WO2020061855A1 - 特种机器人操控系统、方法、电子设备、介质以及程序 - Google Patents

特种机器人操控系统、方法、电子设备、介质以及程序 Download PDF

Info

Publication number
WO2020061855A1
WO2020061855A1 PCT/CN2018/107737 CN2018107737W WO2020061855A1 WO 2020061855 A1 WO2020061855 A1 WO 2020061855A1 CN 2018107737 W CN2018107737 W CN 2018107737W WO 2020061855 A1 WO2020061855 A1 WO 2020061855A1
Authority
WO
WIPO (PCT)
Prior art keywords
special
dimensional information
information
robots
robot
Prior art date
Application number
PCT/CN2018/107737
Other languages
English (en)
French (fr)
Inventor
孙兆君
杨占宾
李季
王洪伟
刘江波
Original Assignee
西门子股份公司
孙兆君
杨占宾
李季
王洪伟
刘江波
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西门子股份公司, 孙兆君, 杨占宾, 李季, 王洪伟, 刘江波 filed Critical 西门子股份公司
Priority to PCT/CN2018/107737 priority Critical patent/WO2020061855A1/zh
Priority to CN201880098067.XA priority patent/CN113543937A/zh
Publication of WO2020061855A1 publication Critical patent/WO2020061855A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C27/00Fire-fighting land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls

Definitions

  • the invention relates to the control field of special robots, in particular to a special robot control system, method, electronic equipment, medium and program.
  • control centers for these special robots have established control centers for these special robots as centralized controllers.
  • Each special robot can communicate with the centralized controller separately. Operators can control all special robots by switching channels in the centralized controller.
  • a special robot control system includes: a plurality of special robots; and an information acquisition unit capable of collecting three-dimensional information of the plurality of special robot operation sites.
  • a cloud platform capable of receiving the three-dimensional information from the information acquisition unit, integrating the three-dimensional information, and controlling the plurality of special robots to operate cooperatively according to the integrated three-dimensional information.
  • the cloud platform includes: a storage module adapted to store the three-dimensional information received from the information acquisition unit; a decision-making module that integrates the three-dimensional information and calculates each special type based on the integrated three-dimensional information An operation to be performed by the robot to cause the plurality of special robots to operate cooperatively; a control module that sends instructions to the plurality of special robots according to calculations of the decision module to control the operations of each special robot. Therefore, the cloud platform can accurately calculate the optimal solution based on the obtained three-dimensional information and send individual instructions to each special robot, so that these special robots work together to efficiently complete the expected operation.
  • the cloud platform controls the coordinated operations of the plurality of special robots through the respective intelligent gateways of the plurality of special robots, so that under the data processing of the intelligent gateway, the cloud platform can transmit data suitable for analysis and calculation. data.
  • the information acquisition unit includes: a plurality of low-altitude acquisition sub-units, each of which is installed on a special robot, and is adapted to collect the work site information of the special robot from a low-altitude; at least one high-altitude Acquisition sub-units, each high-altitude acquisition sub-unit is adapted to collect the work site information of at least one special robot from high altitude. Therefore, more comprehensive site status information can be obtained from various angles or orientations of the job site.
  • the plurality of low-altitude acquisition subunits include at least one of a camera, a lidar, a temperature sensor, and an ultrasonic rangefinder, and provide the collected three-dimensional information to the cloud platform through an intelligent gateway.
  • the high-altitude acquisition subunit includes an unmanned aerial vehicle, and the unmanned aerial vehicle provides the collected three-dimensional information to the cloud platform through an intelligent gateway.
  • the cloud platform further includes: an expansion module capable of providing the three-dimensional information in the storage module to a work platform for displaying the status of the work site, and being able to receive from the work platform Manual instructions to control operation of the plurality of special robots. Therefore, in some cases where human intervention is required, the special robot operation can be directly operated through the operation console to achieve the desired operation.
  • the decision-making module adjusts the operation of the special robot in real time according to the three-dimensional information collected by the information acquisition unit in real time. Therefore, the control of all special robots by the cloud platform is a dynamic process, which can change or adjust the operation of the special robots in real time according to the real-time conditions of the job site, thereby completing the work more efficiently, more specifically, and faster.
  • the special robot includes a fire robot.
  • a method for controlling a special robot includes: collecting three-dimensional information of a plurality of special robot operation sites; integrating the three-dimensional information, and controlling according to the integrated three-dimensional information.
  • the plurality of special robots operate in cooperation.
  • the integrating the three-dimensional information and controlling the cooperative operations of the plurality of special robots based on the integrated three-dimensional information includes integrating the three-dimensional information and calculating each of the three-dimensional information based on the integrated three-dimensional information.
  • the collecting three-dimensional information of a plurality of special robot operation sites includes: collecting low-altitude operation site information of the plurality of special robots through low-altitude acquisition subunits; and acquiring the high-altitude acquisition office from a high-altitude acquisition subunits. Describes the job site information of multiple special robots. Through various types of acquisition units, field information can be obtained from various aspects.
  • the method further includes: providing the three-dimensional information to an operation command platform to display a work site status; receiving a manual instruction from the operation command platform, and controlling the plurality of instructions according to the manual instruction Operation of special robots. Therefore, in some cases where human intervention is required, the special robot operation can be directly operated through the operation console to achieve the desired operation.
  • an electronic device the electronic device includes at least one processor and a memory, and the memory stores an application program executed by the at least one processor, so that The at least one processor executes the above method.
  • a computer-readable storage medium is also provided, and computer-readable instructions are stored in the computer-readable storage medium, and the computer-readable instructions are used to perform the foregoing method.
  • a computer program including computer-executable instructions that, when executed, cause at least one processor to perform the above method.
  • a computer program product tangibly stored on a computer-readable medium and including computer-executable instructions that, when executed, cause the computer-executable instructions to cause At least one processor performs the above method.
  • FIG. 1 is a schematic block diagram of a special robot control system according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a method for controlling a special robot according to an embodiment of the present invention.
  • FIG. 3 is a schematic block diagram of a computing device for controlling a special robot according to an embodiment of the present invention.
  • the term “including” and variations thereof mean open terms, meaning “including but not limited to.”
  • the term “based on” means “based at least in part on.”
  • the terms “one embodiment” and “an embodiment” mean “at least one embodiment.”
  • the term “another embodiment” means “at least one other embodiment.”
  • the terms “first”, “second”, etc. may refer to different or the same objects. Other definitions can be included below, either explicitly or implicitly. Unless the context clearly indicates otherwise, the definition of a term is consistent throughout the specification.
  • the information acquisition equipment on traditional special robots can only provide two-dimensional information on the job site, and cannot completely reflect the site conditions.
  • many problems exist in these special robots such as low efficiency, low reliability, and low accuracy. In an emergency, these problems can lead to more serious consequences, property damage and even accidents.
  • a cloud platform-based special robot control system 100 may include a plurality of special robots 131 that can perform certain special operations.
  • the special robot 131 may be a fire-fighting robot for extinguishing fire, and a plurality of fire-fighting robots may be dispersed and independently perform fire-fighting rescue operations at a fire scene.
  • the control system 100 further includes a cloud platform 110 and an information acquisition unit 140.
  • the information collection unit 140 may collect three-dimensional information of the working site of the special robot 131 in real time, and may send the collected three-dimensional information to the cloud platform 110.
  • the cloud platform 100 may be referred to as a “Mindsfire” cloud platform, which may be integrated with a cloud-based open IoT operating system, such as a Mindsphere system.
  • the information acquisition unit 140 can send three-dimensional information of the fire scene to the cloud, including pictures, videos, ambient temperature, flame conditions, the location of each special robot and the distance from the fire location, and the toxic gas content in the surrounding environment.
  • the platform 100 can accurately and comprehensively feedback the current situation of the fire scene.
  • the information collection unit 140 may include a low-altitude collection sub-unit 142 and a high-altitude collection sub-unit 141, so as to be able to collect a full range of information on the job site from various angles in order to obtain a more comprehensive and accurate real-time on-site situation.
  • the low-altitude acquisition sub-unit 142 may include various sensing instruments such as a camera, a lidar, a temperature sensor, an ultrasonic range finder, and a gas detection sensor installed on a special robot such as a fire-fighting robot.
  • sensing instruments Various types of information needed to perform rescue operations on the special robot 131 that scans or senses the fire scene from the ground position, including which locations have a greater fire potential, which locations have higher temperatures, and which locations Various information such as high toxic gas content, which locations may be wounded, and the distance from these locations can accurately grasp the hidden dangers of fire and facilitate the subsequent formulation of effective fire suppression plans.
  • the high-altitude acquisition subunit 141 may include various devices suitable for high-altitude shooting, such as an unmanned aerial vehicle or a high-altitude movable camera.
  • an unmanned aerial vehicle can fly over the fire scene at high altitudes, and use the cameras mounted to capture the fire scene conditions in real time. Therefore, the combination of the high-altitude acquisition subunit 141 and the low-altitude acquisition subunit 142 can obtain the fire scene from various angles. Real-time 3D information.
  • the cloud platform of the special robot control system provided by the present invention may include a storage module 111, a decision module 112, and a control module 113.
  • the three-dimensional information about the job site received from the information acquisition unit 140 may be stored in Inside the storage module 111. Based on these three-dimensional information, the decision module 112 can calculate a next operation of each special robot through a series of intelligent algorithms.
  • various information collected by the information collection unit 140 may transmit the collected information to the cloud platform through their respective intelligent gateways.
  • special robots 131 such as fire-fighting robots may each be equipped with their respective intelligent gateways 122
  • unmanned aerial vehicles that collect fire scene information from a high altitude may also be equipped with their respective intelligent gateways 121.
  • these data may be processed in the intelligent gateways for processing, so as to be converted into a suitable format and further transmitted to the cloud platform 110.
  • the initial information or data may be post-processed, and the information or data may be integrated together.
  • the above-mentioned decision module 112 may calculate an optimal treatment plan for the current site conditions based on a series of algorithms stored in advance based on such data, for example, may calculate an optimal fire suppression plan, control the fire and complete the fire suppression at the fastest speed. operating.
  • the cloud platform 110 may integrate the information of the low-altitude acquisition sub-unit 142 on each fire robot and the high-altitude acquisition sub-unit 141 above the work site, and then the decision module 112 may calculate based on the integrated field information.
  • control module 113 can send corresponding instructions to each fire robot to control the operation of the fire robot via the intelligent gateway based on the optimal execution plan calculated by the decision module 112, so that it can control the fire scene as a whole and make the fastest in time. Reaction.
  • the cloud platform 110 when the control module 113 calculates the overall fire suppression plan and sends instructions to each fire-fighting robot, the cloud platform 110 also updates the information data received from the information acquisition unit 140 in real time and processes these information data in a unified manner.
  • the calculation operations performed by the decision-making module 112 and the instructions sent by the control module 113 are also updated in real time, realizing the dynamic control of the operation of the special robot 131, so that the operations of all special robots 131 can be adjusted in real time according to the conditions of the job site, Get more targeted and productive.
  • the cloud platform 110 of the control system 100 may further include an expansion module 114 to facilitate users to develop other required functions in addition to the functions described above.
  • the expansion module 114 can communicate with the operation command platform, and can transmit the status of the operation site and the operation of each special robot 131 to the operation command platform in real time. The sent information can be displayed on the operation command platform for field command personnel. Monitor site conditions.
  • the commander can directly send instructions through the operation platform via the expansion module 114 of the cloud platform 110. Such instructions take precedence over the instructions automatically calculated by the decision module 112 and the instructions sent by the control module 113, so that they can manually intervene in special robots.
  • 131 operations in order to perform certain desired operations. That is, the field commander can directly control the operation of the special robot 131 through the expansion module 114.
  • the cloud platform 110 may also develop other functions or modules to perform various analyses and calculations on the received data in order to perform other suitable operations based on the site conditions.
  • a method 200 for controlling a special robot is also provided. As shown in FIG. 2, the method may be executed by the special robot control system 100 described above.
  • three-dimensional information of a plurality of special robot operation sites may be collected.
  • the above-mentioned information acquisition unit including various low-altitude acquisition equipment and high-altitude acquisition equipment can be used to obtain the three-dimensional information of the job site, and then the three-dimensional information is transmitted to the cloud platform via the intelligent gateway.
  • the received three-dimensional information may be integrated, and each special robot may be controlled for cooperative operation according to the integrated three-dimensional information.
  • the information received from different information collection devices is different, the information needs to be integrated and stored, for example, it can be stored in the storage module 111 described above.
  • the decision-making module 112 can calculate the optimal plan for performing operations such as fire extinguishing operations, and then the control module 113 adjusts or controls the operation of each special robot based on the calculated optimal plan, and optimizes the resource allocation so that These special robots operate in the best formations to complete the expected tasks more efficiently and targeted.
  • the above-mentioned operation of collecting three-dimensional information and the calculation of the optimal solution are performed in real time, so as to adjust the operation of the special robot according to the site conditions at any time.
  • the low-altitude acquisition sub-unit 142 may collect the work-site information of a plurality of special robots from a low-altitude area of the work site.
  • the high-altitude acquisition sub-unit 141 can also be used to collect job site information from the high-altitude area, which can be sent to the cloud platform for subsequent processing and calculation at the same time.
  • the three-dimensional information of the work site can also be provided to the work console through the expansion module 114 to display the status of the work site.
  • On-site commanders can enter manual instructions on the operating command platform, and these manual instructions can be sent to various special robots through the cloud platform, thereby manually interfering with the operations of these special robots to achieve the desired operational goals.
  • each module in the above cloud platform may also be each functional module implemented by hardware, for example, the control logic of each process involved in the access control method is burned to a field-programmable gate array (Field-Programmable Gate Array) in advance.
  • FPGA field-programmable gate array
  • CPLD Complex Programmable Logic Device
  • each step or operation of the above method and the modules in each structural diagram are not necessarily required, and some steps or modules may be omitted according to actual needs.
  • the division of each module is just to facilitate the description of the adopted function.
  • a module can be divided into multiple modules, and the functions of multiple modules can also be implemented by the same module. These modules can be located on the same device. , Or in a different device.
  • a hardware module may include a specially designed permanent circuit or logic device (such as a special-purpose processor, such as an FPGA or ASIC) to perform a specific operation.
  • a hardware module may also include a programmable logic device or circuit (eg, including a general-purpose processor or other programmable processor) temporarily configured by software for performing specific operations.
  • a programmable logic device or circuit eg, including a general-purpose processor or other programmable processor
  • the present invention also provides an electronic device 300 for controlling a special robot.
  • the special robot control system 300 includes at least a processor 301 and a memory 302.
  • An application program executable by the processor 301 is stored in the memory 302 to cause the processor 301 to execute the above-mentioned method of operating a special robot.
  • Each module included in the above-mentioned control system 100 may be a module of an application program stored in the memory 302 in the electronic device 300 shown in FIG. 3. When each module is called by the processor 301, it implements its own function.
  • the modules of the control system 100 may also be functional modules implemented by hardware, for example, the control logic of each process involved in the access control method is burned in advance to a field programmable gate array (Field- Programmable Gate Array (FPGA) chip or Complex Programmable Logic Device (CPLD), and these chips or devices perform the functions of the above modules, and the specific implementation method may depend on engineering practice.
  • FPGA Field- Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • the invention also provides a machine-readable storage medium storing the instructions for causing the machine to execute the various instructions mentioned above.
  • a system or device provided with a storage medium may be provided, on which software program code that implements the functions of any one of the embodiments is stored, and the computer (or CPU or MPU) of the system or device is stored ) Read out and execute the program code stored in the storage medium.
  • some or all of the actual operations can also be performed by an operating system or the like operating on a computer through instructions based on the program code. It is also possible to write the program code read from the storage medium into a memory provided in an expansion board inserted into the computer or into a memory provided in an expansion unit connected to the computer, and then install the program on the basis of instructions of the program code.
  • the expansion board or the CPU on the expansion unit performs part and all of the actual operations, thereby realizing the functions of any one of the above embodiments.
  • Embodiments of the storage medium for providing program code include a floppy disk, a hard disk, a magneto-optical disk, an optical disk (such as a CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM, DVD-RW, DVD + RW), Magnetic tape, non-volatile memory card and ROM.
  • the program code may be downloaded from a server computer or the cloud by a communication network.
  • the field information is collected at low and high altitudes, and the three-dimensional information on the scene can be accurately and comprehensively acquired, thereby helping to more accurately grasp the site conditions and the overall Grasp more fire hazard information.
  • the cloud platform by transmitting the collected data to the cloud platform, all the collected data is processed in a unified manner, and the optimal fire extinguishing scheme can be calculated, and the response time of the fire robots can be improved, so that the fire robots can work together , More reasonable deployment of resources, more efficient fire-fighting operations, and this can improve the response time to deal with fires and complete the fire-fighting as quickly as possible.
  • the cloud platform can perform more comprehensive data processing, it can also improve the control accuracy of fire robots. Therefore, the cost and loss of a fire can be significantly reduced, more effective rescues can be performed, and personnel injuries can be reduced. Furthermore, it will make consumers trust products more and increase sales of robots.

Abstract

一种基于云平台的特种机器人控制系统,包括:多个特种机器人(131);信息采集单元(140),能够采集多个特种机器人(131)作业现场的三维信息;云平台(110),能够从信息采集单元(140)接收三维信息,并对三维信息进行整合,根据整合后的三维信息控制多个特种机器人(131)协同操作。该基于云平台的特种机器人控制系统可从整体上掌控作业现场状况,从而计算出更加适合当前状况的操作方案,以更加及时高效地控制特种机器人的操作。还涉及基于云平台的特种机器人操控方法、电子设备、介质以及程序。

Description

特种机器人操控系统、方法、电子设备、介质以及程序 技术领域
本发明涉及特种机器人控制领域,特别是一种特种机器人操控系统、方法、电子设备、介质以及程序。
背景技术
目前对诸如消防机器人等传统的特种机器人通常是单独控制的,在这些特种机器人彼此之间缺少交互,通过单个特种机器人上安装的信息采集设备获得的作业现场信息与其他特种机器人上的信息采集设备获得的信息是独立的或者分散的,彼此之间不存在信息共享。
为此,有些应用中针对这些特种机器人建立了作为集中控制器的控制中心,每个特种机器人可与集中控制器单独通信,操作人员可通过切换集中控制器中的信道来控制所有的特种机器人。
发明内容
有鉴于此,根据本发明的一方面,提供了一种特种机器人操控系统,所述特种机器人操控系统包括:多个特种机器人;信息采集单元,能够采集所述多个特种机器人作业现场的三维信息;云平台,能够从所述信息采集单元接收所述三维信息,并对所述三维信息进行整合,根据整合后的三维信息控制所述多个特种机器人协同操作。通过将采集到的更加全面精准的三维信息发送到云平台以进行统一处理或进行整合,可从整体上掌控作业现场状况,从而计算出更加适合当前状况的操作方案,以更加及时高效地控制特种机器人的操 作。
在一个实施例中,所述云平台包括:存储模块,适用于存储从所述信息采集单元接收的三维信息;决策模块,对所述三维信息进行整合,根据整合后的三维信息计算每个特种机器人将要进行的操作,以使得所述多个特种机器人协同操作;控制模块,根据所述决策模块的计算向所述多个特种机器人发送指令,以控制每个特种机器人的操作。因此,云平台能够基于所获得的三维信息,精准计算最优的方案并向各个特种机器人发送各自的指令,使得这些特种机器人协同作业,以高效地完成预期作业。
在一个实施例中,所述云平台通过所述多个特种机器人各自的智能网关控制所述多个特种机器人协调操作,从而在智能网关的数据处理下,可向云平台传输适合分析和计算的数据。
在一个实施例中,所述信息采集单元包括:多个低空采集子单元,每个低空采集子单元安装在一个特种机器人上,适用于从低空采集所述特种机器人的作业现场信息;至少一个高空采集子单元,每个高空采集子单元适于从高空采集至少一个特种机器人的作业现场信息。因此,可从作业现场的各个角度或方位,获得更加全面的现场状况信息。
在一个实施例中,所述多个低空采集子单元包括相机、激光雷达、温度传感器和超声波测距仪中的至少一个,并通过一智能网关将采集的三维信息提供给所述云平台,所述高空采集子单元包括无人驾驶飞行器,所述无人驾驶飞行器通过一智能网关将采集的三维信息提供给所述云平台。通过各种类型的采集单元,可从各个方面获取现场信息。
在一个实施例中,所述云平台进一步包括:扩展模块,能够将所述存储模块中的所述三维信息提供给一作业指挥台进行作业现场状况的显示,并能够从 所述作业指挥台接收人工指令来控制所述多个特种机器人的操作。因此,在某些需要人为干预的情况下,可通过作业指挥台直接来操作特种机器人操作,以实现预期操作。
在一个实施例中,所述决策模块根据所述信息采集单元实时采集的三维信息,实时地调整所述特种机器人的操作。因此,云平台对于所有特种机器人的操控是动态的过程,能够根据作业现场的实时状况,实时改变或调整特种机器人的操作,从而更有效地、更有针对性、更快捷地完成作业。
在一个实施例中,所述特种机器人包括消防机器人。
根据本发明的另一方面,还提供了一种操控特种机器人的方法,所述方法包括:采集多个特种机器人作业现场的三维信息;对所述三维信息进行整合,根据整合后的三维信息控制所述多个特种机器人协同操作。通过将采集到的更加全面精准的三维信息发送到云平台以进行统一处理或进行整合,可从整体上掌控作业现场状况,从而计算出更加适合当前状况的操作方案,以更加及时高效地控制特种机器人的操作。
在一个实施例中,所述对所述三维信息进行整合,根据整合后的三维信息控制所述多个特种机器人协同操作包括:对所述三维信息进行整合,根据整合后的三维信息计算每个特种机器人将要进行的操作,以使得所述多个特种机器人协同操作;根据计算结果向所述多个特种机器人发送指令,以控制每个特种机器人的操作。因此,云平台能够基于所获得的三维信息,精准计算最优的方案并向各个特种机器人发送各自的指令,使得这些特种机器人协同作业,以高效地完成预期作业。
在一个实施例中,所述采集多个特种机器人作业现场的三维信息包括:通过低空采集子单元,从低空采集所述多个特种机器人的作业现场信息;通过高 空采集子单元,从高空采集所述多个特种机器人的作业现场信息。通过各种类型的采集单元,可从各个方面获取现场信息。
在一个实施例中,所述方法进一步包括:将所述三维信息提供给一作业指挥台进行作业现场状况显示;接收来自所述作业指挥台的人工指令,根据所述人工指令控制所述多个特种机器人的操作。因此,在某些需要人为干预的情况下,可通过作业指挥台直接来操作特种机器人操作,以实现预期操作。
根据本发明的另一方面,还提供了一种电子设备,所述电子设备包括至少一个处理器和一个存储器,所述存储器中存储有被所述至少一个处理器执行的应用程序,用于使得所述至少一个处理器执行上述方法。
根据本发明的另一方面,还提供了一种计算机可读存储介质,在所述计算机可读存储介质中存储有计算机可读指令,该计算机可读指令用于执行上述方法。
根据本发明的另一方面,还提供了一种计算机程序,所述计算机程序包括计算机可执行指令,所述计算机可执行指令在被执行时使至少一个处理器执行上述方法。
根据本发明的另一方面,还提供了一种计算机程序产品,所述计算机程序产品被有形地存储在计算机可读介质上并且包括计算机可执行指令,所述计算机可执行指令在被执行时使至少一个处理器执行上述方法。
附图说明
下面将通过参照附图详细描述本发明的优选实施例,使本领域的普通技术人员更清楚本发明的上述及其它特征和优点,附图中:
图1为根据本发明的实施例的特种机器人操控系统的示意性框图;
图2是根据本发明的实施例的用于操控特种机器人的方法的流程图;以及
图3是根据本发明的实施例的用于操控特种机器人的计算设备的示意性框图。
附图标记说明:
100:特种机器人操控系统
110:云平台
111:存储模块
112:决策模块
113:控制模块
114:扩展模块
121、122:智能网关
131:特种机器人
140:信息采集单元
141:高空采集子单元
142:低空采集子单元
200:用于操控特种机器人的方法
201、202:步骤
300:电子设备
301:处理器
302:存储器
具体实施方式
现在将参考示例实施方式讨论本文描述的主题。应该理解,讨论这些实施方式只是为了使得本领域技术人员能够更好地理解从而实现本文描述的主题,并非是对权利要求书中所阐述的保护范围、适用性或者示例的限制。可以在不脱离本公开内容的保护范围的情况下,对所讨论的元素的功能和排列进行改变。各个示例可以根据需要,省略、替代或者添加各种过程或组件。例如,所描述的方法可以按照与所描述的顺序不同的顺序来执行,以及各个步骤可以被添加、省略或者组合。另外,相对一些示例所描述的特征在其它例子中也可以进行组合。
如本文中使用的,术语“包括”及其变型表示开放的术语,含义是“包括但不限于”。术语“基于”表示“至少部分地基于”。术语“一个实施例”和“一实施例”表示“至少一个实施例”。术语“另一个实施例”表示“至少一个其他实施例”。术语“第一”、“第二”等可以指代不同的或相同的对象。下面可以包括其他的定义,无论是明确的还是隐含的。除非上下文中明确地指明,否则一个术语的定义在整个说明书中是一致的。
传统的特种机器人上的信息采集设备仅能够提供作业现场的二维信息,并不能完整地反映现场状况。结果,在这些特种机器人中存在诸多问题,例如,效率低、可靠性低和精准度低。紧急情况下,这些问题会导致更严重的结果,财产损失甚至意外事故。为此,需要将所有特种机器人上的信息采集设备采集的现场信息进行整合,并将这些特种机器人作为一个整体来进行控制,使它们能够协同作业,完成预期作业目标。
为了使本发明的目的、技术方案和优点更加清楚,以下举实施例对本发 明进一步详细说明。
参照图1,根据本发明的实施例,提供了一种基于云平台的特种机器人操控系统100,该操控系统可包括多个特种机器人131,这些特种机器人131可以执行某种特殊作业。在本实施例中,特种机器人131可以是用来灭火的消防机器人,多个消防机器人可在火灾现场分散开而独立地执行灭火救援操作。
该操控系统100还包括云平台110和信息采集单元140。信息采集单元140可实时地采集特种机器人131作业现场的三维信息,并可将所采集的三维信息发送到云平台110。在本实施例中,该云平台100可称为“Mindsfire”云平台,其可与基于云的开放式物联网操作系统,诸如Mindsphere系统,集成在一起。信息采集单元140可将火灾现场的包括图片、视频、周围环境温度、火焰状况、每个特种机器人的位置和距离着火地点的距离、周围环境中有毒气体含量等各种状况的三维信息发送到云平台100,这些信息能够全面精准地反馈出当前火灾现场的状况。
在一个实施例中,信息采集单元140可包括低空集子单元142和高空采集子单元141,从而能够从各个角度对作业现场采集全方位的信息,以便于获得更全面、更精准的实时现场状况。在一个实施例中,低空采集子单元142可包括安装在诸如消防机器人的特种机器人上的相机、激光雷达、温度传感器、超声波测距仪、气体检测传感器等各种感测仪器,这些感测仪器搭载在特种机器人131上而大体上从处于地面的方位扫描或感测火灾现场的各种执行救援所需要的信息,包括检测范围内哪些位置的火势较大、哪些位置温度较高、哪些位置的有毒气体含量较高、哪些位置可能有伤员、距离这些位置的距离大小等各种信息,从而能够准确把握火灾隐患,以便于后续制定有效的灭火方案。
在另一实施例中,高空采集子单元141可包括无人驾驶飞行器或高空可移动摄像机等各种适合进行高空拍摄的设备。例如,无人驾驶飞行器可从火灾现场高空飞过,并利用搭载的摄像机来实时地拍摄火灾现场状况,因此,高空采集子单元141与低空采集子单元142的结合可以从各个角度获得火灾现场的实时三维信息。
在一个实施例中,本发明所提供的特种机器人操控系统的云平台可包括存储模块111、决策模块112和控制模块113,从信息采集单元140接收到的关于作业现场的三维信息可被存储在该存储模块111内。决策模块112可基于这些三维信息通过一系列智能算法来计算各个特种机器人的下一步的操作。
具体地说,信息采集单元140采集的各种信息可通过各自的智能网关将采集的信息传输到云平台。例如,诸如消防机器人的特种机器人131可均配置有各自的智能网关122,从高空采集火灾现场信息的无人驾驶飞行器也可配置有各自的智能网关121。在信息采集单元140采集到的信息被输送到各自的智能网关时,这些数据可在智能网关内进行滤波等处理,以便转换成合适的格式而被进一步传输到云平台110。
另外,在云平台110计算出最优的灭火方案之后,可经由这些智能网关来向各个特种机器人131下达对应的指令或命令。
在云平台110从信息采集单元140接收为作业现场的三维信息之后,可对这些初始信息或数据进行后处理,并将这些信息或数据整合在一起。上述决策模块112可基于这样的数据,根据预先存储的一系列算法来计算出针对当前现场状况的最优处理方案,例如可计算出最优的灭火方案,以最快的速度控制火势并完成灭火操作。在一个实施例中,云平台110可对各个消防机器人上的低空采集子单元142以及处于作业现场上空的高空采集子单元141 的信息进行整合,然后决策模块112可基于整合后的现场信息,计算出火灾现场哪些火势较大的位置需要多调度消防机器人、哪些位置的火势可能会扩大需要更加激进的特种机器人操作、哪些位置可能存在受困人员需要进行救援,也就是确定各个消防机器人下一步具体的灭火操作以便于在最短时间内完成灭火和救援。至此,控制模块113可基于决策模块112计算出来的最优的执行方案而向各个消防机器人经由智能网关下发对应的指令来控制消防机器人操作,因而能够整体掌控火灾现场,并及时做出最快的反应。
另外,在控制模块113计算整体灭火方案并向各个消防机器人发送指令时,云平台110还同时实时地更新从信息采集单元140接收到的信息数据并将这些信息数据统一处理。相应地,决策模块112所进行的计算操作以及控制模块113发送指令也是实时更新的,实现对特种机器人131操作的动态控制,从而能够根据作业现场状况来实时地调整所有特种机器人131的操作,以更有针对性、更高效地完成作业。
在一个实施例中,上述操控系统100的云平台110还可包括扩展模块114,以便于用户在上述功能以外开发其他需要的功能。例如,扩展模块114可与作业指挥台通信,并可将作业现场的状况、各个特种机器人131的操作实时地传输给作业指挥台,所发送的这些信息可在作业指挥台上显示以便现场指挥人员监控现场状况。必要时,指挥人员可通过作业指挥台经由云平台110的扩展模块114而直接发送指令,这样的指令优先于由决策模块112自动计算出来以及由控制模块113发送的指令,从而能够人工干预特种机器人131的操作,以便进行某些期望的操作。即,现场指挥人员可通过扩展模块114来直接操控特种机器人131操作。
除了以上描述的接收、存储、决策等操作之后,云平台110还可开发有 其他功能或模块,对所接收到的数据进行各种分析和计算,以便于根据现场状况执行其他合适的操作。
根据本发明的另一实施例,还提供了一种用于操控特种机器人的方法200,如图2所示,该方法可由上述特种机器人操控系统100来执行。
首先,在方框201中,可以采集多个特种机器人作业现场的三维信息。例如,可通过上述包括各种低空采集设备和高空采集设备的信息采集单元来获取作业现场的三维信息,然后经由智能网关将三维信息输送到云平台中。
之后,在方框202中,可对接收到的三维信息进行整合,并可根据整合后的三维信息控制每个特种机器人协同操作。在一个实施例中,由于从不同的信息采集设备接收到的信息是不同的,需要将这些信息进行整合并存储,例如可存储在上述存储模块111内。基于这些信息,可由决策模块112来计算出执行诸如灭火操作的作业的最优方案,然后控制模块113基于所计算出来的最优方案,来调整或控制各个特种机器人的操作,优化资源配置,使得这些特种机器人以最佳的阵型作业,从而更有效、更有针对性地完成预期作业。上述采集三维信息的操作和计算最优方案的操作都是实时进行的,以随时根据现场状况来调整特种机器人的作业。
在一个实施例中,可通过低空采集子单元142,从作业现场的低空区域采集多个特种机器人的作业现场信息。还可同时通过高空采集子单元141,从高空区域采集作业现场信息,这些信息可同时被发送到云平台中进行后续处理和计算。
另外,如上所述,还可通过扩展模块114将作业现场的三维信息提供给作业指挥台进行作业现场状况显示。现场指挥人员可通过在作业指挥台输入人工指令,这些人工指令可通过云平台而被发送到各个特种机器人,从而人工干预这些特种机器人的操作,以实现预期操作目标。
除此以外,在操控特种机器人的方法中,还可以采用进行其他适当的操作。例如,可通过作业指挥台,人工向各个特种机器人发送指令,从而人为地干预特种机器人的操作,以实现预期操作。
上述云平台内的各模块在实现上也可为由硬件实现的各个功能模块,比如预先将访问控制方法中涉及的各流程的控制逻辑烧制到诸如现场可编程门阵列(Field-Programmable Gate Array,FPGA)芯片或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)中,而由这些芯片或器件执行上述各模块的功能,具体实现方式可依工程实践而定。
需要说明的是,上述方法的各个步骤或操作以及各结构图中的模块并非都是必须的,可以根据实际的需要省略某些步骤或模块。各模块的划分仅仅是为了便于描述采用的功能上的划分,实际实现时,一个模块可以分由多个模块实现,多个模块的功能也可以由同一个模块实现,这些模块可以位于同一个设备中,也可以位于不同的设备中。
各实施方式中的硬件模块可以以机械方式或电子方式实现。例如,一个硬件模块可以包括专门设计的永久性电路或逻辑器件(如专用处理器,如FPGA或ASIC)用于完成特定的操作。硬件模块也可以包括由软件临时配置的可编程逻辑器件或电路(如包括通用处理器或其它可编程处理器)用于执行特定操作。至于具体采用机械方式,或是采用专用的永久性电路,或是采用临时配置的电路(如由软件进行配置)来实现硬件模块,可以根据成本和时间上的考虑来决定。
本发明还提供了一种操控特种机器人的电子设备300,如图3所示,该特种机器人操控系统300包括至少一个处理器301和一个存储器302。在存储器302中存储有能够由处理器301执行的应用程序,用于使得处理器301执行上述操 控特种机器人的方法。上述操控系统100所包括的各模块可为图3所示的电子设备300中的存储器302所存储的应用程序的模块,各模块在被处理器301调用时,分别实现各自的功能。可选地,操控系统100的各模块在实现上也可为由硬件实现的各个功能模块,比如预先将访问控制方法中涉及的各流程的控制逻辑烧制到诸如现场可编程门阵列(Field-Programmable Gate Array,FPGA)芯片或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)中,而由这些芯片或器件执行上述各模块的功能,具体实现方式可依工程实践而定。
本发明还提供了一种机器可读的存储介质,存储用于使机器执行上述提及的各种指令。具体地,可以提供配有存储介质的系统或者装置,在该存储介质上存储着实现上述实施例中任一实施方式的功能的软件程序代码,且使该系统或者装置的计算机(或CPU或MPU)读出并执行存储在存储介质中的程序代码。此外,还可以通过基于程序代码的指令使计算机上操作的操作系统等来完成部分或者全部的实际操作。还可以将从存储介质读出的程序代码写到插入计算机内的扩展板中所设置的存储器中或者写到与计算机相连接的扩展单元中设置的存储器中,随后基于程序代码的指令使安装在扩展板或者扩展单元上的CPU等来执行部分和全部实际操作,从而实现上述实施方式中任一实施方式的功能。
用于提供程序代码的存储介质实施方式包括软盘、硬盘、磁光盘、光盘(如CD-ROM、CD-R、CD-RW、DVD-ROM、DVD-RAM、DVD-RW、DVD+RW)、磁带、非易失性存储卡和ROM。可选择地,可以由通信网络从服务器计算机或云上下载程序代码。
通过上述特种机器人操控系统,尤其在诸如火灾的紧急情况的时候,在低空和高空均采集现场信息,能够精确、全方位地获得现场三维信息,从而有助于更精准地掌握现场状况,以整体把握更多的火灾隐患信息。另外,通过将采 集到的数据传输到云平台中,对收集的所有的数据以进行统一处理,并能够计算出最优的灭火方案,提高消防机器人做出反应的时间,使得消防机器人能够协同作业,更合理地调配资源,更高效地执行灭火操作,并且这可提高处理火灾的反应时间,尽可能快地完成灭火。因为云平台可以进行更加全面的数据处理,还可提高对消防机器人的控制精准度。因此,可将明显减小火灾的成本和损失,执行更加有效的救援,减少人员伤害。进而,可将使得消费者更信任产品,并提高机器人的销量。
上文通过附图和优选实施例对本发明进行了详细展示和说明,然而本发明不限于这些已揭示的实施例,基与上述多个实施例本领域技术人员可以知晓,可以组合上述不同实施例中的代码审核手段得到本发明更多的实施例,这些实施例也在本发明的保护范围之内。

Claims (15)

  1. 一种特种机器人操控系统(100),包括:
    多个特种机器人(131);
    信息采集单元(140),能够采集所述多个特种机器人(131)作业现场的三维信息;以及
    云平台(110),能够从所述信息采集单元(140)接收所述三维信息,并对所述三维信息进行整合,根据整合后的三维信息控制所述多个特种机器人(131)协同操作。
  2. 根据权利要求1所述的特种机器人操控系统,其中,所述云平台(110)包括:
    存储模块(111),适用于存储从所述信息采集单元(140)接收的三维信息;
    决策模块(112),对所述三维信息进行整合,根据整合后的三维信息计算每个特种机器人(131)将要进行的操作,以使得所述多个特种机器人(131)协同操作;以及
    控制模块(113),根据所述决策模块(112)的计算向所述多个特种机器人(131)发送指令,以控制每个特种机器人(131)的操作。
  3. 根据权利要求1所述的特种机器人操控系统,其中,所述云平台(110)通过所述多个特种机器人(131)各自的智能网关(122)控制所述多个特种机器人(131)协调操作。
  4. 根据权利要求1所述的特种机器人操控系统,其中,所述信息采集单元(140)包括:
    多个低空采集子单元(142),每个低空采集子单元(142)安装在一个特种机器人(131)上,适用于从低空采集所述特种机器人(131)的作业现场信息; 以及
    至少一个高空采集子单元(141),每个高空采集子单元(141)适于从高空采集至少一个特种机器人(131)的作业现场信息。
  5. 根据权利要求4所述的特种机器人操控系统,其中,所述多个低空采集子单元(142)包括相机、激光雷达、温度传感器和超声波测距仪中的至少一个,并通过一智能网关(122)将采集的三维信息提供给所述云平台(110);所述高空采集子单元(141)包括无人驾驶飞行器,所述无人驾驶飞行器通过一智能网关(121)将采集的三维信息提供给所述云平台(110)。
  6. 根据权利要求2所述的特种机器人操控系统,其中,所述云平台(110)进一步包括:
    扩展模块(114),能够将所述存储模块(111)中的所述三维信息提供给一作业指挥台进行作业现场状况的显示,并能够从所述作业指挥台接收人工指令来控制所述多个特种机器人(131)的操作。
  7. 根据权利要求1所述的特种机器人操控系统,其中,所述特种机器人(131)包括消防机器人。
  8. 一种操控特种机器人的方法,包括:
    采集多个特种机器人作业现场的三维信息;以及
    对所述三维信息进行整合,根据整合后的三维信息控制所述多个特种机器人协同操作。
  9. 根据权利要求8所述的方法,其中,所述对所述三维信息进行整合,根据整合后的三维信息控制所述多个特种机器人协同操作包括:
    对所述三维信息进行整合,根据整合后的三维信息计算每个特种机器人将 要进行的操作,以使得所述多个特种机器人协同操作;以及
    根据计算结果向所述多个特种机器人发送指令,以控制每个特种机器人的操作。
  10. 根据权利要求8所述的方法,其中,所述采集多个特种机器人作业现场的三维信息包括:
    通过低空采集子单元,从低空采集所述多个特种机器人的作业现场信息;以及
    通过高空采集子单元,从高空采集所述多个特种机器人的作业现场信息。
  11. 根据权利要求8所述的方法,其中,所述方法进一步包括:
    将所述三维信息提供给一作业指挥台进行作业现场状况显示;以及
    接收来自所述作业指挥台的人工指令,根据所述人工指令控制所述多个特种机器人的操作。
  12. 一种电子设备(300),其中,所述电子设备包括至少一个处理器(301)和一个存储器(302),所述存储器(302)中存储有被所述至少一个处理器(301)执行的应用程序,用于使得所述至少一个处理器(301)执行如权利要求8至11中任一项所述的方法。
  13. 一种计算机可读存储介质,其中,在所述计算机可读存储介质中存储有计算机可读指令,该计算机可读指令用于执行如权利要求8至11中任一项所述的方法。
  14. 一种计算机程序,其中,所述计算机程序包括计算机可执行指令,所述计算机可执行指令在被执行时使至少一个处理器执行根据权利要求8至11中任一项所述的方法。
  15. 一种计算机程序产品,其中,所述计算机程序产品被有形地存储在计算机可读介质上并且包括计算机可执行指令,所述计算机可执行指令在被执行时使至少一个处理器执行根据权利要求8至11中任一项所述的方法。
PCT/CN2018/107737 2018-09-26 2018-09-26 特种机器人操控系统、方法、电子设备、介质以及程序 WO2020061855A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/107737 WO2020061855A1 (zh) 2018-09-26 2018-09-26 特种机器人操控系统、方法、电子设备、介质以及程序
CN201880098067.XA CN113543937A (zh) 2018-09-26 2018-09-26 特种机器人操控系统、方法、电子设备、介质以及程序

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/107737 WO2020061855A1 (zh) 2018-09-26 2018-09-26 特种机器人操控系统、方法、电子设备、介质以及程序

Publications (1)

Publication Number Publication Date
WO2020061855A1 true WO2020061855A1 (zh) 2020-04-02

Family

ID=69953193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107737 WO2020061855A1 (zh) 2018-09-26 2018-09-26 特种机器人操控系统、方法、电子设备、介质以及程序

Country Status (2)

Country Link
CN (1) CN113543937A (zh)
WO (1) WO2020061855A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111617415A (zh) * 2020-06-10 2020-09-04 中国船舶重工集团应急预警与救援装备股份有限公司 复杂环境下全自主消防机器人作业系统及工作方法
CN112383624A (zh) * 2020-11-13 2021-02-19 杭州海康消防科技有限公司 一种基于物联网的消防系统
CN115240347A (zh) * 2022-06-02 2022-10-25 中国人民解放军军事科学院国防科技创新研究院 一种用于火情监测与控制的自维持机器人集群系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005020669A (ja) * 2003-06-30 2005-01-20 Keiichi Koyanagi 災害対策支援ロボット、災害対策支援システムおよび災害対策支援システム構築方法
JP2006338081A (ja) * 2005-05-31 2006-12-14 National Institute Of Advanced Industrial & Technology センサネットワークロボットシステム
CN101359225A (zh) * 2008-08-29 2009-02-04 北京大学 一种多水下机器人协作控制系统
CN101382429A (zh) * 2008-10-17 2009-03-11 北京航空航天大学 一种地空异构多机器人搜救系统
CN203458724U (zh) * 2013-07-31 2014-03-05 河北工程大学 一种搜救灭火机器人作业系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100770655B1 (ko) * 2006-12-19 2007-10-29 동일파텍주식회사 화재 진압용 소방로봇
CN102513987B (zh) * 2011-12-26 2014-04-09 浙江金刚汽车有限公司 智能消防救援机器人
CN206004702U (zh) * 2016-07-29 2017-03-08 云南英科瑞电力电子有限公司 基于互联网云通信及云存储技术的多终端消防安全智能监控系统
CN106334283A (zh) * 2016-10-10 2017-01-18 南京工程学院 一种灭火救援机器人系统及控制方法
CN108023952B (zh) * 2017-12-04 2020-08-18 西安电子科技大学 一种基于云雾结合的模块化物联网应用快速构建平台

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005020669A (ja) * 2003-06-30 2005-01-20 Keiichi Koyanagi 災害対策支援ロボット、災害対策支援システムおよび災害対策支援システム構築方法
JP2006338081A (ja) * 2005-05-31 2006-12-14 National Institute Of Advanced Industrial & Technology センサネットワークロボットシステム
CN101359225A (zh) * 2008-08-29 2009-02-04 北京大学 一种多水下机器人协作控制系统
CN101382429A (zh) * 2008-10-17 2009-03-11 北京航空航天大学 一种地空异构多机器人搜救系统
CN203458724U (zh) * 2013-07-31 2014-03-05 河北工程大学 一种搜救灭火机器人作业系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111617415A (zh) * 2020-06-10 2020-09-04 中国船舶重工集团应急预警与救援装备股份有限公司 复杂环境下全自主消防机器人作业系统及工作方法
CN112383624A (zh) * 2020-11-13 2021-02-19 杭州海康消防科技有限公司 一种基于物联网的消防系统
CN115240347A (zh) * 2022-06-02 2022-10-25 中国人民解放军军事科学院国防科技创新研究院 一种用于火情监测与控制的自维持机器人集群系统

Also Published As

Publication number Publication date
CN113543937A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
CN111512256B (zh) 自动和自适应的三维机器人现场勘测
WO2020061855A1 (zh) 特种机器人操控系统、方法、电子设备、介质以及程序
US11917334B2 (en) Surveillance system with fixed camera and temporary cameras
AU2017202004B2 (en) Methods and systems for calibrating sensors
EP3101873A1 (en) Wireless network with unmanned vehicle nodes providing network data connectivity
US11710411B2 (en) Systems and methods for autonomous hazardous area data collection
WO2018187927A1 (en) Vision simulation system for simulating operations of a movable platform
WO2021237618A1 (zh) 抓捕辅助方法、地面指挥平台、无人机、系统及存储介质
KR20150022762A (ko) 위협 평가 및 센서/무기 할당 알고리즘 테스트 및 분석 시스템
JP2018149669A (ja) 学習装置及び学習方法
JP6829513B1 (ja) 位置算出方法及び情報処理システム
Almeida et al. Distributed UAV-swarm-based real-time geomatic data collection under dynamically changing resolution requirements
CN114115289A (zh) 一种自主无人集群侦察系统
Novac et al. A framework for wildfire inspection using deep convolutional neural networks
JP5148409B2 (ja) シミュレーションシステム
KR102592291B1 (ko) 이동형 로봇을 이용한 무인 국사 모니터링 시스템 및 그 방법
JP6661187B1 (ja) 飛行体の管理サーバ及び管理システム
JP7097207B2 (ja) 建造物管理システム、学習装置、位置判定装置、及び位置判定方法
JP7149569B2 (ja) 建造物の測定方法
KR102575000B1 (ko) 플랜트 크랙 진단을 위한 인공지능 드론 플랫폼 시스템
JP2018149670A (ja) 学習対象装置及び動作方法
JP6730764B1 (ja) 飛行体の飛行経路表示方法及び情報処理装置
Kim et al. Detecting and localizing objects on an unmanned aerial system (uas) integrated with a mobile device
CN105867230A (zh) 一种低空高速通信调度系统平台
Warabino et al. ROS-based robot development toward fully automated network management

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934990

Country of ref document: EP

Kind code of ref document: A1