法
CN105965172A (zh) 一种低温焊接材料
CN105458548A (zh) 一种高温合金薄壁结构的钎焊料及其制备方法和应用
CN103624415A (zh) 一种含硼锡基无铅焊料及其制备方法
CN101323062B (zh) 一种碳化硅颗粒增强型锡银锌复合焊料的制备方法
Bashir et al. Grain size stability of interfacial intermetallic compound in Ni and Co nanoparticle-doped SAC305 solder joints under electromigration
CN110102931A (zh) 一种改进的微电子封装用低银Sn-Ag-Cu焊料及其制备方法
WO2020062199A1 (zh) SiC晶须增强的Sn-Bi系焊料及其制备方法
BRPI0708563B1 (pt) comutador de carbono utilizando um material compósito, e, método para produzir um comutador de carbono utilizando um material compósito
WO2017070806A1 (zh) 一种高强度碳化钛颗粒增强铜基复合材料及其制备方法
CN111318801B (zh) 一种基于高熵合金扩散焊接的金属间化合物及其制备方法
CN112853156A (zh) 一种高组织稳定性镍基高温合金及其制备方法
CN107538149B (zh) 一种Sn-Cu-Co-Ni无铅焊料及其制备方法
CN109175768A (zh) SiC晶须增强的Sn-Bi系焊料及其制备方法
JPH10152737A (ja) 銅合金材及びその製造方法
CN114131238B (zh) 一种光伏焊带用钎料合金及其制备方法和应用
CN112941398B (zh) 一种石墨增强自润滑铜合金及其制备方法
JP2010126766A (ja) Snめっき層を有するめっき基材およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18935099

Country of ref document: EP

Kind code of ref document: A1