WO2020060275A1 - 나노버블과 약물이 함유된 약물담지체를 활용한 초음파 유도 약물전달 시스템 - Google Patents

나노버블과 약물이 함유된 약물담지체를 활용한 초음파 유도 약물전달 시스템 Download PDF

Info

Publication number
WO2020060275A1
WO2020060275A1 PCT/KR2019/012217 KR2019012217W WO2020060275A1 WO 2020060275 A1 WO2020060275 A1 WO 2020060275A1 KR 2019012217 W KR2019012217 W KR 2019012217W WO 2020060275 A1 WO2020060275 A1 WO 2020060275A1
Authority
WO
WIPO (PCT)
Prior art keywords
drug
nanobubbles
nanobubble
delivery system
drug delivery
Prior art date
Application number
PCT/KR2019/012217
Other languages
English (en)
French (fr)
Inventor
박명환
Original Assignee
삼육대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼육대학교산학협력단 filed Critical 삼육대학교산학협력단
Priority to EP19863608.6A priority Critical patent/EP3769751A4/en
Priority to CN201980028332.1A priority patent/CN112055581B/zh
Priority to US17/049,468 priority patent/US11890370B2/en
Publication of WO2020060275A1 publication Critical patent/WO2020060275A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5089Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0002Galenical forms characterised by the drug release technique; Application systems commanded by energy
    • A61K9/0009Galenical forms characterised by the drug release technique; Application systems commanded by energy involving or responsive to electricity, magnetism or acoustic waves; Galenical aspects of sonophoresis, iontophoresis, electroporation or electroosmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/5381,4-Oxazines, e.g. morpholine ortho- or peri-condensed with carbocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0028Disruption, e.g. by heat or ultrasounds, sonophysical or sonochemical activation, e.g. thermosensitive or heat-sensitive liposomes, disruption of calculi with a medicinal preparation and ultrasounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/44Oils, fats or waxes according to two or more groups of A61K47/02-A61K47/42; Natural or modified natural oils, fats or waxes, e.g. castor oil, polyethoxylated castor oil, montan wax, lignite, shellac, rosin, beeswax or lanolin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/22Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
    • A61K49/222Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
    • A61K49/223Microbubbles, hollow microspheres, free gas bubbles, gas microspheres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/22Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
    • A61K49/222Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
    • A61K49/225Microparticles, microcapsules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/11Encapsulated compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/10General cosmetic use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/413Nanosized, i.e. having sizes below 100 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Definitions

  • the present invention relates to an ultrasound-guided drug delivery system using a drug carrier containing a plurality of nanobubbles and a high concentration of drugs in one microcapsule, and specifically, the drug is dissolved using a nanobubble manufacturing device. After generating a nanobubble in oil, it relates to a method for manufacturing a drug delivery system in which a high concentration of a drug and a plurality of nanobubbles are encapsulated together by fine encapsulation, and an ultrasonic guided drug delivery system using the same.
  • Drug delivery system aims to maximize the efficacy and effectiveness of treatment by optimizing the effective blood concentration for a long period of time by selectively delivering the drug to the target site and minimizing the side effects of the drug.
  • Nano drug delivery systems which are the majority of these drug delivery systems, can be prepared by various methods.
  • Typical manufacturing methods include nanoparticles using a self-emulsifying diffusion method, nanoparticles through micelle formation using a block copolymer, nanoparticles using magnetism, and nanoparticles using a complex reaction of an ionic polymer.
  • the nanoparticles When the nanoparticles are injected into the human body, they are delivered through various methods such as injection, oral, and skin. At this time, the distribution of the drug indicates the distribution of the drug, which is distinct from other carriers, and it depends on the properties of the nanoparticle.
  • One object of the present invention is to provide a drug delivery system in which a plurality of nanobubbles, which are capable of effective drug delivery by ultrasound, are contained together with a drug in a microcapsule.
  • Another object of the present invention is to generate a nanobubble by using a nanobubble manufacturing apparatus in an oil in which a fat-soluble drug that is difficult to disperse in water is dissolved, and then microencapsulate the oil (nanobubble solution) containing the fat-soluble drug and nanobubble. It is to provide a method for preparing a drug delivery system that is easily dispersed in an aqueous solution.
  • the present invention first, by using a nanobubble manufacturing apparatus to generate a nanobubble in an oil in which a fat-soluble drug that is difficult to disperse in water is dissolved, and containing a fat-soluble drug and nanobubbles It provides a method for preparing a drug delivery system that is easy to disperse in an aqueous solution by finely encapsulating oil.
  • the term drug delivery system may be used interchangeably with 'microcapsules' or 'nanobubble microcapsules'.
  • the nanobubble solution is a bubble solution containing nanobubbles having a diameter in the range of 50 nm to 500 nm, in particular, a diameter of less than 50 nm to 200 nm, and the bubble is a bubble, that is, present in a liquid That means the bubble pocket.
  • the concentration of the nanobubble solution according to the present invention that is, the number of nanobubbles present in the nanobubble solution is a solution containing more than 500 million / ml, 1 billion / ml to 3 billion / ml nanobubbles. These nanobubbles can be stably maintained at a temperature below room temperature for 2-6 months.
  • the size of the nanobubble is larger than the above range, the stability of the nanobubble solution is significantly reduced due to injury, and the number of nanobubble solutions lower than the above range is small, and the number of nanobubbles inside a single microcapsule is small, thereby significantly improving the efficiency of ultrasound-induced drug delivery. Can fall.
  • the drug delivery system may be characterized in that it is dispersed in an aqueous solution in the form of an emulsion.
  • the ratio of the oil containing the drug and the oil containing the nanobubble is not particularly limited, and the oils are mixed in an appropriate ratio according to the purpose to be practiced by those skilled in the art. Nanobubble solutions can be prepared.
  • the step (d) is a microcapsule form in which the drug and the nanobubble are encapsulated together by passing an oil (nanobubble solution) containing the drug and the nanobubble through an membrane in an aqueous solution containing a surfactant.
  • an emulsion generator IMK-40, MC Tech, etc.
  • IMK-40, MC Tech, etc. may be used to manufacture the drug delivery system in which the drug and the nanobubble are encapsulated together.
  • the drug may be encapsulated with nanobubbles in a form contained in an oil to be prepared as a drug delivery device in the form of a microcapsule.
  • the drug may be a fat-soluble drug, a drug having an affinity for lipids, a drug having a stronger affinity for lipids or lipoids than water, a drug having affinity for non-polar fluids, a lipid or lipoids All drugs having a binding functional group are included.
  • the drug is not particularly limited to its kind, chemical drugs, protein drugs, peptide drugs, nucleic acid molecules for gene therapy, nanoparticles, iodinated contrast agents, gadolinium contrast agents, barium contrast agents, contrast materials such as fluorescent particles and magnetic particles, (Functionality) Includes both cosmetically active ingredients or cosmetically active ingredients.
  • the cosmetic active ingredient or an active ingredient used cosmetically may include niacinamide, arbutin, white oil, 4-en-butylresorcinol, and ethyl ascorbyl ether, which have a whitening effect; Adenosine, asiaticoside, retinol, and retinyl palmitate that exhibit wrinkle-reducing effects;
  • aloe vera extract, azulene, and centella extract which exhibit anti-inflammatory effects, may include cosmetic ingredients that exhibit antioxidant or UV protection effects, and are not particularly limited thereto.
  • Fat-soluble drugs that can be used in the present invention include, for example, anticancer drugs, (degenerative) brain disease treatment agents, anti-inflammatory drugs, analgesics, anti-arthritis drugs, antispasmodics, anti-depressants, antipsychotic drugs, neurostabilizers, anti-anxiety drugs, drug antagonists, anti-wave Kins disease drugs, cholinergic agonists, anti-angiogenic inhibitors, immunosuppressants, antiviral agents, antibiotics, appetite suppressants, analgesics, anticholinergics, antihistamines, antimigraine agents, hormones, coronary vessels, cerebrovascular or peripheral vasodilators, contraceptives , Antithrombotic agents, diuretics, antihypertensive agents, cardiovascular disease treatment agents, cosmetic ingredients (eg, wrinkle improvement agents, skin aging inhibitors and skin whitening agents), but are not limited thereto.
  • anticancer drugs include, for example, anticancer drugs, (degenerative) brain disease treatment agents, anti-inflammatory drugs,
  • doxorubicin for example, doxorubicin, paclitaxel, vincristine, daunorubicin, vinblastine, actinomycin-D, docetaxel, etoposide, teniposide, scatter Tren (bisantrene), homoharringtonine, Gleevec (STI-571), cisplatin, 5-fluorouracil, adriamycin, methotrexate, busulfan, chlorambucil, cyclophospa It may be a drug such as cyclophosphamide, melphalan, nitro mustard, or nitrosourea.
  • the organic solvent can use a solvent having a high solubility of the drug without particular limitation, but dichloromethane, ethyl acetate, acetone, ethanol, methanol, methyl ethyl ketone, methylene chloride, dichloroethane, chloroform, dioxane, dimethyl Sulfoxide, acetonitrile, acetic acid, and the like.
  • the drug can be dissolved in an organic solvent at a concentration of 0.001 to 10 g / mL.
  • the organic solvent has a low boiling point in the solution in which the drug is dissolved, and the organic solvent is completely removed using a vacuum or rotary concentrator.
  • the oil is paraffin oil, alpha-bisabolol, stearyl glycyrrhetinate, salicylic acid, tocopheryl acetate, panthenol (panthenol), glyceryl stearate, cetyl octanolate, isopropyl myristate, 2-ethylene isopelagonate, di-c12-13 Di-c12-13 alkyl malate, ceteatyl octanoate, butylene glycol dicaptylate / dicaprate, isononyl isostearate , Isostearyl isostearate, cetyl octanoate, octyldodecyl myristate, cetyl esters, c10-30 cholesterol / la Sterol esters (c10-30 cholesterol / lanosterol ester), hydrogenated castor oil, monoglycerides, diglycerides, triglycerides, biswa
  • the oil may be mixed in a volume ratio of 5 to 20 compared to the organic solvent according to the solubility of the drug in oil.
  • a method for generating nanobubbles in an oil containing a mixture solution or a drug in which the organic solvent is removed may utilize various methods existing in the art, for example, mechanical stirring, ultrasonic bubble generation method, Various manufacturing methods such as a membrane passage method and a fluid circulation method can be used.
  • the nanobubble solution of the present invention can be prepared using the apparatus and method disclosed in Korean Patent Application No. 10-2019-0068228, "Nanobubble water generation device".
  • the type of gas in the nanobubble is not greatly limited, but as a specific example, air, CO 2 , N 2 , O 2 , H 2 , Ar, perfluorobutane, perfluoropropane (octa Fluoropropane, and the like).
  • the aqueous solution containing the surfactant means a solution containing a surfactant in an aqueous solvent such as water, and the concentration may be 1 to 30 parts by weight with respect to 100 parts by weight of the total aqueous solution.
  • the surfactant is a cationic surfactant such as CTAB (cetyl trimethylammonium bromide), anionic surfactant such as Citrate (citrate), nonionic surfactant such as PVA (polyvinyl alcohol), biopolymer
  • CTAB cetyl trimethylammonium bromide
  • anionic surfactant such as Citrate (citrate)
  • nonionic surfactant such as PVA (polyvinyl alcohol)
  • biopolymer Both sex surfactants and zwitterionic surfactants can be used without limitation.
  • the cationic surfactant is quaternary ammonium compound, benzalkonium chloride, cetyltrimethylammonium bromide, chitosan, lauryldimethylbenzylammonium chloride, acyl carnitine hydrochloride, alkylpyridinium halide, cetyl pyridinium chloride, Cationic lipid, polymethylmethacrylate trimethylammonium bromide, sulfonium compound, polyvinylpyrrolidone-2-dimethylaminoethyl methacrylate dimethyl sulfate, hexadecyltrimethyl ammonium bromide, phosphonium compound, benzyl-di (2 -Chloroethyl) ethylammonium bromide, coconut trimethyl ammonium chloride, coconut trimethyl ammonium bromide, coconut methyl dihydroxyethyl ammonium chloride, coconut methyl dihydroxyethyl ammonium chlor
  • the anionic surfactant is ammonium lauryl sulfate, sodium 1-heptanesulfonate, sodium hexanesulfonate, sodium dodecyl sulfate, triethanolammonium dodecylbenzenesulfate, potassium laurate, triethanolamine stearate, lithium dodecylsulfate, sodium Lauryl sulfate, alkyl polyoxyethylene sulfate, sodium alginate, dioctyl sodium sulfosuccinate, phosphatidyl glycerol, phosphatidyl inositol, phosphatidylserine, phosphatidic acid and salts thereof, glyceryl esters, sodium carboxymethylcellulose, bile acids and the like Salt, cholic acid, deoxycholic acid, glycocholic acid, taurocholic acid, glycodeoxycholic acid, alkyl sulfonate, aryl sulfonate, al
  • the nonionic surfactant of the present specification is a Tween-based surfactant, SPAN-based surfactant, polyoxyethylene fatty alcohol ether, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene fatty acid ester, polyoxyethylene alkyl ether, poly Oxyethylene castor oil derivative, sorbitan ester, glyceryl ester, glycerol monostearate, polyethylene glycol, polypropylene glycol, polypropylene glycol ester, cetyl alcohol, cetostearyl alcohol, stearyl alcohol, arylalkyl polyether alcohol, poly Oxyethylene polyoxypropylene copolymer, poloxamer, poloxamine, methylcellulose, hydroxycellulose, hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxypropylmethylcellulose phthalate, secret Consisting of sex cellulose, polysaccharides, starch, starch derivatives, hydroxyethy
  • the biopolymer surfactant is various polypeptides such as albumin, chitosan, heparin, polysaccharide, polyglyconic acid, polylactic acid, polyhydroxybutyric acid, rubber, suberin, melanin, lignin, cellulose, It may be selected from the group consisting of nucleic acids and carbohydrates, but is not limited thereto.
  • the zwitterionic surfactants herein are N-dodecyl-N, N-dimethyl-3-ammonio-1-propanesulfonate, betaine, alkyl betaine, alkylamido betaine, amido propyl betaine , Cocoamphocarboxyglycinate, sacosinate aminopropionate, aminoglycinate, imidazolinium betaine, amphoteric imidazoline, N-alkyl-N, N-dimethylammonio-1-propanesulfone Eight, 3-chocoamido-1-propyldimethylammonio-1-propanesulfonate, dodecylphosphocholine and sulfo-betaine. However, it is not limited thereto.
  • microcapsule particles of various sizes can be made by using an emulsion generator as shown in FIG. 1.
  • the pore size of the membrane is 0.2 to 100 ⁇ m.
  • the present invention provides a drug delivery system prepared according to the method, wherein the nanobubble and the drug are encapsulated together.
  • the drug delivery system according to the present invention is manufactured according to the above manufacturing method, and as shown in FIG. 3, the model drug (red, nile red) and nanobubbles (black inside the microcapsules) and oil are encapsulated in an aqueous solution. It has an emulsion form dispersed in the form of a fine capsule.
  • the microcapsules may have a size of about 0.3 to 20 ⁇ m, which depends on the pore size of the membrane used.
  • the drug delivery system is instantaneously subjected to high temperature and high pressure while collapsing or aggregating nano bubbles when ultrasonic waves are applied, thereby maximizing drug delivery efficiency (FIGS. 6 and 7).
  • the type of the ultrasonic wave and may be, for example, focused ultrasound.
  • a cosmetic composition comprising the drug carrier in the form of a microcapsule in which a drug and a nanobubble are encapsulated together.
  • the cosmetic composition containing the drug delivery agent may have effects such as skin whitening, skin elasticity enhancement and wrinkle improvement, skin moisturizing, antioxidant, and anti-inflammatory, but are not limited thereto.
  • the drug contained in the drug delivery system may include (functional) cosmetically active ingredients or cosmetically active ingredients and the like without limitation. Cosmetic active ingredients or cosmetically active ingredients are as described above.
  • the 'Cosmetics' composition according to the present invention is a solution, external ointment, cream, foam, nutrient cosmetic, soft cosmetic, pack, soft water, emulsion, makeup base, essence, soap, liquid detergent, bathing agent, sunscreen cream, sun oil, suspension, Emulsions, pastes, gels, lotions, powders, soaps, surfactant-containing cleansing, oils, powder foundations, emulsion foundations, wax foundations, patches and sprays can be prepared in a formulation selected from the group consisting of, but not limited to It is not.
  • composition of the present invention may further include one or more cosmetically acceptable carriers that are blended with general skin and cosmetics, and for example, oil, water, surfactant, moisturizer, lower alcohol, Thickeners, chelating agents, pigments, preservatives, fragrances, etc. may be appropriately blended, but are not limited thereto.
  • a contrast agent comprising the drug delivery system.
  • the term “contrast agent” refers to an agent that is used to artificially make a difference in contrast so that blood vessels, tissues, etc. can be seen for the purpose of grasping the condition of the body organs and diagnosing diseases.
  • it may mean “ultrasonic contrast medium”.
  • a typical example of the ultrasonic contrast agent may be microbubbles or nanobubbles, and exhibit contrast characteristics due to differences in ultrasonic reactivity occurring at the interface of the microbubbles or nanobubbles injected into the body.
  • the drug delivery system of the present invention contains a number of nanobubbles inside the microcapsule, it can be utilized as a contrast agent as well as a drug delivery system.
  • the drug delivery system prepared according to the method for preparing the drug delivery system of the present invention has a feature capable of simultaneously performing diagnosis and treatment in the body, and the microcapsules prepared without drugs and containing a large number of nanobubbles have excellent biocompatibility. And has excellent stability in vivo, and since multiple nanobubbles in one microcapsule can react together with ultrasound, it can be used as an efficient ultrasound contrast agent.
  • contrast materials such as iodide contrast agents, gadolinium contrast agents, barium contrast agents, sulfahexafluoride, fluorescent particles, and magnetic particles known in the art are contained together with nanobubbles in the microcapsules. If possible, it can be used as a contrast agent of various characteristics.
  • X-ray imaging technology computer tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET, Positron Emission Tomography), ultrasonography And nuclear imaging, but is not particularly limited thereto.
  • the drug is as described above.
  • the drug delivery system in particular, when ultrasonic waves are applied, the nanobubble collapses or aggregates to instantly generate high temperature and high pressure, thereby maximizing drug delivery efficiency.
  • the type of the ultrasound may be characterized as focused ultrasound, but is not particularly limited thereto.
  • the drug delivery method according to the present invention utilizes a blood-brain barrier (BBB) disruption induced by ultrasonic irradiation, and administers the drug delivery agent to an individual and irradiates ultrasound to the administration site.
  • BBB blood-brain barrier
  • hyperthermia by ultrasound BBB disruption occurs instantaneously, and drug permeability into the parenchyma may be increased.
  • the individual may be a mammal including a mouse, a rat, a dog, a cat, a cow, a horse, a pig, and a human, but is not particularly limited thereto, and administration of the drug delivery system may be performed in consideration of the type of disease, the affected area, and the condition of the individual. It may be carried out by appropriately selecting an administration method known to those skilled in the art.
  • the step of administering the drug delivery agent in the form of a microcapsule encapsulated with a drug and nanobubbles to an individual provides a method of treating a brain disease or cancer comprising the step of releasing the drug by irradiating ultrasound to the administration site of the drug delivery system.
  • the brain disease may be one or more selected from the group consisting of thrombosis, embolism, stroke, stroke, stroke, cerebral hemorrhage, subarachnoid hemorrhage and brain tumor, and
  • colorectal cancer pancreatic cancer, stomach cancer, liver cancer, breast cancer, cervical cancer, thyroid cancer, parathyroid cancer, lung cancer, non-small cell lung cancer, prostate cancer, gallbladder cancer, biliary tract cancer, non-Hodgkin's lymphoma, Hodgkin's lymphoma, blood cancer, bladder cancer, kidney Cancer, ovarian cancer, melanoma, colon cancer, bone cancer, skin cancer, head cancer, uterine cancer, rectal cancer, brain tumor, anus nearus cancer, fallopian tube carcinoma, endometrial carcinoma, vaginal cancer, vulvar carcinoma, esophageal cancer, small intestine cancer, endocrine adenocarcinoma, adrenal cancer, Soft tissue sar
  • a pharmaceutical composition for the prevention or treatment of brain disease or cancer comprising the drug carrier in the form of microcapsules encapsulated with a drug and nanobubbles.
  • the brain disease and cancer are as described above.
  • prevention refers to all actions that inhibit or delay the development of brain disease or cancer by administration of the drug delivery system of the present invention
  • treatment refers to the brain disease or cancer by administration of the drug delivery system of the present invention It means all the actions in which the symptoms of the situation improve or change.
  • the pharmaceutical composition of the present invention may further include a pharmaceutically acceptable carrier, excipient, or diluent commonly used in the manufacture of a pharmaceutical composition, and the carrier includes a non-naturally occurring carrier. can do.
  • the pharmaceutical composition may be formulated and used in the form of oral dosage forms, external preparations, suppositories, and sterile injectable solutions, such as powders, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols, etc., according to a conventional method. .
  • pharmaceutically acceptable means exhibiting properties that are not toxic to cells or humans exposed to the composition.
  • the type of the carrier is not particularly limited, and any carrier commonly used in the art and pharmaceutically acceptable carrier can be used.
  • Non-limiting examples of the carrier include saline, sterile water, Ringer's solution, buffered saline, albumin injection solution, dextrose solution, maltodextrin solution, glycerol, ethanol, and the like. These may be used alone or in combination of two or more.
  • other conventional additives such as antioxidants, buffers and / or bacteriostatic agents can be added and used, and diluents, dispersants, surfactants, binders, lubricants, etc. can be additionally added to give an aqueous solution, suspension, emulsion, etc. It can be formulated and used in dosage forms, pills, capsules, granules or tablets.
  • the method of administration of the pharmaceutical composition for the prevention or treatment of brain disease or cancer according to the present invention is not particularly limited, and may be in accordance with a method commonly used in the art.
  • the pharmaceutical composition may be administered by oral or parenteral administration methods.
  • the composition for preventing or treating brain disease or cancer of the present invention may be prepared in various dosage forms according to a desired administration method.
  • the drug delivery system using the nanobubble according to the present invention is made of a drug delivery system in which a drug and a nanobubble are encapsulated together using a nanobubble solution.
  • the prepared microcapsule can be utilized as an ultrasound contrast agent.
  • FIG. 1 is a view showing a process for preparing a microencapsulated drug delivery system through a porous membrane through an oil containing a drug and nanobubbles according to the present invention.
  • FIG. 2 is an image of a nanobubble and a result of measuring the number of bubbles inside the nanobubble solution prepared according to the present invention using an NTA (nanoparticle tracking analyzer).
  • NTA nanoparticle tracking analyzer
  • FIG. 3 is an image of a drug carrier in the form of microcapsules prepared according to the present invention.
  • A-C of FIG. 3 shows fluorescence images of various concentrations in which microcapsules having a uniform size are dispersed, and red is due to fluorescence characteristics by the drugs (nyle red, doxorubicin) used.
  • D-F of FIG. 3 shows a state in which each microcapsule is enlarged and contains nanobubbles inside.
  • E of FIG. 3 shows the microcapsules that do not match the microcapsules in which the focus of the confocal analyzer coincides.
  • FIG. 4 shows fluorescence images of microcapsules prepared by using albumin (Bovine serum albumin, BSA) with a fluorescent dye fixed as a surfactant.
  • a in FIG. 4 shows a red color because it contains a drug (Doxorubicin) inside the microcapsule
  • B in FIG. 4 shows a green peel image showing albumin formed outside the microcapsule
  • C in FIG. 4 4 is an image obtained by combining the images obtained in A and B.
  • D of FIG. 4 is a fluorescence image showing the presence of albumin present on the capsule surface by preparing a microcapsule without a drug to clearly see the green color of albumin.
  • FIG. 5 shows a schematic diagram of drug delivery through a Franz cell and a membrane used to measure skin permeability characteristics.
  • FIG. 5A shows a schematic diagram of Franz cells used for skin permeability analysis
  • FIG. 5B shows a schematic diagram for analyzing drug release characteristics using artificial skin / human skin as a membrane.
  • FIG. 6 shows the skin permeability characteristics of the drug measured using the Fanze cell and artificial skin membrane.
  • a in FIG. 6 is a graph showing the result of improvement in skin permeability of a model drug (nyle red) by nanobubbles without ultrasonic irradiation over time
  • FIG. 6B is a drug (doxorubicin) and When drug release is improved with ultrasound irradiation in a drug delivery device in the form of a microcapsule containing nanobubbles, when ultrasound is irradiated to microcapsules without nanobubbles, and ultrasound is not irradiated to microcapsules containing nanobubbles It is a graph comparing the skin permeability of the case together.
  • FIG. 7 is an image showing characteristics generated when irradiating ultrasound to a drug delivery device in the form of a microcapsule containing a drug and a nanobubble. Specifically, when the microcapsules are irradiated with ultrasonic waves, there is no significant change in the size and shape of each microcapsule, but it can be confirmed that the bubble size increases due to aggregation of nanobubbles present in each microcapsule.
  • FIG. 8 is an image showing the ultrasound contrast characteristics of the prepared nanobubble microcapsules. Specifically, distilled water (A, E), a microcapsule aqueous solution without nanobubbles (C, G), and a microcapsule aqueous solution containing nanobubbles (B, D, F, H) in a rubber tube fixed between agarose gels It shows the result of observing the Doppler effect in response to ultrasonic irradiation when flowed sequentially.
  • Example Preparation of drug delivery system in which emulsion and nanobubble are encapsulated and dispersed in an emulsion form
  • the nanobubble solution thus prepared was made into a membrane pore "1um” by using an emulsion generator (IMK-40, MC Tech), and an aqueous solution containing PVA (polyvinyl alcohol) or albumin as shown in FIG. Container) to prepare an aqueous emulsion drug delivery solution.
  • IMK-40 emulsion generator
  • MC Tech MC Tech
  • PVA polyvinyl alcohol
  • albumin as shown in FIG. Container
  • the oil containing nanobubbles and fluorescent drug (nyle red or o-doxorubicin) was encapsulated using a confocal fluorescence analyzer, and the size of the microcapsules was about 5um. It was confirmed to be inside and outside.
  • the drug release characteristics of the prepared micro drug delivery system were measured by adding a solution in which the drug delivery system is dispersed in the upper portion (Dosage compartment) of A Franz Cell in FIG. 5, and the solution used in the lower portion of the Franz Cell (Receptor compartment) was 20%.
  • a DMSO aqueous solution was used.
  • the temperature of the experimental instrument was maintained at 37 ° C. by circulating an aqueous solution with a constant temperature through a thermal jacket, and samples were taken at regular intervals through a sampling area and supplemented with a pure solution to measure the amount of drug delivered through the membrane.
  • FIG. 6A shows that when the model drug (nyle red) is microencapsulated together with nanobubbles, the skin permeability of the drug is improved as compared to the case where the nanobubbles are not contained.
  • FIG. 6B shows the drug (doxorubicin ) Indicates that the skin permeability is improved when it is microencapsulated together with the nanobubbles compared to the case that does not contain the nanobubbles, and also, if the ultrasound is not irradiated, the skin permeability of the microcapsules containing the nanobubbles is significantly reduced. .
  • an agarose gel with a rubber tube fixed was prepared.
  • Each sample (distilled water (A, E), aqueous solution of microcapsules without nanobubbles (C, G), aqueous solution of microcapsules containing nanobubbles (B, D, F, H)) was collected using a 1 mL syringe.
  • each sample was flowed through a rubber tube fixed in an agarose gel prepared using a syringe pump (1 mL / min), and an ultrasonic (frequency 11.43 MHz, power 50 dB) probe was placed on the agarose gel. Imaging was done.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Acoustics & Sound (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Nanotechnology (AREA)
  • Birds (AREA)
  • Molecular Biology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dermatology (AREA)
  • Nutrition Science (AREA)
  • Physiology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 다수의 나노버블과 고농도의 약물이 하나의 미세캡슐에 함께 함유된 약물담지체를 활용한 초음파 유도 약물전달 시스템에 관한 것으로, 구체적으로는, 나노버블 제조장치를 활용하여 약물이 용해된 오일에 나노버블을 발생시킨 후, 이를 미세 캡슐화하여 고농도의 약물과 다수의 나노버블이 함께 캡슐화된 약물 전달체를 제조하는 방법 및 이를 활용한 초음파 유도 약물 전달 시스템에 관한 것이다. 본 발명에 따른 나노버블을 이용한 약물 전달체는 나노버블용액을 이용하여 약물과 나노버블이 함께 캡슐화된 약물 전달체로 제조되어, 특히 초음파를 가해주면 나노 버블이 붕괴 또는 응집되면서 약물 전달 효율이 극대화되는 효과를 가진다. 또한, 본 발명의 약물 전달체는 미세캡슐 내부에 다수의 나노버블을 함유하고 있기 때문에 약물전달체 뿐만 아니라, 조영제로서도 활용될 수 있으며, 상기 약물 전달체를 제조하는 방법에 따라 제조된, 약물과 나노버블이 함께 캡슐화된 약물 전달체는 체내 진단과 치료를 동시에 수행할 수 있는 특징이 있다.

Description

나노버블과 약물이 함유된 약물담지체를 활용한 초음파 유도 약물전달 시스템
본 발명은 다수의 나노버블과 고농도의 약물이 하나의 미세캡슐에 함께 함유된 약물담지체를 활용한 초음파 유도 약물전달 시스템에 관한 것으로, 구체적으로는, 나노버블 제조장치를 활용하여 약물이 용해된 오일에 나노버블을 발생시킨 후, 이를 미세 캡슐화하여 고농도의 약물과 다수의 나노버블이 함께 캡슐화된 약물 전달체를 제조하는 방법 및 이를 활용한 초음파 유도 약물전달 시스템에 관한 것이다.
약물 전달 시스템(Drug delivery system)은 표적부위에 약물을 선택적으로 전달하여 장시간 동안 유효 혈중농도를 질병에 따라 최적화함으로써 치료 효능 및 효과를 극대화시키고, 약물 부작용의 극소화를 목적으로 한다.
이러한 약물 전달체의 대부분인 나노 약물 전달체는 다양한 방법으로 제조될 수 있다. 대표적인 제조방법으로, 자가 유화 확산법을 이용한 나노입자, 블록 공중합체 등을 이용한 미셀 형성을 통한 나노입자, 자성을 이용한 나노입자, 이온성 고분자의 복합체 반응을 이용한 나노입자 등이 있다.
나노입자가 인체에 투입될 때는 주사, 경구, 피부 등 다양한 방법을 통해 전달되며 이때 약물의 분포는 다른 전달체와는 구별되는 약물의 분포를 나타내며 이것은 나노입자의 특성에 따라 달라진다.
또한, 이러한 나노입자에 표적 전달 효율을 높이기 위하여 다양한 표적 리간드를 결합시키거나, 근적외선 조사를 통해 약물 방출 속도를 제어하거나, 초음파에 의해 침투 능력을 향상시키는 등의 약물 전달의 극대화를 꾀하는 연구들이 여러 방면에서 일어나고 있으며, 여전히 타겟 부위에 적정 시기, 적정량의 약물 방출을 조절하기 위한 우수한 약물 전달 기술 개발은 요구되고 있는 실정이다.
본 발명의 일 목적은 초음파에 의한 효과적인 약물 전달이 가능한, 다수의 나노버블이 미세캡슐에 약물과 함께 함유된 약물 전달체를 제공하는 것이다.
본 발명의 다른 목적은 물에 분산이 어려운 지용성 약물이 용해된 오일에 나노버블 제조장치를 활용하여 나노버블을 발생시킨 후, 지용성 약물과 나노버블을 함유하는 오일(나노버블용액)을 미세 캡슐화하여 수용액에 분산이 용이한 약물 전달체를 제조하는 방법을 제공하는 것이다.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업계에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기 목적을 달성하기 위한 하나의 양태로서, 본 발명은 우선, 나노버블 제조장치를 활용하여 물에 분산이 어려운 지용성 약물이 용해된 오일에 나노버블을 발생시킨 후, 지용성 약물과 나노버블을 함유하는 오일을 미세 캡슐화하여 수용액에 분산이 용이한 약물 전달체를 제조하는 방법을 제공한다. 본 명세서 내에서 상기 용어 약물 전달체는 '미세캡슐' 또는 '나노버블 미세캡슐' 등과 혼용될 수 있다.
본 발명에 있어서, 상기 나노버블용액은 직경이 50nm 내지 500nm 범위, 일 예로 특히, 직경 50nm 내지 200nm 미만 크기의 나노버블을 함유한 버블용액으로, 버블(bubble)이라 함은 기포 즉, 액체에 존재하는 기포 주머니를 의미한다. 본 발명에 따른 나노버블용액의 농도, 즉, 나노버블용액 내에 존재하는 나노버블의 개수는 5억개/ml, 10억개/ml 내지 30억개/ml 이상의 나노버블을 함유하는 용액이다. 이러한 나노버블은 상온 이하의 온도에서 2~6개월 이상 안정적으로 유지될 수 있다. 나노버블의 크기가 상기 범위보다 커지면 부상(浮上)으로 인해 나노버블용액의 안정성이 현저히 떨어지며, 상기 범위보다 낮은 개수의 나노버블용액은 단일 미세캡슐 내부의 나노버블 수가 적어 초음파 유도 약물 전달 효율이 현저히 떨어질 수 있다.
본 발명에 있어서, 상기 방법은,
(a) 약물을 유기 용매에 용해시킨 후, 오일과 혼합하여 혼합액을 제조하는 단계;
(b) 상기 혼합액으로부터 유기용매를 제거하는 단계;
(c) 상기 유기용매가 제거된 혼합액에 나노버블을 발생시키거나, 또는 약물을 함유하는 오일과 나노버블을 함유하는 오일을 각각 제조한 후 이를 혼합함으로써 지용성 약물과 나노버블을 함께 함유하는 오일 용액(나노버블용액)을 제조하는 단계; 및
(d) 계면활성제를 함유한 수용액에 상기 나노버블용액을 혼합하는 단계;
를 포함할 수 있다.
본 발명에 있어서, 상기 약물 전달체는 에멀전 형태로 수용액에 분산되어 있는 것을 특징으로 할 수 있다.
상기 (c) 단계에 있어서, 상기 약물을 함유하는 오일과 나노버블을 함유하는 오일이 혼합되는 비율에는 특별히 제한이 없으며, 당업자가 실시하고자 하는 목적에 따라 적절한 비율로 상기 오일들을 혼합하여 본 발명의 나노버블용액을 제조할 수 있다.
또한, 본 발명에 있어서, 상기 (d) 단계는 계면활성제를 함유한 수용액에 약물과 나노버블을 함유하는 오일(나노버블용액)을 멤브레인을 통해 통과시킴으로써 약물과 나노버블이 함께 캡슐화된 미세캡슐 형태의 약물 전달체를 제조하는 것일 수 있으며, 일 예시로, 에멀전 발생장치(IMK-40, MC Tech 등)를 이용하여 상기 약물과 나노버블이 함께 캡슐화된 약물 전달체를 제조할 수 있다.
특히, 상기 약물은 오일 내 함유된 형태로 나노버블과 함께 캡슐화되어 미세캡슐 형태의 약물 전달체로 제조될 수 있다.
본 발명에 있어서, 상기 약물은 지용성 약물일 수 있으며, 지질에 대한 친화도를 가진 약물, 물 보다 지질 또는 리포이드에 대하여 강한 친화력을 가진 약물, 비극성 유체에 대해 친화력을 가진 약물, 지질 또는 리포이드에 대하여 결합 가능한 기능기를 가지는 약물은 모두 포함된다. 또한, 상기 약물은 특별히 그 종류에 제한되지 아니하며, 화학약물, 단백질 의약, 펩타이드 의약, 유전자 치료용 핵산 분자, 나노 입자, 요오드화 조영제, 가돌리늄 조영제, 바륨 조영제, 형광입자 및 자성입자와 같은 조영물질, (기능성) 화장품 유효성분 또는 미용학적으로 사용되는 유효성분 모두를 포함한다. 예컨대, 상기 화장품 유효성분 또는 미용학적으로 사용되는 유효성분은 미백 효과를 나타내는 나이아신아마이드, 알부틴, 백출유, 4-엔-부틸레조시놀, 에칠아스코빌에텔; 주름 개선 효과를 나타내는 아데노신, 아시아티코사이드, 레티놀, 레티닐팔미테이트; 항염 효과를 나타내는 알란토인, 알로에베라 추출물, 아줄렌, 병풀추출물 외에 항산화 효과 또는 자외선 차단 효과 등을 나타내는 화장품 성분들을 포함할 수 있으며, 이에 특별히 제한되지 않는다.
본 발명에 이용될 수 있는 지용성 약물은 예를 들어, 항암제, (퇴행성) 뇌 질환 치료제, 항염증제, 진통제, 항관절염제, 진경제, 항우울증제, 항정신병약물, 신경안정제, 항불안제, 마약길항제, 항파킨스질환 약물, 콜린성 아고니스트, 항혈관신생억제제, 면역억제제, 항바이러스제, 항생제, 식욕억제제, 진통제, 항콜린제, 항히스타민제, 항편두통제, 호르몬제, 관상혈관, 뇌혈관 또는 말초혈관 확장제, 피임약, 항혈전제, 이뇨제, 항고혈압제, 심혈관질환 치료제, 미용성분(예컨대, 주름개선제, 피부노화 억제제 및 피부미백제) 등을 포함하나, 이에 제한되는 것은 아니다. 일 예로, 독소루비신, 파클리탁셀, 빈크리스틴, 다우노루비신(daunorubicin), 빈블라스틴(vinblastine), 액티노마이신-D(actinomycin-D), 도세탁셀, 에토포사이드(etoposide), 테니포사이드(teniposide), 비산트렌 (bisantrene), 호모해링토닌(homoharringtonine), 글리벡(Gleevec; STI-571), 시스플라틴, 5-플로오로우라실, 아드리아마이신, 메토트렉세이트, 부설판(busulfan), 클로람부실(chlorambucil), 시클로포스파미드(cyclophosphamide), 멜팔란 (melphalan), 니트로겐 무스타드(nitrogen mustard) 또는 니트로소우레아 (nitrosourea)와 같은 약물일 수 있다.
본 발명에 있어서, 상기 유기용매는 특별한 제한없이 약물의 용해도가 높은 용매를 사용할 수 있으나, 디클로로메탄, 에틸 아세테이트, 아세톤, 에탄올, 메탄올, 메틸 에틸 케톤, 메틸렌 클로라이드, 디클로로에탄, 클로로포름, 다이옥산, 디메틸설폭사이드, 아세토니트릴, 또는 아세트산 등일 수 있다.
본 발명에 있어서, 상기 약물은 유기 용매에 대하여 0.001 내지 10g/mL의 농도로 용해시킬 수 있다. 또한, 상기 유기용매의 경우 약물이 용해된 용액 내에 낮은 끓는점을 가지고 있고, 이러한 유기용매는 진공 또는 회전 농축기를 이용하여 완벽히 제거되도록 한다.
본 발명에 있어서, 상기 오일은 파라핀오일(paraffin oil), 알파-비사볼롤(α-bisabolol), 스테아릴 글리세레티네이트(stearyl glycyrrhetinate), 살리실산(salicylic acid), 토코페릴 아세테이트(tocopheryl acetate), 판테놀(panthenol), 글리세릴 스테아레이트(glyceryl stearate), 세틸옥탄올레이트(cetyl octanolate), 이소프로필 미리스테이트(isopropyl myristate), 2-에틸렌 이소펠라고네이트(2-ethylene isopelagonate), 디-c12-13 알킬 말레이트(di-c12-13 alkyl malate), 세테아틸 옥타노에이트(ceteatyl octanoate), 부틸렌 글리콜 디카프틸레이트/디카프레이트(butylene glycol dicaptylate/dicaprate), 이소노닐 이소스테아레이트(isononyl isostearate), 이소스테아릴 이소스테아레이트(isostearyl isostearate), 세틸 옥타노에이트(cetyl octanoate), 옥틸도데실 미리스테이트(octyldodecyl myristate), 세틸 에스테르류(cetyl esters), c10-30 콜레스테롤/라노스테롤 에스테르(c10-30 cholesterol/lanosterol ester), 수소화 카스터 오일(hydrogenated castor oil), 모노글리세라이드(mono-glycerides), 디글리세라이드(diglycerides), 트리글리세라이드(triglycerides), 비스왁스(beeswax), 카나우바 왁스(canauba wax), 숙토스 디스테아레이트(suctose distearate), PEG-8 비스왁스(PEG-8 beeswax), 칸델리아 왁스(candelilla(euphorbia cerifera) wax), 미네랄 오일, 스쿠알렌(squalene), 스쿠알란(squalane), 중간 사슬 글리세라이드, 미글리올(myglyol), 크레모포(cremophor), 수소화 캐스터 오일, 옥수수유, 깨유, 면실유 또는 글리세롤 등이 사용될 수 있다.
본 발명에 있어서, 상기 오일은 약물의 오일에 대한 용해도에 따라 상기 유기용매 대비 5 내지 20 부피비로 혼합될 수 있다.
본 발명에 있어서, 상기 유기용매가 제거된 혼합액 또는 약물을 함유하는 오일에 나노버블을 발생시키는 방법은, 당해 기술분야에 존재하는 다양한 방법을 활용할 수 있으며, 예컨대, 기계적 교반, 초음파 기포 발생법, 멤브레인 통과법, 유체순환법 등과 같은 다양한 제조방법을 이용할 수 있다. 일 예시로, 대한민국 특허출원 제10-2019-0068228호, "나노버블수 생성장치"에 개시된 장치 및 방법을 이용하여 본 발명의 나노버블용액을 제조할 수 있다.
본 발명에 있어서, 상기 나노버블 내 가스의 종류는 크게 제한됨이 없으나, 구체적인 예시로는, 공기, CO2, N2, O2, H2, Ar, 퍼플루오로부탄, 퍼플루오로프로판(옥타플루오로프로판 등)을 포함한다.
본 발명에 있어서, 상기 계면활성제를 함유한 수용액은 물과 같은 수성 용매에 계면활성제가 함유된 용액을 의미하며, 농도는 전체 수용액 100 중량부에 대해 1ㅡ 내지 30 중량부일 수 있다.
본 발명에 있어서, 상기 계면활성제는, CTAB(세틸트리메틸암모늄 브로마이드)과 같은 양이온성 계면활성제, Citrate(구연산염)과 같은 음이온성 계면활성제, PVA(폴리바이닐알코올)와 같은 비이온성 계면활성제, 생체고분자성 계면활성제, 양쪽이온성 계면활성제 모두 그 종류에 제한없이 사용가능하다.
예컨대, 상기 양이온성 계면활성제는 4급(quaternary) 암모늄 화합물, 벤즈알코늄 클로라이드, 세틸트리메틸암모늄 브로마이드, 키토산, 라우릴디메틸벤질암모늄 클로라이드, 아실 카르니틴 히드로클로라이드, 알킬피리디늄 할라이드, 세틸 피리디늄 클로라이드, 양이온성 지질, 폴리메틸메타크릴레이트 트리메틸암모늄 브로마이드, 술포늄 화합물, 폴리비닐피롤리돈-2-디메틸아미노에틸 메타크릴레이트 디메틸 술페이트, 헥사데실트리메틸 암모늄 브로마이드, 포스포늄 화합물, 벤질-디(2-클로로에틸)에틸암모늄브로마이드, 코코넛 트리메틸 암모늄 클로라이드, 코코넛 트리메틸 암모늄 브로마이드, 코코넛 메틸 디히드록시에틸 암모늄 클로라이드, 코코넛 메틸 디히드록시에틸 암모늄 브로마이드, 데실 트리에틸 암모늄 클로라이드, 데실 디메틸 히드록시에틸 암모늄 클로라이드 브로마이드, (C12-C15)디메틸 히드록시에틸 암모늄 클로라이드, (C12-C15)디메틸 히드록시에틸 암모늄 클로라이드 브로마이드, 코코넛 디메틸 히드록시 에틸 암모늄 클로라이드, 코코넛 디메틸 히드록시에틸 암모늄 브로마이드, 미리스틸 트리메틸 암모늄 메틸술페이트, 라우릴 디메틸 벤질 암모늄 클로라이드, 라우릴디메틸 벤질 암모늄 브로마이드, 라우릴 디메틸 (에테녹시)4 암모늄 클로라이드, 라우릴 디메틸 (에테녹시)4 암모늄 브로마이드, N-알킬 (C12-C18)디메틸벤질 암모늄클로라이드, N-알킬 (C14-C18)디메틸-벤질 암모늄 클로라이드, N-테트라데실디메틸벤질 암모늄 클로라이드 일수화물, 디메틸 디데실 암모늄 클로라이드, N-알킬 (C12-C14)디메틸 1-나프틸메틸 암모늄 클로라이드, 트리메틸암모늄 할라이드 알킬-트리메틸암모늄 염, 디알킬-디메틸암모늄 염, 라우릴 트리메틸 암모늄 클로라이드, 에톡실화 알킬아미도알킬디알킬암모늄 염, 에톡실화 트리알킬 암모늄 염, 디알킬벤젠 디알킬암모늄 클로라이드, N-디데실디메틸 암모늄 클로라이드, N-테트라데실디메틸벤질 암모늄 클로라이드 일수화물, N-알킬(C12-C14) 디메틸 1-나프틸메틸 암모늄클로라이드, 도데실디메틸벤질 암모늄 클로라이드, 디알킬 벤젠알킬 암모늄클로라이드, 라우릴 트리메틸 암모늄 클로라이드, 알킬벤질 메틸 암모늄 클로라이드, 알킬 벤질 디메틸 암모늄브로마이드, C12 트리메틸 암모늄 브로마이드, C15 트리메틸암모늄 브로마이드, C17 트리메틸 암모늄 브로마이드, 도데실벤질 트리에틸 암모늄 클로라이드, 폴리디알릴디메틸암모늄 클로라이드, 디메틸 암모늄 클로라이드, 알킬디메틸암모늄 할로게니드, 트리세틸 메틸 암모늄 클로라이드, 데실트리메틸암모늄 브로마이드, 도데실트리에틸암모늄 브로마이드, 테트라데실트리메틸암모늄 브로마이드, 메틸 트리옥틸암모늄 클로라이드, 폴리쿼트(POLYQUAT) 10, 테트라부틸암모늄브로마이드, 벤질 트리메틸암모늄 브로마이드, 콜린 에스테르, 벤즈알코늄 클로라이드, 스테아르알코늄 클로라이드, 세틸 피리디늄 브로마이드, 세틸 피리디늄 클로라이드, 4급화(quaternized) 폴리옥시에틸알킬아민의 할라이드 염, "미라폴(MIRAPOL)" (폴리쿼터늄-2), "알카쿼트(Alkaquat)" (알킬 디메틸 벤질암모늄 클로라이드, 로디아(Rhodia)에 의해 제조됨), 알킬 피리디늄 염, 아민, 아민 염, 이미드 아졸리늄 염, 양성자화 4급 아크릴아미드, 메틸화 4급 중합체, 양이온성구아 검, 벤즈알코늄 클로라이드, 도데실 트리메틸 암모늄 브로마이드, 트리에탄올아민 및 폴옥사민으로 구성된 군으로부터 선택되는 것일 수 있으나, 이에 제한되는 것은 아니다.
상기 음이온성 계면활성제는 암모늄 라우릴 설페이트, 소듐 1-헵탄설포네이트, 소듐 헥산설포네이트, 소듐 도데실설페이트, 트리에탄올암모늄도데실벤젠설페이트, 칼륨 라우레이트, 트리에탄올아민 스테아레이트, 리튬 도데실설페이트, 소듐 라우릴설페이트, 알킬 폴리옥시에틸렌 설페이트, 소듐 알기네이트, 디옥틸 소듐 술포숙시네이트, 포스파티딜 글리세롤, 포스파티딜 이노시톨, 포스파티딜세린, 포스파티드산 및 그의 염, 글리세릴 에스테르, 소듐 카르복시메틸셀룰로즈, 담즙산 및 그의 염, 콜산, 데옥시콜산, 글리코콜산, 타우로콜산, 글리코데옥시콜산, 알킬 술포네이트, 아릴 술포네이트, 알킬 포스페이트, 알킬 포스포네이트, 스테아르산 및 그의 염, 팔미트산 및 그의 염, 칼슘 스테아레이트, 포스페이트, 카르복시메틸셀룰로스 나트륨, 디옥틸술포숙시네이트, 소듐 술포숙신산의 디알킬에스테르, 인지질 및 칼슘 카르복시메틸셀룰로즈로 구성된 군으로부터 선택되는 것일 수 있으나, 이에 제한되는 것은 아니다.
본 명세서의 상기 비이온성 계면활성제는 Tween계 계면활성제, SPAN계 계면활성제, 폴리옥시에틸렌 지방(fatty) 알코올 에테르, 폴리옥시에틸렌 소르비탄 지방산 에스테르, 폴리옥시에틸렌 지방산 에스테르, 폴리옥시에틸렌 알킬에테르, 폴리옥시에틸렌 피마자유 유도체, 소르비탄 에스테르, 글리세릴 에스테르, 글리세롤 모노스테아레이트, 폴리에틸렌 글리콜, 폴리프로필렌 글리콜, 폴리프로필렌 글리콜 에스테르, 세틸 알코올, 세토스테아릴 알코올, 스테아릴 알코올, 아릴알킬 폴리에테르 알코올, 폴리옥시에틸렌폴리옥시프로필렌 공중합체, 폴록사머, 폴락사민, 메틸셀룰로즈, 히드록시셀룰로즈, 히드록시메틸셀룰로스, 히드록시에틸셀룰로스, 히드록시 프로필셀룰로즈, 히드록시 프로필메틸셀룰로즈, 히드록시프로필메틸셀룰로스 프탈레이트, 비결정성 셀룰로즈, 다당류, 전분, 전분 유도체, 히드록시에틸 전분, 폴리비닐 알코올, 트리에탄올아민 스테아레이트, 아민 옥시드, 덱스트란, 글리세롤, 아카시아 검, 콜레스테롤, 트래거캔스, 및 폴리비닐피롤리돈으로 구성된 군으로부터 선택되는 것일 수 있으나, 이에 제한되는 것은 아니다.
본 명세서에서 상기 생체고분자성 계면활성제는 알부민, 키토산, 헤파린, 폴리사카라이드, 폴리글리콘산, 폴리락트산, 폴리하이드록시뷰티그산, 고무, 수베린, 멜라니, 리그닌, 셀룰로스와 같은 다양한 폴리펩타이드, 핵산, 탄수화물로 구성된 군으로부터 선택되는 것일 수 있으나, 이에 제한되는 것은 아니다.
본 명세서의 상기 양쪽 이온성 계면활성제는 N-도데실-N, N-디메틸-3-암모니오-1-프로판설포네이트, 베타인, 알킬 베타인, 알킬아미도 베타인, 아미도 프로필 베타인, 코코암포카르복시글리시네이트, 사코시네이트 아미노프로피오네이트, 아미노글리시네이트, 이미다졸리늄 베타인, 양쪽성이미다졸린, N-알킬-N,N-디메틸암모니오-1-프로판술폰에이트, 3-콜아미도-1-프로필디메틸암모니오-1-프로판술폰에이트, 도데실포스포콜린 및 설포-베타인으로 구성된 군으로부터 선택되는 것일 수 있다. 다만, 이에 한정되는 것은 아니다.
본 발명에 있어서, 상기 계면활성제를 함유한 수용액에 상기 나노버블용액을 혼합하는 경우, 도 1에 제시된 바와 같이, 에멀전 발생장치를 활용하여 다양한 크기의 미세캡슐 입자를 만들 수 있다. 예를 들어, (IMK-40 장치에 내장된 펌프를 이용해 자동으로 밀어내어) 멤브레인을 통해 약물을 함유한 나노버블용액이 상기 수용액과 혼합되는 경우, 상기 멤브레인의 포어(pore) 크기는 0.2 내지 100μm 일 수 있다.
상기 목적을 달성하기 위한 다른 하나의 양태로서, 본 발명은 상기 방법에 따라 제조된, 나노버블과 약물이 함께 캡슐화된 약물 전달체를 제공한다.
본 발명에 따른 약물 전달체는, 상기 제조방법에 따라 제조되는 것으로, 도 3에 나타난 바와 같이, 수용액 상에 모델 약물(빨간색, 나일레드)과 나노버블(미세캡슐 내부의 검은색) 및 오일이 캡슐화된 미세캡슐의 형태로 분산된 에멀전 형태를 가지고 있다.
본 발명에 있어서, 상기 미세캡슐은 약 0.3 내지 20 μm 크기를 가질 수 있으며, 이는 사용된 멤브레인의 포어 크기에 의존한다.
본 발명에 있어서, 상기 약물 전달체는 특히 초음파를 가해주면 나노 버블이 붕괴 또는 응집되면서 순간적으로 고온, 고압을 일으켜 약물 전달 효율이 극대화된다(도 6 및 도 7). 이러한 초음파의 종류에는 제한이 없으며, 예컨대 집속초음파 등일 수 있다. 특히 집속초음파를 활용하여 인체 내 선택된 부위의 약물방출 현상을 외부에서 효과적으로 제어할 수 있다.
상기 목적을 달성하기 위한 또 다른 하나의 양태로서, 약물과 나노버블이 함께 캡슐화된 미세캡슐 형태의 상기 약물 전달체를 포함하는 화장료 조성물을 제공한다.
상기 약물 전달체를 포함하는 화장료 조성물은 피부 미백, 피부 탄력증진 및 주름 개선, 피부 보습, 항산화, 항염증 등의 효과를 가질 수 있으나, 이에 제한되는 것은 아니다. 구체적으로, 본 발명의 약물 전달체가 화장료 조성물로서 활용될 경우, 상기 약물 전달체에 함유되는 약물은 (기능성) 화장품 유효성분 또는 미용학적으로 사용되는 유효성분 등을 제한없이 포함할 수 있다. 화장품 유효성분 또는 미용학적으로 사용되는 유효성분은 전술한 바와 같다.
본 발명에 따른 화장료 조성물은 용액, 외용연고, 크림, 폼, 영양화장수, 유연화장수, 팩, 유연수, 유액, 메이크업베이스, 에센스, 비누, 액체 세정료, 입욕제, 선 스크린크림, 선오일, 현탁액, 유탁액, 페이스트, 겔, 로션, 파우더, 비누, 계면활성제-함유 클린싱, 오일, 분말 파운데이션, 유탁액 파운데이션, 왁스 파운데이션, 패취 및 스프레이로 구성된 군으로부터 선택되는 제형으로 제조할 수 있으나, 이에 제한되는 것은 아니다.
또한, 본 발명의 화장료 조성물은 일반 피부 화장료에 배합되는 화장품학적으로 허용 가능한 담체를 1 종 이상 추가로 포함할 수 있으며, 통상의 성분으로 예를 들면 유분, 물, 계면활성제, 보습제, 저급 알콜, 증점제, 킬레이트제, 색소, 방부제, 향료 등을 적절히 배합할 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기 목적을 달성하기 위한 또 다른 하나의 양태로서, 상기 약물 전달체를 포함하는 조영제를 제공한다.
본 발명에서 용어 "조영제"는 신체 장기의 상태파악 및 질병의 진단을 목적으로, 혈관이나 조직 등이 보다 잘 보이도록 인위적으로 대조도의 차를 만들어 영상으로 나타내기 위해서 사용되는 제제를 의미하는 것으로, 보다 구체적으로는 "초음파 조영제"를 의미할 수 있다. 상기 초음파 조영제의 대표적인 예는 미세버블 또는 나노버블을 활용한 것일 수 있으며, 체내로 주입된 미세버블 또는 나노버블의 계면에서 발생하는 초음파 반응성의 차이로 인해 조영 특성을 나타낸다.
본 발명의 약물 전달체는 미세캡슐 내부에 다수의 나노버블을 함유하고 있기 때문에 약물전달체 뿐만 아니라, 조영제로서도 활용될 수 있다. 또한, 본 발명의 약물 전달체를 제조하는 방법에 따라 제조된 약물 전달체는 체내 진단과 치료를 동시에 수행할 수 있는 특징이 있으며, 약물없이 제조되어 다수의 나노버블을 함유하는 미세캡슐은 생체 적합성이 우수하고 생체 내 안정성이 우수하며, 하나의 미세캡슐 내부의 다수의 나노버블이 초음파에 함께 반응할 수 있으므로, 효율적인 초음파 조영제로 활용될 수 있다.
또한, 사용되는 검사 진단법 및 목적에 따라, 당업계에 공지된 요오드화 조영제, 가돌리늄 조영제, 바륨 조영제, 설파헥사플루오라이드, 형광입자 및 자성입자와 같은 조영물질이 상기 미세캡슐 내부에 나노버블과 함께 함유될 경우 다양한 특성의 조영제로서 활용될 수 있다. 상기 조영제가 적용될 수 있는 구현예로 X-선 영상화기술, 컴퓨터 단층촬영(CT, Computer Tomography), 자기공명영상(MRI, Magnetic Resonance Imaging), 양전자방출단층촬영(PET, Positron Emission Tomography), 초음파 촬영을 비롯한 핵 영상화 등이 있을 수 있으나, 이에 특별히 제한되는 것은 아니다.
상기 목적을 달성하기 위한 또 다른 하나의 양태로서, 약물과 나노버블이 함께 캡슐화된 미세캡슐 형태의 상기 약물 전달체를 개체에 투여하는 단계; 및 상기 약물 전달체의 투여 부위에 초음파를 조사하여 약물을 방출시키는 단계를 포함하는, 약물 전달방법을 제공한다. 상기 약물은 전술한 바와 같다.
본 발명에 있어서, 상기 약물 전달체는 특히 초음파를 가해주면 나노버블이 붕괴 또는 응집되면서 순간적으로 고온, 고압을 일으켜 약물 전달 효율이 극대화 된다. 구체적으로, 상기 초음파의 종류는 집속초음파인 것을 특징으로 할 수 있으나, 이에 특별히 제한되지 않는다. 일 예로서, 본 발명에 따른 약물 전달방법은 초음파 조사에 의해 유도되는 뇌혈관장벽(blood-brain barrier, BBB) disruption을 활용한 것으로, 상기 약물 전달체를 개체에 투여하고 투여 부위에 초음파를 조사할 경우 초음파에 의한 고열(hyperthermia)로 인해 순간적으로 BBB disruption이 일어나 뇌실질 내로의 약물 투과성이 증가될 수 있다.
상기 개체는 마우스, 랫트, 개, 고양이, 소, 말, 돼지 및 인간을 포함하는 포유류일 수 있으나 이에 특별히 제한되지 않으며, 상기 약물 전달체의 투여는 질환의 종류, 환부 및 개체의 상태 등을 고려하여 당해 기술 분야에서 당업자에게 알려진 투여 방법을 적절히 선택하여 수행될 수 있다.
상기 목적을 달성하기 위한 또 다른 하나의 양태로서, 약물과 나노버블이 함께 캡슐화된 미세캡슐 형태의 상기 약물 전달체를 개체에 투여하는 단계; 및 상기 약물 전달체의 투여 부위에 초음파를 조사하여 약물을 방출시키는 단계를 포함하는, 뇌 질환 또는 암의 치료 방법을 제공한다.
상기 개체 및 투여는 전술한 바와 같으며, 구체적으로, 상기 뇌 질환은 혈전증, 색전증, 뇌졸중, 뇌중풍, 뇌경색, 뇌출혈, 지주막하 출혈 및 뇌종양으로 구성된 군으로부터 선택되는 하나 이상일 수 있으며, 상기 암은 예를 들어 대장암, 췌장암, 위암, 간암, 유방암, 자궁경부암, 갑상선암, 부갑상선암, 폐암, 비소세포성폐암, 전립선암, 담낭암, 담도암, 비호지킨 림프종, 호지킨 림프종, 혈액암, 방광암, 신장암, 난소암, 흑색종, 결장암, 골암, 피부암, 두부암, 자궁암, 직장암, 뇌종양, 항문부근암, 나팔관암종, 자궁내막암종, 질암, 음문암종, 식도암, 소장암, 내분비선암, 부신암, 연조직 육종, 요도암, 음경암, 수뇨관암, 신장세포 암종 등일 수 있으나, 이에 특별히 제한되지 않는다.
상기 목적을 달성하기 위한 또 다른 하나의 양태로서, 약물과 나노버블이 함께 캡슐화된 미세캡슐 형태의 상기 약물 전달체를 포함하는, 뇌 질환 또는 암의 예방 또는 치료용 약학적 조성물을 제공한다. 상기 뇌 질환 및 암은 전술한 바와 같다.
본 발명에서 용어 "예방"은 본 발명의 약물 전달체의 투여로 뇌 질환 또는 암의 발병을 억제 또는 지연시키는 모든 행위를 의미하며, "치료"는 본 발명의 약물 전달체의 투여로 상기 뇌 질환 또는 암의 증세가 호전되거나 이롭게 바뀌는 모든 행위를 의미한다.
본 발명의 약학적 조성물은 약학적 조성물의 제조에 통상적으로 사용하는 약학적으로 허용 가능한 담체, 부형제 또는 희석제를 추가로 포함할 수 있고, 상기 담체는 비자연적 담체(non-naturally occuring carrier)를 포함할 수 있다. 상기 약학적 조성물은, 각각 통상의 방법에 따라 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀젼, 시럽, 에어로졸 등의 경구형 제형, 외용제, 좌제 및 멸균 주사용액의 형태로 제형화하여 사용될 수 있다. 상기 "약학적으로 허용 가능한"은 상기 조성물에 노출되는 세포나 인간에게 독성이 없는 특성을 나타내는 것을 의미한다. 구체적으로, 상기 담체의 종류는 특별히 제한되지 않으며, 당해 기술 분야에서 통상적으로 사용되고 약학적으로 허용되는 담체라면 어느 것이든 사용할 수 있다. 상기 담체의 비제한적인 예로, 식염수, 멸균수, 링거액, 완충 식염수, 알부민 주사 용액, 덱스트로즈 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 등을 들 수 있다. 이들은 단독으로 사용되거나 2종 이상을 혼합하여 사용될 수 있다. 또한, 필요한 경우 항산화제, 완충액 및/또는 정균제 등 다른 통상의 첨가제를 첨가하여 사용할 수 있으며, 희석제, 분산제, 계면 활성제, 결합제, 윤활제 등을 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주사용 제형, 환약, 캡슐, 과립 또는 정제 등으로 제제화하여 사용할 수 있다.
본 발명에 따른 뇌 질환 또는 암의 예방 또는 치료용 약학적 조성물의 투여 방식은 특별히 제한되지 않으며, 당해 기술 분야에서 통상적으로 사용하는 방식에 따를 수 있다. 상기 투여 방식의 비제한적인 예로, 약학적 조성물을 경구 또는 비경구 투여 방식으로 투여할 수 있다. 또한, 본 발명의 뇌 질환 또는 암의 예방 또는 치료용 조성물은 목적하는 투여 방식에 따라서 다양한 제형으로 제조될 수 있다.
본 발명에 따른 나노버블을 이용한 약물 전달체는 나노버블용액을 이용하여 약물과 나노버블이 함께 캡슐화된 약물 전달체로 제조되어, 특히 초음파를 가해주면 나노 버블이 붕괴 또는 응집되면서 약물 전달 효율이 극대화되는 효과를 가진다.
또한, 한 미세캡슐 내부에 다수의 나노버블이 함께 함유되어 있기 때문에 제조된 미세캡슐은 초음파 조영제로서 활용될 수 있다.
한편, 앞서 기재된 효과는 예시적인 것에 불과하며 당업자의 관점에서 본 발명의 세부 구성으로부터 예측되거나 기대되는 효과들 또한 본원발명 고유의 효과에 추가될 수 있을 것이다.
도 1은 본 발명에 따른 약물 및 나노버블을 함유하는 오일을 다공성 멤브레인을 통과시켜 미세캡슐화 된 약물 전달체를 제조하는 과정을 나타낸 그림이다.
도 2는 본 발명에 따라 제조된 나노버블용액 내부의 버블 개수를 NTA(나노입자추적분석기)를 활용하여 측정한 결과와 나노버블의 이미지이다.
도 3은 본 발명에 따라 제조된 미세캡슐 형태의 약물 전달체 이미지이다. 구체적으로, 도 3의 A-C는 균일한 크기를 갖는 미세캡슐이 분산된 다양한 농도의 형광 이미지를 나타내며, 빨간색은 사용된 약물(나일레드, 독소루비신)에 의한 형광특성에 기인한 것이다. 도 3의 D-F는 각각의 미세캡슐을 확대하여 내부의 나노버블을 함유하는 모습을 나타낸다. 구체적으로, 도 3의 E는 공초점 분석기의 초점이 일치하는 미세캡슐과 일치하지 않는 미세캡슐을 동시에 나타낸다.
도 4는 계면활성제로 형광색소가 고정된 알부민(Bovine serum albumin, BSA)을 활용하여 제조된 미세캡슐들의 형광 이미지를 나타낸다. 구체적으로, 도 4의 A는 약물(Doxorubicin)을 미세캡슐 내부에 함유하고 있어 빨간색을 나타내고, 도 4의 B는 미세캡슐 외부에 형성된 알부민을 보여주는 초록색의 껍질 이미지를 나타내고 있으며, 도 4의 C는 도 4의 A와 B에서 얻은 이미지를 합쳐서 나타낸 이미지이다. 아울러, 도 4의 D는 알부민의 초록색을 확실하게 보기 위해 약물이 함유되지 않은 미세캡슐을 제조하여 캡슐표면에 존재하는 알부민의 존재를 나타내는 형광 이미지이다.
도 5는 피부 투과성 특성을 측정하기 위해 사용된 Franz cell과 멤브레인을 통해 약물이 전달되는 모식도를 나타낸 것이다. 구체적으로, 도 5의 A는 피부 투과성 분석에 사용된 Franz cell의 모식도를 나타내며, 도 5의 B는 인공피부/사람 피부를 멤브레인으로 활용하여 약물방출 특성을 분석하는 개략도를 나타낸다.
도 6은 Fanze cell과 인공피부 멤브레인을 사용하여 측정한 약물의 피부 투과성 특성을 나타낸 것이다. 구체적으로, 도 6의 A는 초음파 조사없이 순수하게 나노버블에 의해 모델 약물(나일레드)의 피부 투과성이 향상되는 결과를 시간의 흐름에 따라 보여주는 그래프이며, 도 6의 B는 약물(독소루비신) 및 나노버블을 함유하는 미세캡슐 형태의 약물 전달체에서 초음파 조사와 함께 약물 방출이 향상되는 경우, 나노버블이 없는 미세캡슐에 초음파를 조사한 경우, 및 나노버블을 함유하는 미세캡슐에 대해 초음파를 조사하지 않은 경우의 피부 투과성을 함께 비교한 그래프이다.
도 7는 약물 및 나노버블을 함유하는 미세캡슐 형태의 약물 전달체에 초음파를 조사할 때 발생되는 특성을 나타낸 이미지이다. 구체적으로, 미세캡슐에 초음파를 조사하면 각각의 미세캡슐의 크기와 형태에는 큰 변화가 없지만, 각 미세캡슐 내부에 존재하는 나노버블들의 응집으로 인해 버블 크기의 증가를 확인할 수 있다.
도 8은 제조된 나노버블 미세캡슐의 초음파 조영 특성을 나타낸 이미지이다. 구체적으로, 아가로스 젤 사이에 고정된 고무튜브에 증류수(A, E), 나노버블이 없는 미세캡슐 수용액(C, G), 나노버블을 함유하는 미세캡슐 수용액(B, D, F, H)을 순차적으로 흘렸을 때 초음파 조사에 반응하는 도플러 효과를 관측한 결과를 나타낸다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 형태들을 설명한다. 그러나, 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시 형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.
실시예: 약물과 나노버블이 함께 캡슐화된, 에멀전 형태로 분산된 약물 전달체 제조
모델 약물(Nile red, 나일레드) 및 지용성 약물(Doxorubicin, 독소루비신) 각각 1g을 디클로로메탄 100mL에 녹인 뒤, 옥수수유 1000mL에 혼합하였다. 그 다음으로, 상기 디클로로메탄을 회전 농축기를 이용하여 완벽히 제거한 다음, 발명의 설명에 개시되어 있는 대한민국 특허출원 제10-2019-0068228호, "나노버블수 생성장치"를 이용하여 나노버블용액을 제조하였다(도 1에서의 왼편 용기). 제조된 나노버블용액 내부의 나노버블의 개수는 반으로 희석시켜 NTA(나노입자추적분석기)를 활용하여 측정하였으며, 도 2는 나노버블용액 1 mL안에 약 20억개의 나노버블이 존재하는 것을 보여준다.
이렇게 제조된 나노버블용액은 에멀전 발생장치(IMK-40, MC Tech)를 활용하여 멤브레인 포어 "1um"로 하여, 도 1에서와 같이 PVA(폴리바이닐알코올) 또는 알부민이 함유된 수용액(도 1 오른편 용기)에 분산시켜, 최종적으로 에멀전 형태의 약물 전달체 수용액을 제조하였다.
도 3에 나타난 바와 같이, 공초점 형광분석장비를 이용하여 나노버블과 형광 약물(나일레드 또는 o독소루비신)이 함유된 오일이 캡슐화되어 미세캡슐 형태로 제조됨을 확인하였고, 미세캡슐의 크기는 약 5um 내외인 것으로 확인되었다.
실험예 1: 초음파 유/무에 따른 약물 방출 비교 실험
제조된 미세 약물 전달체의 약물 방출 특성은 도 5의 A Franz Cell 위쪽 부분(Dosage compartment)에 약물 전달체가 분산되어 있는 용액을 첨가하여 측정하였으며, Franz Cell 아래부분(Receptor compartment)에 사용한 용액은 20% DMSO 수용액을 사용하였다. Thermal jacket을 통해 온도가 일정한 수용액을 순환시켜 실험기구의 온도를 37℃로 유지하였으며, Sampling area를 통해 일정 시간마다 샘플을 채취하고 순수한 용액을 보충하여 멤브레인을 통해 전달되는 약물의 양을 측정하였다. 그 결과, 도 6의 A는 모델 약물(나일레드)이 나노버블과 함께 미세캡슐화 되었을 때 나노버블을 함유하지 않은 경우에 비해 약물의 피부 투과성이 향상됨을 나타내었다.
추가적으로, 초음파 조사에 의해 강화된 약물 방출을 확인하기 위한 실험은 1L 물이 담겨 있는 초음파 세척기 안에서 이루어졌고, 초음파 발생 유/무에 따른 약물 방출 속도를 비교한 결과, 도 6의 B는 약물(독소루비신)이 나노버블과 함께 미세캡슐화 되었을 때 나노버블을 함유하지 않은 경우에 비해 피부 투과성이 향상됨을 나타내며, 또한 초음파를 조사하지 않은 경우 나노버블을 함유하는 미세캡슐의 피부 투과성이 현저히 떨어지는 것을 확인할 수 있다.
실험예 2: 나노버블 미세캡슐의 초음파 조영 특성 비교 실험
상기 실시예에 따른 방법으로 제조된 나노버블 미세캡슐의 초음파 조영 특성을 확인하기 위해 고무튜브가 고정된 아가로스 겔을 제조하였다. 1mL 실린지를 이용하여 각각의 샘플(증류수 (A, E), 나노버블이 없는 미세캡슐 수용액(C, G), 나노버블을 함유하는 미세캡슐 수용액(B, D, F, H))을 채취한 뒤, 실린지 펌프 (1mL/min)를 사용하여 제조한 아가로스 젤 안에 고정된 고무튜브에 각각의 샘플을 흘려보내면서 초음파(주파수 11.43 MHz, 파워 50 dB) 프로브를 상기 아가로스젤 위에 올려놓고 이미징하였다.
그 결과, 증류수와 나노버블이 없는 미세캡슐 수용액을 흘린 경우에는 초음파 조사에도 특별한 도플러 효과가 관측되지 않았으나, 나노버블을 함유하는 미세캡슐 수용액을 흘린 경우에는 강한 도플러 효과가 관측된 것으로 보아, 이로부터 본 발명에 따른 나노버블 미세캡슐의 초음파 조영제로서의 특성을 확인하였다.
이상에서 본 발명에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.

Claims (17)

  1. (a) 약물을 유기용매에 용해시킨 후, 오일과 혼합하여 혼합액을 제조하는 단계;
    (b) 상기 혼합액으로부터 유기용매를 제거하는 단계;
    (c) 상기 유기용매가 제거된 혼합액에 나노버블을 발생시키거나, 또는 약물을 함유하는 오일과 나노버블을 함유하는 오일을 각각 제조한 후 이를 혼합함으로써 약물과 나노버블을 함께 함유하는 오일 용액(나노버블용액)을 제조하는 단계; 및
    (d) 계면활성제를 함유한 수용액에 상기 나노버블용액을 혼합하는 단계
    를 포함하는, 약물과 나노버블이 함께 캡슐화된 미세캡슐 형태의 약물 전달체를 제조하는 방법.
  2. 제 1항에 있어서,
    상기 나노버블용액은 직경 50nm 내지 200nm 미만의 나노버블을 함유하는 것을 특징으로 하는, 방법.
  3. 제 1항에 있어서,
    상기 약물 전달체는 에멀전 형태로 수용액에 분산되어 있는 것을 특징으로 하는, 방법.
  4. 제 1항에 있어서,
    상기 (d) 단계는 상기 계면활성제를 함유한 수용액에 멤브레인을 통해 상기 나노버블용액을 통과시킴으로써 약물과 나노버블이 함께 캡슐화된 미세캡슐 형태의 약물 전달체를 제조하는 것인, 방법.
  5. 제 1항에 있어서,
    상기 약물은 오일 내 함유된 형태로 나노버블과 함께 캡슐화되어 미세캡슐 형태의 약물 전달체가 제조되는 것을 특징으로 하는, 방법.
  6. 제 1항에 있어서,
    상기 약물은 지용성 약물인 것을 특징으로 하는, 방법.
  7. 제 1항에 있어서,
    상기 약물은 화장품 유효성분인 것을 특징으로 하는, 방법.
  8. 제 1항에 있어서,
    상기 계면활성제의 농도는 전체 수용액 100 중량부에 대하여 2 내지 30 중량부인 것을 특징으로 하는, 방법.
  9. 제 1항 내지 제 8항 중 어느 한 항에 따른 방법으로 제조된 것을 특징으로 하는, 나노버블과 약물이 함께 캡슐화된 약물 전달체.
  10. 제 9항에 있어서,
    상기 약물 전달체는 에멀전 형태로 수용액에 분산되어 있는 것을 특징으로 하는, 약물 전달체.
  11. 제 9항에 있어서,
    상기 약물 전달체는 초음파 조사에 의해 상기 나노버블이 붕괴 또는 응집되어 약물 전달 효율이 향상되는 것을 특징으로 하는, 약물 전달체.
  12. 제 9항에 있어서,
    상기 약물은 지용성 약물인 것을 특징으로 하는, 약물 전달체.
  13. 제 9항에 있어서,
    상기 약물은 화장품 유효성분인 것을 특징으로 하는, 약물 전달체.
  14. 제 1항 내지 제 8항 중 어느 한 항에 따른 방법으로 제조된 약물 전달체를 포함하는, 조영제.
  15. 제 14항에 있어서,
    상기 조영제는 초음파 조영제인 것을 특징으로 하는 것인, 조영제.
  16. 제1 항 내지 제 8항 중 어느 한 항에 따른 방법으로 제조된, 나노버블과 약물이 함께 캡슐화된 약물 전달체를 개체에 투여하는 단계; 및
    상기 약물 전달체의 투여 부위에 초음파를 조사하여 약물을 방출시키는 단계를 포함하는, 약물 전달방법.
  17. 제 16항에 있어서,
    상기 초음파는 집속초음파인 것을 특징으로 하는, 방법.
PCT/KR2019/012217 2018-09-21 2019-09-20 나노버블과 약물이 함유된 약물담지체를 활용한 초음파 유도 약물전달 시스템 WO2020060275A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19863608.6A EP3769751A4 (en) 2018-09-21 2019-09-20 ULTRASONIC INDUCED DRUG DELIVERY SYSTEM WITH NANOBUBBLES DRUG CARRIER AND DRUG
CN201980028332.1A CN112055581B (zh) 2018-09-21 2019-09-20 利用包含纳米气泡和药物的药物载体的超声波诱导药物传递系统
US17/049,468 US11890370B2 (en) 2018-09-21 2019-09-20 Ultrasound-induced drug delivery system using drug carrier comprising nanobubbles and drug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0113896 2018-09-21
KR20180113896 2018-09-21

Publications (1)

Publication Number Publication Date
WO2020060275A1 true WO2020060275A1 (ko) 2020-03-26

Family

ID=69887590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/012217 WO2020060275A1 (ko) 2018-09-21 2019-09-20 나노버블과 약물이 함유된 약물담지체를 활용한 초음파 유도 약물전달 시스템

Country Status (5)

Country Link
US (1) US11890370B2 (ko)
EP (1) EP3769751A4 (ko)
KR (1) KR102216549B1 (ko)
CN (1) CN112055581B (ko)
WO (1) WO2020060275A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230038065A (ko) 2021-09-10 2023-03-17 삼성메디코스 주식회사 아세틸 헥사펩티드-8을 포함하는 나노버블 화장료 조성물 및 이의 제조 방법
CN116077361B (zh) * 2023-03-03 2023-11-24 广东丸美生物技术股份有限公司 一种具有深度皮肤清洁功效的组合物和制备方法及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010163393A (ja) * 2009-01-16 2010-07-29 Chung Yuan Christian Univ ナノバブルの形成方法
US20120121516A1 (en) * 2009-07-17 2012-05-17 Centre National De La Recherche Scientifique- Cnrs Emulsion Activatable by Ultrasounds and Method for Producing Same
KR20140018150A (ko) * 2012-08-02 2014-02-12 (주)아이엠지티 암의 진단 및 치료를 위한 마이크로버블-나노리포좀 복합체
KR101487088B1 (ko) * 2012-10-25 2015-01-27 서강대학교산학협력단 약물을 함유한 나노입자가 결합된 초음파 조영제 및 이의 제조방법
KR101595795B1 (ko) * 2014-03-19 2016-02-22 (주)아이엠지티 약물을 함유한 나노입자가 결합된 이중-목적 pat/초음파 조영제 및 이의 제조방법
KR20190068228A (ko) 2017-12-08 2019-06-18 (주)바램피앤에스 자화수를 이용한 펄프 시트의 살균 방법 및 그에 따른 펄프 시트

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9318288D0 (en) 1993-09-03 1993-10-20 Nycomed Imaging As Improvements in or relating to contrast agents
US20040131547A1 (en) * 1998-04-22 2004-07-08 Balin Balinov Contrast agents
JP4505560B2 (ja) * 2003-12-15 2010-07-21 宮崎県 単分散気泡の生成方法
WO2010123918A1 (en) * 2009-04-20 2010-10-28 Drexel University Encapsulation of microbubbles within the aqueous core of microcapsules
KR101505917B1 (ko) 2012-06-05 2015-03-26 중앙대학교 산학협력단 초음파진동자를 이용한 미세버블수 제조 장치
EP2913065A4 (en) * 2012-10-25 2016-07-27 Imgt Co Ltd ULTRASONIC CONTRAST MEDIUM IN WHICH NANOPARTICLES CONTAINING A MEDICINE ARE COMBINED, AND METHOD FOR PREPARING THE SAME
CN104096245B (zh) * 2014-07-18 2017-03-29 重庆医科大学 包裹载药白蛋白纳米粒的脂质超声微泡及其制备方法
KR101647107B1 (ko) 2015-01-08 2016-08-11 한국원자력연구원 기포의 크기 및 개체수 조절장치와 조절방법
AU2017230813B2 (en) * 2016-03-11 2021-02-04 Moleaer, Inc Compositions containing nano-bubbles in a liquid carrier
KR101732414B1 (ko) 2016-08-08 2017-05-08 중앙대학교 산학협력단 미세버블의 고농도화 장치 및 미세버블의 고농도화 방법
KR102379024B1 (ko) 2019-06-10 2022-03-25 삼육대학교산학협력단 나노버블수 생성장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010163393A (ja) * 2009-01-16 2010-07-29 Chung Yuan Christian Univ ナノバブルの形成方法
US20120121516A1 (en) * 2009-07-17 2012-05-17 Centre National De La Recherche Scientifique- Cnrs Emulsion Activatable by Ultrasounds and Method for Producing Same
KR20140018150A (ko) * 2012-08-02 2014-02-12 (주)아이엠지티 암의 진단 및 치료를 위한 마이크로버블-나노리포좀 복합체
KR101487088B1 (ko) * 2012-10-25 2015-01-27 서강대학교산학협력단 약물을 함유한 나노입자가 결합된 초음파 조영제 및 이의 제조방법
KR101595795B1 (ko) * 2014-03-19 2016-02-22 (주)아이엠지티 약물을 함유한 나노입자가 결합된 이중-목적 pat/초음파 조영제 및 이의 제조방법
KR20190068228A (ko) 2017-12-08 2019-06-18 (주)바램피앤에스 자화수를 이용한 펄프 시트의 살균 방법 및 그에 따른 펄프 시트

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3769751A4

Also Published As

Publication number Publication date
US11890370B2 (en) 2024-02-06
KR20200034631A (ko) 2020-03-31
US20210259953A1 (en) 2021-08-26
EP3769751A1 (en) 2021-01-27
CN112055581B (zh) 2023-04-07
CN112055581A (zh) 2020-12-08
EP3769751A4 (en) 2022-03-09
KR102216549B1 (ko) 2021-02-17

Similar Documents

Publication Publication Date Title
Shaker et al. Cellular uptake, cytotoxicity and in-vivo evaluation of Tamoxifen citrate loaded niosomes
CN100391464C (zh) 含活性维生素d化合物的药物组合物
CN104105508B (zh) 药物递送增强的末端树枝状聚合物
Chen et al. Chitosan-modified lipid nanodrug delivery system for the targeted and responsive treatment of ulcerative colitis
Zeng et al. Oral delivery of antioxidant enzymes for effective treatment of inflammatory disease
EP1674081A1 (de) Herstellung von lipidbasierten Nanopartikeln unter Einsatz einer dualen asymmetrischen Zentrifuge
WO2020060275A1 (ko) 나노버블과 약물이 함유된 약물담지체를 활용한 초음파 유도 약물전달 시스템
CN102149371A (zh) 螯合两亲聚合物
US20200206141A1 (en) Oral colon-targeted delivery system and preparation method and application thereof
EP3391906A1 (en) Biodegradable tumor sealant
Zhu et al. Effect of taste masking technology on fast dissolving oral film: dissolution rate and bioavailability
CN101984958B (zh) 纳米级阿苯达唑微粉及其制备方法
Wilkinson et al. Lipid based intramuscular long-acting injectables: Current state of the art
CN109350598A (zh) 糖-聚乙二醇-dspe偶联化合物及其制备方法和应用
Wei et al. Combination therapy with amphotericin B and doxorubicin encapsulated in mannosylated nanomicelles for visceral leishmaniasis
CN105963254A (zh) 一种辅酶q10 药物组合物及其制备工艺
CN113384705A (zh) 泊洛沙姆修饰的脂质体的制备及在口服药物递送中的应用
US10537531B2 (en) Casein coated drug-loaded iron oxide nanoparticles
CN102429912A (zh) 一种微粉化普拉睾酮或硫酸普拉睾酮钠制备的药物组合物及其用途
Yang et al. Coptis chinensis polysaccharides dynamically influence the paracellular absorption pathway in the small intestine by modulating the intestinal mucosal immunity microenvironment
CN107375213A (zh) pH响应型无载体纳米药物制剂及制备方法、应用
CN102973503B (zh) 一种去甲斑蝥素衍生物脂质微球注射液及其制备方法
CN105748442B (zh) 一种红景天苷及他莫昔芬的双载药抗乳腺癌纳米制剂的制备方法
JP7426151B2 (ja) 超音波感応性リポソーム及びその製造方法
CN103169657A (zh) 一种含灯盏花素磷脂复合物的自乳化剂及其制备方法和用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863608

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019863608

Country of ref document: EP

Effective date: 20201020

NENP Non-entry into the national phase

Ref country code: DE